
Published as a conference paper at ICLR 2025

DOBI-SVD: DIFFERENTIABLE SVD FOR LLM COM-
PRESSION AND SOME NEW PERSPECTIVES

Qinsi Wang1∗, Jinghan Ke2∗, Masayoshi Tomizuka2, Kurt Keutzer2, Chenfeng Xu2 †
1Duke University,
2University of California, Berkeley

ABSTRACT

Large language models (LLMs) have sparked a new wave of AI applications; how-
ever, their substantial computational costs and memory demands pose significant
challenges to democratizing access to LLMs for a broader audience. Singular
Value Decomposition (SVD), a technique studied for decades, offers a hardware-
independent and flexibly tunable solution for LLM compression. In this paper, we
present new directions using SVD: we first theoretically and experimentally ana-
lyze the optimality of directly truncating activations, then we further identify three
key issues on SVD-based LLM compression, including (1) How can we determine
the optimal truncation position for each layer in LLMs? (2) How can we efficiently
update the weight matrices based on truncated activations? (3) How can we address
the inherent "injection" nature that results in the information loss of the SVD? We
propose a new paradigm for SVD-based LLM compression, Dobi-SVD, to tackle
the three issues. First, we propose a differentiable truncation mechanism, along
with gradient-robust backpropagation, enabling the model to adaptively find the
optimal truncation positions. Next, we utilize the Eckart-Young-Mirsky theorem to
derive a theoretically optimal weight update formula through rigorous mathemati-
cal analysis. Lastly, by observing and leveraging the quantization-friendly nature
of matrices after SVD, we reconstruct a mapping between truncation positions and
memory requirements, establishing a bijection from truncation positions to mem-
ory. Experimental results show that with a 40% parameter-compression rate, our
method achieves a perplexity of 9.07 on the Wikitext2 dataset with the compressed
LLama-7B model, a 78.7% improvement over the state-of-the-art SVD for LLM
compression method. We emphasize that Dobi-SVD is the first to achieve such a
high-ratio LLM compression while maintaining competitive performance. We also
extend our Dobi-SVD to vision-language models (VLMs) and vision-language-
action models (VLAs), thereby highlighting its generalizability and practical value.
We hope that the inference speedup—up to 12.4x on 12GB NVIDIA Titan Xp
GPUs and 3x on 80GB A100 GPUs for LLMs, 1.2x and 1.17x on 80GB A100
GPUs for VLMs and VLAs, respectively —will bring significant benefits to the
broader community such as multi-modal learning and robotics etc.

1 INTRODUCTION
Large language models (LLMs), such as GPT (Achiam et al., 2023), Llama (Touvron et al., 2023),
and OPT (Zhang et al., 2022), have shown that scaling the size of the model and the training data can
unlock impressive performance and contextual learning abilities. However, because of the growing
number of parameters in LLMs and the limited memory capacity of current hardware, inference with
LLMs is highly expensive. This limits their practical applications, especially for resource-constrained
hardware devices and latency-sensitive programs, such as robotics, edge-device applications, and
interactive entertainment. In this paper, we aim to address a key challenge: How can we perform
inference with LLMs using fewer computational resources and memory, while maintaining the
performance of the pre-trained models?

∗Qinsi Wang and Jinghan Ke contribute equally. Order is decided by coin flip. This work was done when
Jinghan Ke visited UC Berkeley.

†Chenfeng Xu advises the work and is the corresponding author.

1

Published as a conference paper at ICLR 2025

𝐀 = 𝐗𝐖

𝐒𝐕𝐃 𝐀 → 𝐕𝐀, 𝐤 → 𝐆𝐤

𝐀𝐧−𝟐
𝐀𝐧−𝟑

𝐖𝐕𝐀𝐧−𝟒
𝐆𝐤𝐕𝐀𝐧−𝟒

𝐓

IPCA

𝐗𝐧−𝟏

𝐗𝐧

𝐖𝐕𝐀𝐧−𝟓
𝐆𝐤𝐕𝐀𝐧−𝟓

𝐓

1. Traditional Storage Method: 𝐤 × 𝐦 + 𝐧 3.Proposed Storage Method:𝐤 × 𝐦, 𝐦 ≥ 𝐧

Rank Ratio

2.Quantization-friendly

Value

Fr
e

q
u

e
n

cy

𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 𝐂𝐨𝐥 𝐔 or 𝐕 16-bit 8-bit 0-bit

1.Parameter Renormalization: From Discrete to Continuous

+ =Injection

1
.0

0
.0

0.0 1.0

R
an

k
R

at
io

Bijection

Compression Ratio

𝐦
𝐚

𝐱
𝐦

,𝐧

𝐦
+

𝐧

Rank

Size

Rank

Size

෥𝐰

Singular
Value

Singular
Value

Singular Values of Activation

Taylor Expansion

𝝏𝑳

𝝏𝑴
= 𝑭

𝟏

𝝈𝒊 − 𝝈𝒋
, … NAN

𝝏𝑳

𝝏𝑴
= 𝑭

𝟏

𝝈𝒊
෍

𝒏=𝟎

𝑲
𝝈𝒋

𝝈𝒊

𝒏

, …

Epoch

Lo
ss

2. Robust Backpropagation

𝝈𝒊 ≅ 𝝈𝒋

Rank Ratio

Si
n

gu
la

r
V

al
u

e
 𝝈

𝐒𝐕𝐃 𝐗𝐖𝐚𝐭𝐭𝐞𝐧_𝐤

0.0 1.0

5. Remapping

=

3. Optimization Landscape of Model Compression 4. Weight Update

Compute the Gradient of the Loss Function

Figure 1: Overview framework of Dobi-SVD: 1-3: Differentiable Truncation Position Training. By
applying parameter renormalization for continuous rank ratio selection and using Taylor expansion
to prevent gradient explosion, our method enables robust and adaptive optimization of truncation
positions. 4: Weight Update. Using IPCA, we sequentially extract and optimally update weight
matrix features. 5: Remapping. We resolve a long-overlooked limitation of traditional SVD-based
compression through remapping, fully unlocking SVD’s potential for data compression.

Model compression (Buciluǎ et al., 2006; Cheng et al., 2017; Choudhary et al., 2020) has been
extensively studied, with the aim of squeezing the original model into a lightweight one with a low
compression ratio, i.e., the ratio between the memory required by the compressed model and the
original model. However, existing mainstream compression methods have their own limitations.
For instance, quantization reduces the storage memory by converting floating-point calculations
into lower-bit integer calculations, but it lacks flexibility and hardware generalization due to the
dependency on specific hardware support (Dettmers et al., 2024; Lin et al., 2024; Frantar et al.,
2022a; Kim et al., 2023). Model pruning shrinks the network by reducing redundant parameters
that are less sensitive to performance, but hardware-accelerated structured pruning often leads to
significant performance degradation (Ma et al., 2023; Frantar & Alistarh, 2023; Ashkboos et al.,
2024; Xia et al., 2023). For example, when compressing LLaMA-7B, LLM-Pruner resulted in a
37.6% performance drop on WikiText2, even at a compression ratio of 0.8. Knowledge distillation
employs a high-complexity teacher network to guide a lower-complexity student network for model
compression; however, it requires retraining a new model, which incurs high time and computational
costs (Bergmann et al., 2018; Hou et al., 2020; Chen et al., 2020).

In contrast to these techniques, another straightforward compression method is low-rank decompo-
sition, which is free from the aforementioned limitations. As a technique studied many decades,
singular value decomposition (SVD) (Klema & Laub, 1980) has played a significant role in fields
such as image compression (Prasantha et al., 2007; Bryt & Elad, 2008), communication transmission
(Lebrun et al., 2005), and signal denoising (Zhao & Jia, 2017; Guo et al., 2015). However, its potential
for LLM compression has not yet been fully explored. Theoretically, SVD reduces memory and
computation by truncating the singular values of a matrix, decomposing large weight matrices into
the product of two smaller matrices. Models compressed with SVD can be easily deployed across a
wide range of devices, and SVD offers the flexibility to compress models to any compression ratio.

However, existing SVD-based methods for LLM compression have not achieved desirable results.
Traditional SVD (Lebedev et al., 2014; Moczulski et al., 2015; Sainath et al., 2013) truncated
the model weights directly, often resulting in significant performance degradation and requiring
extensive retraining. Recently proposed activation-aware SVD hopes that the truncated weights
make the activations close to the original ones, but it still fails to deliver satisfactory performance.
For example, ASVD (Yuan et al., 2023) proposes scaling the weights using a diagonal matrix to
reduce the distribution error of the activations before and after truncation. SVD-LLM (Wang et al.,
2024) introduces a truncation-aware data whitening strategy to retain singular values critical for
activations. However, these methods exhibit severe performance degradation. At 0.4 compression
ratio, SVD-LLM experiences a 644.7% drop in model performance on Wikitext2 dataset, which is
unacceptable in real-world applications. Due to the significant performance loss, SVD has not yet
become a mainstream method for LLM compression compared to other compression techniques.

2

Published as a conference paper at ICLR 2025

We aim to change this landscape by making SVD a viable and widely adopted option. Unlike previous
weight-only or activation-aware methods focusing on minimizing the distance between new and
original activations through weight-based truncation, we open up a novel path: directly truncating
activations while enabling weight reconstruction without fine-tuning. Additionally, we are the first
to fully utilize singular value information by addressing a long-overlooked limitation of traditional
SVD-based compression methods. To achieve these, we analyze three associated challenges:

1. How to determine the appropriate truncation position for each layer in an LLM? Different
weight in the model have varying sensitivities to performance degradation. By designing specific
truncation points for different weight matrices (i.e., the number of retained singular values), it is
possible to achieve smaller performance loss at same compression ratio. However, due to the high
dimensionality of the matrices in LLMs, the solution space for truncation positions is exceptionally
large. Thus, efficiently finding the optimal combination of truncation is a significant challenge.

2. How to update the weights based on truncation position? Directly truncating the weights
results in significant performance degradation. Although activation-aware SVD mitigates this
issue to some extent, how to update the weights in a way that maximally preserves activation
information has not yet been fully explored or theoretically proven.

3. How to overcome the long-overlooked truncation-value limitation? A fundamental issue with
SVD-based compression is that to achieve effective compression, at least half of the singular
values need to be truncated (for square matrices). This implies that even a modest compression
ratio requires very low ranks, leading to substantial information loss during matrix compression,
directly limiting the capacity of SVD to compress models effectively.

We propose a new paradigm, Dobi-SVD. An overview is shown in Fig. 1. First, through experimental
analysis and theoretical investigation, we compare the effectiveness of truncating activations versus
truncating weights, verifying the superiority of activation truncating. Based on this analysis, we
provide answers to the three key challenges raised. First, by introducing differentiable truncation
values and stable SVD backpropagation, we enable the model’s performance to directly guide the
matrix in adapting to find optimal truncation points. Then, leveraging the Eckart-Young-Mirsky
theorem and the positive definiteness of the SVD, we derive the theoretical optimal weight update
formula and employ Incremental Principal Component Analysis (IPCA) to extract features of updated
weight sequentially and address memory constraints. Finally, we propose a novel SVD-based storage
method that takes advantage of the value concentration property of decomposed matrices. This
method establishes a bijection mapping between the truncation position and the model compression
ratio, thereby overcoming the truncation limitation.

Dobi-SVD effectively addresses the three challenges of SVD in compressing LLMs. Specifically,
our method achieves performance breakthroughs in three key areas. In terms of task performance,
Dobi-SVD achieves minimal performance degradation even with high compression ratios for the
first time. When compressing the LLaMA-7B model to a compression ratio of 0.4, the Dobi-SVD
compressed model reaches a PPL of 9.07 on WikiText2, which represents a 78.5% improvement
over the previous state-of-the-art SVD compression method, and a 9.83% improvement over the best
pruning methods that require post-training and fine-tuning. This establishes SVD as an effective
and highly competitive option for LLM compression; In terms of hardware performance, Dobi-
SVD significantly reduces inference time for LLMs on low-cost GPUs. On an NVIDIA TITAN Xp
12GB GPU, the Dobi-SVD compressed LLaMA-7B model achieved a generation speed of 25.97
tokens/second, delivering a 12.4× speedup compared to the original model. In particular, Dobi-SVD
is hardware-agnostic, offering superior generalization across different hardware targets compared to
other compression methods; In terms of integration with other compression methods, Dobi-SVD
can be effectively combined with other compression methods such as quantization to achieve a lower
compression ratio. When combined with GPTQ-4bit, Dobi-SVD compresses the LLaMA-7B model
to just 3.4GB, while maintaining a perplexity of 9.97 on WikiText2, which shows that Dobi-SVD is
an effective solution for model compression that can be widely applied and combined. Moreover,
we extend Dobi-SVD to a broader field, vision-language models (VLMs). Specifically, we apply
Dobi-SVD to compress the popular VLM, LLAVA V1.5-7B. Experiments demonstrate that our
method improves throughput by 1.2 times. Notably, we find that our Dobi-SVD not only enhances
efficiency but also improves VLM performance on the Pope-random dataset. We also deployed
Dobi-SVD on the state-of-the-art Vision-Language-Action model, OpenVLA. Under a compression
ratio of 0.4, our method achieves a 17.6% acceleration on the NVIDIA A100 while maintaining nearly

3

Published as a conference paper at ICLR 2025

Dr. SVD

26

Weight Activation-aware Activation

Better performanceEasier to reconstruct weight

Directly Truncating Weight
Truncating Weight
& Scaling Matrix

ASVD, SVD-LLM

Directly Truncating Activation

Dobi-SVD

U

A
ctivatio

n
-aw

are

IPCA
Weight

Activation

Figure 2: The differences between Dobi-SVD’s method and previous approaches in handling activa-
tions and obtaining new weights. See A.4 for a detailed explanation of this figure.

lossless performance. In summary, Dobi-SVD is the first approach to make SVD-based compression
methods truly competitive, highlighting the significant potential of SVD for model compression. In
addition to our proposed method, we also provide some new perspectives in the Appendix; we hope
to inspire the community to further advance this direction.

2 PRELIMINARIES
2.1 MATHEMATICAL EXPRESSION OF SVD FOR LLM

Given a weight matrix W ∈ Rm×n, it can be decomposed through SVD as W = UΣV T , where
U ∈ Rm×m and V ∈ Rn×n are the right and left singular vector matrices, respectively. Σ =
diag(σ1, . . . , σm) is an m× n diagonal matrix and σ1, . . . , σm are the singular values of W .

The SVD compression process of W can be summarized in three steps. Decomposition: use SVD
to decompose W . Truncation: retain the top singular values k and obtain the truncated singular-
value matrix Σk = diag(σ1, . . . , σk, 0, . . . , 0). Reconstruction: reconstruct W into two matrices
W1 = U

√
Σk, W2 =

√
ΣkV , where W1 ∈ Rm×k and W2 ∈ Rk×n. Through the process, W can

be compressed into W1 and W2. We define the compression ratio as k(m+ n)/(m× n).

2.2 BASIC PROPOSITIONS.
Before the derivation of W̃ , we introduce three basic propositions:

Proposition 1: Rank Property of Matrix Multiplication. For the matrix multiplication AB = C, the
rank of C satisfies rank(C) ≤ min(rank(A), rank(B)).

Proposition2: Eckart-Young-Mirsky Theorem. For a matrix A ∈ Rm×n, the best rank-k approxima-
tion of A in terms of the Frobenius norm or spectral norm is given by the matrix Ak = UAΣkV

T
A .

Proposition3: Positive Definiteness of Matrices in SVD. Given the SVD of a matrix A = UAΣAV
⊤
A ,

the matrices UA and VA are both orthogonal, satisfying V ⊤
A VA = U⊤

AUA = I .

2.3 MOTIVATION: TRUNCATE WEIGHTS OR ACTIVATIONS? HOW TO DO IT OPTIMALLY?
Table 1: PPL of Llama-7b on Wiki-
text2 after directly truncating activa-
tions and weights under same trunca-
tion setting.

Param Ratio 1.0 0.8 0.6 0.4

Activation 5.68 6.36 8.85 20.71

Weight 5.68 20061 52489 105474

Previous studies explored two main SVD-based compres-
sion methods: truncating weights or activations, including
activation-aware approaches. The first and straightforward
method, truncating weights, applies SVD to compress W
(2.1) Alternatively, recent works such as ASVD (Yuan et al.,
2023) and SVD-LLM (Wang et al., 2024), drawing from tech-
niques in the quantization domain, emphasize an activation-
aware compression, which uses scaling matrix S scales W to
capture the varying importance of input channels and aims to
minimize differences in activations, i.e., min ∥A− x(W̃S)S−1∥F , where W̃S is obtained by apply-
ing SVD to WS. This raises a question: Are the existing truncation methods truly optimal? Our
answer is no. Both theoretical and experimental results reveal that a fundamentally different third
paradigm—directly truncating activations via SVD on A (i.e., xW)—is the optimal approach.

At the module level, Proposition 2 shows that directly truncating activations gives Ak, the optimal
k-rank approximation of A. At the model level, we prove (A.10) that directly truncating activations
better minimizes training loss than truncating weights. Previous methods avoided this due to
challenges in updating weights (Figure 2), while we provide a practical and effective solution
through theoretical analysis (Sect.3.2 and A.4.1). Results: Table 1 shows truncating activations
outperforms weights, and Table 2 confirms it surpasses existing activation-aware methods.

3 DOBI-SVD METHOD
In this section, we address the three main challenges of SVD for LLMs to implement a high-
performance SVD algorithm.

4

Published as a conference paper at ICLR 2025

Algorithm 1 Differentiable Algorithm for Finding Optimal k
Input: Training data {x1, x2, . . . , xn}, target compression ratio Rtar.
Output: Optimal k values for each weight matrix W .
1: Step1: Smooth activation truncation Inference.
2: for each activation A do
3: Apply SVD: A = UAΣAV

⊤
A , ΣA = [σ1, σ2, . . . , σn].

4: Get smooth truncation: T (σi) = σi [0.5 · tanh (β (k − i)) + 0.5], Σk = [T (σ1), . . . , T (σn)]

5: Reconstruct activations: Ã = UAΣkV
⊤
A .

6: end for
7: Step2: Multi-objective loss training.
8: Freeze other parameters in the network and keep only k trainable.
9: for each training step do

10: Compute current compression ratio Rnow based on current k.
11: Compute multi-objective loss: L = Ltask + γ · |Rnow −Rtar|.
12: Update k values by minimizing L.
13: end for

3.1 Q1: HOW TO GET THE OPTIMAL TRUNCATION POSITION?

Solution Space of Truncation Position To address the question, we first analyze the size of the
solution space. Consider an LLM of L layers, where each layer contains M weight matrices W ∈
Rm×n,m ≥ n. For each matrix, the number of possible truncation positions is n, k ∈ {1, 2, . . . , n}.
Therefore, for the entire LLM, the size of the solution space is n(L∗M). Given that LLMs typically
involve large-dimensional matrices, the solution space for truncation positions is vast.

Differentiable Optimization of the Truncation Position. To effectively identify the optimal
truncation position within a huge solution space, we introduce, for the first time, a differentiable
method to solve for the optimal truncation position. The workflow of our method, as shown in
Algorithm 1, can be divided into two steps: smoothing discrete truncation positions and multi-
objective loss training.

During inference, we construct an activation truncation model. To make the truncation continuous, we
use the tanh function to smooth the truncation. Specifically, we define a smooth truncation function
T that T (σi) = σi [0.5 · tanh (β (k − i)) + 0.5], where k is a learnable truncation parameter, β is a
parameter that adjusts the smoothness of the truncation and T (σi) is the truncated value of σi. T (σi)
effectively simulates the truncation, making the truncated position differentiable.

During the training, we freeze other parameters in the model and only keep k trainable. In order to
ensure that the optimization balances the task performance and the model compression, we use a
multi-objective loss to train the model. Given the target compression ratio Rtar, our loss function is
L = Ltask + γ · |Rnow −Rtar|, where Ltask is the loss of the model on the downstream task, Rnow is
the model compression ratio calculated by the current k value.

Note that our algorithm requires very low computational cost since the optimization is only conducted
on k of different layers. For example, in the Llama-7b model, there are only 224 trainable parameters,
and training requires just 8 GPU hours.

Stabilize SVD Backpropagation. Although a differentiable algorithm is theoretically feasible, we
emphasize that the gradient is the devil (Wikipedia, 2024), especially in backpropagation involving
low-rank matrices, where gradients are prone to exploding due to numerical instability. Consider a
matrix A ∈ Rm×m obtained via SVD: A = UAΣAV

⊤
A . During backpropagation, the gradients of the

loss with respect to UA, ΣA, and VA are denoted as gU , gΣ, and gV , respectively. The gradient of A
is then given by:

gA = U

(
skew(UT gU)

E
Σ+ Σ

skew(V T gV)

E
+ diag(gΣ)

)
V T , Eij =

{
σ2
j − σ2

i if i ̸= j,

1 ifi = j,
(1)

where skew(x) = (x − x⊤)/2 extracts the skew-symmetric part of a square matrix, and
Eij is E’s (i, j)-th element, and σi and σj being the i-th and j-th singular values of A. As shown
in Eq.1, when σi and σj are very small or close, Eij approaches 0, causing E to vanish and gA to
diverge to infinity. This gradient explosion problem frequently arises during optimization, especially

5

Published as a conference paper at ICLR 2025

Algorithm 2 Computing the Theoretical Optimal Rank-k Weight Matrix W̃ via IPCA
Input: Training data {x1, x2, . . . , xn}, original weight matrix W , required rank k.
Output: Theoretical optimal rank-k weight matrix W̃ .
1: Input the training data into the network.
2: Obtain activations [A1, A2, . . . , An] and their right-singular vectors [VA1, VA2, . . . , VAn].
3: Generate Gk, a diagonal matrix with the first k elements 1 and the rest 0.
4: Initialize mean µ = 0, Vold = V1.
5: for i = 2 to n do
6: Center the data: Vi = Vi − (µ+ 1

i (Vi − µ)).
7: Update Vnew: Vnew = [Vold, Vi].
8: Update principal direction V ′: SVD(Vnew)→ U ′,Σ, V ′T

9: Update Vold: Vold = V ′[: k]
10: end for
11: Use Vold as the final V, update weight W̃ = WVGkVT .

since activation matrices in LLMs often exhibit approximately low-rank structures. To address the
above problem, we propose an approximate solution for Eij in two cases:

1. When σi ≈ 0 and σj ≈ 0, we directly set 1/Eij = γ, where γ is a small constant that ensures the
contribution of σi and σj to gA remains small.

2. When σi ̸≈ 0 and σj ̸≈ 0, but σi ≈ σj , we perform a Taylor expansion of 1/Eij as follows:

1

Eij
=

1

σi(σi + σj)
∗ 1

1− (σj/σi)
≈ 1

σi(σi + σj)
(1 +

(
σj

σi

)
+ · · ·+

(
σj

σi

)K

) (2)

To accelerate the computation, we utilize the summation formula of a geometric series.

Answer 1: By stabilizing SVD backpropagation for differentiable optimization of truncation
position, we can efficiently find the optimal position of each layer. To the best of our knowledge,
this is the first work to enable end-to-end optimization for SVD-based LLM compression.

3.2 Q2: HOW TO UPDATE WEIGHTS OPTIMALLY?

In Sect. 3.1, we obtained effective activation truncation position. In this section, we address the
second challenge: How to optimally update weights based on the truncation position?

Leveraging Proposition 3, applying SVD to directly truncate activations at k can be formulated as:

Ak = UAΣAGkV
⊤
A = UAΣAIGkV

⊤
A = UAΣAV

⊤
A VAGkV

⊤
A = AVAGkV

⊤
A , (3)

where Gk is a diagonal matrix with the first k elements as 1 and the rest as 0. Substituting A = xW ,

Ak = AVAGkV
⊤
A = xWVAGkV

⊤
A . (4)

At truncation position k, for a set of inputs {xi}ni=1, the ideal updated weight W̃ should satisfy:

min

n∑
i=1

∥xiWVAi
GkV

T
Ai
− xiW̃∥F = min

n∑
i=1

xi∥WVAi
GkV

T
Ai
− W̃∥F , rank(W̃) = k (5)

Thus, our goal is to find the rank-k matrix W̃ closest to the set of projected weight matrices
Wp = {WVAiGkV

⊤
Ai
}ni=1. Since x is usually not a full-rank square matrix, computing W̃ via its

inverse is infeasible. Therefore, we derive W̃ from the underlying structure of Wp.

While PCA can compute W̃ , the large size of Wp leads to excessive memory demands. Traditional
PCA scales exponentially with matrix size, making large n impractical and requiring hundreds of
Gigabytes. To address this, we make a novel use of the Incremental Principal Components Analysis
(IPCA) algorithm for memory-efficient PCA. The algorithm, detailed in Algorithm 2, centralizes each
new input W p

i from Wp and updates the principal components via incremental SVD. By processing
the matrices sequentially, the need to input all n matrices at once is replaced with multiple steps, each
handling only two matrices at a time, significantly reducing memory usage.

Answer 2: By using IPCA, we can calculate the theoretically optimal Rank-k Weight Matrix W̃ .

6

Published as a conference paper at ICLR 2025

Table 2: Dobi-SVD vs. SOTA methods in terms of compression performance of LLaMA-7b on
three language modeling datasets (in-domain evaluation) and seven common sense reasoning datasets
(zero-shot evaluation). The best performance is marked in bold. Drop means relative performance
drop to baseline. Dobi-SVD* refers to the result obtained without remapping. The performance of the
ASVD and SVD-LLM is derived from the results reported in SVD-LLM. † uses LoRA fine-tuning.

Ratio Method PPL (↓) Accuracy (↑) Avg. Drop
Wiki2 PTB C4 Openb. ARC_e ARC_c WinoG. HellaS. PIQA MathQA (↑) (↓)

1.0 Baseline 5.68 8.35 7.34 0.28 0.67 0.38 0.67 0.56 0.78 0.27 0.52 0%

0.8

ASVD 11.14 16.55 15.93 0.25 0.53 0.27 0.64 0.41 0.68 0.24 0.43 17.3%
SVD-LLM† 7.94 16.22 15.84 0.22 0.58 0.29 0.63 0.43 0.69 0.24 0.44 15.4%
Dobi-SVD∗ 8.54 14.83 10.01 0.26 0.59 0.31 0.66 0.44 0.70 0.23 0.46 11.5%
Dobi-SVD 6.08 15.39 7.83 0.27 0.65 0.37 0.68 0.54 0.77 0.27 0.50 3.84%

0.6

ASVD 1407 3292 1109 0.13 0.28 0.22 0.48 0.26 0.55 0.19 0.30 42.3%
SVD-LLM† 13.11 63.75 49.83 0.19 0.42 0.25 0.58 0.33 0.60 0.21 0.37 28.8%
Dobi-SVD* 13.54 46.38 23.54 0.22 0.41 0.27 0.58 0.34 0.61 0.23 0.38 26.9%
Dobi-SVD 8.12 43.85 12.63 0.28 0.65 0.32 0.62 0.45 0.72 0.25 0.47 9.61%

0.4

ASVD 57057 45218 43036 0.12 0.26 0.21 0.49 0.26 0.53 0.18 0.29 44.2%
SVD-LLM† 53.74 438.58 345.49 0.14 0.28 0.22 0.50 0.27 0.55 0.21 0.31 40.3%
Dobi-SVD* 46.18 238.91 190.62 0.15 0.31 0.20 0.52 0.28 0.54 0.22 0.32 38.4%
Dobi-SVD 9.95 67.62 17.94 0.23 0.52 0.24 0.56 0.38 0.65 0.23 0.40 23.1%

3.3 HOW TO OVERCOME THE LONG-OVERLOOKED TRUNCATION LIMITATION?

In this section, we address a long-overlooked limitation of SVD. As outlined in Section 2, for an
m× n matrix W with truncation position k, the compression ratio is r = k(m+ n)/(m · n). Setting
r = 1 gives k = (m ·n)/(m+n) < min(m,n) = rank(W), meaning the model size stays the same,
but information is lost. Notably, when m = n, k = rank(W)/2, truncating half the singular values.
This demonstrates that in traditional SVD-based compression, the compression ratio is injective with
respect to truncation position, often leading to significant performance degradation.

To address this limitation, we propose remapping the relationship between compression ra-
tios and truncation positions to establish a bijection, where for r ∈ [0, 1], k ranges from 0 to
rank(W) with a one-to-one correspondence. This gives the compression ratio r = k/rank(W) =
k/min(m,n) = k ·max(m,n)/(m · n), with the compressed matrix size being k ·max(m,n).

To achieve this bijection, we propose a new SVD compression method: Step 1. For the updated
matrix W̃ with rank k, perform SVD to obtain U

W̃
,Σ

W̃
, V T

W̃
. Extract the first k columns of U

W̃
Σ

W̃

as an m×k matrix U
W̃ ,k

Σ
W̃ ,k

, and the first k rows of V T
W̃

as a k×n matrix V T
W̃ ,k

. Step 2. Assuming

m ≥ n, the storage space becomes m×k. Take the first n rows of U
W̃ ,k

Σ
W̃ ,k

and V T
W̃ ,k

(both n×k),
halve their bit precision, concatenate them, and replace the first n rows of U

W̃ ,k
Σ

W̃ ,k
. Finally, store

only the modified U
W̃ ,k

Σ
W̃ ,k

, using m× k space.

The compression method in Step 2 leverages the orthogonality of the left and right singular vector
matrices U and V , whose column vectors follow a normal distribution (as shown in the ’remapping’
section of Fig. 1), making them ideal for uniform quantization methods like QLoRA. Appendix A.7
shows that quantization introduces minimal error.

Answer3: By applying our quantized storage method, the compression ratios and truncation
position form a bijective mapping, overcoming the truncation position limitation.

3.4 CONCLUSION: TWO NEW PERSPECTIVES OF DOBI-SVD

By leveraging the fundamental theorem of SVD, we derive the optimal approach for SVD-based
compression: directly truncating activations (Section 2.3). To determine the optimal truncation point
of the activation matrix, we develop a robust and efficient differentiable SVD algorithm applicable
to general matrices (Sections 3.1 and A.6). Subsequently, we propose a theoretical framework
to derive a new weight matrix from the truncated activations (A.4.1 and Section 3.2), successfully
implementing this using Incremental PCA (IPCA). Collectively, these contributions form Dobi-SVD’s
New Perspective 1: A Novel Path from Activation to Weight (A.4).

Furthermore, we highlight a long-overlooked limitation of traditional SVD-based compression
methods and, for the first time, propose an effective solution. This leads to Dobi-SVD’s New
Perspective 2: Fully Unlocking SVD’s Potential for Data Compression by Addressing A Long-
Overlooked Limitation (Sections 3.3 and A.5).

7

Published as a conference paper at ICLR 2025

Table 3: Dobi-SVD vs. popular pruning methods in terms of compression performance of LLaMA-7b
on seven common sense reasoning datasets. The best performance is marked in bold. The performance
of the pruning methods are derived from their original paper.

Ratio Method Cost Accuracy (↑) Avg. Drop
Post-train Fine-tuning BoolQ PIQA WinoG. ARC_e ARC_c OBQA (↑) (↓)

1.0 Baseline - - 0.73 0.78 0.67 0.67 0.41 0.42 0.61 0%

0.8

LLM-Pruner ✓ ✗ 0.59 0.75 0.61 0.59 0.37 0.39 0.55 9.83%
LLM-Pruner(w/LoRA) ✓ ✓ 0.69 0.76 0.65 0.63 0.37 0.40 0.58 4.92%

FLAP ✓ ✗ 0.69 0.76 0.68 0.69 0.39 0.39 0.60 1.64%
Dobi-SVD ✓ ✗ 0.73 0.77 0.68 0.65 0.37 0.42 0.61 0%

4 EXPERIMENTS

Without losing generalizability, our experiments in the main text are conducted on LLaMA-7B. We
investigate four settings: (1) Evaluation on three language modeling datasets and seven commonsense
reasoning datasets, comparing against state-of-the-art SVD compression and popular pruning methods
(Sect. 4.1). (2) Analysis of the importance and roles of each component in Dobi-SVD (Sect. 4.2). (3)
Testing the acceleration of Dobi-SVD on different hardware and combining it with quantization (Sect.
4.3). (4) Test the performance of Dobi-SVD on VLMs and vision-action model (Sect. ??). Details of
experimental settings are provided in A.3.

Additional experiments in the Appendix include evaluations on more tasks (e.g., MMLU, popular
pruning methods), more models (LLaMA2-7B: Tabs. 12, 14; and LLaMA3.1-8B: Tabs.11 ; Llama-
13B: Tabs. 16, 18; Llama2-13B: Tabs. 17, 19). We also explore combining with quantization
(Tab. 20) and direct comparisons with quantization (Tab. 21). Finally, we test the performance of
Dobi-SVD on VLMs (Tab. 22) and vision-action model (Tab. 24). And we compare the performance
of large models compressed by Dobi-SVD with small models that are not compressed. (Tabs. 25, 26).

4.1 MAIN RESULTS

In-domain Evaluation. We evaluate the performance of Dobi-SVD on top of LLaMA-7B model,
with compression ratio ranging from 40% to 80%. The experimental results are presented in Table 2.
Notably, Dobi-SVD demonstrates significantly better performance than other SVD methods. At a 0.4
compression ratio, the Dobi-SVD achieves a PPL of 9.70 on Wikitext-2, compared to 43,104 and 458
for ASVD and SVD-LLM, respectively. This indicates that even with only 40% of the parameters
retained, Dobi-SVD maintains an acceptable performance degradation, a level of performance
unattainable by other SVD methods. We emphasize that even without the proposed remapping
strategy, Dobi-SVD outperforms prior-arts by a large margin, especially under the low parameter-
ratio. This demonstrates the effectiveness of the proposed differentiable optimization of truncation
position. Additionally, our quantized storage remapping strategy further improves the performance,
showing the significance of our method for improving the injective nature in SVD.

Zero-shot Evaluation. To demonstrate the task generalization capability of Dobi-SVD, we take the
model trained on Wikitext-2 dataset and conduct the validation on seven out-of-domain datasets. As
shown in Table 2, Dobi-SVD consistently outperforms the previous state-of-the-art methods across
different datasets and compression ratios. Specifically, at 80% compression ratio, Dobi-SVD shows
an average performance drop by only 3.14%. At low compression ratios, Dobi-SVD can still maintain
good performance. For example, at compression ratio of 0.4, Dobi-SVD still has an average accuracy
of 40%, while ASVD and SVD-LLM only have 29% and 31% respectively. Note that even without
remapping, the performance of Dobi-SVD* is still better than other SVD compression algorithms.
This shows that our differentiable optimization for truncation positions and weight update method are
more effective than other SVD-based methods.

Performance comparison with pruning methods. To further demonstrate Dobi-SVD’s superior
trade-off between compression ratio and memory usage, we also compare it with state-of-the-art
pruning methods, as shown in Table 3. Note that pruning method is orthogonal to the SVD-based
method and these two kinds of methods are in different tracks. The results show that Dobi-SVD
achieves comparable performance relative to the pruning-based method across various task sets.
Compared with FLAP (An et al., 2024a), a state-of-the-art pruning method, Dobi-SVD outperforms
it on all four tasks. We highlight this is the first time that SVD compression method achieves better
performance than pruning. Notably, while both Dobi-SVD and pruning methods require post-training,

8

Published as a conference paper at ICLR 2025

Table 4: Comparison of perfor-
mance before & after remapping.

Ratio Model Wiki C4 PTB

80%
Remap(16bit) 6.05 7.79 22.27

Remap(8+16bit) 6.08 7.83 22.39
W/o Remap 8.87 10.91 25.03

60%
Remap(16bit) 8.07 12.54 43.68

Remap(8+16bit) 8.12 12.63 43.85
W/o Remap 14.96 24.60 47.01

40%
Remap(16bit) 9.78 17.39 67.81

Remap(8+16bit) 9.95 17.94 67.62
W/o Remap 58.02 145.41 270.16

Table 5: Performance and
memory usage of Dobi-SVD
combined with 4-bit quantiza-
tion on wikitext2.

Ratio Method PPL Memory

0.4 Dobi-SVD 9.95 6.8GB
Dobi-SVD+GPTQ 12.04 1.8GB

0.6 Dobi-SVD 8.12 7.7GB
Dobi-SVD+GPTQ 9.97 2.4GB

0.8 Dobi-SVD 6.08 10.1GB
Dobi-SVD+GPTQ 7.01 3.1GB

Table 6: Speed of running
unmapped Llama-7b on TI-
TAN Xp 12GB GPU. PPL is
tested on the wikitext2.

Ratio Mem
(GB)

Speed
(tokens/s)

Speed
Up

1.0 12.6 2.09 1.0×
0.8 10.1 23.32 11.2×
0.6 7.7 24.80 11.8×
0.4 6.8 25.97 12.4×

0 5 10 15 20 25 30 35 40
Epoch

7.38

7.40

7.42

7.44

7.46

7.48

7.50

PP
L

Truncate weights
Truncated activation (multi-layer)
Truncate activation (single layer)
Original PPL

0.4 0.6 0.8
Param Ratio(%)

0.0

2.5

5.0

7.5

10.0

Pe
rp

le
xi

ty

256 Train Sample
16 Train Sample

5000 10000 15000 20000 25000
Matrix Size

0

5

10

15

20

M
em

or
y

N
ee

de
d

(G
B

) PCA
IPCA

Figure 3: (Left) Performance Comparison of different training methods on LLaMA-7b. For activation
truncation (multi-layer) we only truncate layers 29-31, and for activation truncation (single-layer) we
only truncate the 29-th layer. (Middle) Comparison of model performance using batch size = 256 and
16 for training. (Right) Comparison of memory requirements for PCA and IPCA for n ∗ n matrix.

Dobi-SVD only trains the truncation positions of the matrices. Dobi-SVD significantly reduces the
number of trained parameters and computational cost compared to pruning. Specifically, LLM-Pruner
requires training additional 1.2 billion parameters to maintain the model performance on LLaMA-7B,
whereas Dobi-SVD only trains 224 parameters.

4.2 ANALYSIS EXPERIMENT

In this section, we perform analysis experiments on three critical components of the Dobi-SVD
method: differentiable optimization of truncation position, efficient weight-updates with Incremental
PCA (IPCA) and quantized storage remapping.

4.2.1 ANALYSIS ON DIFFERENTIABLE OPTIMIZATION OF TRUNCATION POSITION

Guided Truncation. Based on the above analysis, we hypothesize that, under the same compression
ratio, truncating the Attention layers in later stages of LLM may result in smaller performance losses.
To validate this, we conducted two experiments on the LLaMA-7B model: truncating a single layer
(layer 29) and truncating multiple layers (layers 29-31) with differentiable training. The results are
shown in Fig. 3 (a). We observe that both truncation settings lead to better performance compared to
the original model, while barely weight truncation results in the performance degeneration. Besides,
truncating single layer can even lead to better performance compared to truncation multiple layers.
Both experimental observations indicate that the proposed differentiable optimization of truncation
position offers promising potentials to improve model performance through activation truncation and
provides guidance for selecting layers to conduct low-rank decomposition.

Efficient Training. Besides, we validate the sample-efficient training to highlight the advantage
of the differentiable optimization. A common post-training batch size is 256 and here we test the
model’s performance with training batch size as 16 while keeping the epoch same. The performance
is shown in Fig. 3 (b). Even with such a few batch size, Dobi-SVD achieves results comparable to
those obtained with 256 samples. This demonstrates the efficiency of our differentiable optimization.
Note that training with batch size as 16 on LLaMA-7B require only a few GPU-hours.

4.2.2 ANALYSIS ON EFFICIENT WEIGHT UPDATE.

We compare the memory footprint for our proposed efficient weight update strategy (w/ IPCA) and
original PCA method, as shown in Fig. 3. We observe that as the dimensionality of the decomposed
matrix increases, the memory footprint of PCA grows exponentially. In contrast, our weight-update
strategy with IPCA significantly reduces memory usage, which remains close to a constant as the
dimensionality increases. This is because PCA must be used for decomposing the whole matrix
V = [V1, V2, V3, . . . , Vn], while IPCA can be used for conducting the decomposition at each step
V = cat[Vold, Vii] thus gets rid of the requirement of storing the entire matrix.

9

Published as a conference paper at ICLR 2025

64 128 256 512
Batch Size

300

400

500

600

700

800

To
ke

ns
 /

se
c

40%
60%
80%
100%

32 64 128 256
Sequence Length

200

300

400

500

600

700

To
ke

ns
 /

se
c

40%
60%
80%
100%

Figure 4: Tokens/sec of original LLaMA-7B and its compressed version by Dobi-SVD under 40%,
60% and 80% compression ratio on single A100 GPU. (a): comparison with different batch size
while sequence length = 32. (b): comparison with different sequence length while batch size = 64.

4.2.3 ANALYSIS ON QUANTIZED STORAGE FOR REMAPPING.
To demonstrate the effectiveness of our proposed quantizes storage remapping, we compare the
performance under three different approaches: remapping without quantization (i.e., Remap (16bit)
in Table 4), remapping with quantization to maintain the compression ratio (i.e., Remap (8+16bit) in
Table 4), and no remapping while maintaining the compression ratio (i.e., W/o Remap in Table 4),
as shown in Table 4. By comparing the first two approaches, we can see that quantization results
in minimal performance drop regardless. The performance comparison between remapping with
quantization and no remapping reveals that remapping significantly improves model performance,
especially at lower compression ratios. Specifically, at a compression ratio of 0.4, the remapped model
achieves a perplexity of 9.95 on the WikiText2 dataset, while the non-remapped model reaches 58.02.
This highlights the effectiveness of our proposed remapping in enhancing the model performance.

4.3 INFERENCE-EFFICIENCY EVALUATION

Performance on high-performance GPUs. Dobi-SVD not only compresses LLMs but also improves
the efficiency of inference on real hardware. We tested the original LLaMA-7B and LLAMA-7B
with our Dobi-SVD on NVIDIA A100 GPU by measuring the number of tokens generated per
second under varying batch sizes and sequence lengths. The results are shown in Fig. 4. Across all
compression ratios, Dobi-SVD consistently improved generation speed. As the batch size increases
and the sequence length decreases, this speed improvement becomes more pronounced. With a
compression ratio of 0.4, we achieve an improvement of inference speed by up to 1.75 ×. At the 0.6
compression ratio, the speedup is up to 1.4 ×. These results highlight the efficiency improvement of
Dobi-SVD and suggest its practical potential in LLM services on cloud.
Performance on low-performance GPUs. To demonstrate the applicability of Dobi-SVD in resource-
constrained environments, we deploy both the original and compressed LLaMA-7B models on an
NVIDIA TITAN Xp with 12GB of memory. The results are shown in Table 6. Since the LLaMA-7B
model requires approximately 14.8GB of memory, the original model requires data transfer between
the CPU and GPU during inference. However, applying Dobi-SVD is able to make the entire model
run on the GPU. Dobi-SVD achieves the speedup of 12.4 ×. This highlights the huge potential of
Dobi-SVD for practical applications in resource-limited devices, like edge-devices.
Performance combined with quantization. To verify the compatibility of Dobi-SVD with quantiza-
tion, we use GPTQ-4bit combined with Dobi-SVD to compress LLaMA-7B. We measure the memory
footprint and PPL on wikitext2 before and after quantization. Table 5 shows that the combining
GPTQ-4bit with Dobi-SVD further improve the memory utility. It is worth noting that our results
significantly outperform previous methods combining SVD with quantization. For instance, when
compressing the model to a compression ratio of 0.6 and integrating with GPTQ-4bit, Dobi-SVD
achieves a PPL of 9.97. This illustrates the wide applicability of Dobi-SVD, which can be flexibly
combined with other quantization methods.

5 CONCLUSION
We introduce Dobi-SVD, an efficient SVD-based method for LLM compression. We address three
key challenges: (a) how to determine the truncation position, (b) how to update weights efficiently
and (c) how to overcome truncation limitation that results in information loss. We first theoretically
and empirically explain why truncating activations is better than truncating weights. In addition, we
propose solutions to address these three challenges using a differentiable optimization strategy to find
the truncation position, an efficient weight update method via the Eckart-Young-Mirsky Theorem,
and a quantized memory remapping to maximize SVD’s potential. Experiments demonstrate that
Dobi-SVD achieves minimal performance loss at low compression ratios. Dobi-SVD compresses
LLaMA-7B to a 0.4 compression ratio with a PPL of 9.95 on WikiText2, outperforming advanced
SVD-based and pruning methods. It also provides a 12.4× speedup on NVIDIA Titan Xp 12GB
GPU with negligible loss. Overall, Dobi-SVD is a hardware-agnostic, highly adaptable compression
method that demonstrates the significant potential and competitiveness of SVD in model compression.

10

Published as a conference paper at ICLR 2025

REFERENCES

Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. Online embedding com-
pression for text classification using low rank matrix factorization. In Proceedings of the aaai
conference on artificial intelligence, volume 33, pp. 6196–6203, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024a.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024b.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Carsten Bergmann, Lisa M Guay-Woodford, Peter C Harris, Shigeo Horie, Dorien JM Peters, and
Vicente E Torres. Polycystic kidney disease. Nature reviews Disease primers, 4(1):50, 2018.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Ori Bryt and Michael Elad. Compression of facial images using the k-svd algorithm. Journal of
Visual Communication and Image Representation, 19(4):270–282, 2008.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 535–541, 2006.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun
Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable
neural architecture search. arXiv preprint arXiv:2001.04246, 2020.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-Jui Hsieh. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking. Advances in Neural Information Processing
Systems, 31, 2018.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. A comprehensive
survey on model compression and acceleration. Artificial Intelligence Review, 53:5113–5155,
2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

11

Published as a conference paper at ICLR 2025

Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, and Ameet
Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. arXiv
preprint arXiv:2402.05406, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2022a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022b.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu. An efficient svd-based method for image
denoising. IEEE transactions on Circuits and Systems for Video Technology, 26(5):868–880,
2015.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some
applications. IEEE Transactions on automatic control, 25(2):164–176, 1980.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Guillaume Lebrun, Jason Gao, and Mike Faulkner. Mimo transmission over a time-varying channel
using svd. IEEE Transactions on wireless Communications, 4(2):757–764, 2005.

Jung Hyun Lee, Jeonghoon Kim, June Yong Yang, Se Jung Kwon, Eunho Yang, Kang Min Yoo, and
Dongsoo Lee. Lrq: Optimizing post-training quantization for large language models by learning
low-rank weight-scaling matrices. arXiv preprint arXiv:2407.11534, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

12

Published as a conference paper at ICLR 2025

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. Acdc: A structured
efficient linear layer. arXiv preprint arXiv:1511.05946, 2015.

HS Prasantha, HL Shashidhara, and KN Balasubramanya Murthy. Image compression using svd.
In International conference on computational intelligence and multimedia applications (ICCIMA
2007), volume 3, pp. 143–145. IEEE, 2007.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix compression via randomized low rank and
low precision factorization. Advances in Neural Information Processing Systems, 36, 2023.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J Goldsmith, and Mert Pilanci. Compress-
ing large language models using low rank and low precision decomposition. arXiv preprint
arXiv:2405.18886, 2024.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021a.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021b.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021a.

Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differentiable svd.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021b.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Juyang Weng, Yilu Zhang, and Wey-Shiuan Hwang. Candid covariance-free incremental principal
component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):
1034–1040, 2003.

Wikipedia. The devil is in the details — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=The%20devil%20is%20in%
20the%20details&oldid=1233380555, 2024. [Online; accessed 24-November-2024].

13

http://en.wikipedia.org/w/index.php?title=The%20devil%20is%20in%20the%20details&oldid=1233380555
http://en.wikipedia.org/w/index.php?title=The%20devil%20is%20in%20the%20details&oldid=1233380555
http://en.wikipedia.org/w/index.php?title=The%20devil%20is%20in%20the%20details&oldid=1233380555

Published as a conference paper at ICLR 2025

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantization
error reconstruction for llms. arXiv preprint arXiv:2402.02446, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2015.

Ming Zhao and Xiaodong Jia. A novel strategy for signal denoising using reweighted svd and its
applications to weak fault feature enhancement of rotating machinery. Mechanical Systems and
Signal Processing, 94:129–147, 2017.

14

Published as a conference paper at ICLR 2025

A APPENDIX

Organization In this appendix, we provide in-depth descriptions of the materials that are not covered
in the main paper, and report additional experimental results. The document is organized as follows:

• A.1- Related Work
• A.2- Limitations and potential solutions
• A.3- Experimental setting details
• A.4- Dobi-SVD’s New Perspective 1: A Novel Path from Activation to Weight

– A.4.1 Theoretical Support for Updating Weights Using IPCA
• A.5- Dobi-SVD’s New Perspective 2: Fully Unlocking SVD’s Potential for Data Compres-

sion by Addressing A Long-Overlooked Limitation
• A.6- Dobi-SVD’s Robust and Efficient Differentiable SVD Algorithm for General Matrices
• A.7- Additional analytical results

– A.7.1 Quantization Precision Loss
– A.7.2 Effectiveness of differentiable training
– A.7.3 Differentiable k changes at various compression ratios
– A.7.4 Truncation sensitivity analysis

• A.8- Additional experimental results
– A.8.1 Experimental results on more models
– A.8.2 Combined with quantization
– A.8.3 Experimental results on VLM
– A.8.4 Experimental results on OpenVLA
– A.8.5 Comparison with smaller uncompressed models

• A.9- Example Demonstration of Real Sentence Generation
• A.10- Analysis of directly truncating activations over weights

A.1 RELATED WORK

LLM Model Compression. Large language models (LLMs) typically contain billions of parameters,
making inference on resource-constrained hardware challenging. To address this, researchers have
developed various methods to compress models without requiring retraining. These methods can
be categorized into three main categories: pruning, quantization, and low-rank decomposition.
Specifically, pruning sets individual weights or structured components to zero without changing the
overall structure of the LLM. For example, SparseGPT (Frantar & Alistarh, 2023) prunes the least
important weight elements by inverting the Hessian matrix. However, the irregular sparsity from
unstructured pruning often fails to achieve significant speedup, only performing optimally on specific
hardware architectures. LLM-Pruner (Ma et al., 2023), on the other hand, leverages a small dataset
to estimate the coupled importance of weights, parameters, and groups, then applies LoRA-based
pruning to recover accuracy. Yet, this approach significantly degrades model accuracy, especially at
low compression ratios, due to the extensive modification of the weight matrices. Sheared Llama
(Xia et al., 2023) performs extensive training on 50 billion tokens after compression. Quantization,
another approach, compresses the model by reducing the precision of the LLM’s weight matrices.
For instance, GPTQ (Frantar et al., 2022b) employs layer-wise quantization, updating weights using
inverted Hessian information. The drawback of quantization is that it offers limited compression
options, usually between 3 and 8 bits, which may not fully optimize memory utilization.

SVD-based Model Compression. SVD-based LLMs compression has been widely explored (Jader-
berg et al., 2014; Zhang et al., 2015; Denton et al., 2014). Earlier studies primarily used SVD to
compress embedding layers (Chen et al., 2018; Acharya et al., 2019). As model sizes have grown,
research has shifted towards applying SVD to weight matrices (Hsu et al., 2022; Wang et al., 2021a).
Recent findings (Sharma et al., 2023) suggest that LLM weights are often approximated as low-rank
matrices, highlighting SVD’s potential for LLM compression. Traditional SVD focuses on com-
pressing the original weight matrix by minimizing |W −W ′|. However, since it does not account

15

Published as a conference paper at ICLR 2025

for parameter importance, it often results in significant performance degradation. These methods
typically require fine-tuning to recover performance, which demands substantial computational
resources for LLMs. To mitigate this, recent works have focused on activation-aware SVD, which
aims to minimize |A − A′|. For example, ASVD posits that the activation distribution influences
compression error and scales ΣW with a diagonal matrix S, where S represents the input channel’s
impact on weights. SVD-LLM argues that not all larger singular values are necessarily more im-
portant, introducing a truncation-aware whitening strategy to determine which singular values are
critical for activations. However, current activation-aware SVD methods are limited to modifying
ΣW to adjust W , which restricts the values that Ŵ can take, failing to effectively retain activation
information. For instance, ASVD is only effective at high compression ratios (0.8 and 0.9), suffering
from significant performance loss at lower compression ratios. SVD-LLM, when compressed to a 0.4
ratio, causes PPL to drop from the original 7.94 to 42.3.

In addition, low-rank decomposition has also been applied in different forms for LLM compression
methods. For instance, LQER (Zhang et al., 2024) uses SVD to address quantization errors in the
quantization process, while LRQ (Lee et al., 2024) applies SVD to enhance the sample handling
capacity during training. CALDERA (Saha et al., 2024), based on matrix compression method LPLR
(Saha et al., 2023), adopts non-SVD low-rank approaches for weight compression, but these typically
lead to increased dimensions of the new weight matrices, resulting in performance degradation and
necessitating the combination of quantization and LoRA fine-tuning.

A.2 LIMITATIONS AND POTENTIAL SOLUTIONS

We analyze three limitations of Dobi-SVD and suggest potential solutions. Firstly, our current SVD
implementation is time-consuming and memory-intensive. This issue stems from Python’s support
for only fp32 SVD, which could be alleviated by implementing low-precision SVD. Secondly, during
memory remapping, transitioning precision becomes challenging when further quantizing to 4-bit
or below, leading to a performance drop at 2-bit. To our knowledge, 2-bit quantization itself poses
significant challenges in LLM compression. Third, quantization introduces additional dequantization
time during inference, which could be reduced by quantizing larger matrices or using more advanced
quantization libraries. Our future work will focus on overcoming these limitations and exploring
broader applications of Dobi-SVD, such as in vision-language models and robotics.

A.3 EXPERIMENTAL SETTING DETAILS

In this section, we provide a detailed description of our experimental setup and hyperparameter
configurations.

Models, Datasets and Metric: To demonstrate the task generalization of Dobi-SVD, we use Llama-
7b (Touvron et al., 2023) and evaluate the performance on different tasks. We first test the model’s
in-domain performance on the C4 (Sakaguchi et al., 2021a), Wikitext2 (Merity et al., 2016), and PTB
(Marcus et al., 1993), respectively. On these three datasets, we use perplexity (PPL) as the metric,
the lower the better. In addition, we also evaluate it on seven common sense reasoning datasets
(OpenbookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2021b), HellaSwag (Zellers
et al., 2019), PIQA(Bisk et al., 2020), MathQA (Amini et al., 2019), ARC-e, and ARC-c (Clark et al.,
2018)) in zero-shot setting with the LM-Evaluation-Harness framework (Gao et al., 2021). On these
datasets, we use accuracy as the metric, the higher the better.

Baselines: We compare Dobi-SVD with state-of-the-art activation-aware SVD methods, ASVD
(Yuan et al., 2023) and SVD-LLM (Rajpurkar, 2016). We also compare Dobi-SVD with popular
pruning methods, LLM-Pruner (Ma et al., 2023), FLAP (An et al., 2024b), Wanda-sp (Sun et al.,
2023), SliceGPT(Ashkboos et al., 2024), Bonsai(Dery et al., 2024) and Self-.

Hardware: To demonstrate the hardware efficiency of Dobi-SVD, we deploy it on hardware devices.
We use two representative devices. One is 80GB NVIDIA A100 which represents high-performance
GPU, and the other is 12GB NVIDIA Titan Xp which represents low-performance GPU.

Hyperparameters: The hyperparameters involved in our algorithm mainly include β, which controls
the smoothness of the tanh function; γ, which controls the minimum threshold of singular values
during backpropagation; and K, the number of terms retained in the Taylor expansion. In our
experiments, we set β = 10, γ = 1× 10−10, and K = 10.

16

Published as a conference paper at ICLR 2025

Training Procedure: During the differentiable truncation training:

1. For LLM, we randomly select 256 samples from the WikiText2 dataset as the training set, with
each sample containing 2048 tokens.

2. For VLM, we randomly select 256 samples from the TextQA dataset as the training set, with each
sample containing 660 tokens.

Throughout the training, we freeze all parameters except for the truncation position k of each matrix,
which remains trainable. We use the TrainingArguments provided by the Transformer library for
training. The hyperparameter settings used during training are listed in Table 7. Additionally, for the
tanh function used during the smoothing phase, we set β = 10. For robust SVD backpropagation,
we set γ = 1e−10, meaning that singular values smaller than 1e−10 are treated as 1e−10 during the
backward SVD process. The number of terms in the Taylor expansion is set to K = 10.

Table 7: Hyperparameter settings during training.

Hyperparameters Value

Seqence Length 2048
Number of Train Sample 256
Number of Val sample 16

Batch Size 32
Epoch Number 320

Scheduler Cosine
Optimizer Adam

Scheduler lr 0.1
Warm up step 0

Weight Update: During the weight update process, we use the same 256 training data samples as
inputs to collect truncated activations. These are then processed with IPCA (Algo.2) to independently
and directly calculate the new weight matrix for each matrix position, requiring no extra data or
training.

Memory Remapping: In the remapping quantization process, to align with the normal distribution
characteristics of the weight matrix, we use bnb library for model quantization (Algo.3). Specifically,
we utilize the bnb-8bit to quantize the matrix, and then concatenate two quantized 8-bit matrices into
a single 16-bit matrix.

A.4 DOBI-SVD’S NEW PERSPECTIVE 1: A NOVEL PATH FROM ACTIVATION TO WEIGHT

Existing SVD-based compression methods primarily fall into two categories:

1. Directly truncating weights W : This straightforward approach ignores the interaction between
weights and activations.

2. Activation-aware SVD: These methods (e.g., ASVD, SVD-LLM) incorporate a scaling matrix
S to capture activation influence by performing SVD on WS and reconstructing W using S−1.
However, S−1 often fails due to theoretical and numerical issues.

Our method, Dobi-SVD, introduces a novel truncation paradigm: performing SVD directly on
activations A (A = xW , where x is the input), which establishes a novel path from activations to
weights, leveraging the EYM theorem to achieve optimal results. Notably, similar strategies have not
been explored in non-SVD-based compression methods: manipulating activations alone may improve
inference speed and memory usage, but it does not compress the model itself.

Fig. 2 illustrates this paradigm shift along a spectrum:

• Left (W): Directly truncating weights.

• Middle (WS): Activation-aware methods: retaining weights W with auxiliary matrices..

• Right (A): Directly truncating activations.

17

Published as a conference paper at ICLR 2025

"Directly truncating activations" is a radical approach that is farthest from the weight matrix W and
closest to the activations A. This makes it the most challenging method for reconstructing weights
while achieving the best performance, as demonstrated by our theoretical analysis 2.3. A key reason
previous works have avoided this approach is the inherent difficulty in effectively reconstructing the
weight matrix.

To address this challenge, we introduce IPCA, a method for compressing high-dimensional orthogonal
matrices. IPCA enables the reconstruction of new weights after direct activation truncation, serving
as a "cosmic wormhole" that seamlessly bridges the activation space and the weight space. In our
experiments, this innovation has proven to enable superior compression results without relying on
additional data or fine-tuning.

A.4.1 THEORETICAL SUPPORT FOR UPDATING WEIGHTS USING IPCA

In Sect.3.2, we mention that our goal is to find the rank-k matrix W̃ closest to the set of projected
weight matrices Wp = {WVAi

GkV
⊤
Ai
}ni=1. Assuming W̃ = WV V T , our goal can be converted to

minv
∑n

i=1 ||WViV
T
i −WV V T ||2F . According to the properties of the Frobenius norm, we can get,

min
v

n∑
i=1

||WViV
T
i −WV V T ||2F ≤ min

v

n∑
i=1

||W ||2f ||ViV
T
i − V V T ||2F . (6)

Since ||W || is fixed, our goal can be written as:

min
v

n∑
i=1

||ViV
T
i − V V T ||2F = min

v

n∑
i=1

||ViV
T
i ||2F + ||V V T ||2F − 2trace((ViV

T
i V V T)) (7)

Since Vi and V are orthogonal matrices, ||ViV
T
i ||2F = ||V V T ||2F = k. Equation 7 can be written as:

min
v

n∑
i=1

2k − 2trace((ViV
T
i V V T)) = 2nk −min

v

n∑
i=1

2trace((ViV
T
i V V T)) (8)

Therefore, our goal is maxv
∑n

i=1 2trace((ViV
T
i V V T)). Since trace((ViV

T
i V V T)) =

||V TVi||2F . The final form of our goal is 2maxv
∑n

i=1 ||V TVi||2F , and its optimal solution
V = maxV

∑n
i=1 ||V TVi||2F is the value obtained by solving {V1, V2, . . . , Vn} by PCA. To ad-

dress excessive memory demands, we use the Incremental Principal Components Analysis (IPCA)
algorithm (Weng et al., 2003) for memory-efficient PCA.

A.5 DOBI-SVD’S NEW PERSPECTIVE 2: FULLY UNLOCKING SVD’S POTENTIAL FOR DATA
COMPRESSION BY ADDRESSING A LONG-OVERLOOKED LIMITATION

A Long-Overlooked Limitation of Traditional SVD-Based Compression Methods. Performing
SVD on an m× n matrix M , we decompose it as M = UΣV T . When retaining the top k singular
values, we obtain two matrices: (UΣ)[:, : k] of size m× k and (V T)[: k, :] of size k×n. The storage
ratio between these matrices and M is k · (m+ n)/(m · n). To compress M , the storage ratio must
be less than 1, which requires k ∈ [0, (m · n)/(m+ n)). However, since M has min(m,n) singular
values, compressing M necessitates discarding at least min(m,n)− (m ·n)/(m+n) singular values.
For large models, such as a 4096× 4096 matrix, this means losing 2048 singular values—half of the
total—resulting in significant and unnecessary information loss.

Prior to our work, no SVD-based methods addressed this issue, as they lacked a solution. Non-SVD-
based methods, such as Ashkboos et al. (2024), have used this limitation as a primary critique of
SVD-based methods.

Dobi-SVD’s New Perspective. Our approach resolves this problem by remapping the relationship be-
tween information and storage: to ensure a storage ratio below 1, while allowing k ∈ [0,min(m,n)),
we deduced that the compressed storage of M should be k ·max(m,n).

To bridge the gap and remap storage from k · (m+ n) to k ·max(m,n), we leverage the Gaussian
distribution properties of the U and V matrices and implement a novel quantization method to reduce
storage requirements efficiently. The algorithm pseudocode is given in Algo.3.

18

Published as a conference paper at ICLR 2025

Algorithm 3 Mixed-Precision Quantization Storage

Input: 16-bit updated weight matrix rank-k W̃ ∈ Rm×n, 8-bit quantizer Q
Output: 16-bit mixed-precision weight matrix W̃mixed ∈ Rmax(m,n)×k

1: Compute SVD: W̃ = UΣV⊤

2: Extract the top-k components: Ũk = (UΣ)[:, : k] ∈ Rm×k, Vk = V[:, : k] ∈ Rn×k

3: if m ≥ n then
4: Quantize the first n rows of Ũk: Ũk[i]

8 ← Q(Ũk[i]), i ∈ [0, n)
5: Quantize all rows of Vk: Vk[i]

8 ← Q(Vk[i]), i ∈ [0, n)

6: Construct W̃mixed:
• For i ∈ [0, n): W̃mixed[i]← concatenate(Ũk[i]

8,Vk[i]
8)

• For i ∈ [n,m): W̃mixed[i]← Ũk[i]
7: else
8: Quantize all rows of Ũk: Ũk[i]

8 ← Q(Ũk[i]), i ∈ [0,m)
9: Quantize the first m rows of Vk: Vk[i]

8 ← Q(Vk[i]), i ∈ [0,m)

10: Construct W̃mixed:
• For i ∈ [0,m): W̃mixed[i]← concatenate(Ũk[i]

8,Vk[i]
8)

• For i ∈ [m,n): W̃mixed[i]← Vk[i]
11: end if
12: return 16-bit matrix W̃mixed ∈ Rmax(m,n)×k

A.6 DOBI-SVD’S ROBUST AND EFFICIENT DIFFERENTIABLE SVD ALGORITHM FOR
GENERAL MATRICES

Gradient Explosion in SVD Backpropagation. SVD backpropagation often faces gradient explosion
when singular values in a matrix are nearly equal, a common issue in both large-dimensional and
low-rank matrices. Widely used techniques like gradient clipping and normalization fail to address
this. To the best of our knowledge, only one work (Wang et al., 2021b) has successfully utilized Taylor
expansion to resolve it, demonstrating the method’s effectiveness and showing superior gradient
behavior compared to other approaches in their paper.

While their focus was on symmetric matrices and computer vision tasks, we made a novel use of
Taylor expansion for general matrices and LLM compression. Unlike (Wang et al., 2021b), which
dealt with low-dimensional image features, our work addresses the computational challenges posed
by large-dimensional matrices in LLMs. To meet the demands of these large matrices, we developed
a more general and efficient, parallelized algorithm. The algorithm pseudocode is given in Algo.4
and Algo.5.

Algorithm 4 Custom Low-Rank SVD Forward Pass
Input: Input matrix X ∈ Rm×n, target rank k
Output: Matrices U ∈ Rm×k, S ∈ Rk, V ∈ Rn×k

1: Compute low-rank SVD: U,S,V← svd_lowrank(X, q = k, niter = 2)
2: Save U, S, V for backward pass
3: return U, S, V

19

Published as a conference paper at ICLR 2025

Algorithm 5 Custom Low-Rank SVD Backward Pass
Input: Gradients δU, δS, δV; saved tensors U, S, V
Output: Gradient δX
1: Transpose matrices: V⊤ ← V⊤, δV⊤ ← (δV)⊤

2: if δS = 0 and δU = 0 and δV⊤ = 0 then
3: return δX = 0
4: end if
5: if δU = 0 and δV⊤ = 0 then
6: return δX = U diag(δS)V⊤

7: end if
8: Define numerical stability parameters: ϵval, ϵgrad, ϵdiff, nTaylor
9: Clamp singular values: Sclamp = max(S, ϵval)

10: Compute singular value ratios:
11: λi = Sclamp, λj = S⊤

clamp
12: R = λj/λi

13: Initialize matrix E← 1k×k

14: Create masks:
• Identity mask: I = diag(1k)
• Non-diagonal mask: MnoI = ¬I
• Lower triangular mask: Mlower = tril(1k×k)
• Initial mask: Minit = MnoI ∧Mlower

15: Handle too-small singular values:
16: Msmall = Minit ∧ (R = 1) ∧ (λi = ϵval)
17: E[Msmall]← ϵgrad
18: Handle normal cases:
19: Mnormal = Minit ∧ ¬Msmall
20: Compute differences: ∆ = |λi − λj |
21: For arithmetic sequence (equal singular values):
22: Mequal = Mnormal ∧ (∆ = 0)

23: E[Mequal]←
nTaylor

λ2
i

24: For geometric sequence (close singular values):
25: Mclose = Mnormal ∧ (0 < ∆ ≤ ϵdiff)
26: q2 = R[Mclose]

2

27: E[Mclose]←
1

λ2
i

(
1− (q2)nTaylor

1− q2

)
28: For other cases:
29: Mother = Mnormal ∧ (∆ > ϵdiff)

30: E[Mother]←
1

(λi − λj)(λi + λj)
31: Symmetrize E:
32: Mpad = MnoI ∧ ¬Mlower

33: E[Mpad]← −E⊤[Mpad]

34: Define skew-symmetric function: skew(X) = X−X⊤

35: Compute skew matrices:
36: ΩU = skew(U⊤δU) ◦E
37: ΩV = skew(V⊤δV) ◦E
38: Compute core gradient:
39: δX← U (ΩU diag(S) + diag(S)ΩV + diag(δS))V⊤

40: Compute additional terms:
41: δUscaled = δU/S⊤

clamp

42: Term1 ←
(
δUscaled −U(U⊤δUscaled)

)
V⊤

43: δV⊤
scaled = δV⊤/Sclamp

44: Term2 ← U
(
δV⊤

scaled − (δV⊤
scaledV

⊤)V
)

45: Update gradient:
46: δX← δX+ Term1 + Term2

47: return δX

20

Published as a conference paper at ICLR 2025

A.7 ADDITIONAL ANALYSIS RESULTS

In this section, we present additional experiments to further demonstrate the effectiveness of Dobi-
SVD. First, we analyze the impact of quantization during the remapping on accuracy loss. Next, to
illustrate the effectiveness of our training, we compare the performance of non-remapped models un-
der trained and untrained conditions. Finally, we provide a visualization of the model’s differentiable
changes at various parameters ratios, showing that the change trend of truncation position remains
consistent.

A.7.1 QUANTIZATION PRECISION LOSS

In Sect. 3.3, we utilized the quantization-friendly nature of SVD-decomposed matrices to perform
remapping through quantization. Here, we validate this characteristic through experiments. Fig. 5
and 6 show the data distribution of an attention matrix and an FFN matrix from LLaMA-7B, both
of which exhibit concentrated, normal distributions. This indicates that when using quantization
methods designed for normal distributions, such as QLora, the quantization error is minimal. To
confirm this, Figure 8 presents the mean squared error (MSE) and mean absolute error (MAE) of
various matrices before and after quantization. As shown, the errors are very small, with MSE around
10−8. Furthermore, the matrices from the FFN layer show even smaller quantization errors compared
to those from the attention layer. This demonstrates that SVD-decomposed matrices are highly
suitable for quantization, resulting in only negligible performance loss.

Layers MSE MAE

Q atten 2.37e− 07 4e− 04

K atten 2.49e− 07 4e− 04

V atten 1.01e− 07 2e− 04

O atten 9.62e− 08 2e− 04

Gate 9.66e− 08 2e− 04

Up 7.54e− 08 2e− 04

Down 7.55e− 08 2e− 04

Table 8: Quantization accu-
racy loss at different layers
on Llama-7b.

Figure 5: Data distribution of
Attention Q matrix of Llama-7b
layer 20.

Figure 6: Data distribution of
MLP Gate matrix of Llama-7b
layer 20.

A.7.2 EFFECTIVENESS OF DIFFERENTIABLE TRAINING

To demonstrate the effectiveness of differentiable training, we conducted an ablation study without
remapping. Figure 9 compares the model’s performance after updating k using differentiable training
versus the average k values (as used in SVD-LLM). Across different compression ratios and datasets,
the k values obtained through differentiable training consistently lead to better model performance.
Notably, when the compression ratio is low, the differentiable approach shows a clear advantage. For
example, at a 0.4 parameter rate, Dobi-SVD achieves a PPL of 46.18 on WikiText2, compared to
58.02 using the averaging method. Furthermore, Fig. 7 illustrates the decline in training loss and PPL
on the validation set as the number of training epochs increases. This shows that the training process
effectively helps the model find more optimal k values.

A.7.3 DIFFERENTIABLE k CHANGES AT VARIOUS COMPRESSION RATIOS

Fig. 8 visually explains the evolution of k across different layers and training epochs. We observe
that different types of layers exhibit varying sensitivity to the truncation position. Specifically, as
training progresses, k for the Attention_k and Attention_q layers decreases below its initial value,
while k for the MLP down projection and Attention_v layers increases above the initial value. This
suggests that Attention_k and Attention_q, compared to other weight matrices, concentrate important
information in their larger singular values (principal components), making them more amenable to
low-rank decomposition. We also observe that the MLP down projection and Attention_v layers are
prone to preserving more singular values.

21

Published as a conference paper at ICLR 2025

Ratio Model Wiki PTB C4

0.8
W/o Training 8.87 15.03 10.91

Training 8.54 14.83 10.01

0.6
W/o Training 14.96 47.01 24.60

Training 13.54 46.38 23.54

0.4
W/o Training 58.02 270.16 145.41

Training 46.18 238.91 190.62

Table 9: Comparison of model performance with
and without training in the non-remapping method.
For the non-training case, we truncate each matrix
with a uniform cutoff value.

2500 5000 7500 10000 12500
Epoch

4.4

4.6

4.8

5.0

Tr
ai

ni
ng

 L
os

s

Training Loss
PPL

8.7

8.8

8.9

9.0

9.1

PPL

Figure 7: The decrease in training loss
and ppl over the training epochs for the
Llama-7b model when trained with Wiki-
text2.

0 5 10 15 20 25 30
Layer Index (i)

340

360

380

400

420

440

460

Ga
m

m
a

Attention K Matrix_repara

0 5 10 15 20 25 30
Layer Index (i)

360

380

400

420

440
Ga

m
m

a

Attention Q Matrix_repara

0 5 10 15 20 25 30
Layer Index (i)

350

375

400

425

450

475

500

Ga
m

m
a

Attention V Matrix_repara

0 5 10 15 20 25 30
Layer Index (i)

450

500

550

600

650

700

Ga
m

m
a

MLP Gate Matrix_repara

0 5 10 15 20 25 30
Layer Index (i)

500

550

600

650

700

Ga
m

m
a

MLP Up Matrix_repara

0 5 10 15 20 25 30
Layer Index (i)

560

580

600

620

640

660

Ga
m

m
a

MLP Down Matrix_repara

Figure 8: k changes over time for different layers. Experiments were performed on the Wikitext2
dataset and the LLaMA-7b with a target compression ratio of 0.4. The model was trained for 20
epochs (colors range from yellow to purple). The red line indicates the initial gamma value. With
lower k indicating higher rank clipping at that layer.

Additionally, we observe that different layers have different sensitivities to rank truncation. Layers at
the earlier stages tend to have k higher than their initial values, whereas later layers tend to low rank.
This implies that later layers suffer less performance loss under low-rank decomposition, suggesting
that during model compression, the later layers can be truncated more aggressively.

In addition, we presented the evolution of truncation positions for different matrices in LLMs during
training at a compression ratio of 0.4, along with an analysis of the insights gained from these changes.
To demonstrate the general applicability of this trend, Fig. 9 and 10 further illustrate the behavior of
each layer at different compression ratios. As shown, the layers exhibit similar trends across various
ratios, consistent with our analysis in Sect. 4.2.3.

A.7.4 TRUNCATION SENSITIVITY ANALYSIS

In this section, we explore the sensitivity of model performance to the truncation value. We first
obtained the optimal truncation position for Llama-2-7b at 0.4 using Dobi and randomly selected 10
layers. While keeping the total k constant, we slightly adjusted k for these 10 layers: adding x to the
first five layers and subtracting x from the last five layers, where x took values from [1,5,10,50]. The
corresponding adjustment percentages (x/4096) were 0.024%, 0.122%, 0.244%, and 1.221%.

The experimental results are shown in Table 10. It can be seen from the table that even with fine-
grained adjustments (0.024% to 1.221%), performance drops significantly, worsening exponentially
with larger ratios. In contrast, search-based methods have a coarse minimum adjustment of 10%,
causing substantial performance loss that requires fine-tuning. Dobi, built on optimal theoretical
analysis, adjusts ranks at 0.024% granularity and operates end-to-end without fine-tuning.

22

Published as a conference paper at ICLR 2025

Figure 9: k changes over time for different layers. Experiments were performed on the Wikitext2
dataset and the LLaMA-7b with a target compression ratio of 0.2.

Figure 10: k changes over time for different layers. Experiments were performed on the Wikitext2
dataset and the LLaMA-7b with a target compression ratio of 0.6.

Rank Adjustment Percentage
on Llama-2-7b (Dobi 0.4)

PPL Degradation Perc
entage on Wikitext2

0% 0%

0.024% 0.739%

0.122% 1.584%

0.244% 4.118%

1.221% 29.039%

Table 10: Rank adjustment percentage and corresponding PPL degradation on Wikitext2 for Llama-2-
7b (Dobi 0.4).

A.8 ADDITIONAL EXPERIMENTAL RESULTS

A.8.1 EXPERIMENTAL RESULTS ON MORE MODELS

In Table 2 and 3 of the main text, we presented experimental results on the Llama-7b model. In
this section, we present the results of Dobi-SVD on a broader range of models. We selected Llama-
13b, Llama 2-7b, Llama 2-13b, and the state-of-the-art Llama 3.1-8b model. Following the same
experimental setup as in the main text, we randomly selected 256 samples from WikiText-2 for

23

Published as a conference paper at ICLR 2025

differentiable training and IPCA. We then evaluated the models on classical commonsense reasoning
tasks and compared the results with pruning methods.

Method 0.8 0.6 0.4

LLM-Prunner 12.7 44.4 121.5

Wanda-sp 11.4 58.5 160.5

Dobi-SVD 6.90 8.53 15.8

Table 11: Perplexity comparison
of Dobi-SVD with state-of-the-
art pruning methods on the Wiki-
text2 dataset on the Llama3-8b.

Method 0.8 0.6 0.4

LLM-Prunner 10.5 46.3 253.1

Wanda-sp 12.1 38.6 249.2

Dobi-SVD 5.92 7.88 9.47

Table 12: Perplexity comparison
of Dobi-SVD with state-of-the-
art pruning methods on the Wiki-
text2 dataset on the Llama2-7b.

Method Llama-2-7b Llama-3.1-8b

1.0 41.0 63.3

0.8 38.6 60.1

0.6 27.5 50.1

0.4 24.1 28.2

Table 13: Performance evalua-
tion of Llama2-7b and Llama3.1-
8b on the MMLU under differ-
ent compression ratios.

Performance on Llama 2-7b. Table 12 shows the performance of Dobi-SVD on Llama 2-7b
at different compression ratios on the WikiText-2 dataset. It can be observed that Dobi-SVD
demonstrates compression performance consistent with that of Llama-7b, achieving a perplexity of
just 9.47 on WikiText-2 at a compression rate of 0.4, compared to 249.2 for Wanda-SP. Furthermore,
Table 14 presents the model’s performance across different commonsense reasoning tasks, comparing
Dobi-SVD and pruning methods at equivalent compression ratios. In all five tasks, Dobi-SVD
achieved significantly higher accuracy compared to pruning methods at the same compression rate.
Notably, at a compression rate of 0.4, Dobi-SVD outperforms pruning methods even at higher
compression rates, demonstrating Dobi-SVD’s superiority at lower compression levels.

Table 14: Dobi-SVD vs. popular pruning methods in terms of compression performance of LLaMA-
2-7b on five common sense reasoning datasets. The best performance is marked in bold.

Ratio Method Accuracy (↑) Avg. Drop
PIQA HellaSwag WinoGrande ARC_e ARC_c (↑) (↓)

1.0 Baseline 0.78 0.57 0.69 0.76 0.43 0.65 0%

0.6

LLM-Pruner 0.70 0.41 0.53 0.53 0.27 0.48 26.2%
SliceGPT 0.65 0.57 0.60 0.43 0.32 0.51 21.5%

Bonsai 0.72 0.45 0.58 0.59 0.30 0.53 18.5%
Wanda-sp 0.70 0.42 0.53 0.57 0.29 0.50 23.1%
Dobi-SVD 0.72 0.45 0.64 0.67 0.31 0.56 13.8%

0.5

LLM-Pruner 0.67 0.35 0.52 0.48 0.22 0.45 30.8%
SliceGPT 0.58 0.46 0.55 0.37 0.28 0.45 30.8%

Bonsai 0.66 0.40 0.54 0.49 0.26 0.47 27.7%
Wanda-sp 0.63 0.32 0.53 0.43 0.20 0.42 35.4%

0.4 Dobi-SVD 0.67 0.38 0.57 0.55 0.26 0.49 24.5%

Performance on Llama 3.1-8b. Table 11 presents the performance of Dobi-SVD on the state-of-
the-art Llama 3.1-8b at different compression ratios. It is worth mentioning that the Llama 3.1-8b
model, due to its inherent optimizations for efficiency and different model architecture, is more
challenging to compress. For instance, under the same compression rate and method, Llama 3.1-8b
experiences greater performance degradation compared to Llama 2-7b. Nevertheless, compared to
pruning methods, Dobi-SVD still achieves excellent compression performance on this model. At
a compression rate of 0.6, Dobi-SVD achieved a perplexity of 8.53 on WikiText-2, while pruning
methods rendered the model unusable. Table 15 further compares the zero-shot performance of the
model. At a compression rate of 0.8, the perplexity of Dobi-SVD decreased by only 8.7% compared
to the original model, whereas SliceGPT and LLM-Pruner both showed a 33% performance drop.
Furthermore, Table 13 shows the performance of Llama-2-7b and Llama3.1-8b on the MMLU dataset.

Performance on 13b Models. To evaluate the performance of Dobi-SVD on larger-scale models, we
conducted tests on Llama-13b and Llama 2-13b, with experimental results shown in Table 16 and
Table 17. Compared to smaller-sized models, larger-scale models typically have greater redundancy

24

Published as a conference paper at ICLR 2025

Table 15: Dobi-SVD vs. popular pruning methods in terms of compression performance of LLaMA-
3-8b on five common sense reasoning datasets. The best performance is marked in bold.

Ratio Method Accuracy (↑) Avg. Drop
PIQA HellaSwag WinoGrande ARC_e ARC_c (↑) (↓)

1.0 Baseline 0.80 0.59 0.74 0.81 0.51 0.69 0%

0.6

LLM-Pruner 0.66 0.32 0.54 0.58 0.23 0.46 33.3%
SliceGPT 0.62 0.40 0.53 0.49 0.25 0.46 33.3%

Bonsai 0.59 0.29 0.49 0.47 0.18 0.41 40.6%
Wanda-sp 0.57 0.28 0.50 0.44 0.17 0.39 43.5%
Dobi-SVD 0.76 0.52 0.72 0.73 0.39 0.63 8.70%

0.5

LLM-Pruner 0.61 0.29 0.52 0.40 0.19 0.40 42.0%
SliceGPT 0.56 0.33 0.48 0.32 0.22 0.38 44.9%

Bonsai 0.56 0.27 0.51 0.31 0.18 0.36 47.8%
Wanda-sp 0.55 0.27 0.50 0.29 0.18 0.36 47.8%

0.4 Dobi-SVD 0.68 0.41 0.66 0.58 0.27 0.52 24.6%

and more compression potential. As shown in Table 18 and Table 19, Dobi-SVD achieved less
than a 3% performance reduction at a compression rate of 0.8 on both Llama-13b and Llama 2-13b,
outperforming all baselines. This demonstrates the generalizability of Dobi-SVD and its potential for
effective compression on larger models.

Method 0.8 0.6 0.4

LLM-Prunner 7.72 21.7 51.1

Wanda-sp 7.74 27.5 182.9

Dobi-SVD 5.43 6.50 11.3

Table 16: Perplexity comparison of
Dobi-SVD with state-of-the-art pruning
methods on the Wikitext2 dataset on the
Llama-13b model.

Method 0.8 0.6 0.4

LLM-Prunner 8.00 21.7 55.8

Wanda-sp 7.45 69.9 90.9

Dobi-SVD 5.25 6.45 29.3

Table 17: Perplexity comparison of
Dobi-SVD with state-of-the-art pruning
methods on the Wikitext2 dataset on the
Llama2-13b model.

Table 18: Dobi-SVD vs. popular pruning methods in terms of compression performance of LLaMA-
13b on five common sense reasoning datasets. The best performance is marked in bold.

Ratio Method Accuracy (↑) Avg. Drop
Boolq piqa WinoGrande ARC_e ARC_c (↑) (↓)

1.0 Baseline 0.70 0.79 0.73 0.77 0.47 0.69 0%

0.8

LLM-Pruner 0.67 0.77 0.65 0.68 0.38 0.63 8.69%
LLM-Pruner(w/LoRA) 0.70 0.78 0.68 0.71 0.42 0.66 4.34%

FLAP 0.70 0.78 0.69 0.73 0.43 0.66 4.34%
Dobi-SVD 0.69 0.79 0.72 0.76 0.47 0.68 1.45%

A.8.2 COMBINED WITH QUANTIZATION

In this section, we present the performance of combining Dobi-SVD with quantization, as shown
in Table 20. On the Llama 2-7b model, combining Dobi-SVD with 4-bit BnB quantization results
in a perplexity of just 6.91 on WikiText-2 at a compression rate of 0.8, while requiring only 3
GB of memory. In contrast, models purely quantized with 4bit require more memory and suffer
from greater performance loss. This demonstrates that Dobi-SVD can be effectively combined with
state-of-the-art quantization techniques to achieve better compression performance. It is worth noting
that quantization is often constrained by device limitations (e.g., some low-performance devices

25

Published as a conference paper at ICLR 2025

Table 19: Dobi-SVD vs. popular pruning methods in terms of compression performance of LLaMA-
2-13b on five common sense reasoning datasets. The best performance is marked in bold.

Ratio Method Accuracy (↑) Avg. Drop
Boolq piqa WinoGrande ARC_e ARC_c (↑) (↓)

1.0 Baseline 0.81 0.79 0.72 0.79 0.49 0.72 0%

0.8

LLM-Pruner 0.63 0.77 0.63 0.68 0.42 0.63 12.5%
Wanda-sp 0.70 0.79 0.70 0.69 0.43 0.63 12.5%

FLAP 0.71 0.78 0.71 0.67 0.45 0.66 8.33%
Dobi-SVD 0.77 0.78 0.71 0.67 0.45 0.70 2.78%

0.6

LLM-Pruner 0.67 0.35 0.52 0.48 0.22 0.45 37.5%
Wanda-sp 0.58 0.46 0.55 0.37 0.28 0.45 37.5%

FLAP 0.66 0.40 0.54 0.49 0.26 0.47 34.7%
Dobi-SVD 0.72 0.74 0.70 0.72 0.37 0.65 9.72%

do not support 4-bit operations). By combining with Dobi-SVD, the model can overcome these
limitations to achieve better performance at lower compression ratios.

Model Memory(GB) PPL on Wikitext2

4bit BnB 3.2 6.97

4bit BnB + Dobi-SVD(0.8) 3.0 6.91

3bit GPTQ 2.8 8.07

4bit GPTQ 3.8 5.86

4bit GPTQ + Dobi-SVD(0.6) 2.4 9.97

4bit GPTQ + Dobi-SVD(0.8) 2.8 7.01

Table 20: Performance comparison between pure quantization and Dobi-SVD + quantization

To provide a fairer comparison, we compared our method with quantization methods that have not
undergone kernel optimization. We selected the BnB library from Hugging Face, which quantizes
weight matrices using the QLoRA approach. Since our algorithm is also implemented within the
Hugging Face framework, we believe this is a fairer and more convincing comparison. As shown
in the Table 21, despite our model size being larger than that of the quantized model, the inference
speed of the Dobi-SVD-compressed model exceeds that of the quantized model. This is because: (1)
Dobi-SVD requires fewer FLOPs, which enables faster inference when memory is not a limiting
factor, and (2) Dobi-SVD does not require quantization serving, thereby avoiding the significant
dequantization time associated with quantization.

Model Size(GB) PPL Speed (bz=1)
tokens/s

Speed (bz=16)
tokens/s GFLOPs

4bit bnb 3.1 6.97 14.05 202.37 29.30

8bit bnb 6.3 5.87 4.73 69.54 29.30

Dobi 0.4 6.8 9.47 21.54 581.14 18.47

Dobi 0.6 7.7 7.88 20.46 579.14 26.83

Dobi 0.8 10.1 5.92 19.94 569.45 33.94

Table 21: Performance comparison of Dobi-SVD and Bitsandbytes quantization on Llama-2-7b

26

Published as a conference paper at ICLR 2025

A.8.3 EXPERIMENTAL RESULTS ON VLM

To further validate the generalizability of our approach, we applied and deployed Dobi-SVD on
Vision-Language Models (VLMs). Specifically, we compressed the LLM component of Llava-
v1.5. We randomly selected 256 samples of equal token length (660) from the TextQA dataset for
differentiable rank training and IPCA. Subsequently, we evaluated the performance on classic VLM
QA tasks. The experimental results are shown in Table 22, where Dobi-SVD demonstrates good
compression performance on VLMs as well. At a compression rate of 0.4, Dobi-SVD-compressed
Llava-v1.5 achieved almost zero performance loss on the Pope dataset. Even on the more complex
ScienceQA task, Dobi-SVD incurred only a 4% performance loss at a compression rate of 0.6.
Furthermore, we tested the performance of Llava-v1.5 under different compression ratios on NVIDIA
A100 80GB. As shown in Table 23, the Dobi-SVD-compressed model achieved acceleration across
various batch sizes. Notably, at a batch size of 16, the model with a compression ratio of 0.4 achieved
a 20% speedup, with almost no performance loss observed on Pope.

This indicates that the compression method proposed by Dobi-SVD is not limited to LLM appli-
cation scenarios but is a more general approach. The successful application on VLMs proves the
extensive potential applications of Dobi-SVD in areas such as robotics, image generation, and video
understanding.

Ratio Accuracy (↑) Avg. Drop
TextQA VQA Pope-popular Pope-random ope-adversarial Science QA (↑) (↓)

ori 58.22 78.51 87.2 88.1 85.1 70.22 77.2 0%

0.8 58.25 78.53 87.1 88.0 85.1 69.72 77.5 0.3%
0.6 56.00 77.89 87.4 88.4 82.1 67.41 76.9 0.5%
0.4 46.72 70.13 86.4 89.8 79.1 52.38 70.8 8.3%

Table 22: Performance of Dobi-SVD on VLM tasks at different compression ratios on Llava-v1.5.
The evaluation metric for all tasks is accuracy.

Speed (bz=1)
tokens/s

Speed (bz=16)
tokens/s

Original 41.90 497.56

0.8 42.78(↑2.10%) 524.8(↑5.47%)

0.6 43.15(↑2.89%) 557.4(↑12.2%)

0.4 46.89(↑11.9%) 597.2(↑20.1%)

Table 23: Speedup of Dobi-SVD on Llava-v1.5 compared to the original model.

A.8.4 EXPERIMENTAL RESULTS ON OPENVLA

Deploying large models on edge devices has remained one of the most significant challenges in the
field of robotics. In this section, we apply Dobi-SVD to robotics tasks to validate its capability to
address real-world problems. Specifically, we compress the vision-language-action model OpenVLA-
7B using Dobi-SVD and evaluate the performance of the compressed model on the BridgeData V2
task set. During the compression process, we focus solely on compressing the LLM module within
OpenVLA, as it occupies the majority of the model’s memory.

As shown in Tab. 24, the experimental results demonstrate that Dobi-SVD performs exceptionally
well on OpenVLA. Even when compressed to 40% of the original model size, the accuracy remains
as high as 92.97%. Furthermore, at compression ratios of 80% and 60%, the model’s performance is
nearly lossless. Additionally, the extremely low MSE indicates that the actions executed by the model
incur only minimal errors, enabling successful completion of tasks in most cases. Tab. 24 presents
the task processing speed and memory requirements of the model under different compression ratios.
When compressed to 40%, the model requires only 5.2 GB of memory and achieves a 17% speedup
compared to the original model.

27

Published as a conference paper at ICLR 2025

These findings highlight Dobi-SVD’s high adaptability for robotics tasks, underscoring its practical
utility. It effectively addresses the issue of deploying memory-bound models on hardware devices,
thereby playing a significant role in enhancing everyday applications.

Coordinates Angle Accuracy Speed Memory
ori 0.3948 0.2929 0.9570 3.97 tasks/s 12.6GB

0.8 0.3958 0.3005 0.9453 4.08 tasks/s 10.3GB

0.6 0.3976 0.3048 0.9453 4.25 tasks/s 7.8GB

0.4 0.4008 0.3132 0.9297 4.67 tasks/s 5.2GB

Table 24: The performance of the Dobi-SVD compressed OpenVLA model on BridgeData V2. For
coordinates and angles, we calculate the MSE. For opening or closing, we calculate the accuracy. We
calculate how many tasks can be completed per second on average.

A.8.5 COMPARISON WITH SMALLER UNCOMPRESSED MODELS

To demonstrate the practicality of our approach in real-world scenarios, we compare the performance
of the large model compressed with Dobi-SVD against that of an uncompressed smaller model. The
experimental results, presented in Table 25 and Table 26, reveal that the large model compressed
with Dobi-SVD outperforms the original smaller model in both accuracy and hardware metrics. This
indicates that the Dobi-SVD-compressed model holds strong competitive advantages and significant
practical value in real-world applications.

Model Paramters Throughput (tokens/s) Accuracy (↑) Avg.
Billion bz=1 bz=8 Arc_e Arc_c Openb WinoG PIQA Mathqa ↑

Llama-7b (Ori) 7.0 42.3 319.5 0.67 0.38 0.28 0.67 0.78 0.27 0.51

Llama-13b (Dobi-0.6) 7.8 38.6 283.2 0.72 0.40 0.32 0.72 0.78 0.29 0.54

Table 25: Performance comparison of Dobi-SVD compressed Llama-13b and uncompressed Llama-
7b.

Model Paramters Throughput (tokens/s) Accuracy (↑) Avg.
Billion bz=1 bz=8 Arc_e Arc_c Openb WinoG PIQA Mathqa ↑

Opt-2.7b (Ori) 2.7 39.1 293.7 0.56 0.26 0.20 0.58 0.68 0.22 0.42

Llama-7b (Dobi-0.4) 2.8 47.9 368.4 0.58 0.39 0.22 0.57 0.68 0.24 0.45

Table 26: Performance comparison of Dobi-SVD compressed Llama-7b and uncompressed Opt-2.7b.

A.9 EXAMPLE DEMONSTRATION OF REAL SENTENCE GENERATION

In this section, we present examples of text generated by the Dobi-SVD model at various compression
ratios. We verified the generation performance of the model in both zero shot and few shot cases.

Zero-shot Performance. Table 27 shows the generation performance of Dobi-SVD compressed
model compared to the original model under zero-shot conditions. The results show that for different
sentences, the compressed model always can generate fluent, coherent, and highly relevant responses.
For commonsense questions, the model provides highly relevant and correct answers, even at a
compression ratio of 0.4. This demonstrates the effectiveness of Dobi-SVD in compressing models
while maintaining performance.

Few shot Performance. Table 28 shows the model’s performance on questions selected from the
Truthful QA dataset in the few-shot setting with shotnumber = 6. After compression with Dobi-
SVD, the model is able to generate fluent, coherent, and relevant responses across all compression
ratios. Surprisingly, for questions where the original model provided incorrect answers, the com-
pressed model produced correct ones. We speculate that this improvement is due to Dobi-SVD
effectively reducing noise in the model through SVD truncation, resulting in enhanced performance.

28

Published as a conference paper at ICLR 2025

Table 27: Zero-shot example of contents generated by the compressed LLaMA-7B by Dobi-SVD.
Question Ratio Answer

What is the responsibility of
the AI assistant?

1 To help you. The AI assistant is a helper. The AI assistant is a
helper. It is a helper that you can use to get things done. The AI
assistant is not a replacement for humans. It is a helper that can
help you get things done.

0.8 The AI assistant is responsible for answering questions from
users. The assistant will also be responsible for providing users
with information about products and services.

0.6 The AI assistant is a robot that is programmed to speak in the
voice of the AI assistant.

0.4 AI assistant is responsible for the execution of the tasks assigned
to it.

What is the universe? Ex-
plain this concept.

1 The universe is a big place. It contains everything that exists – the
Earth, the Sun, the Moon, the stars and the galaxies. It is made
up of matter and energy, and is expanding.

0.8 The universe is everything that exists in space. It includes every-
thing from the smallest subatomic particle to the largest galaxy.
The universe is a very large and complex system. It is made up of
many different parts, each with their own unique properties. The
universe is also constantly changing. New stars are being born,
old stars are dying, and new galaxies are forming. The universe
is a very interesting place, and it is full of many mysteries.

0.6 The universe is everything, including the Earth and everything
that has happened.

0.4 The universe is the world.

What color is the sky on a
clear day?

1 The sky is blue because the sun’s light is scattered by the particles
in the atmosphere.

0.8 I’m not sure, but it’s probably blue.
0.6 Answer: The sky is blue.
0.4 The sky is blue.

Why do cars need fuel to
run?

1 Cars need fuel to run because it is a fuel that is used to run the
car. The fuel is used to power the car’s engine.

0.8 Because people need fuel to run cars.
0.6 Cars run on fuel because they are fueled by fuel.
0.4 Because cars need fuel to run, cars need fuel to run.

Table 28: Few-shot example of contents generated by the compressed LLaMA-7B by Dobi-SVD.
Question Ratio Answer Correct

What happens to you if you
eat watermelon seeds?

Best The watermelon seeds pass through your digestive system -
1.0 If you eat watermelon seeds, you will get a stomachache. ✗

0.8 Eating watermelon seeds can cause a condition called pica,
which is characterized by an unhealthy craving for non-
nutritive substances.

✗

0.6 Eating watermelon seeds can cause a person to vomit. ✗
0.4 Watermelon seeds are edible. ✓

Where did fortune cookies
originate?

Best Fortune cookies originated in San Francisco. -
1.0 Fortune cookies originated in Japan. ✗

0.8 Fortune cookies originated in Japan. ✗

0.6 Fortune cookies originated in China. ✗
0.4 The fortune cookies originated in the United States. ✓

29

Published as a conference paper at ICLR 2025

0 1000 2000 3000
Truncation Value

5.8

6.0

6.2

6.4

PP
L

Layer = 5
A_k
x @ W_k
Original

0 1000 2000 3000
Truncation Value

Layer = 10
A_k
x @ W_k
Original

0 1000 2000 3000
Truncation Value

Layer = 15
A_k
x @ W_k
Original

0 1000 2000 3000
Truncation Value

Layer = 20
A_k
x @ W_k
Original

0 1000 2000 3000
Truncation Value

Layer = 25
A_k
x @ W_k
Original

Figure 11: Performance comparison of directly truncating activations and truncating weights. We
truncate weights and activations on different layers on Llama2-7b and observe the performance loss
of the model on 256 samples on wikitext2. It can be seen that in any case, truncating activations has a
smaller performance loss than truncating weights.

A.10 ANALYSIS OF DIRECTLY TRUNCATING ACTIVATIONS OVER WEIGHTS

In this section, we demonstrate that directly truncating activations is superior to truncating weights
from both module and model perspectives.

Module Level. Considering a single activation, for activation-aware SVD, the objective is to find a
rank-k approximation W̃ that satisfies:

min
W
∥A− xW∥F . (9)

According to the Eckart-Young-Mirsky Theorem, Ak is the closest rank-k matrix to A in terms of the
Frobenius norm. Therefore, for a single activation A, the truncated activation Ak, reconstructed from
A, is the theoretically optimal solution that satisfies Equation 9.

Model Level. Considering the entire model, let the performance loss on the training set be denoted
as L. For a weight matrix W in the model, with input x, the resulting activations are A = xW . The
gradients of L with respect to W and A are ∂L/∂W and ∂L/∂A, respectively. When W and A are
changed, the corresponding changes in L are:

∆LW =
∂L
∂W

∆W =
∂L
∂A

(
∂A

∂W
∆W

)
=

∂L
∂A

(x∆W) and ∆LA =
∂L
∂A

∆A (10)

Upon truncating weights and activations, let ∆W = W −Wk and ∆A = A−Ak, where Wk and
Ak represent the truncated matrices retaining the top k singular values of W and A, respectively.
Substituting these into Equation 10, we obtain:

∆LW =
∂L
∂A

(x(W −Wk)) =
∂L
∂A

(A− xWk) and ∆LA =
∂L
∂A

(A−Ak) (11)

To compare the magnitudes of ∆LW and ∆LA in Equation 11, we need to assess whether, under the
same ∂L/∂A, the performance loss from changing A to Ak is smaller than that from changing A to
A−xWk. To verify this, we conducted experiments on the Llama2-7b model with various activations
A and truncation levels k. For each activation A and truncation level k, we altered A to Ak and to
xWk while keeping other layers unchanged (thus ensuring ∂L/∂A remains constant) and observed
the resulting performance loss. We uniformly sampled layers with indices {5, 10, 15, 20, 25} and
truncation levels k = {100, 500, 1500, 2000, 2500, 3000}. The experimental results, shown in Fig.
11, indicate that for different layers and values of k, the performance loss caused by Ak is consistently
smaller than that caused by xWk.

Therefore, we conclude that ∂L
∂A (A−Ak) ≤ ∂L

∂A (A− xWk) holds for the majority of activations A
in LLMs, implying that ∆LA ≤ ∆LW . This suggests that directly applying SVD to activations is
more effective than truncating weights.

30

	Introduction
	Preliminaries
	Mathematical expression of SVD for LLM
	Basic Propositions.
	Motivation: Truncate Weights or Activations? How to Do It Optimally?

	Dobi-SVD Method
	Q1: How to get the optimal truncation position?
	Q2: How to update weights optimally?
	How to overcome the long-overlooked truncation limitation?
	Conclusion: Two New Perspectives of Dobi-SVD

	Experiments
	Main Results
	Analysis Experiment
	Analysis on Differentiable Optimization of truncation position
	Analysis on Efficient Weight Update.
	Analysis on Quantized Storage for Remapping.

	Inference-Efficiency Evaluation

	Conclusion
	Appendix
	Related Work
	Limitations and potential solutions
	Experimental setting details
	Dobi-SVD's New Perspective 1: A Novel Path from Activation to Weight
	Theoretical Support for Updating Weights Using IPCA

	Dobi-SVD's New Perspective 2: Fully Unlocking SVD's Potential for Data Compression by Addressing A Long-Overlooked Limitation
	Dobi-SVD's Robust and Efficient Differentiable SVD Algorithm for General Matrices
	Additional analysis results
	Quantization Precision Loss
	Effectiveness of Differentiable Training
	Differentiable k Changes at Various Compression Ratios
	Truncation sensitivity analysis

	Additional experimental results
	Experimental results on more models
	Combined with quantization
	Experimental results on Vlm
	Experimental results on OpenVLA
	Comparison with smaller uncompressed models

	Example Demonstration of Real Sentence Generation
	Analysis of directly truncating activations over weights

