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Abstract

Recent years have witnessed rapid advance-001
ments in Large Language Models (LLMs).002
Nevertheless, it remains unclear whether state-003
of-the-art LLMs can infer the author of an004
anonymous research paper solely from the text,005
without any additional information. To inves-006
tigate this novel challenge, which we define007
as Open-World Authorship Attribution, we in-008
troduce a benchmark comprising thousands of009
research papers across various fields to quan-010
titatively assess model capabilities. Then, at011
the core of this paper, we tailor a two-stage012
framework to tackle this problem: candidate013
selection and authorship decision. Specifically,014
in the first stage, LLMs are prompted to gener-015
ate multi-level key information, which are then016
used to identify potential candidates through017
Internet searches. In the second stage, we intro-018
duce key perspectives to guide LLMs in deter-019
mining the most likely author from these can-020
didates. Extensive experiments on our bench-021
mark demonstrate the effectiveness of the pro-022
posed approach, achieving 60.7% and 44.3%023
accuracy in the two stages, respectively. We024
will release our benchmark and source codes to025
facilitate future research in this field.026

1 Introduction027

The advancement of Generative Artificial Intelli-028

gence (AI) and Large Language Models (LLMs)029

has revolutionized numerous fields due to their re-030

markable capabilities in Natural Language Process-031

ing (NLP) tasks (Hagos et al., 2024; Naveed et al.,032

2024; Cui et al., 2024; Zhang et al., 2024). De-033

spite their widespread applications, their potential034

for authorship attribution—the task of identifying035

an author from anonymous text—remains largely036

unexplored. In this paper, we investigate an intrigu-037

ing question: Can state-of-the-art LLMs infer the038

author of an anonymous research paper without039

any additional information? This problem is both040

practical and ambitious. On one hand, accurately041

attributing authorship in academic research is cru- 042

cial for maintaining integrity, recognizing contribu- 043

tions, and detecting plagiarism or ghostwriting. On 044

the other hand, directly applying modern LLMs to 045

this task is challenging, as the relevant information 046

is often dispersed across Internet-scale data, which 047

makes it infeasible for these models to process effi- 048

ciently. 049

In this paper, we define this challenging task as 050

Open-World Authorship Attribution. Since no ex- 051

isting benchmark evaluates LLM performance in 052

this area, we construct a dataset comprising thou- 053

sands of academic papers from various research 054

fields. Building on insights from this data, we pro- 055

pose a novel two-stage framework to address the 056

task, including Candidate Selection and Authorship 057

Decision. 058

Specifically, in the candidate-selection stage, we 059

leverage LLMs to generate multi-level key repre- 060

sentations of a target paper, which are then utilized 061

to search the Internet for relevant authors and their 062

publications at multiple levels of specificity. The 063

retrieved authors along with authors in the citation 064

list form our candidate pool. In the authorship- 065

decision stage, LLMs assess potential authorship 066

in the candidate pool by evaluating the anonymous 067

text against multiple guidelines. Finally, a holistic 068

decision is made to determine the most probable 069

author, serving as the final output. 070

We conduct experiments using multiple state- 071

of-the-art LLMs, including both open-source and 072

closed-source models. 073

Extensive evaluation validate the effectiveness 074

and the superiority of the proposed solution. Specif- 075

ically, our approach achieves 60.7% accuracy of 076

candidate selection and 44.3% accuracy of author- 077

ship decision. The contribution of this work is 078

summarized as below: 079

• We are the first to define, study, and bench- 080

mark the task of open-world authorship attri- 081
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bution to the best of our knowledge.082

• By leveraging impressive capacity of recent083

LLMs, we devise a novel two-stage pipeline,084

including candidate selection and authorship085

decision, to tackle this challenge.086

• Extensive evaluations showcase the potential087

of modern LLMs and our proposed solution088

for open-world authorship attribution. We will089

release the dataset, prompts, and codes to sup-090

port future research in this field.091

2 Related Work092

2.1 Large Language Models (LLMs)093

LLMs have demonstrated remarkable capability094

in solving various Natural Language Processing095

(NLP) tasks, such as mathematical reasoning, and096

text summarization (Xuanfan Ni, 2024; Desta097

Haileselassie Hagos, 2024). The unique charac-098

teristic of LLMs lies in utilizing a unified paradigm099

without additional training to address various tasks100

(Qin et al., 2024).101

Language modelling: Language modelling as102

the core to current LLMs has developed from the103

traditional statistical methods like n-gram (Sharma104

et al., 2018a) models to Neural Network language105

models. The transformer language models with106

self-attention mechanisms further lay the founda-107

tion for the current rapid development of LLMs108

(Vaswani et al., 2017). The introduction of the rev-109

olutionized transformer helped the development of110

the GPT-1 transformer-decoder structure and Bert’s111

transformer-encoder structure.112

LLMs Tuning: Tuning techniques have evolved113

alongside the development of LLMs. Tuning con-114

sists of full-parameter and partial-parameter tun-115

ing. Due to computational constraints, research116

has focused on Parameter-Efficient Fine-Tuning117

(PEFT), including prompt tuning, Adapter-Tuning,118

and LoRA. In-context learning, a form of prompt119

learning, enables adaptation without parameter up-120

dates by providing example-based prompts.121

Instruction tuning is also the current focus. The122

purpose is to transform NLP tasks with natural lan-123

guage instruction which improves the performance124

of LLMs in zero-shot learning. Chain-of-Thought125

(Wei et al., 2023) is another reasoning strategy to126

resolve the issue of low performance in arithmetic127

reasoning, normal inference and symbol inference.128

2.2 AI-generated texts Detection with LLMs 129

The widespread accessibility of generative mod- 130

els has led to a proliferation of AI-generated 131

texts across the internet. Several detection ap- 132

proaches have been developed to detect LLM- 133

generated works to address the issue of authenticity: 134

(1) Training-based method adopt classifiers like 135

Support Vector Machines (SVMs) or fine-tuned 136

pre-trained language models like RoBERTa and 137

T5(Yang et al., 2023; Tang et al., 2023). (2) Zero- 138

shot Detection method directly uses the inherent 139

properties embedded in LLMs (Yang et al., 2023). 140

(3) Watermarking-based Detection like Inference- 141

time watermarking (Tang et al., 2023) embeds 142

unique patterns into text during generation by ma- 143

nipulating decoding processes, while post-hoc wa- 144

termarking retroactively modifies generated text 145

using rule-based or neural techniques to ensure 146

traceability (Tang et al., 2023). 147

2.3 Authorship Identification 148

Several studies have already researched the au- 149

thorship identification capabilities of LLMs, high- 150

lighting the importance of authorship attribution in 151

forensic investigations, cybersecurity, and tackling 152

misinformation (Huang et al., 2024). 153

Traditionally, authorship attribution and verifica- 154

tion focus on analyzing writing styles to measure 155

similarities and make authorial decisions. Early 156

methods employed natural language processing 157

(NLP) techniques, such as n-grams (Sharma et al., 158

2018a), part-of-speech (POS) tags (Sundararajan 159

and Woodard, 2018), and Linguistic Inquiry and 160

Word Count (LIWC) (Uchendu et al., 2020). These 161

handcrafted features are designed to quantify stylis- 162

tic patterns, including vocabulary richness, syntac- 163

tic complexity, and semantic focus, for effective 164

analysis (Huang et al., 2024). 165

More recently, with advancements in deep learn- 166

ing, text embeddings have become a prominent tool 167

in authorship attribution. Text embeddings repre- 168

sent textual data as vectorized numerical represen- 169

tations, enabling models to encode both semantic 170

and stylistic nuances. (Kumarage and Liu, 2023) 171

emphasizes the potential of leveraging large pre- 172

trained language models (LLMs) like BERT and 173

GPT to generate embeddings that capture deeper 174

stylistic and contextual patterns, thus applying 175

them to authorship attribution tasks. Another sig- 176

nificant change in authorship attribution is the in- 177

tegration of contrastive learning techniques into 178
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Figure 1: Violin plot illustrating the distribution of in-
formation entropy among 300 authors. An information
entropy value of 1.5219 indicates that, among the five
collected articles for a given author, two articles share
the same topic group, another two belong to a different
topic group, and the remaining article falls into a sepa-
rate group

embedding-based methods(Patel et al., 2023).179

Some methods developed the prompt pipeline180

for authorship identification, leveraging the inher-181

ent stylistic and linguistic extraction capabilities of182

LLMs (Huang et al., 2024; Wen et al., 2024). The183

results demonstrate the ability of LLMs to capture184

nuanced stylistic features without explicit feature185

engineering. However, limitations of the study are186

noticeable, such as dependency on pre-collected187

candidate authors which hinders its application in188

large-scale candidate pools. In most cases, the num-189

ber of candidate authors is fewer than 50, making190

the approach impractical for real-world applica-191

tions. Their focus on stylometric feature analy-192

sis and prioritizing explainability in the authorship193

decision-making limits its efficiency.194

3 Methods195

In this section, we elaborate on the proposed bench-196

mark and two-stage approach for open-world au-197

thorship attribution. Sec. 3.1 introduces the data198

sources and the construction of the benchmark.199

Secs. 3.2 and 3.3 describe the main pipelines of200

the two stages: candidate selection and authorship201

decision, respectively, in the proposed solution. In202

the first stage, candidate papers are retrieved from203

the Internet using LLM-generated keywords. In204

the second stage, LLMs determine the most likely205

author from these candidates. Fig. 3 provides an206

overview of the entire streamline.207

3.1 Data Curation208

Considering there is no off-the-shelf benchmark for209

the task of open-world authorship attribution, we210
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Figure 2: This heatmap shows the extent to which au-
thors choose the same topics across their publications.
Each cell represents the co-occurrence strength between
topics for the same author, with darker shades indicat-
ing a higher likelihood of an author selecting the same
topic in their papers. Each number in axises indicates
different topic groups 5

.

construct a dataset in this work. Specifically, To en- 211

sure diversity, we select papers from CVPR 2024, 212

spanning 30 subfields in computer vision. More- 213

over, to guarantee sufficient online reference mate- 214

rials for candidate selection, we filter out authors 215

with fewer than five first-author papers. This re- 216

sults in a dataset comprising 300 authors and 1,500 217

papers. More details are provided in Sec. 4.1. 218

3.2 Candidate Selection 219

The core challenge of open-world authorship attri- 220

bution lies in handling Internet-scale data, which 221

significantly exceeds the processing capabilities of 222

LLMs. Therefore, identifying common patterns 223

among papers by the same author is crucial for nar- 224

rowing down potential candidates from such a vast 225

data source. 226

During our investigation and collection of the 227

dataset, we observe that many authors’ published 228

papers demonstrate a correlation in research topics. 229

To analyze the relationship between authors and re- 230

search topics, we leverage Information Entropy and 231

perform a statistical analysis. Specifically, for each 232

author, we evaluate the randomness and diversity 233

of the involved research fields via: 234

H(T ) = −
N∑
i=1

p(Ti) log2 p(Ti), (1) 235
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Figure 3: The whole process of the proposed automatic end-to-end authorship identification consists of 2 stages. The
first stage will contribute to the collection of relevant candidates. The second stage performs 2 rounds of inference
decision based on different metrics with different input information from candidate pool. The final decision is based
on the 2 inferences.

where p(Ti) represents the probability of an au-236

thor’s papers belonging to topic Ti. Higher entropy237

suggests greater diversity in research areas, while238

lower entropy indicates topic consistency, aiding in239

author identification.240

In the violin plot shown in Fig. 1, we observe that241

only a small subset of authors exhibit high entropy242

and diversity across research fields. In Fig. 2, we243

also visualize the extent to which authors in a given244

field also conduct research in other fields. Strong245

diagonal activations suggest a high likelihood of246

topic overlap within an author’s publications.247

Based on the correlation of topics between au-248

thors’ different papers above, we can rely on this249

to search for the author. Therefore, we need some250

keywords which can summarize the topics from251

anonymous text and be utilized for searching the252

relevant articles. This is where LLMs can help in253

our candidate selection stage - keyword generation.254

These candidate articles will be used further in the255

next stage of decision-making.256

Keywords Generation. The keywords gener-257

ated need to accurately capture the contents of the258

anonymous input for the effective searching of the259

relevant articles. Therefore, we decided to generate 260

the relevant keywords in hierarchies to describe the 261

anonymous content. The different levels should 262

range from general (level 1) to specific (level 5). In 263

this way, we can search from the most specific to 264

the most general to get the relevant articles as our 265

candidates prepare for the next stage of decision- 266

making. 267

Few-shot Prompting. If we ask LLMs to gener- 268

ate the keywords directly in hierarchies, the output 269

may be in different formats and the quality of gen- 270

eration is not guaranteed by the simple instruction 271

of "Generate 5-level keywords". Few-shot prompt- 272

ing is utilized for LLMs to demonstrate how the 273

response should look. We will manually create 274

an example 6 and use it as an example within the 275

prompt. This will maximize the possibility of ef- 276

fective keyword generation which follows our pro- 277

posed method. 278

Candidates Search & Collect. Different levels 279

of the keywords will be sent to the search engine to 280

collect the potential candidates. The search engine 281

we choose is Scholar Inbox which has a semantic 282

section to input the different level keywords. In 283

4



0.0 0.2 0.4 0.6 0.8
Percentage Values

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0.0087

0.0052

CDF of Citation Similarity: Same vs. Different Authors

Author Type
Same Author
Different Author

Figure 4: This figure presents the cumulative density
plot (CDF) of citation similarity as it increases. The
varying rate of cumulative percentage growth indicates
that articles within the same topic tend to exhibit higher
citation similarity.

each search result of the level keywords, we de-284

cided to collect the first 20 papers with their respec-285

tive titles, authors and abstracts. If the searched286

article provides an arxiv link, we will try to retrieve287

the introduction and citation to help the stage 2288

decision-making.289

Appending Self-citation. Most authors tend to290

cite their previous works, especially when focused291

on a specific research area. This characteristic in-292

creases the likelihood of successfully including the293

true author in the candidate pool, which serves as294

the foundation for Stage 2. To leverage this, we in-295

corporate self-citation into our candidate selection296

process, and their metadata is retrieved through297

web scraping to enhance the effectiveness of our298

decision-making.299

3.3 Authorship Decision300

LLMs also show their great capability in analyz-301

ing large-scale data. Therefore In this stage, after302

creating our potential candidate pool, we need to303

enable LLMs to decide the most possible author.304

However, direct instruction like "Please decide the305

most possible author from the candidate pool" is306

not detailed enough for LLMs to accurately de-307

cide the most possible author. Therefore, we estab-308

lish different metrics to guide LLMs in identifying309

the most probable author step by step. Chain-of-310

Thought (CoT) (Wei et al., 2023) prompting is a311

technique designed to enhance the reasoning capa-312

bilities of large language models (LLMs) by guid-313

Algorithm 1 Open World Authorship Attribution
1: Input: Anonymous article x
2: Prompts: metrics = {style, citation}
3: Output: Final attributed author
4: Step 1: Keyword Generation

# Extract representative keywords using LLMs:
5: keywords← LLMs(x, Prompts,Example)
6: Step 2: Candidates Collection
7: for each level in keywords do
8: # Use web scraping to collect potential authors and

articles:
9: CandidatePool += WebScraping(level)

10: end for
11: Step 3: Iterative Filtering by Metrics
12: for i = 1 to |metrics| do
13: # Use LLMs to rank authors based on current metric:
14: TopAuthors← LLMs(x,CPool,metricsi)

# Append with the top-ranked authors:
15: CandidatePool← TopAuthors
16: end for
17: Step 4: Final Attribution

#determine the most likely author from TopAuthors:
18: FinalAuthor ← LLMs(x, TopAuthors)
19: Return: FinalAuthor

ing them to generate intermediate reasoning steps 314

before arriving at a final answer. This approach 315

mirrors the human thought process, and by simu- 316

lating it, LLMs can achieve more accurate analysis 317

and decision-making outcomes. 318

For each metric, we ask the LLMs to list the 319

top 5 authors that most match the metrics. In the 320

last step, we input all the decision results from its 321

decision and let LLMs decide the most possible one 322

holistically. In this way, we can identify the most 323

possible author. LLMs will perform 3 rounds of 324

most possible author inference based on contents, 325

writing styles, and citation similarities. The full 326

prompting can be referred to in Appendix 6. 327

3.3.1 Contents 328

As mentioned in the above section, due to the 329

similarities of authors chosen topic in their pub- 330

lished paper, content is the important metric to 331

determine the actual author (Halvani and Graner, 332

2021; Potha and Stamatatos, 2019). the specific 333

metrics within the contents is preferred topics and 334

Domain-Specific term used in the writing. We will 335

input author names, titles, abstracts and introduc- 336

tion (not every paper have) from the candidates 337

pool for LLMs inference. 338

3.3.2 Writing Style 339

Relying on stylometry is the traditional way of 340

authorship attribution. Evolving from the human 341

skills in identifying (Argamon et al., 2009), compu- 342

tational methods gradually become the main trend 343
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in the analysis of authors’ unique linguistic fea-344

tures in stylometry methods(Lagutina et al., 2019;345

Neal et al., 2017). Machine learning methods with346

LLMs further advance the computational methods347

with their powerful ability to extract features (Boen-348

ninghoff et al., 2019; Kojima et al., 2022).349

In our proposed method, we also utilize writing350

style as an important factor in identifying the author351

from our collected candidate pool. Different people352

have different habits or underlying characteristics353

in writing. Some typical metrics are repetition Pat-354

terns in words and phrases (Sharma et al., 2018b),355

sentence complexity, paragraph structure, sentence356

length and variation.357

To demonstrate the importance of writing style in358

differentiating authors, we select three paragraphs359

from three articles—two written by the same au-360

thor and one by a different author(Appendix 7). To361

eliminate the influence of topic variation, all three362

articles cover the same subject. We then prompt363

GPT-4o to analyze the texts and determine which364

two paragraphs are authored by the same individ-365

ual. GPT-4o demonstrates its ability to make this366

distinction based on factors such as writing tone,367

repetition patterns, sentence complexity, and para-368

graph structure.369

In this metric, we have the same input as content-370

based inference which is title, author, abstract and371

introduction.372

3.3.3 Citation Similarity373

As mentioned above, the topics for an author’s374

published papers are largely overlapped. This may375

also indicate that the literature review - citations of376

an author tend to be similar. In other words, the377

author has a preference for some citations and they378

may prefer to reuse these citations in their other379

works. Based on this assumption we establish the380

third metric which is the citation similarities. In381

this stage, we only utilize the author names, articles382

titles with the corresponding citations as the input383

for the LLMs.384

We conduct a citation similarity analysis on our385

collected dataset, calculating the similarity between386

the citations of test articles and titles authored by387

the same or different authors. The plotted cumu-388

lative distribution function (CDF) Figure 4 illus-389

trates the distribution of citation similarity under390

the same or different authors. Approximately 40%391

of the articles exhibit similar citation match proba-392

bilities between the same author and different au-393

thors. However, the remaining 60% show a clear394

distinction in citation similarity. In general, arti- 395

cles written by the same author tend to have higher 396

citation similarity values. 397

4 Experiments 398

4.1 Experimental Setup 399

Models. We choose nowadays popular LLMs 400

to conduct the test. We download the open 401

source Meta-Llama-3.1-8B-Instruct (Grattafiori 402

et al., 2024) for the initial test with both abstract- 403

only and abstract-plus-introduction as input infor- 404

mation input. We also use the recent GPT-4o-mini 405

(OpenAI et al., 2024) to conduct the test. GPT-4o- 406

mini was accessed and tested via API requests. 407

Dataset. Due to a lack of academic paper 408

datasets available online, We self-collected our 409

dataset for our testing. Our dataset includes 300 410

authors, with 5 papers selected for each author. To 411

ensure relevance and keep the writing style of the 412

author, we only selected the paper where the au- 413

thor is listed as the first author or second author 414

of the paper. For every author, the first paper we 415

collected is ensured to be the most recent published 416

from the author (simultaneously ensuring the au- 417

thor is the first author), which can minimize the 418

possible bias that the paper is included as the pre- 419

training data of the popular LLMs. To facilitate the 420

extraction of relevant information such as authors, 421

titles, abstracts, introductions or citations, we col- 422

lect the paper link in the sample. Additionally, we 423

assume that the authors’ papers are published on 424

the arxiv.org website. Hence, all the paper links are 425

arxiv links. For every test, we use every author’s 426

first paper as the anonymous text input. The rest 4 427

papers are used for other analysis. 428

Implementations. Meta-Llama-3.1-8B-Instruct 429

model was downloaded and deployed on 4-10 RTX 430

4090 GPUs, with the max new token set to 2000 431

to guarantee complete output. GPT-4o-mini was 432

utilized through API request. The maximum input 433

tokens for GPT-4o-mini is about 200K. During the 434

searching process, if we collect the same article 435

as our anonymous test input, we will ignore it as 436

the assumption of our method is that the test paper 437

should not appear on the website. 438

Evaluations. Our evaluations are divided into 2 439

parts, the first part is to examine the effectiveness 440

of searching and collecting the true author from the 441

crawling based on the generated keywords from 442

LLMs. The second part is to examine the ability 443

of the LLMs to identify the true author from the 444
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Table 1: Test Results of Two Stages: Candidate Selection and Authorship Decision.

MODEL
STAGE 1

(%)

STAGE 2 (%)

CONTENT WRITING STYLE CITATION SIMILARITY FINAL ACCURACY

TOP 1 TOP 5 TOP 1 TOP 5 TOP 1 TOP 5 (%)

LLAMA-3.1-8B 60.7 19.0 47.0 21.3 21.3 52.0 57.0 31.3
GPT-4O-MINI 56.3 27.3 52.3 36.3 61.3 49.3 66.0 41.3

Table 2: Final Score Benchmark with Baselines Comparison.

METHODS MODEL WRITING STYLE CITATION FINAL SCORE (%)

TOP1 TOP5 TOP1 TOP5

LIP
(HUANG ET AL., 2024)

LLAMA-3.1-8B 10.0 18.3 - 8.7

GPT-4O-MINI 6.7 17.7 - 9.3

AIDBENCH
(WEN ET AL., 2024)

LLAMA-3.1-8B 9.7 18.0 - 10.0

GPT-4O-MINI 11.3 21.7 - 11.3

OUR METHOD
LLAMA-3.1-8B 8.7 16.0 12.3 20.0 11.6

GPT-4O-MINI 18.0 29.7 15.0 26.7 17.7

candidates pool. If the first stage fails to collect the445

true author, we add the same authors’ other papers446

from our dataset to the candidate pool and allow447

the LLMs to reattempt the stage 2 test.448

Additionally, we conducted an overall score eval-449

uation, as our proposed method is an automated,450

end-to-end process. This test measures the percent-451

age of cases where the correct author is success-452

fully selected and identified throughout the entire453

pipeline.454

Multi-Conversation Handling. The input to-455

ken limits of OpenAI API requests are 128,000456

to 200,000 tokens. When the input token number457

exceeds the token limitations due to additional in-458

formation such as citation and introduction, or a459

large number of papers collected in the candidate460

pool, we need to split the input into 2-4 bathes to461

guarantee input size is compatible with the token462

limits. We assume that API requests for LLMs do463

not support conversation memory. In this case, we464

need to handle the situation of multi-round conver-465

sation. We prompt the LLMs to decide on the top-466

ranked author from mini-batches and extract the467

corresponding information of these top-ranked au-468

thors from candidate pools again. This information469

is then further provided to the LLMs in subsequent470

rounds until the top 5 authors are identified for each471

Llama-3.1-8B GPT-4o-mini GPT-4o
Model

12

13

14

15

16

17

18

Fi
na

l S
co

re
 (%

)

11.6%

17.6% 18.3%

Model Final Score Comparison

Figure 5: The final Score comparison across different
models using our methods.

metric. In this way, we treat every API request as 472

a new conversation and the complete information 473

will be provided to ensure the decision is correct. 474

4.2 Results 475

First, the experiment results of Stage 1 and Stage 2 476

are summarized in Table 1. In Stage 1, we utilize 477

our hierarchical levels to guide the models in emu- 478

lating the keyword generation process. Each level 479

serves as a basis for retrieving candidate authors, 480

which are then used in Stage 2 for decision-making. 481

Additionally, we incorporate citation information 482

from the anonymous articles into our candidate 483

7



Table 3: Ablation experiment by using different input and different prompts. The experiment was conducted using
GPT-4o-mini.

INPUT
METRICS FOR PROMPTING FINAL

ACCURACY (%)
CONTENT WRITING STYLE CITATION SIMILARITY

ABSTRACT
√ √

26.0

ABSTRACT+INTRO+CITATION
√ √

39.7

ABSTRACT+INTRO+CITATION
√ √ √

41.3

ABSTRACT+INTRO+CITATION
√ √

44.3

Table 4: Evaluating the accuracy of searching the correct
author’s other published articles in our stage 1. The
keywords are generated by Llama-3.1-8B.

KEYWORD INSTRUCTION STAGE-1 ACC. (%)

NO INSTRUCTONS 7.3
FROM GENERAL TO SPECIFIC 12.0
WITH LEVELS 15.7
SELF-CITATION 55.3
WITH LEVELS + SELF-CITATION 60.7

pool to enhance selection accuracy. Using key-484

words generated by Llama-3.1-8B, we achieved an485

accuracy of 59.3%. Keywords emulated and gen-486

erated by GPT-4o-mini are slightly less effective,487

yielding an accuracy of 56.3%.488

In Stage 2, we collect information about the can-489

didate authors and input this data into LLMs for490

reference-based evaluation using three key metrics:491

content similarity, writing style, and citation sim-492

ilarity. Across all three metrics, Top-5 accuracy493

consistently exceeded 50%. Among these metrics,494

writing style outperform content similarity in dis-495

tinguishing authors. However, citation similarity496

achieves the highest accuracy, with Top-1 accu-497

racy reaching 52% for Llama-3.1-8B and 49.3%498

for GPT-4o-mini. Finally, by integrating these three499

metrics, our final decision accuracies are 31.3% for500

Llama-3.1-8B and 41.3% for GPT-4o-mini.501

We also experiment to evaluate the overall accu-502

racy by combining Stage 1 and Stage 2 (Table 2).503

The final score indicates the probability of correctly504

identifying the author from searching to authorship-505

decision, Our method achieves the best results us-506

ing GPT-4o-mini (17.6%), outperforming the base-507

line models LIP (Huang et al., 2024) and AID-508

Bench (Wen et al., 2024) in both Llama and GPT509

models.510

To validate the effectiveness of our proposed hi- 511

erarchical keyword levels for candidate collection, 512

we conduct ablation experiments on keyword anal- 513

ysis in Table 4. The results demonstrate that using 514

different prompts leads to varying search perfor- 515

mance. When applying our proposed levels, we 516

achieve an accuracy rate of 15.7%. Furthermore, 517

when combined with self-citation, the overall accu- 518

racy increases significantly to 60.7%. 519

We also investigate the impact of incorporating 520

the introduction and citation in author attribution 521

in Table 3, finding that it significantly improves the 522

LLMs’ ability to identify the correct author, with 523

accuracy increasing from 26% to approximately 524

40%. When prompting the model to perform infer- 525

ence based on content, writing style, and citation 526

similarity, the results are slightly lower than the 527

accuracy achieved using only writing style and ci- 528

tation similarity (44.3%). 529

Finally, in Figure 5, we achieve the highest over- 530

all score of 18.3% using the latest GPT-4o model. 531

5 Conclusion 532

In this paper, we introduce the first benchmark 533

and dedicated solution for Open-World Authorship 534

Attribution. Leveraging recent advancements in 535

LLMs, we propose a two-stage pipeline: candidate 536

selection and authorship decision. In the first stage, 537

multi-levels keywords extracted from the target pa- 538

per are used to search the Internet. The retrieved 539

results, combined with citation lists, form a pool 540

of potential candidates. In the second stage, LLMs 541

infer authorship based on writing style and cita- 542

tion similarity from these candidates. Extensive 543

experiments demonstrate the effectiveness and su- 544

periority of our approach over multiple potential 545

baseline methods. 546
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6 Limitations547

Table & Figure Features. Another distinguish-548

ing feature in authorship attribution is the unique549

preferences authors showcase in structuring and de-550

signing their tables and figures. These characteris-551

tics manifest in various ways, including the choice552

of color palettes, where some authors consistently553

favor specific hues or grayscale representations.554

Differences also emerge in plotting styles, such555

as the use of bar charts, scatter plots, heatmaps,556

or line graphs, along with variations in grid us-557

age, axis formatting, and legend placement. Label-558

ing and annotation preferences also contribute to559

stylistic distinctions, as authors may differ in font560

choices, caption positioning, and the inclusion of561

callout markers. Additionally, the structuring of562

tables varies, with some researchers favoring de-563

tailed grid layouts while others opt for minimalistic564

designs with selective use of horizontal and vertical565

lines. Another notable characteristic is the number-566

ing and referencing approach, with some authors567

preferring “Figure 1” while others use “Fig. 1,”568

along with variations in how they cross-reference569

visual elements within the text. In future work, we570

aim to systematically analyze and quantify these571

stylistic preferences, leveraging feature extraction572

techniques and deep learning models to explore573

how visual elements can enhance authorship attri-574

bution accuracy.575

Large input. Since our method follows an open-576

world authorship attribution approach with an end-577

to-end pipeline, it requires collecting a substantial578

amount of information as input for the LLMs. This579

often exceeds the maximum token limit of many580

models, which results in extra strategies to handle581

multi-turn conversations, as these models do not582

have built-in memory functions.583
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A Appendix 1018

A.1 Ethical Discussion 1019

The application of this method may lead to unintended consequences, such as identifying authors during 1020

the Open Review stage of anonymous submissions, which would constitute an inappropriate and unethical 1021

use of our approach. Misuse of this technique in peer review processes could compromise the integrity of 1022

double-blind evaluation systems, introducing bias in scholarly assessments. 1023

To mitigate such risks, we strongly advocate for the ethical application of our method in domains where 1024

it can serve as a tool for transparency, accountability, and integrity. These include plagiarism detection, 1025

where it can help identify unauthorized reproduction of content; authenticity verification, which ensures 1026

the legitimacy of texts to detect spam and fraudulent writing; and forensic linguistic analysis, where 1027

attribution techniques contribute to research integrity. 1028

Furthermore, we emphasize the importance of responsible deployment, encouraging institutions, pub- 1029

lishers, and AI practitioners to implement strict ethical guidelines when leveraging authorship attribution 1030

technologies. By doing so, we can ensure that such methods are used only in contexts that promote 1031

fairness, trust, and the credibility of research and publishing. 1032

A.2 Cost Discussion 1033

During testing, the primary cost is associated with API access to OpenAI models. GPT-4o-mini and 1034

GPT-4o are priced at 0.15 and 2.50 USD per million input tokens, respectively. Due to the large input 1035

size generated by our candidate pools, each test round involving 300 authors incurs an estimated cost of 5 1036

USD when using GPT-4o-mini and 50 USD per round when using GPT-4o. 1037

A.3 Effectiveness Analysis of Multi-Level Keywords Retrieval 1038

Multi-levels Keywords Example
Level 1: General Topics
- Efficient Deep Learning
- Model Optimization

Level 3: Specific Techniques and Methods
- Pruning
    - Structured Pruning
    - Coarse-Grained Pruning (Layer-based)
    - Fine-Grained Pruning (Heads, Hidden
Units)
- Knowledge Distillation
    - Layerwise Distillation
    - Model Distillation Techniques

Level 2: Core Concepts
- Model Compression
- Neural Language Models
- Efficiency and Optimization in AI Models

Level 4: Task-Specific Approaches and
Metrics

- CoFi (Coarse- and Fine-grained Pruning)
- Latency Reduction
- Accuracy vs. Model Size Trade-Off
- Parallelizable Subnetworks

Level 5: Applications and Evaluation
- Benchmark Datasets
    - GLUE
    - SQuAD
- Efficiency Metrics
    - Speedups
    - Accuracy Drop

Input for
Searching
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Figure 6: Our proposed Multi-Levels keywords serve as the foundation for searching and collecting candidate
authors. These keywords are used as example prompts for LLMs to generate emulated results. The Keywords Level
Analysis evaluates the effectiveness of each multi-levels in the search process, comparing the results against those
obtained without any guiding instructions.
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Table 5: Categories & Groups in Heatmap

Groups Categories Groups Categories

1 3D Vision and Reconstruction 16 Natural Language Processing (NLP)
2 Medical Imaging and Diagnostics 17 Scene Understanding and Parsing
3 Image Processing and Enhancement 18 Tracking and Re-Identification
4 Video Understanding and Generation 19 Federated and Distributed Learning
5 Vision-Language Models 20 AI Ethics and Explainability
6 Generative Models and Techniques 21 Physics and Scientific Topics
7 Object Detection and Recognition 22 Data Representation and Augmentation
8 Semantic and Instance Segmentation 23 Audio and Speech Processing
9 Adversarial Techniques and Robustness 24 Emotion and Human-Centric Applications
10 Optimization and Efficiency 25 Novel Applications and Emerging Topics
11 Robotics and Navigation 26 Large Language Models (LLM)
12 Graph Neural Networks and Hyperbolic Models 27 Neural Architecture Optimization
13 Multimodal and Hybrid Models 28 Other
14 Scientific Modeling and Mathematics 29 Deep Learning and Foundational Models
15 Self-Supervised and Semi-Supervised Learning

Table 6: Full Instruction & Prompting used in decision stage based on 3 different metrics: Content, Writing Style
and Citation Similarities.

Metrics Instruction as Input

Content I will provide the information of the anonymous article’s title, abstract, dataset, introduc-
tion or extra information, please remember them. Then, Please choose the top 5 possible
articles’ author(s) among all the candidates with their corresponding information. In this
time, Decide the author(s) based on the Content like topics covered. You need to evaluate
based on metrics focused on contents includes:(a) Preferred Topics: Common themes or
subjects frequently addressed by the author. (b)Domain-Specific Terms: Use of jargon or
technical language tied to the author’s expertise. Now i will start to give you the list of
candidates for you to decide!

Writing Style Please choose the top 5 most possible articles’ author(s) among all the candidates with
their corresponding information. In this time Decide the author based on the writing style.
Metrics for evaluation include: (a) Writing Tone: Formal, casual, emotional, or neutral
tone in the text; (b) Repetition Patterns: Tendency to repeat certain ideas, phrases, or
structures; (c) Complexity: Use of compound or complex sentences, and overall readability
level; (d) Paragraph Structure: Length and organization of paragraphs; (e) Vocabulary
Usage: Word choices, diversity, and domain-specific terms; (f) Punctuation Patterns:
Frequency and style of punctuation usage; (g) Sentence Length and Variation: Average
length and variability of sentences; (h) Personal Pronouns and Voice: Usage of pronouns
and active/passive voice; (i) Lexical Density: Ratio of content words to function words; (j)
Rhythm and Flow: Natural sentence progression and rhythm.

Citation Similarity Please choose the top 5 most possible articles’ author(s) among all the candidates with
their corresponding information. In this time Decide the author based on the citations.
Different papers with the same author tend to share similarities in references. Therefore,
please refer to References and Sources: Citation patterns, including the types of resources
cited (e.g., scholarly papers, blogs).
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The growing size of neural language models has led to increased
attention in model compression. The two predominant approaches

are pruning, ..., and distillation, ... but hardly achieve large speedups
as distillation. However, distillation methods ... In this work, we

propose a task-specific structured pruning method CoFi (Coarse-
and Fine-grained Pruning), which delivers highly parallelizable

subnetworks and matches the distillation methods in both accuracy
and latency, without resorting to any unlabeled data. Our key insight

is to jointly prune coarse-grained (e.g., layers) and fine-grained
(e.g., heads and hidden units) modules, which controls the pruning

decision ... 

Existing methods, however, require either retraining, which is rarely
affordable for billion-scale LLMs, or solving a weight reconstruction

problem reliant on second-order information, which may also be
computationally expensive. In this paper, we introduce a novel,

straightforward yet effective pruning method, termed Wanda
(Pruning by Weights and activations), ..... Notably, Wanda requires
no retraining or weight update, and the pruned LLM can be used as
is. ..... Wanda significantly outperforms the established baseline of

magnitude pruning and performs competitively against recent
method involving intensive weight update.

Writing Tone: formal and academic, Formal and
academic, but slightly more narrative in describing the
problem and solution.
Repetition Patterns: "magnitude pruning," "sparsity,"
and "activations
Complexity: Moderate complexity with sentences that
are slightly less dense
Paragraph Structure: Context → Existing Challenges
→ Methods → results. More descriptive.
Pacing: Smooth and engaging, with emphasis on
novelty and results.

Writing Tone: formal, technical, and
methodologically focused.
Repetition Patterns: "pruning," "distillation," and
"models".
Complexity: short explanatory sentences, with longer
descriptive ones
Paragraph Structure: Context → Methods →
Limitations → Proposal → Innovation → Optimization
→ Results
Pacing: Balanced pacing, with a logical flow from
problem to solution.

Examples GPT-4o Output Analysis
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The popularity of LLaMA (Touvron et al., 2023a;b) and other recently
emerged moderate-sized large language models (LLMs) highlights

the potential of ..... ... remains high. In this work, we study structured
pruning as an effective means to develop smaller LLMs from pre-

trained, larger models. Our approach employs two key techniques:
(1) targeted structured pruning, which prunes a larger model ....(2)

dynamic batch loading, ....We demonstrate the efficacy of our
approach by presenting ... Sheared-LLaMA models outperform
state-of-the-art open-source models of equivalent sizes, ...while
requiring only 3% of compute compared to training such models

from scratch. ....

Writing Tone: Highly formal and methodically detailed
Repetition Patterns: "pruning," "distillation," and
"models".
Complexity: High complexity, with intricate
sentence structures
Paragraph Structure: Motivation → Objectives →
Methods → Challenges → Concluding aim.
Pacing: Deliberate and logical, with significant
emphasis on methodology and results.

C
on

te
xt

Ex
am

pl
e

3

Text 1 and Text 3 are likely from the same author:

Both share a highly formal tone, dense complexity, and methodologically detailed structure.
The logical flow and pacing are consistent, starting with context, delving into the method, and ending with result.

Text 2 differs from Texts 1 and 3: 

Text 2 is more descriptive and narrative, focusing on simplifying the explanation. 
While it discusses pruning, it lacks the granular detail and precision seen in Texts 1 and 3.

Text 1 and Text 3 exhibit strong similarities in writing style

Figure 7: The GPT-4o analysis was conducted on three selected texts. To minimize the influence of topic variation
on the LLM’s ability to determine authorship, all three texts were chosen to focus on the same topics: model pruning
and large language models (LLMs). The first and third text are from the same author (Xia et al., 2022, 2024).
Therefore the analysis shown LLMs’ ability to distinguish and identify authors based on writing style.
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Table 7: Full Example of Different Writing Styles. Example 1 (Xia et al., 2022), Example 2(Sun et al., 2023),
Example 3(Xia et al., 2024).

Class Abstract

Example 1 The growing size of neural language models has led to increased attention in model
compression. The two predominant approaches are pruning, which gradually removes
weights from a pre-trained model, and distillation, which trains a smaller compact
model to match a larger one. Pruning methods can significantly reduce the model
size but hardly achieve large speedups as distillation. However, distillation methods
require large amounts of unlabeled data and are expensive to train. In this work,
we propose a task-specific structured pruning method CoFi (Coarse- and Fine-
grained Pruning), which delivers highly parallelizable subnetworks and matches the
distillation methods in both accuracy and latency, without resorting to any unlabeled
data. Our key insight is to jointly prune coarse-grained (e.g., layers) and fine-grained
(e.g., heads and hidden units) modules, which controls the pruning decision of each
parameter with masks of different granularity. We also devise a layerwise distillation
strategy to transfer knowledge from unpruned to pruned models during optimization.
Our experiments on GLUE and SQuAD datasets show that CoFi yields models
with over 10x speedups with a small accuracy drop, showing its effectiveness and
efficiency compared to previous pruning and distillation approaches.

Example 2 As their size increases, Large Language Models (LLMs) are natural candidates
for network pruning methods: approaches that drop a subset of network weights
while striving to preserve performance. Existing methods, however, require either
retraining, which is rarely affordable for billion-scale LLMs, or solving a weight
reconstruction problem reliant on second-order information, which may also be
computationally expensive. In this paper, we introduce a novel, straightforward
yet effective pruning method, termed Wanda (Pruning by Weights and Activations),
designed to induce sparsity in pretrained LLMs. Motivated by the recent observation
of emergent large magnitude features in LLMs, our approach prunes weights with
the smallest magnitudes multiplied by the corresponding input activations, on a
per-output basis. Notably, Wanda requires no retraining or weight update, and the
pruned LLM can be used as is. We conduct a thorough evaluation of our method
Wanda on LLaMA and LLaMA-2 across various language benchmarks. Wanda
significantly outperforms the established baseline of magnitude pruning and performs
competitively against recent methods involving intensive weight update.

Example 3 The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged
moderate-sized large language models (LLMs) highlights the potential of building
smaller yet powerful LLMs. Regardless, the cost of training such models from
scratch on trillions of tokens remains high. In this work, we study structured pruning
as an effective means to develop smaller LLMs from pre-trained, larger models. Our
approach employs two key techniques: (1) targeted structured pruning, which prunes
a larger model to a specified target shape by removing layers, heads, and intermediate
and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading,
which dynamically updates the composition of sampled data in each training batch
based on varying losses across different domains. We demonstrate the efficacy of
our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B
model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform
state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE,
and OpenLLaMA models, on a wide range of downstream and instruction tuning
evaluations, while requiring only 3% of compute compared to training such models
from scratch. This work provides compelling evidence that leveraging existing LLMs
with structured pruning is a far more cost-effective approach for building smaller
LLMs.
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