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Offloaded Reasoning: Efficient Inference for Large Language Models via
Modular Reasoning and Refinement
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Abstract

Large language models (LLMs) demonstrate
strong reasoning capabilities but are expensive
to run at inference time, limiting their practical
deployment. We propose Offloaded Reasoning
(OR), a modular strategy where a lightweight
model generates intermediate reasoning traces
that are then used by a larger model to produce the
final answer. We further introduce Offloaded Rea-
soning with Refinement (ORR), where the large
model first edits or improves the reasoning trace
before answering. Unlike token-level accelera-
tion methods, OR and ORR operate at the rea-
soning level and require no retraining of the large
model. Experiments on GSM8K and Math500
show that OR achieves up to 8× faster inference
than full large-model reasoning with minimal ac-
curacy loss, while ORR recovers or exceeds full
accuracy at substantially lower cost. Our results
highlight the potential of modular, delegation-
based reasoning for building more efficient and
adaptable LLM systems.

1. Introduction
Large language models (LLMs) have demonstrated strong
performance on a wide range of complex reasoning tasks,
such as arithmetic problem solving, logical inference, and
open-domain question answering (Achiam et al., 2023;
Team et al., 2024; Touvron et al., 2023; Roziere et al., 2023;
Yang et al., 2024). However, the computational demands
of such models during inference—especially at deployment
scale—pose significant bottlenecks in resource-constrained
applications.

A central challenge is to reduce the inference-time compute
cost of LLMs without degrading their reasoning capabilities.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.
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Figure 1: Workflow of Offloaded Reasoning (OR) and
Offloaded Reasoning with Refinement (ORR). In OR, a
lightweight model generates an initial reasoning trace,
which is consumed by a larger model to produce the fi-
nal answer. In ORR, the large model additionally refines the
initial reasoning before generating the answer, improving
accuracy while maintaining efficiency.

Recent approaches like speculative decoding (Leviathan
et al., 2023) address this by drafting token sequences using
smaller models and verifying them with larger ones. While
effective for speeding up token generation, such methods
operate purely at the token level and remain agnostic to
the higher-level reasoning structure required for complex
tasks. Moreover, speculative decoding imposes a significant
practical constraint—it requires the smaller draft model and
the larger verifier model to share the same tokenizer and
vocabulary. This restricts model pair selection and limits
flexibility in deploying heterogeneous model combinations
for efficiency.

In this work, we propose Offloaded Reasoning (OR), a
simple yet powerful alternative that targets the reasoning
process itself. Instead of having the large model perform all
computation, OR offloads the generation of the intermediate
reasoning trace (e.g., a chain-of-thought) to a smaller model.
The large model then reads this offloaded reasoning and
produces the final answer. This division allows the small
model to shoulder the “cognitive burden” of reasoning while
the large model focuses on synthesis, significantly reducing
overall inference cost.

To further improve quality and robustness, we introduce
Offloaded Reasoning with Refinement (ORR). Here, the
large model not only uses but also refines the offloaded

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Offloaded Reasoning

reasoning—correcting or extending it as needed—before
producing the answer. This enables the large model to catch
errors in the initial trace while still enjoying substantial
compute savings.

Our approach is orthogonal to decoding-level acceleration
and complements token-efficient generation. It builds on
insights from chain-of-thought prompting, and modular rea-
soning, but focuses squarely on decoupling and optimizing
the reasoning pipeline. We evaluate OR and ORR on two
challenging mathematical reasoning benchmarks—GSM8K
(Cobbe et al., 2021) and Math500 (Lightman et al., 2023).
Our main findings are:

• OR substantially reduces inference cost: For exam-
ple, 7B-OR achieves a 8× speedup over 7B full rea-
soning (FR) on Math500, with only a minor accuracy
drop.

• ORR recovers and often exceeds full reasoning per-
formance: Across model sizes, ORR consistently
matches or outperforms FR in accuracy, while still
reducing latency.

• These benefits scale across model sizes: The quality-
efficiency tradeoff holds for 7B, 14B, and 32B models,
demonstrating robustness across deployment regimes.

Our results show that reasoning can be effectively delegated
to smaller models, enabling significant inference savings
without compromising quality. We argue that modular rea-
soning strategies like OR and ORR offer a promising direc-
tion for efficient and scalable NLP systems, and point to
a future where reasoning becomes a reusable, composable
primitive in LLM pipelines.

2. Methodology
Let Q denote an input question and A the final answer. In
traditional LLM inference, a large model ML directly maps
Q to A by internally generating a reasoning trace RL (e.g.,
a chain-of-thought),

A = ML(Q) = fanswer(RL),

where RL = freason(Q,ML). Our core idea in Offloaded
Reasoning (OR) is to offload the reasoning component
freason to a smaller model MS , significantly reducing infer-
ence cost. Specifically, we generate a offloaded reasoning
trace R̂ using MS :

R̂ = freason(Q,MS),

and feed this to the large model as additional context to
generate the final answer:

AOR = ML([Q ∥ R̂]),

where [Q ∥ R̂] denotes concatenation of the input question
and the reasoning trace.

This process enables the large model to focus solely on
synthesis (answer generation) while delegating the expen-
sive reasoning process to a smaller model. The approach
assumes that the small model is capable of generating suffi-
ciently high-quality intermediate reasoning to scaffold the
large model’s answer.

2.1. Offloaded Reasoning with Refinement (ORR)

In ORR, we further enhance this setup by allowing the large
model to revise or extend the offloaded reasoning before
generating the final answer. That is, instead of directly
consuming R̂, the large model first computes a refined rea-
soning trace R∗ = Refine(R̂,Q,ML), and then uses R∗

to produce the answer

AORR = ML([Q ∥ R∗]).

This formulation allows ML to retain control over correct-
ness while still benefiting from the structure provided by
MS . The refinement can involve correcting factual errors,
expanding terse explanations, or realigning the reasoning
with the final objective. Importantly, this operation incurs
much lower compute than end-to-end large model reasoning,
as the input to ML is scaffolded with a good starting point.

2.2. Compute Efficiency

Assuming the average number of tokens for reasoning is Tr

and for answer generation is Ta, the total cost (in latency
units) of standard inference is proportional to

Costbaseline ∝ Tr + Ta,

evaluated under ML. In contrast, OR and ORR incur

CostOR ∝ T (S)
r + T (L)

a ,

CostORR ∝ T (S)
r + T (L,refine)

r + T (L)
a ,

where superscripts (S) and (L) denote small and large
model compute respectively. Typically, T (S)

r ≪ Tr, and
T

(L,refine)
r < Tr, making both OR and ORR substantially

more efficient.

3. Experiment Settings
We evaluate Offloaded Reasoning (OR) and Offloaded Rea-
soning with Refinement (ORR) on two established mathe-
matical reasoning benchmarks: GSM8K and Math500.
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3.1. Datasets

• GSM8K (Cobbe et al., 2021)1: A dataset of 8.5K
grade-school math word problems requiring step-by-
step arithmetic reasoning. Each problem typically in-
volves 2–8 steps and tests general logical reasoning
skills. We evaluate on the official test split (1K sam-
ples).

• Math500 (Lightman et al., 2023)2: A diverse bench-
mark of 500 mathematical questions from competition-
style domains such as algebra, number theory, and
geometry.

3.2. Experimental Setup

In our implementation, MS is a DEEPSEEK-R1-DISTILL-
QWEN-1.5B (Guo et al., 2025) parameter model trained
or finetuned to produce high-quality reasoning traces. The
large model ML, DEEPSEEK-R1-DISTILL-QWEN-{7B,
14B, 32B}, consumes these traces either directly (OR) or
via refinement (ORR). Importantly, no retraining of the large
model is required; we only condition it on augmented inputs.
These act as the answer modules and operate under one of
the following configurations:

• No Reasoning (NR): Direct question-to-answer gener-
ation without reasoning.

• Full Reasoning (FR): ML Performs both reasoning
and answer generation internally.

• OR: ML Consumes reasoning traces from MS to gen-
erate an answer.

• ORR: ML Refines the reasoning trace from MS be-
fore generating the final answer.

We offload reasoning to the 1.5B model to significantly
reduce compute and latency. While its traces may be imper-
fect, they are often sufficient for the large model to refine
or complete, making this setup far more efficient than using
the large model for reasoning end-to-end.

Table 1 depicts the prompts used by Offloaded reasoning
(OR) and Offloaded Reasoning with Refinement (ORR). In
OR, response model is not allowed to reason but to produce
the final response based on the provided reasoning from a
smaller size reasoning model. On the other hand, in ORR
response model is allowed to refine the offloaded reasoning
just by not closing the < /think > token.

1https://huggingface.co/datasets/openai/
gsm8k

2https://huggingface.co/datasets/
HuggingFaceH4/MATH-500

Table 1: Prompt templates used to query the large language
model (ML). Here, message is the user query and reason is
the output of the smaller reasoning model.

Method Prompt Template

NR {message}<|Assistant|><think>
\nNo reasoning available
</think>

FR {message}<|Assistant|><think>
OR {message}<|Assistant|><think>

\n{reason}</think>
ORR {message}\n<|Assistant|><think>

\n nahh.. I got
some speculations.
let me check that
\n<SPECULATIONS>\n{reason}
\n</SPECULATIONS> ohh..
no.. But wait.. These
speculations could be
incorrect.

3.3. Evaluation Metrics

Exact Match (EM) for GSM8K: Measures exact string
match with the gold solution.

Pass@1 for Math500: Measures whether the top-1 gen-
erated answer is correct. Both the evaluation metrics are
borrowed from LIGHTEVAL(Habib et al., 2023).

Average Inference Time (AIT): Measured in seconds per
input query, averaged over all the samples per dataset in-
cluding both reasoning and response generation steps.

4. Results and Analysis
Our central goal is to demonstrate that modularizing the
reasoning process via a small model MS can deliver effi-
ciency gains without sacrificing (and sometimes improving)
performance.

4.1. Offloading Enables Efficient Reasoning.

Using a 1.5B reasoning model to assist a 7B base model
(OR) improves accuracy over the standalone 1.5B model
(GSM8K: 83.17 vs. 81.65 EM; Math500: 86.6 vs. 85.2
Pass@1), while drastically reducing inference latency rela-
tive to 7B Full Reasoning (FR) ( Math500: 7.42s vs. 55.89s).
This establishes that Offloaded Reasoning offers a superior
quality-efficiency tradeoff compared to both small and large
standalone reasoning models.

At the 14B scale, OR remains competitive in quality
(GSM8K: 85.37 EM; Math500: 87.0 Pass@1) despite using
a much smaller reasoning module, while achieving over 7×
faster inference on Math500 compared to 14B-FR (11.47s

3
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Table 2: Benchmarking on GSM8K and Math500 across in-
ference setups. Res is the LLM generating the final response,
Rea is the LLM generating the reasoning trace, Conf corre-
sponds to different configurations {NR, FR, OR, ORR}, AIT
is average inference time (seconds) per query, EM is Exact
Match. Methods compared are SELF-R is SELF-REFINE
from (Madaan et al., 2023)

Model GSM8K Math500

Res Rea Conf AIT(s) EM AIT(s) Pass@1

1.5B 1.5B FR 1.30 81.65 3.90 85.2

7B

x NR 2.48 77.86 41.34 50.0

7B FR 3.86 85.22 55.89 89.4
1.5B OR 2.40 83.17 7.42 86.6
1.5B ORR 5.15 88.70 31.60 89.4

14B

x NR 3.67 64.59 61.20 57.6

14B FR 8.05 90.30 77.56 89.0
1.5B OR 4.48 85.37 11.47 87.0
1.5B ORR 7.59 92.34 54.70 90.6

32B

x NR 3.78 40.64 65.90 53.6

32B FR 17.55 91.36 158.32 92.8
1.5B OR 7.24 84.00 23.16 87.4
1.5B ORR 16.28 93.40 128.18 93.2

Comparison with existing approaches (relative gains)

32B 1.5B-ORR -1.27 +2.04 -30.14 +0.4
GPT-4 SELF-R x +0.2 x x

vs. 77.56s). Even at 32B, the OR setup produces accurate
results (GSM8K: 84.00 EM; Math500: 87.4 Pass@1) while
reducing inference time by over 7× on Math500 compared
to 32B-FR (23.16s vs. 158.32s).

These trends underscore that Offloaded Reasoning not only
scales well to larger backbone models, but also provides
substantial latency savings while maintaining strong perfor-
mance—making it an attractive inference strategy across
compute budgets.

4.2. Refinement Boosts Quality

The ORR setup, where the large model refines the small
model’s reasoning traces before answering, consistently out-
performs all other configurations in accuracy. For instance,
on GSM8K, 7B-ORR achieves 88.70 EM, outperforming
both 7B-FR (85.22) and 7B-OR (83.17). Similarly, 32B-
ORR achieves the highest overall scores on both bench-
marks (GSM8K: 93.40 EM; Math500: 93.2 Pass@1). This
indicates that large models can effectively refine and en-
hance imperfect reasoning traces generated by smaller mod-
els. Few examples are shown in Appendix A .

4.3. Substantial Inference Gains

Offloading reasoning consistently yields large reductions
in average inference time. For example, 7B-OR reduces
latency by over 7× compared to 7B-FR on Math500 (7.42s
vs. 55.89s) with less than 3% drop in accuracy. Even at
the 14B and 32B scale, OR setups demonstrate notable la-
tency improvements over FR while maintaining competitive
performance.

Although Offloaded Reasoning with Refinement (ORR) in-
curs higher latency than OR (e.g., 7B-ORR: 31.60s vs. 7.42s
on Math500), it consistently matches or exceeds FR in accu-
racy (e.g., 7B-ORR and 7B-FR both yield 89.4 Pass@1 on
Math500), offering a favorable tradeoff for settings where
accuracy is paramount. At 32B, ORR reaches the highest
accuracy overall (Math500: 93.2 Pass@1), while still be-
ing 1.3× faster than 32B-FR (128.18s vs. 158.32s). These
results suggest that ORR offers a high-quality inference
mode with moderate efficiency gains, while OR maxi-
mizes speed with minimal quality tradeoff.

4.4. Modularity Across Model Families

To evaluate the modularity of offloaded reasoning, we tested
whether reasoning traces generated by the 1.5B model could
transfer to a different model family. Specifically, we used the
1.5B traces with a DEEPSEEK-R1-DISTILL-LLAMA-8B
response model. Despite architectural differences, both OR
and ORR outperformed the 8B model’s full reasoning (FR)
on GSM8K dataset, with ORR achieving an Exact Match
(EM) of 84.84 compared to 47.01 for FR. This demonstrates
that offloaded reasoning traces are not only efficient but also
transferable across model families, supporting the viability
of modular, interoperable LLM pipelines.

Discussion and Future Work
We presented a modular reasoning framework that enables
efficient inference by combining a small reasoning model
with a larger model via trace-guided prompting. Evalu-
ations on GSM8K and Math500 demonstrate strong effi-
ciency gains in structured reasoning settings. While we
focus on arithmetic and symbolic domains, the approach
is model-agnostic and can extend to open-domain QA or
commonsense reasoning, which we leave to future work.

Despite occasional imperfections in generated traces, our re-
sults show that even approximate reasoning can provide
valuable guidance. Future work may explore methods
to improve trace quality, such as selective verification or
confidence-based filtering.

Our prompt-based integration keeps the system simple and
general. Extensions like dynamic routing based on ques-
tion difficulty or model uncertainty could further improve

4
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Aspect Prior Work This Work (OR / ORR)

Granularity of
Control

Operates at the level of reasoning length or token-level
interventions, e.g., Chain-of-Thought prompting (Wei et al.,
2022), instruction-driven expansion (Jin et al., 2024), multi-
agent debate (Liang et al., 2023; Pham et al., 2024), and use
of drafter models (Leviathan et al., 2023)

Operates at module-level granularity: a
small model performs reasoning, while the
large model synthesizes or refines the re-
sponse.

Adaptivity to
Query Com-
plexity

Explicitly controlled using reinforcement learning or heuris-
tic scheduling of reasoning steps (Aggarwal et al., 2023;
Xu et al., 2024; Wang et al., 2024), or self-reflective meth-
ods (Zelikman et al., 2022; Madaan et al., 2023).

Adaptivity is implicit—reasoning traces are
generated by the small model without pre-
specified length. ORR enables recovery or
improvement without explicit step control.

Efficiency
Mechanism

Reduces inference cost through response truncation, token
budget optimization, or rollout control (Snell et al., 2024).

Reduces compute by offloading reasoning
to a 1.5B model, yielding up to 8× speedup
over full large-model reasoning.

Learning Re-
quirements

Requires RL-based or constrained training objectives (Alt-
man, 2021), with risk of reward hacking (Pan et al., 2022;
Skalse et al., 2022).

Requires no retraining or fine-tuning. The
pipeline is built entirely from prompt aug-
mentation and standard model calls.

Table 3: Comparison of Offloaded Reasoning (OR/ORR) with prior LLM-based reasoning optimization strategies.

compute-efficiency trade-offs.

Finally, while we report latency and accuracy, the frame-
work naturally supports broader system-level metrics (e.g.,
memory, energy). Future evaluations on these axes will be
important for deployment in resource-constrained environ-
ments.

Related Work
Prior work on reasoning with language models has focused
on controlling inference at fine-grained levels such as token
or step length. Chain-of-Thought prompting (Wei et al.,
2022), instruction-driven expansions (Jin et al., 2024), and
multi-agent collaborations (Liang et al., 2023; Pham et al.,
2024) use handcrafted or learned mechanisms to guide rea-
soning length or structure. Other methods leverage drafter-
solver patterns (Leviathan et al., 2023), often requiring
model-specific coordination. In contrast, our approach in-
troduces modularity at the system level: a small model gen-
erates full reasoning traces, while a large model refines or
completes the answer. This decouples the reasoning process
from token-level control and simplifies integration.

Adaptivity to query complexity has been addressed via rein-
forcement learning or heuristic-based control of reasoning
steps (Aggarwal et al., 2023; Xu et al., 2024; Wang et al.,
2024), as well as through self-reflective techniques that iter-
atively revise outputs (Zelikman et al., 2022; Madaan et al.,
2023). Our method offers implicit adaptivity: the small
model autonomously determines the trace length, and ORR
enables selective refinement without explicit step tuning or
dynamic halting.

Efficiency-oriented approaches typically reduce inference
cost through response truncation, budget-aware decoding, or

rollout control (Snell et al., 2024). OR and ORR reduce cost
by offloading reasoning to a 1.5B model, achieving up to 8×
speedup over full large-model inference while maintaining
competitive accuracy.

Finally, many prior methods require task-specific training,
reinforcement learning, or constrained optimization objec-
tives (Altman, 2021), which can suffer from instability and
reward misalignment (Pan et al., 2022; Skalse et al., 2022).
Our framework avoids these complexities: it relies entirely
on prompt augmentation and zero-shot calls to pretrained
models, requiring no additional training or data. Table 3
contrasts our proposed approach with related reasoning op-
timization strategies in LLMs.

5. Conclusion
Offloaded Reasoning with Refinement uniquely combines
modular reasoning, efficiency, and robustness in a unified
framework. While prior works have addressed components
of this pipeline, our contribution lies in orchestrating small
and large models for reasoning and refinement, resulting in
significant inference gains without compromising accuracy.
This modularity also enables dynamic scaling, making it
highly suitable for real-world deployments with variable
compute budgets.
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A. Sample Examples
To demonstarte the effectiveness of the OR and ORR, we
picked few examples from GSM8k datasets in table 4 and 5
where the 1.5B LLM takes the wrong turn (in RED) while
generating reasoning. In Table 4, 32B response generator
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Offloaded Reasoning

able to correctly identify the problem in the reasoning step
(in BLUE ) both with and without refinement. In Table 5
32B response generator with 1.5B OR does not perform
any reasoning and fails to identify the main cause of the
wrong reasoning. However, 1.5B ORR able to refine the
1.5B generated reasoning and correctly identifies the main
cause of 1.5B reasoning incorrectness (in BLUE ).
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Offloaded Reasoning

Table 4: Here, 1.5B Reasoning is incorrect. where the 1.5 B reasoner incorrectly got 450 as actual temperature ...find 4% of
450..., it should be ...find 4% of 520....This is precisely fixed by the 1.5 OR and 1.5B ORR Variants where the 32B able to
correct the offloaded reasoning and able to identify the current temperature asked in the query that is The correct temperature
is 520. So...

Key Value

Query Maggie’s oven is malfunctioning. When she sets it to 450 the actual temperature is 468. If it’s off by the
same percentage for any recipe, what temperature should she set it at if her recipe calls for 520 degrees?

Gold response The oven off by 18 degrees because 468 - 450 = ¡¡468-450=18¿¿18The oven is off by 4% because 18 /
450 x 100 = ¡¡18/450*100=4¿¿4%Therefore X + .04X = 520Therefore 1.04X = 520The temperature to
set it is 500 because 520 / 1.04 = ¡¡520/1.04=500¿¿500 500

1.5B Reasoning Okay, so I need to figure out what temperature Maggie should set her oven to for her recipe that calls
for 520 degrees. She’s currently setting it to 450, but the oven is malfunctioning. When she sets it to
450, the actual temperature is 468. That means the oven is overbaking by 18 degrees. First, I should
find out by what percentage the oven is overbaking. The formula for percentage overbaking is (Actual
Temperature - Set Temperature) divided by Set Temperature, then multiplied by 100. So that’s (468
- 450)/450 * 100. Let me calculate that: 18/450 is 0.04, and 0.04 times 100 is 4%. So the oven is
overbaking by 4%.Now, if she wants to adjust the temperature for any recipe, she needs to reduce the
temperature by the same percentage. So she’s currently at 450, and she wants to reduce it by 4%. To
find 4% of 450, I’ll do 450 * 0.04, which equals 18. So she needs to reduce the temperature by 18
degrees.Subtracting that from the current temperature: 450 - 18 = 432. So the new temperature should
be 432 degrees. Wait, let me double-check that. If she sets it to 432, what would the oven actually be?
Using the same percentage calculation: (432 - 450)/450 * 100. That’s (-18)/450 * 100, which is -4%.
So the oven would be underbaking by 4%, which is the same percentage as before. That makes sense
because she’s adjusting the temperature to compensate for the overbaking.So, yes, 432 degrees should be
the correct temperature for her recipe.

1.5B Response Maggie should set her oven to 432 degrees. This adjustment compensates for the 4% overbaking,
ensuring the recipe is correctly baked.

32B Response +
1.5B (OR)

To determine the correct temperature Maggie should set her oven to, we first calculate the percentage by
which the oven is overbaking. The oven is set to 450 but reaches 468, which is an overbake of 18. The
percentage overbake is: 4% To compensate for this, Maggie needs to reduce the temperature by 4%. For
a recipe requiring 520, the adjusted temperature is: 520 * (1 - 0.04) = 520 * 0.96 = 500 **Answer:**
500 degrees.

32B Response +
1.5B ORR

Let me think again.Wait, actually, the oven is overbaking by 4% when set to 450. So, to get the correct
temperature, she needs to set it lower. The correct temperature is 520 . So, she needs to find what
temperature to set so that when the oven overbakes by 4%, it reaches 520. So, let me rephrase that. Let
x be the temperature she should set. Then, x * 1.04 = 520. So, x = 520 / 1.04. Let me calculate that: 520
divided by 1.04. 1.04 times 500 is 520, so x is 500. So, she should set it to 500 degrees.Wait, that makes
more sense. Because if she sets it to 500, the oven will overbake by 4%, which is 500 * 0.04 = 20, so
500 + 20 = 520, which is the desired temperature.So, the correct answer is 500 degrees.¡/think¿
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Offloaded Reasoning

Table 5: Here, 1.5B Reasoning is incorrect. where the 1.5 B reasoner incorrectly got 450 as actual temperature ...find 4% of
450..., it should be ...find 4% of 520....This is precisely fixed by the 1.5 OR and 1.5B ORR Variants where the 32B able to
correct the offloaded reasoning and able to identify the current temperature asked in the query that is The correct temperature
is 520. So...

Key Value

Query If Martin eats Cheerios every day for breakfast, he’ll lose 1.25 pounds/week. If he eats donuts every
day for breakfast, he’ll gain 1.75 pounds/week. What will be the difference in his weight at the end of 5
weeks between the two breakfast options?

Gold response First find the difference in weight gain per week: 1.75 pounds/week - ( -1.25 pounds/week) = 1.75
pounds/week + 1.25 pounds/week = 1.75-(-1.25)=3, 3 pounds/weekThen multiply the weight gain per
week by the number of weeks to find the total difference at the end of 5 weeks: 5 weeks * 3 pounds/week
= 5*3=15, 15 pounds 15

1.5B Reasoning Okay, so I need to figure out the difference in weight between Martin’s two breakfast options over five
weeks. Let me break this down step by step.First, Martin eats Cheerios every day for breakfast. Over
one week, he loses 1.25 pounds. So, over five weeks, he would lose 1.25 pounds multiplied by 5. Let me
calculate that: 1.25 * 5 = 6.25 pounds lost.On the other hand, he eats donuts every day. This time, he
gains 1.75 pounds each week. So, over five weeks, he would gain 1.75 * 5 pounds. Calculating that gives
me 8.75 pounds gained. Now, to find the difference in weight between the two options at the end of five
weeks, I subtract the weight lost from the weight gained. That would be 8.75 - 6.25 = 2.5 pounds.So,
Martin would weigh 2.5 pounds more if he eats donuts every day compared to eating Cheerios every day
over five weeks.

1.5B Response Martin would weigh 2.5 pounds more if he eats donuts every day compared to eating Cheerios every day
over five weeks.

32B Response +
1.5B (OR)

The difference in weight after 5 weeks is 2.5 pounds.

32B Response +
1.5B ORR

Let me think again.Wait, actually, the difference in weight would be the total weight change from each
option. Since one is a loss and the other is a gain, the total difference would be the sum of the absolute
values of both changes. So, if he loses 6.25 pounds on Cheerios and gains 8.75 pounds on donuts, the
difference between the two would be 6.25 + 8.75 = 15 pounds. Wait, that makes more sense because the
total difference in weight is the sum of the two changes since one is a loss and the other is a gain.So, the
correct difference is 15 pounds.¡/think¿
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