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ABSTRACT

Question answering in temporal knowledge graphs requires retrieval that is both
time-consistent and efficient. Existing RAG methods are largely semantic and
typically neglect explicit temporal constraints, which leads to time-inconsistent
answers and inflated token usage. We propose STAR-RAG, a temporal GraphRAG
framework that relies on two key ideas: building a time-aligned rule graph and
conducting propagation on this graph to narrow the search space and prioritize
semantically relevant, time-consistent evidence. This design enforces temporal
proximity during retrieval, reduces the candidate set of retrieval results, and lowers
token consumption without sacrificing accuracy. Compared with existing temporal
RAG approaches, STAR-RAG eliminates the need for heavy model training and
fine-tuning, thereby reducing computational cost and significantly simplifying
deployment. Extensive experiments on real-world temporal KG datasets show that
our method achieves improved answer accuracy while consuming fewer tokens
than strong GraphRAG baselines.

1 INTRODUCTION

Retrieval-augmented generation (RAG) has emerged as a practical remedy for the hallucination
tendencies of large language models (LLMs) by grounding generation in external evidence, thereby
substantially improving factuality across tasks such as question answering (Gutiérrez et al., [2024)),
text summarization (Edge et al.l2024), and decision support (Jiang et al.,2024). However, standard
RAG remains largely document-centric, treating each document as an independent unit. This
unstructured representation limits the ability to capture complex relational patterns among entities
and events, and constrains multi-hop reasoning that requires composing evidence along structured
paths (Pan et al., 2023} Besta et al.| 2024). To address these limitations, recent studies explore graph-
based RAG (GraphRAG), which organizes knowledge as graphs and retrieves relevant information
over neighborhoods (Sarmah et al., |2024), paths (Delile et al., [2024)), and subgraphs (Hu et al.,
2024). Building on this direction, numerous works further improve retrieval by incorporating
graph-structured knowledge and multi-hop sampling, enabling more accurate and efficient RAG
frameworks (Peng et al.,2024)).

However, real-world knowledge is inherently temporal: entities evolve, relations shift, and events
carry explicit timestamps. While vanilla GraphRAG achieves strong retrieval performance on static
knowledge, it encounters fundamental challenges when faced with time-sensitive queries: (i) retrieval
remains dominated by semantic similarity and often overlooks explicit temporal constraints, producing
answers that appear plausible yet are inconsistent with the question’s time requirements; (ii) when
naively applied to temporal knowledge, typical GraphRAG methods (Guo et al., [2024; Wang et al.,
2024; Sun et al., [2024)) tend to retrieve broadly across time rather than restricting to temporally
relevant evidence, failing to adapt search strategies to the evolving nature of information. As a result,
the token budget grows and accuracy degrades because the generator must filter temporal noise to
isolate the small set of time-aligned evidence. This leads to both reduced efficiency and sub-optimal
overall performance.

In response, several works systematically model the temporal structure of knowledge graphs from
multiple perspectives. For example, [Yang et al.|(2025) improves time series forecasting by training a
retrieval module that indexes historical patterns and feeding the retrieved subsequences into an LLM
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for prediction. In a different vein, [Wu et al.|(2024a)) adopts contrastive learning that compares queries
with anchor events, training a shared encoder for event and query representations. Despite these
insights, existing approaches frequently deviate from the original spirit of RAG, where the LLM is
kept frozen and task-specific knowledge is supplied primarily through retrieval (Lewis et al.| 2020;
Gao et al.,[2023). Instead, they often introduce heavy training pipelines that require parameter-dense
encoders or fine-tuning the LLM itself across domains and time windows. This reliance on repeated
optimization imposes considerable computational cost and hinders practical deployment. Thus,
considerable effort is required when considering a more resource-friendly and efficient GraphRAG
framework for temporal data.

In this paper, we propose STAR—RAGF_-], an efficient RAG framework for temporal knowledge graphs
that avoids any training or fine-tuning. STAR-RAG aims to simplify the retrieval process of RAG
by aligning evidence selection with the question’s temporal constraints, reducing both token and
computation overhead. For this purpose, we first construct a rule graph that summarizes recurring
categories of events as nodes, and links them with time-sensitive edges determined by how strongly
one category tends to precede or follow another. The structure compresses individual events into a
more compact form that preserves the key relational patterns for inference. Second, given a query,
we identify a small set of seed events and run personalized PageRank (PPR) on the rule graph to
prioritize their time-consistent neighborhood. By restricting graph propagation to the neighborhood
around the seed nodes, we generate a concise candidate set that greatly reduces the search space yet
preserves the most reliable evidence. Compared with the state-of-the-art Medical GraphRAG (Wu
et al., 2024b), our method improves answer accuracy by 9.1% while reducing token usage by 97.0%.
Our contributions are summarized as follows:

o We identify the limitations of existing GraphRAG on temporal data and propose STAR-RAG, a
framework designed to achieve both high accuracy and efficiency in temporal question answering.

e We adopt two fundamental techniques to incorporate the question’s temporal constraints and
prioritize time-aligned neighborhoods: (i) constructing a rule graph that summarizes event categories
and encodes temporal relations, and (ii) applying seeded personalized PageRank to focus retrieval on
a time-aligned subgraph, thereby reducing the search space.

e We conduct comprehensive experiments on diverse real-world temporal knowledge graphs, demon-
strating that STAR-RAG delivers higher answer accuracy while incurring fewer tokens than strong
GraphRAG baselines.

2 RELATED WORKS

Graph-Based Retrieval-Augmented Generation. Text-based retrieval-augmented generation re-
trieves passages by semantic similarity between a question and texts, but it struggles to capture
complex relational structure and topological patterns. To address these challenges, GraphRAG
represents knowledge as nodes and edges and retrieves paths or subgraphs for structured reasoning.
DALK (L1 et al.l |2024) constructs two domain-specific knowledge graphs from scientific corpora and
applies coarse-to-fine sampling of knowledge graphs to select evidence fed back to LLMs. GRAG
(Hu et al.} 2024) retrieves K -hop ego-graphs scored by cosine similarity between query and textual
embeddings, and then uses a learnable pruner to mask irrelevant nodes and edges before merging
the top graphs into an optimal subgraph. SURGE (Kang et al., 2022) casts edges as nodes in a dual
hypergraph and applies message passing with standard Graph Neural Networks (GNNs), which are
trained contrastively to enforce knowledge-faithful responses. KGP (Wang et al., 2024) builds a
passage-similarity knowledge graph while using an LLM to traverse it. To this end, it compiles
a structured prompt for multi-document question answering. However, these static approaches re-
main time-agnostic, often overlooking explicit temporal constraints and producing answers that are
semantically plausible yet temporally incorrect.

Graph Summarization with MDL. The graph summarization with minimum description length
(MDL) optimization aims to find the optimal summary model which minimizes the bits to describe
the model as well as the data given the model. Classic work (Navlakha et al.,[2008)) compresses a
static graph into a coarse summary with corrections and explicitly combines this representation with
MDL to yield intuitive and bounded-error summaries. For dynamic graphs, TimeCrunch (Shah et al.|

! Graph Summarization for Temporal Graph Retrieval-Augmented Generation
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Figure 1: Comparison of vanilla GraphRAG and STAR-RAG. Vanilla GraphRAG relies primarily on
semantic matching for retrieval and ignores explicit temporal constraints, which degrades answer
accuracy. STAR-RAG maps events to a time-aligned rule graph and performs propagation on this
graph to narrow the search space and prioritize time-consistent evidence, enabling temporally aligned
retrieval and improved performance.

2015) formalizes summarization as minimizing the encoding cost of temporal structures and employs
MDL-guided heuristics for model selection, achieving near-linear scalability on large real-world
graphs. The most relevant to our work are KGist (Belth et al., 2020) and ANOT (Zhang et al.| [2024a)),
which formulate knowledge graph summarization under the MDL principle and use it for effective
anomaly detection. Unlike these methods, our MDL-guided summary builds a time-aligned rule
graph that steers retrieval toward time-consistent evidence, thereby narrowing the search space at
query time in GraphRAG.

Reasoning on Temporal Knowledge Graphs. Existing reasoning methods on temporal knowledge
graphs often adopt a model-centric paradigm that trains specialized encoders or fine-tunes LLMs
to capture temporal patterns. For instance, GenTKGQA (Gao et al.| 2024) learns temporal GNN
representations on retrieved subgraphs and instruction-tunes a language model to fuse these signals
into generation. Similarly, GenTKG (Liao et al.,|2023)) couples temporal rule-based retrieval with
specific instruction tuning for link prediction tasks. DyG-RAG |Sun et al.| (2025)) builds an event-
centric dynamic graph from text and performs time-aware event sequence retrieval with an LLM for
temporal question answering. TimeR4 Qian et al.| (2024)) uses a temporal knowledge graph and a
time aware retriever to rewrite questions, retrieve time consistent evidence, and then generate the
final answer. However, such approaches typically depend on pairwise similarity over the full event
set or require substantial training and maintenance, leading to low efficiency and limited scalability
on large graphs.

3 METHODOLOGY

3.1 OVERVIEW

Problem Definition. A temporal knowledge graph G consists of temporal events in the form of
(s,r,0,t) € F, where s,0 € £, 7 € Randt € T. Here F, £, R, T denote the set of events,
entities, relations, and valid timestamps in G respectively. Given a query g in the set of questions, our
objective is to efficiently retrieve the relevant information from G and obtain the answer extracted
from the temporal events. The answer should be in a natural language form without violating the
time constraint in G.

In this section, we introduce the skeleton of our proposed method STAR-RAG, whose pipeline and
comparison with vanilla GraphRAG are shown in Fig.[I] Unlike vanilla GraphRAG, which retrieves
directly over the dense temporal knowledge graph, STAR-RAG first summarizes it into a much



A N B W N =

e e 2

10
11
12
13
14
15

16

Under review as a conference paper at ICLR 2026

Algorithm 1: STAR-RAG Retrieval

Input: query g; event set F, K1; Ko; restart a € (0, 1)
Output: Top-K; events corresponding to query ¢
Cs < ENTITYLABELING (S) foreachs € £ > Apply Alg. (in AppendixE) to assign the labels for each entity
U = {{cs,r,¢o)|T(s,7,0,t) € Fand cs € C(s),co € C(0)} > Collect the mapped rules as the candidate nodes
W = {{u, 1]} cuF v, dy (u, ’U) < 1} > Collect the candidate edges considering the Hamming distance of linked nodes
W 0, M« 0
while 3 (u,v) € W\ W' and L(G, M U {u,v, (u,v)}) < L(G, M) do

L W+~ Wu (u, ’U); M+~ MU {u, v, (u, v)} > Select the candidate edges until no additional edge reduces MDL

A « normalized transition matrix of rule graph

.7'-}(1 «— F. topk ( cos(q, ]:), Kl) > Compute the cosine similarity between g and F to get the Top- K events
Map Frk, into rule graph and compute the seeded distribution ~y

7 v k0

while oy + (1 —a) 7™ A —x®||; > edo

L D) oy +(1—a)n® A

k< k +1 > Conduct the PPR computation until the error is smaller than e
L{mp —U. tOpk(T&', Kg) > Obtain the Top- K> rule nodes
Feand Uueump supp(u) > Collect the events mapped into Top- K2 rule nodes
return Feand. tOpk ( cos(q, fcand)7 Kl) > Return the Top- Ky events by the cosine similarity measurement

sparser, time-aligned rule graph and then searches for answers along rule-node neighborhoods that
match the query’s temporal constraints. As illustrated step by step in Fig. [2] we first assign each
entity structural type labels mined from frequent relation patterns (step 1). Based on these labels,
we group each event (s, 7, 0,t) into a candidate rule node (cs, 7, ¢,), so that a rule node represents
an event category rather than a single event (step 2). We then build candidate edges between rule
nodes that share components and repeatedly occur close in time, indicating that one type of event is
typically followed or preceded by another. Next, we apply a Minimum Description Length criterion
to keep only the rule nodes and edges that best explain these event trends, yielding a compact rule
graph (step 3). Finally, at query time, we seed this rule graph using the query’s semantic similarity
and run personalized PageRank to retrieve events that are both semantically relevant and temporally
consistent with the question, producing a concise set of contexts for generation. The overall procedure
is summarized in Alg.[T]

3.2 RULE GRAPH BUILDING

During the retrieval process, working directly on raw temporal events f = (s, r, 0, t) can explode the
search space and hide regular temporal patterns. Therefore, we first summarize events into rule nodes
and then connect them with time-sensitive edges learned from data. This rule graph enables us to
preserve the temporal “what-follows-what” signal and support efficient propagation during query
execution.

Entity Labeling. Since entity categories are often unavailable, and an entity’s category is largely
determined by the relations it participates in (Zhang et al.[2024a), we first abstract the interactions
between entities and generate the labels for entities. The goal is to replace various entities with
reusable patterns, reducing the density of the graph and minimizing the search space during retrieval.
Concretely, we collect the set of relations for every entity it participates in and apply the Apriori
algorithm (Agrawal & Srikant, |1994)) to mine frequent relation subsets. Then the primary combina-
tions of relations chosen from these relation subsets are utilized to map the entity s € £ to a label
set C,. To simplify the presentation, we leave the detailed algorithm in Appendix [A] As shown in
Step 1 of Fig. [2] the relations associated with each entity are collected to mine frequent relation
subsetsE| For instance, the entity Oman is identified as being strongly connected with the relation
subsets (intend_cooperate, sign_agreement, provide_aid) and (negotiate, support, reject_proposal).
These subsets are then assigned specific identifiers, such as Country, and Country,, which serve as
the labels of Oman.

>To control label complexity, we restrict the subset length to three relations by default.
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Rule node u
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relation subsets. rule nodes. and edge via MDL.

Figure 2: Running example of building the rule graph based on MultiTQ.

Generation of Candidates. (i) Candidate nodes. After assigning the types for entities, we further
group each temporal event (s, r, 0, t) into one or, when applicable, multiple rule nodes:

@(s,7,0) = {{cs,7,¢0) | s €C(8),¢co € C(0)}, (1
where each u = (cs,7,¢,) is regarded as a candidate rule node to summarize the pattern of a
series of events, and and the collection of rule nodes with different ¢, and ¢, captures the multiple
dynamic roles that entities can assume over time. All rule nodes define the candidate rule set
U ={u|3(s,r,0,t) € Fwithu € ¢(s,r,0)} with a support set supp(u) = {(s,r,0,t)|(s,7,0,t) €
Fand u € ¢(s,r,0)}. As shown in the example presented by Fig. [2} a series of events containing
relation intend_cooperate are mapped into rule node v when the subject and object belong to Country,
and Country, respectively.

(ii) Candidate edges. Questions on temporal knowledge graphs typically target time-stamped relations
among entities (Chen et al., 2023 Saxena et al., 2021), e.g., “After establishing diplomatic cooperation
with Qatar, what did Oman immediately do?”” This calls for modeling temporal patterns across rule
nodes and linking strongly related nodes. To achieve this, we exploit shared components within rule
nodes and model how event categories tend to follow one another. Given two rules u = (as, 7, a,)
and v = (bs,1’,b,), we define the Hamming distance between u and v as:

di(u,v) =1as # bs] +1[r # ']+ 1]a, # bo) - ()
And the candidate edge set can be defined as W = {{u, v} : v # v, dg(u,v) < 1}. Establishing
such an edge captures the intuition that rules sharing multiple fields are likely to encode strongly
related event patterns. This construction enriches the connectivity of the rule graph and facilitates
effective propagation from a given anchor event to other semantically close patterns. For example,
considering the anchor event (Oman, intend_cooperate, Qatar,2011-04-26) € supp(u) in Fig. [2] the
built edge (u, v) guides the search from u to the neighboring rule node v, which may contain a critical
clue for answering the query, such a (Oman, sign_agreement, Qatar,2011-04-27). Additionally,
we also measure the temporal proximity between two connected rule nodes. Formally, given the
events f = (s,7,0,t) € supp(u) and f' = (s',7,0',t') € supp(v), we collect the time span

between u and v as Ty, = {|t’ — tHf e supp(u), f/ € supp(v), du(f, f') < 2}, where we reuse

the Hamming distance from Equ to measure the overlap between two eventﬂ This set of temporal
spans captures the temporal differences between highly similar events across « and v, which is
subsequently incorporated into the final edge selection process.

Selection by MDL. The two-part MDL principle (Rissanen, [1978) states that, given a family of
models M, the best model M* € M for graph G is the one minimizing:
M* = arg min L(G, M) = arg min (L(M)+ L(G | M)), 3)
MeM Mem

where L(M) is the cost of describing the model itself and L(G | M) is the cost of describing the
graph under that model. In this work, we adopt the MDL principle to identify the optimal rule model
M for the graph G. To simplify the presentation, we follow the standard formulation utilized in
Zhang et al.| (2024a)) to calculate L(M ), with full derivations and details provided in Appendix

We decompose the total cost of describing G as
L(G| M) = Leov(G | M) + Liime(G | M). )

Coverage cost Temporal cost

3For events, we relax to dy < 2 as timestamps are always different.
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(i) Leov(G | M) encodes how many strongly related events are explained by the selected edges. We
define this cost function as:

Lcov(g | M) _ Z log <|supp(u),|7_~ supp(v)> ) (5)
{uv}eM | w

Thus, adding an edge that explains more connected events will bring fewer costs, rewarding high-

support, high-conversion links.

(if) Compared with the coverage cost, Lime(G | M) quantifies the degree to which the observed

temporal spans align with the temporal behavior of each rule edge. For an edge (u, v) with | Ty, | spans,
[T

we assume they follow an exponential distribution with maximum-likelihood rate A, = y
deTuv

The negative log-likelihood code length is then
Lime(u,v) = = > log(Awe %) = [Too| + [Ton log(ﬁ 3 d). ©6)

d€Tuw d€Tuw
We sum across edges as the final temporal cost Lime(G | M) = 32, ,)enr Lime(u, v). An edge
(u,v) is accepted if including it decreases the total description length:
AL = ALy + ALgme < 0. @)
We employ a greedy strategy for edge insertion: candidate edges are examined in a fixed order,
temporarily added, and retained only if their inclusion decreases the overall description length. This
process repeats iteratively until no additional edge reduces the MDL.

3.3 RETRIEVAL WITH SEEDED PERSONALIZED PAGERANK

During the retrieval process, we first compute the cosine similarity{zf] between the query ¢ and the
events and obtain the top-K anchor events as Fx, = {f1,..., fk, }. By mapping the anchor events
to the rule nodes, we can expand along the events that empirically occur close in time, surfacing
neighborhoods where the right answer is likely to lie at the right time. However, distributing anchor
events across multiple rule nodes and weighting them equally in propagation will cause two issues.
First, it can steer the search toward rare, low-support rules, making propagation unreliable (Galarraga
et al.| 2013). Second, it can place unnecessary weight on rule nodes that are only weakly related to
the query semantics, pulling in unrelated events.

To address these two limitations, we determine the personalization distribution with two complemen-
tary signals: (i) Corpus coverage. Rules that explain more events in the corpus are stronger hubs and
make propagation more reliable. This favors rule nodes with larger support, which are more likely to
summarize the common pattern of events. (ii) Ranking importance. Higher-ranked anchors receive
larger weights, and rule nodes reached by top anchors are assigned extra probability mass to reflect
semantic relevance to the query. As a result, we construct a personalization vector <y over the seeded
rule nodes Useeq With ||7y||1 = 1, which serves as the starting distribution in PPR. The computation
of -y is detailed in Appendix [C] We also conduct an ablation study (see Sec. [4.3)) that replaces ~ with
the uniform distribution over Useoq, Which highlights the benefit of our design.

Let A denote the transition matrix of our rule graph formed by building edges and normalizing edge
weights. With personalization vector «y over Useeq, We then diffuse the personalization vector with
personalized PageRank:

T=av+ (1 —a)7A, (8)
where « is the decay coefficient (set as 0.2 by default). We run standard power iteration until
convergence within a fixed tolerance error € and take the top- K5 rules by 7r. We collect the events
associated with these rules and re-rank them by cosine similarity to the query, returning the top-K
events as the final retrieval set. By combining the retrieval results with our prompt templates, the LLM
input preserves semantic precision while leveraging time-aware exploration to prioritize temporally
proximate events. We leave our used prompt templates and a running example in Appendix [E}

4 EXPERIMENTS

4.1 DATASETS

We conduct our experiments on three real-world temporal knowledge graph datasets widely used
for temporal question answering: CronQuestion (Saxena et al.,[2021)), Forecast (Ding et al.| [2023)),

*We pre-compute the embedding of events and queries with the embedding model NV-Embed (Lee et al.)
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and MultiTQ (Chen et al.| 2023)). CronQuestion is constructed from all temporally annotated facts
in Wikidata (Lacroix et al., 2020), with hundreds of templates employed for question generation.
Similarly, Forecast and MultiTQ derive temporal events from the ICEWS21 and ICEWS14 data
streamg’} where questions are generated by filling templates with entity aliases. Each dataset contains
over 300K events and a large set of questions requiring complex topological and temporal reasoning,
posing non-trivial challenges for existing GraphRAG methods. To further evaluate the performance
on large-scale KGs, we reconstructed a larger-scale evaluation corpus from ICEWS 2005-2015, 2018,
and 2021, covering over 1.2 millions events, named as STAR-QA, where the details can be found in
the Appendix [} To limit experimental cost, we randomly sample 1,000 questions from the test set
of each dataset and report the average performance over five runs. The detailed statistics of three
datasets are introduced in Table [Tl

4.2 BASELINE METHODS

We compare STAR-RAG with a set of Table 1: Statistics of the datasets. ||, |€|, |R|, |7 denote

representative GraphRAG or temporal KG  the numbers of events, entities, relations, and valid timestamps
baselines. For static knowledge graphs, we  regpectively.

include TOG (Sun et al., |2024), Medical-
GraphRAG (Wu et al.| 2024b), G-Retriever
(He ot al}, 2024), DALK (Ui et al po2d), — oatasets | 11 i I
and HippoRAG (Gutiérrez et all, [2024). CronQuestion 328,635 125,726 203 1,643
For temporal settings, we include TS- Forecast 335,303 20575 253 243
Retriever (Wuetall D024a), TGRAG (Li]  ¢iof0 | S - JWEe 20 o
et al., [2025)), TimeR4 |Qian et al.| (2024), - ’ ’
and DyG-RAG [Sun et al.| (2025) as state-

of-the-art temporal GraphRAG methods. A detailed introduction is provided in Appendix [F.I]

4.3 IMPLEMENTATION DETAILS

By default, we use NV-Embed (Lee et al.) to encode all events into vector representations for com-
puting semantic similarity across all methods. We employ L1ama—-3.3-70b-instruct—-awqg
(Hansen & Metal 2024) as the LLM backbone by default for all methods. For STAR-RAG, we set the
hyperparameters to K; = 10 and Ky = 20, corresponding to the retrieved events and the number of
ranked rule nodes respectively in the PPR-based retrieval pipeline. Moreover, we set the tolerance
error € as 1075 for the fast convergence of PPR. In terms of compute requirements, our experiments
are conducted on a Linux server equipped with an Intel(R) Xeon(R) Silver 4314 CPU @ 2.40 GHz,
500 GB RAM, and 4x NVIDIA RTX A30 GPUs (24 GB each).

4.4 MAIN RESULTS

Following prior work (Gutiérrez et al.,2024; Wu et al., [2024a)), we evaluate using the Hit@k metric,
where Hit@k denotes the proportion of correct answers appearing among the top-k answer results.
For example, Hit@]1 reflects strict top-rank accuracy, while Hit@5 measures whether the correct
answer is included within the top five answers. For fair comparison, we tune the hyperparameters of
each baseline and report their best achievable performance.

Superior Performance over Baselines. Table 2] shows that our method consistently outperforms all
baselines across the three datasets. Static-graph approaches such as TOG and DALK perform notably
worse than temporal methods, as they rely solely on semantic matching between queries and events
while neglecting temporal patterns, which leads to low retrieval effectiveness. Remarkably, STAR-
RAG achieves at least a 5% improvement in Hit@1 over the strongest baseline TS-Retriever, and the
gains are similarly evident for Hit@5 and Hit@10. These improvements stem from STAR-RAG’s
ability to construct a time-aligned search space over the knowledge graph. By prioritizing events
that occur close in time to the anchor events, STAR-RAG surfaces key clues within the retrieval
candidates, alleviates the filtering burden on the LLM, and ultimately improves retrieval quality.

Remarkable capability for reasoning over complex questions. To further examine the rationale
behind STAR-RAG’s effectiveness on temporal questions, we separate the question types of MultiTQ

Shttps://dataverse.harvard.edu/dataverse/icews
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Table 2: The accuracy (%) of question answering on three datasets. The best results are bold, and
"OOM" stands for out of memory on 4 GPUs with 24GB memory.

Method CronQuestion Forecast MultiTQ STAR-QA
Hit@l Hit@5 Hit@10| Hit@1 Hit@5 Hit@10| Hit@1 Hit@5 Hit@10| Hit@1 Hit@5 Hit@10
TOG (Sun et al.}[2024) 69.5 764 772 29.3 315 334 | 22,6 324 345 21.6  29.1 304
MedicalGraphRAG (Wu et al.}[2024b)| 504 67.2 733 304 412 478 21.1 314 363 302 343 35.7
DALK (Li et al.}|2024) 58.1 710 736 286 327 364 17.1 284 397 21.7 280 289
G-Retriever (He et al.;[2024) 19.7 284 347 12.1 238 258 9.5 18.6 209 9.2 12.3 16.6

HippoRAG (Gutiérrez et al.|[2024) | 542 69.7 755 29.1 362 408 182  29.1 39.9 18.3  30.1 36.8
TS-Retriever (Wu et al.}[2024a) 68.5 74.1 75.6 32.1 444 497 | 255 362 403 31.2 384 421

T-GRAG (L et al | [2025) 673 729 740 | 312 423 477 | 252 351 415 | 320 381 416
TimeR4 Qian et al.| (2024) 657 735 778 | 305 413 459 | 234 313 374 |OOM OOM OOM
DyG-RAG|Sun et al |{2025) 643 709 724 | 295 393 445 | 233 321 388 |OOM OOM OOM

STAR-RAG | 769 854 870 | 398 514 557 | 305 415 477 | 368 454 519

into the single-event and multiple-event categories, where the results are shown in Table [3] Here,
the single-event questions require only one fact to obtain the answer by identifying the entity,
relation, or timestamp in a single interaction, such as "Who asked for the government of Sudan in
2010?". In this setting, static GraphRAG systems can solve the task through straightforward semantic
matching, reflected in their competitive performance. For instance, MedicalGraphRAG achieves
the best accuracy at 26.7% Hit@1. By contrast, multiple-event questions demand compositional
reasoning over event chains, where the answer depends on an anchor interaction and subsequent
temporal constraints, such as "After Mallam Isa Yuguda, with whom did USAID first formally
sign an agreement?". We observe that static methods degrade sharply in this regime because they
retrieve large, temporally mixed candidate sets, leaving the LLM with a heavy filtering burden.
Temporal baselines partially mitigate this issue, yet Table 3: Accuracy (%) across different question
their improvements remain limited. Fortunately, types. Results are reported on the MultiTQ dataset
STAR-RAG achieves a clear jump to 44.4% Hit@1 ging the Hit@1 metric.

on multiple-event questions, nearly doubling the best

competing system at 23.8% of T-GRAG. This gap Method | Single-event | Multiple-event
indicates.that building a time-aligned rule graph and TOG 253 126
propagating around identified anchors narrows the = MedicalGraphRAG 26.7 4.5
search to time-consistent evidence, reduces seman- G_g’;hfver %,3/ 3'2

tic confusion, and yields more faithful answers un- HippoRAG 2.6 54

der tempor?ll constraints. In summary,'STAR.-R/.\G TS Retrlever 26.8 N
preserves single-event performance while delivering T-GRAG 257 238
large gains on multi-event reasoning, suggesting im- DTEH;IX‘G gg‘-é }22
proved temporal reasoning capability without sacri- Y i i
ficing basic semantic matching. STAR-RAG | 258 | 444

Lower token consumption and comparable rea-

soning time. To evaluate the efficiency of STAR-RAG, we measure the average token consumption
and reasoning time of each method on the MultiTQ dataset, as shown in Fig.[3] The results on the
other two datasets can be found in Appendix [D] Static methods such as TOG and MedicalGraphRAG
consume little reasoning time, since they rely purely on vector similarity for retrieval. While this
yields fast but coarse results, it comes at the cost of higher token usage and reduced accuracy. In
contrast, temporal methods like TS-Retriever and T-GRAG explicitly enforce temporal constraints and
search for time-aligned events, which improves accuracy but requires substantially more computation
time. STAR-RAG achieves a more favorable balance between efficiency and effectiveness: it reduces
token usage by up to (20453-601)/20453 = 97.0% compared with MedicalGraphRAG, with only
about 10 seconds of additional reasoning time. This demonstrates that STAR-RAG can significantly
lower the LLM’s token burden while maintaining practical inference speed.

4.5 ABLATION STUDIES

In this section, we perform ablation studies on the variants of STAR-RAG to assess the contribution
of each module, as summarized in Table ]

STAR-RAG is robust to the LLM backbones. We replace the default LLM generator with
Llama-3-8B-Instruct (Al@Meta, 2024) and GPT-4o0-mini (Achiam et al.|[2023) to evaluate
the impact of backbone choices on prediction accuracy and reasoning time. The results show that
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Figure 3: Comparison of token consumption and reasoning time based on MultiTQ.

3
Table 4: The average accuracy (%, denoted as Acc.) and reason- 40 '

ing time (s, denoted as Tim.) for each variant of STAR-RAG. 30
20 - 28.30 30.50 30.50 30.50

CronQuestion | Forecast MultiTQ M -8
Method ‘ Acc. Tim. | Ace. Tim. | Ace. Tim. 10 -geest 2990 |
STAR-RAG+Llama-3-8B-Instruct | 73.4 ~ 27.5 | 354 200 | 26.5 187 |
STAR-RAG+GPT-4o-mini | 743 28.0 ‘ 369 202 ‘ 286 1838 s |
STAR-RAG-no-rule 553 156 | 298 102|183 105 5 10 20 40
STAR-RAG-uniform 700 294 | 3L1 206 | 227 192 ) K
STAR-RAG 769 304 | 398 222|305 206 Figure 4: Performance of setting dif-

ferent Ky and K> based on MultiTQ.

changing the LLM backbone leads to only modest performance degradation, with a maximum drop
of 4.4% even when using the lightweight L1lama-3-8B-Instruct. These consistent margins
indicate that the retrieval pipeline provides most of the performance gains, ensuring that STAR-RAG
remains effective across different LLM generators.

Rule graph substantially improves retrieval quality. We ablate the search mechanism of the
rule graph and replace it with semantic search alone (denoted as STAR-RAG-no-rule in Table
). The results show that removing the rule graph leads to significant accuracy losses compared
with the complete STAR-RAG (21.6%, 10.0%, and 12.2% degradation on CronQuestion, Forecast
and MultiTQ for Hit@1), even though it roughly halves the inference time. This highlights that
time-aligned propagation over the rule graph is crucial for selecting high-quality evidence.

Corpus coverage and ranking importance prioritize the events most relevant to questions.
Finally, we replace the personalization vector v with a uniform distribution over the rule nodes
(denoted as STAR-RAG-uniform), which results in up to an 8.7% drop in Hit@1 on the Forecast
dataset. This shows that weighting seeds by corpus coverage and anchor rank helps propagation focus
on rules that explain more events and align with the query, which yields more reliable evidence.

4.6 SENSITIVITY TO THE NUMBER OF RETRIEVED RULE NODES AND EVENTS

We change the values of K, K5 € {5, 10, 20,40} and report Hit@1 for each setting (Fig. EI) We
observe that accuracy improves as both parameters increase, with a stronger effect from K5: raising
K> from 10 to 20 yields a clear gain, while further increasing to 40 provides only marginal benefit.
Raising Ky improves accuracy at first but then quickly plateaus, suggesting that broader rule coverage
matters more than simply adding more events, which can introduce noise. In terms of cost, a larger
K, lengthens the retrieval process due to the semantic matching over more rule nodes, while a larger
K increases the LLM’s token budget and burdens generation. After balancing accuracy, latency, and
token usage, we adopt the default ;=10 and K»=20, which provides a balance between accuracy
and efficiency.

5 CONCLUSION

Existing RAG systems built on static KGs or texts often fail to achieve time-aligned retrieval when
faced with temporal reasoning tasks. To address this limitation, we present STAR-RAG, a temporal
GraphRAG framework that summarizes the temporal knowledge graph into a concise rule graph
and leverages seeded personalized PageRank to propagate evidence along temporally consistent
paths. STAR-RAG provides efficient and accurate answers without requiring additional training and
demonstrates robustness across a range of LLM backbones. Results on three temporal KG datasets
confirm that STAR-RAG surpasses both static and temporal GraphRAG baselines, offering superior
accuracy with higher token efficiency.
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A DETAILED LABELING ALGORITHM

Algorithm 2: ENTITYLABELING

Input: Event set 7 = {(s,r,0,t)}; graph G
Output: Labels C(s) foreach s € £
Build RelSet[S} = {T ‘ (S, T, %, *) or (*, T, S, *) € .7:} forall s € € > Construct the relation set for entities
F APRIORI([RelSet [e] ]eeE) > Apply Apriori algorithm mine frequent relation subsets
Sort F and assign the TypelD for each combination of relations
foreach s € £ do

L + [TypelD]s] | p € F, p C RelSet[s]]

if L is empty then

p* < RelSet]s]
L L + [TypelD[p*]] > We treat the relation set of s as L if L is empty

C(S) <the first Ky combinations in L > We only keep the Top- Kyp. combinations as the labels of s

return C(s) foreach s € £

B DETAILS OF COMPUTING MODEL COST OF THE RULE GRAPH

Notations. Let G = (£,R,T,F) be the TKG. Let A be the finite set of category labels and
C : £ — A map each entity to a label; write A := |.A|. Our rule graph is M = (U, Eyyie) With nodes
u = {as,r,a,) € AX R x Aand directed chain edges (u— v). Candidate edges are restricted to
Hamming-1 neighbors:

W= {{u,v}:u#v, du(u,v) <1}, dp(u,v) = Lag# bs] + 1[r# '] + 1[ao # bo).

What L(M) measures. L(M) counts the bits to (i) choose nodes from all atomic-rule options, (ii)
choose directed chain edges from admissible pairs, and (iii) encode the selected nodes and edges
using optimal prefix codes from empirical frequencies.

We adopt the two-part MDL form L(M) 4+ L(G | M) and detail L(M):
L(M)= logy(A%[R]) +  log,2W))  + > L(w) + 3.  L(u—wv)|

(’u.—)’U)EErule

candidate atomic rules candidate directed chain edges

Node code length. From F, estimate empirical probabilities ps(a) and p,(a) for subject/object
categories a € A, and p,(r) for relations r € R. Then

L(U) = —10g2 ps(as) - IOgQ pr(r) - 1Og2 po(ao)7 u = <a’87r7 ao>-

Edge code length. Let d°**(u) and d™(u) be the out-/in-degrees of u in &, and define the
endpoint distribution
dout(u) + din(u)
pv(u) = ——T——
V( ) 2 |5rule|

A directed chain edge (u— v) is encoded as
L(u— v) = —logy py (u) — logy py (v).

C DETAILED ALGORITHM OF COMPUTING PERSONALIZATION VECTOR

Seeded personalization vector v. Let Fx, = {f1,..., [k, } be the Top-K; anchors for query ¢
(ordered by cosine similarity). We map F, to rule nodes and form the seeded rule set
Useea ={u €U : supp(u) N Fr, #0}.

Corpus coverage (counts). For each u € Useeq, define the raw coverage ¢, = |supp(u)| and its
normalization

Cy =

Cu

Zv EUseed Cv

14
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Ranking importance (geometrically discounted hits). Let € (0, 1) and write f; for the j-th anchor
(rank j is 1-based). Define
. - pu
Pu = Z ﬁ J 17 Pu =

j: fj€supp(u) 2 v€Upuna P

Blending and smoothing. With mixture weight § € [0, 1] and Dirichlet smoothing 7 > 0,
Sy + T
Sy = (1=0)¢&, + 0Py, w = ;U € Useed-
( ) + Op Y Zveuseed (Sv + T) seed
In our implementation we set § = 0.6, 5 = 0.7, and use 7 = 1/|Usecq| by default. Finally, we diffuse
~ on the rule graph by personalized PageRank:
T=av+(l—a)TA,

where oo = 0.2 is the restart probability used in our experiments.

D ADDITIONAL EXPERIMENTAL RESULTS

Here, we present the comparison of token consumption and reasoning time based on CronQuestion
and Forecast datasets in Fig. [5]and[6]

N Avg. Token Number I Avg. Reasoning Time
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Figure 5: Comparison of token consumption and reasoning time on CronQuestion.
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Figure 6: Comparison of token consumption and reasoning time on Forecast.

Then we report the rule-graph construction time and memory usage, as well as the per-query reasoning
time for each dataset, in Table 3}

Table 5: Runtime and memory measurements for STAR-RAG: rule-graph construction time (s), peak memory
usage (MB), and per-query reasoning time (s) on each dataset.

Measurements | CronQuestion | Forecast | MultiTQ | STAR-QA

Building Time 254.3 283.9 268.9 384.6
Building Memory 1,062 1,232 1,102 2,754
Reasoning Time 20.6 23.0 22.7 35.6
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E PROMPT AND EXAMPLE FOR TEMPORAL QUESTION ANSWERING

Prompt

Instruction:

As an advanced reading comprehension assistant, your task is to analyze multiple triple
facts and corresponding questions with time constraints meticulously.

Your response start after "Thought: ", where you will methodically break down the
reasoning process, illustrating how you arrive at conclusions.

Keep subject/object orientation. Match the same base relation. Apply temporal operator
precisely.

Conclude with "Answer: " to present return 10 short answer candidates ranked best-to-
worst, devoid of additional elaborations.

One-Shot Demonstration:

Events:
Event A: On 2010-08-30, European Central Bank criticized Romania. Event B: On
2011-02-14, European Central Bank criticized government of Germany.

Question:
Before Germany, who did the European Central Bank criticize last?
Answer:
Romania.

An example to retrieve the time-aligned events
Question:

Which country was the last to accuse the UN security council before the Military Personnel
of Canada did?
Retrival results:

1. Military_personnel_(Canada) accuse Un_security_council @
2006-02-10

2. Un_security_council accuse Government_sudan @ 2006-01-27
3. Un_security_council accuse Iran @ 2005-07-31

4. Lawmaker_(United_kingdom) accuse Government_(Sudan) @
2006-01-26

5. Citizen_(Africa) accuse Government_(Sudan) @ 2006-02-04

6. Congress_(Philippines) accuse Military_personnel_(Philippines)
@ 2006-01-30

7. Eritrea accuse Un_security_council @ 2006-01-04

8. Military_(Philippines) accuse Military_personnel_(Philippines)
@ 2005-12-26

9. Military_personnel_ (Thailand) accuse Sondhi_limthongkul @
2005-11-28

10. Military_personnel_(Thailand) accuse Citizen_(Thailand) @
2005-11-22
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Thoughts:

To determine which country was the last to accuse the UN Security Council before the
Military Personnel of Canada did, we need to examine the dates provided for each entity
accusing the UN Security Council and compare them to the date when the Military
Personnel of Canada made their accusation, which is 2006-02-10.

The relevant accusations against the UN Security Council are:

- Eritrea on 2006-01-04

- Yemane Gebremeskel on 2005-11-24

- Foreign Affairs (Syria) on 2005-10-31

- UN Security Council itself is not relevant as it’s the one being accused.

Given these dates, the last entity to accuse the UN Security Council before the Military
Personnel of Canada (on 2006-02-10) was Eritrea, which did so on 2006-01-04.
Answer:

Eritrea

F MORE RELATED WORKS

In addition to STAR-RAG, we summarize several recent temporal RAG and temporal LLM plus KG
methods. DRAGIN |Su et al.| (2024) proposes a dynamic retrieval-augmented generation framework
that adapts its knowledge store and retrieval strategy to streaming information needs. TimeRAG|Yang
et al.| (2025) targets time series forecasting by retrieving relevant historical segments and using an
LLM to generate future trajectories. RAG4DyG |Wu et al.|(2024¢)) focuses on dynamic graphs and
uses retrieval-augmented modeling to improve link prediction under temporal evolution. DynaGRAG
Thakrar| (2024) designs a dynamic GraphRAG pipeline that updates and queries evolving subgraphs
aligned with query time. MusTQ Zhang et al.| (2024b)) introduces a multi step temporal question
answering benchmark and model that require compositional reasoning over temporal facts.

F.1 INTRODUCTION OF BASELINE METHODS

We compare STAR-RAG with a set of representative GraphRAG methods on static knowledge
graphs, including: TOG (Sun et al.;2024)), which organizes knowledge into topic-oriented subgraphs
for efficient traversal; MedicalGraphRAG (Wu et al.| [2024b), which augments GraphRAG with
triple-linked graphs and a coarse-to-fine retrieval strategy that combines precise matching with
iterative context refinement; G-Retriever (He et al., 2024), which performs graph retrieval via a Prize-
Collecting Steiner Tree, supporting scalable multi-hop reasoning; DALK (L1 et al., 2024), which
employs a dual-level adaptive knowledge graph to balance semantic and structural reasoning; and
HippoRAG (Gutiérrez et al., [2024), which incorporates a hippocampus-inspired memory mechanism
to unify short- and long-term knowledge. In addition, we include four temporal GraphRAG methods:
TS-Retriever (Wu et al.||2024a), which models event dynamics and temporal dependencies; T-GRAG
(Li et al.| 2025)), which constructs time-stamped graphs with temporal query decomposition to address
conflicts and redundancy; TimeR4 |Qian et al.| (2024)), which uses a temporal knowledge graph with a
trained time-aware retriever and a multi-stage retrieve—rewrite-rerank pipeline; DyG-RAG |Sun et al.
(2025)), which constructs a dynamic event graph and performs time-aware graph traversal with an
LLM.

G ROBUSTNESS TO SPARSE/NOISY RELATIONS AND LONG-TAIL GRAPHS

In STAR-RAG, similarity-based anchor retrieval serves as the primary robustness backbone: for
each query, we first perform dense similarity search over temporal facts, and the top-% anchor events
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are surfaced regardless of how well they are covered by the rule graph. While some anchors may
correspond to sparse or noisy relations that are weakly represented in the rule topology, the framework
is explicitly designed so that the rule graph is not a single point of failure: if an anchor event is not
included in any rule node or edge, STAR-RAG simply bypasses the rule graph and injects these
anchors directly into the prompt template for LLM generation. In that case, STAR-RAG effectively
degenerates to a standard similarity-based RAG pipeline, behaving comparably to widely used
systems such as HippoRAG [Gutiérrez et al (2024), GRAG (2024), and REANO
(2024). Moreover, sparse or noisy relations and tail events in long-tail graphs typically have poor
connectivity to the rest of the graph, so answering queries about them often reduces to detecting a
single specific fact rather than performing complex multi-hop reasoning. This regime is in fact the
most favorable case for our retrieval-generation pipeline (and for static RAG baselines), as it only
requires correctly retrieving the relevant anchor event and conditioning the LLLM on it, instead of
relying on densely connected rule structures.

H COMPLEXITY ANALYSIS.

Let G be a temporal knowledge graph with event set F, candidate rule-node set U/, and candidate
rule-edge set W, and let | F|, ||, and |[W] denote their sizes. Let Ciyax be the maximum number of
structural labels assigned to any entity. The offline rule-graph construction is executed once per dataset.
Mapping each event (s, r,0,t) € F into rule-node candidates (cs, r, ¢,) costs at most O(C2,,.. | F|),
and generating candidate temporal edges in W using local time windows costs O(f2,,. | F|), where
fmax 18 the maximum number of events within such a window. Ranking and selecting rule nodes and
edges under the MDL objective then adds O(|U/|log |U] + [W]log |W)), so the total offline cost is

O(Clax [F| + Firas [F| + U] log [U] + W] log [W]),
which is near-linear in | F| in our setting (small Clyax, fmax and |U|, [W| < |F|). At query time,
STAR-RAG first performs dense similarity search over all events and keeps the top-/K’; anchor events,
which is O(|F]) with a linear scan plus O(K log K1) for selection; mapping these K anchors to
rule nodes is O(K;Chax ). Personalized PageRank on the rule graph (with a sparse adjacency over
W) costs O(I [W)|) per query, where [ is the number of iterations. We then select the top-K rule
nodes and gather their supported events into a candidate set F,,q With size at most |Feana| < K3 S,
where s is the average support size of a selected rule node; re-ranking these candidates against the
query costs O(|Feand|). Overall, the per-query complexity can be written as

O(|F| + I [W| 4+ K1Crax + K25),

and since K1, Ko, Cax, and s are small constants in our experiments, the dominant terms in practice
are a single pass over F for similarity search and a sparse PPR over the much smaller rule graph,
while the MDL-based construction (including ranking and selection) is amortized as a one-time
offline cost.

I DETAILS FOR BUILDING STAR-QA

To evaluate the performance of STAR-RAG on large-scale KGs, we additionally reconstruct the
evaluation data by ourselves from ICEWS 2005-2015, 2018, 2021 and augment it with 1,000 LLM-
generated QA pairs that are explicitly designed to be more human-written, out-of-template, and to
include adversarial temporal confounds. Following the question-generation process of FAITH Jia et al.|
(2024), we prompt the LLM (Claude) with event facts to synthesize new questions, but we design
our own dataset-specific prompt (shown as follows) to explicitly encourage more human-written
phrasings and adversarial temporal confounds such as distractor years and plausible but incorrect
time periods.
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Prompt
Instruction:
You are constructing a temporal QA dataset from a series of events. For each question, you
are given:

* aunique question ID quid (integer);

* a list of time-stamped events, where each event has a subject entity, an object
entity, a relation description, and an event date in the form YYYY-MM-DD;

* acorrect answer entity, associated with one specific target event in this list (exactly
one event justifies the answer).

Your task is to write one natural, conversational English question whose only correct
answer is exactly the given answer entity, and whose meaning depends on the target
event and its time. Other events in the list may be used only as contextual or adversarial
distractors.

Style and temporal requirements:
* Rewrite names of the form "X (Country) " into natural phrases, e.g., “Foreign

Affairs (Iran)” — “the Foreign Affairs ministry in Iran”, “Police (Russia)” —
“the police in Russia”, “Citizen (Australia)” — “citizens of Australia”.

Rewrite dates like "2021-01-01" in natural English, e.g., “January 1st, 2021”.

» Use conversational contractions where reasonable (e.g., “Who’s” for “Who is”,
“gonna” for “going to”’), and you may optionally add light discourse markers such
as “So,” or “Well,” at the beginning to sound natural.

* Add adversarial temporal confounds: you may mention other events from the list
or introduce extra, plausible but incorrect time expressions (e.g., another year,
a broader time range, or vague phrases like “around that time”) so that a model
that only matches surface dates or counts mentions is misled. The true date of
the target event and the correct answer must remain unchanged, and the question
must still be answerable only by reasoning about the real target event and its time.

Do not invent facts that contradict any of the input events. There must be exactly one
correct answer.

Output format:

Return your output as a single JSON object on one line, with no ad-
ditional text: {"quid": <QUID>, "question": "<YOUR_QUESTION>",
"answers": ["<ANSWER_ENTITY>"], "glabel": "Single"}.

J FUTURE WORK

In this section, we also highlight a natural extension of our design as a direction for future work. At
present, STAR-RAG uses a globally fixed parameter 6 in the personalization vector (Appendix C),
which implicitly balances temporal information (through Ly, ) and structural or coverage information
(through L,,) during rule-graph propagation. A more flexible variant would equip STAR-RAG
with a query-adaptive controller that adjusts a query-dependent weight 6(¢) according to the time
sensitivity and structural complexity of the input question. This idea is consistent with recent work
on time-aware retrieval-augmented generation such as TimeR*, where the system explicitly rewrites
questions to reveal temporal constraints before retrieval |Qian et al.|(2024)), and with adaptive expert
routing in retrieval-augmented Mixture-of-Experts language models such as Expert-RAG|Zhou et al.
(2024). Concretely, one could estimate a time-sensitivity score for each query by using simple rule-

9 ¢

based heuristics (for example, detecting words like “before”, “after”, or explicit years), or by using an
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optional LLM-based classifier, and then use this score to emphasize temporally aligned propagation
for strongly temporal questions while giving more weight to structural and semantic coverage for
more static questions. However, this design naturally brings a trade-off between computational cost
and accuracy: richer controllers based on LLM scoring or expert routing can provide finer-grained
adaptation but introduce additional token and latency overhead, whereas simple heuristic controllers
are efficient but less expressive. In the present work we favor simplicity and efficiency by using a
global 0, and we leave the design and evaluation of such query-adaptive controllers, together with a
systematic study of their trade-offs, as an important avenue for future research.

Another limitation of STAR-RAG is that the rule graph is constructed offline from a static temporal
KG and then kept fixed, without efficient support for incremental updates when new events arrive.
An important direction for future work is to develop an incremental maintenance mechanism for the
rule graph, inspired by dynamic PPR-based systems such as Instant[Zheng et al.| (2022)) and IDOL
(2024). In these methods, representations are updated under graph changes by locally
refreshing Personalized PageRank or embeddings in the affected region instead of recomputing the
entire model. Analogously, for STAR-RAG, new temporal events could update only the supports
and temporal statistics of the impacted rule nodes and a small neighborhood of rule edges whose
coverage or time patterns change significantly, while preserving the rest of the rule graph. This
could be coupled with topology-monitorable triggers in the spirit of Instant and IDOL that decide
when accumulated local changes warrant structural adjustments such as splitting or merging rule
nodes or adding and pruning edges. Developing such an incremental rule-graph maintenance scheme
would make STAR-RAG more suitable for frequently updated temporal KGs, while retaining its
interpretable, rule-level temporal structure.
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