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ABSTRACT

Contrastive learning, while highly effective for a lot of tasks, shows limited im-
provement in ordinal regression. We find that the limitation comes from the prede-
fined strong data augmentations employed in contrastive learning. Intuitively, for
ordinal regression datasets, the discriminative information (ordinal content infor-
mation) contained in instances is subtle. Existing strong augmentations can easily
overshadow this ordinal content information. As a result, when contrastive learn-
ing is used to extract common features between weakly and strongly augmented
images, the derived features often lack this essential ordinal content, rendering
them less useful in training models for ordinal regression. To improve contrastive
learning’s utility for ordinal regression, we propose a novel augmentation method
to replace the predefined strong argumentation based on the principle of minimal
change. Our method is designed in a generative manner that can effectively gener-
ate images with different styles but contains desired ordinal content information.
Extensive experiments validate the effectiveness of our proposed method, which
serves as a plug-and-play solution and consistently improves the performance of
existing state-of-the-art methods for ordinal regression.

1 INTRODUCTION

Contrastive learning encourages feature consistency between strongly and weakly augmented ver-
sions of data (Chen et al., 2020a). This method has demonstrated its effectiveness in both supervised
and unsupervised learning contexts (Oord et al., 2018; He et al., 2019; Khosla et al., 2020).

However, the efficacy of contrastive learning diminishes when applied to ordinal regression, which
aims to predict ordered categories from instances. A primary reason for this limited success is
that contrastive learning does not fully account for the unique characteristics of ordinal regression
data. Unlike conventional classification data, instances in ordinal regression datasets are inherently
characterized by their subtle ordinal content information, which is essential for predicting ordinal
labels. This subtlety presents a significant challenge for contrastive learning to effectively learn
discriminative features, primarily due to the predefined strong data augmentations such as color
jittering and color dropping (Chen et al., 2020a; Von Kügelgen et al., 2021; Xiao et al., 2021).
These augmentations can easily overshadow or diminish the vital ordinal content information.

Take an ordinal regression task of age estimation as an example. While images used in this task
may be rich in pixels and colors, age-discriminate features, such as wrinkles or gray hair, are often
localized to small regions. This localization renders the age-related content information subtle,
making it susceptible to being overshadowed by strong augmentations. As shown in Figure 1, the
commonly used strong augmentations can distort or even erase these essential features in ordinal
regression data, compromising the performance of contrastive learning in such tasks. Similarly, in

∗Corresponding Author

1



Published as a conference paper at ICLR 2024

Heavy Wrinkles
Gray Hair

Age: 60+

Heavy Wrinkles
Gray Hair

Heavy Wrinkles
Gray Hair

Age: ?

Gaussian Blur Color Jitter

Losing Ordinal Content Information

Figure 1: Ordinal content information in data can be easily distorted by standard augmentations in
contrastive learning. As illustrated in the example, the age-related features: wrinkles and hair color
are eliminated after Gaussian blurring and color jitter, making the age become unidentifiable.

the task of diabetic retinopathy grading, the parts in the retina images that indicate the severity of
the condition, such as microaneurysms or hemorrhages (Salz et al., 2016), are often localized and
subtle, which can be simply removed by augmentation operations such as Gaussian blurring.

To enhance contrastive learning for ordinal regression, we propose a novel augmentation method
as an alternative to predefined strong augmentations. Our method is in a generative manner which
can effectively preserve ordinal content information. After training with ordinal datasets, it can be
leveraged to generate new instances with the same ordinal content information but different styles.
To achieve this, we employ a generative model combined with the principle of minimal change.

Specifically, a Generative Adversarial Network (GAN) is employed to generate new instances. How-
ever, this generative model does not naturally preserve ordinal content information during the gen-
eration process. As indicated by existing work (Hyvarinen et al., 2019; Khemakhem et al., 2020;
Von Kügelgen et al., 2021), without any constraints, learned latent factors entangle both ordinal
content and non-ordinal information. Such entanglement compromises the controllability of the
generative process, making it challenging to produce instances with specific ordinal information. To
address this, we introduce the minimal change principle (Xie et al., 2022; Kong et al., 2022), which
claims that changes to latent factors should have minimal impact on the generation of instances.

By leveraging the minimal change, we effectively separate ordinal content factors from non-ordinal
ones. In our approach, we partition the latent factors into two sets: ẑo and ẑn. The former, ẑo,
serves as a “container” for ordinal content information. The latent factors in this set are essential for
determining the ordinal category and are generated in alignment with ordinal labels. Minimal change
is applied to ẑo, thereby limiting its influence during the generation of new instances. As a result,
once the generative model attains a minimal reconstruction error, ẑo solely captures essential ordinal
content information, while ẑn encompasses the remaining non-ordinal information (information that
does not contribute to determining ordinal labels). This results in the successful disentanglement
of ordinal and non-ordinal information. A more detailed explanation of this disentanglement, along
with the generative process introduced by our method, is provided in Section 3.

Our method enhances existing ordinal regression methods by harnessing the benefits of contrastive
learning through ordinal content-preserving augmentations. After learning the latent factors ẑo and
ẑn with the minimal change principle, our method creates augmented instances that belong to a
specific ordinal label. To achieve it, we fix ẑo and randomly sample ẑn, feeding them into our trained
generator. This process produces instances with varied styles but consistent ordinal information.
These instances can serve as strong augmented views to the natural images. By utilizing these
instances with a contrastive learning loss, our method can be seamlessly integrated into existing
ordinal regression methods.

The remaining paper is structured as follows: Section 2 provides an overview of the related works
in ordinal regression and contrastive learning. Section 3 details our proposed methodology and
its practical implementations. Section 4 includes the experimental validation of our approach on
different ordinal regression tasks. Section 5 concludes our paper.

2 RELATED WORKS

Method for Ordinal Regression. Recent advancements often frame ordinal regression as a classi-
fication task (Niu et al., 2016; Liu et al., 2017; Beckham & Pal, 2017). Liu et al. (2018b) introduced
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a constrained optimization formulation for ordinal regression. This approach minimizes the negative
log-likelihood across multiple classes while simultaneously preserving the inherent order relation-
ship between instances. Diaz & Marathe (2019) leveraged the natural ordinal relationships between
targets, imparting them as prior knowledge to the model through soft labels. Liu et al. (2019)
addressed the task from a probabilistic modeling perspective, where a Gaussian Process model is
attached to the output layer of the deep neural network to model uncertainty. Li et al. (2021) pro-
posed a framework that employs probabilistic embeddings to model data uncertainty. Their method
enforces a constraint between the learned embedding distributions and pre-defined ordinal distri-
butions, ensuring that the learned embedding space remains ordered. Shin et al. (2022) proposed
a regression-based rank estimation algorithm that learns to model the order relationship between
instances. Cheng et al. (2023) propose a data fusion approach to address the class-imbalance issue
in ordinal regression datasets. While most of the previous studies primarily focused on aligning
the model’s final predictions with the target, our approach emphasizes the importance of preserving
ordinal content information when augmenting ordinal regression data. Our method is orthogonal
to end-to-end trainable ordinal regression model, which can serve as a plug-and-play solution to
improve the performance of existing state-of-the-art ordinal regression frameworks.

Contrastive Learning and Data Augmentations. Contrastive learning (CL) extracts discrimina-
tive information from data by organizing samples into similar and dissimilar pairs. It amplifies the
similarity of similar pairs and increases the difference between dissimilar pairs in the feature space.
In a self-supervised setting (He et al., 2019; Chen et al., 2020a), similar pairs are generated through
a data augmentation module. Given a reference image, this module introduces modifications such as
random scaling, cropping, color jittering, blurring, and flipping to generate new perspectives of the
image. The original image and its augmented versions constitute a similar pair. In contrast, other
images in the batch are treated as dissimilar samples, forming dissimilar pairs. Khosla et al. (2020)
expanded CL to a supervised setting. In addition to the augmented versions of the image, samples
from the same class also become part of a similar pair. Zha et al. (2022) introduced a supervised CL
framework for regression tasks, ensuring that the order of representations in the feature space corre-
sponds to their target values. The results demonstrate that existing regression methods consistently
benefit from a CL module for extracting discriminative features from data.

Furthermore, intensive data augmentations have been found crucial for the success of the contrastive
learning framework across all settings (Chen et al., 2020a;b; Khosla et al., 2020; Li et al., 2023;
2022a; Huang et al., 2021; Zheng et al., 2022). However, such aggressive augmentations can com-
promise an image’s content. Xiao et al. (2021) addressed this breach of the invariance assumption
(i.e., data augmentations altering the data’s semantic information) by decomposing a compound
series of augmentations into individual operations and creating distinct heads for each single aug-
mentation. This method is effective when data is sensitive to a few specific augmentations within the
full augmentation sequence but maintains its invariance assumption with others. Given that content
information in ordinal data is particularly susceptible, many augmentation techniques can potentially
distort an image’s semantics, thereby limiting the method’s efficacy. Compared to their approach,
our method does not depend on any predetermined augmentation method. Instead, we guide the
model to discern which aspects of the augmented data should be preserved as content variables and
which can be modified to introduce diversity as style variables.

3 ORDINAL CONTENT PRESERVING CONTRASTIVE LEARNING (OCP-CL)

In this section, we introduce our Ordinal Content Preserving Contrastive Learning (OCP-CL) frame-
work. Specifically, to improve the utility of contrastive learning for ordinal regression, we propose
a novel ordinal content-preserving augmentation method that replaces the predefined strong aug-
mentations in a contrastive learning framework. First, we explain the generative process of ordinal
regression data, which serves as the foundational understanding of our proposed generative model.
Then, we introduce our approach for disentangling ordinal content and non-ordinal factors via min-
imal change, and detail the implementation of the generative model. Next, we describe the process
of generating content-preserving data augmentations through interventions on non-ordinal latent
factors. Finally, we present the contrastive learning formulation with our generated augmentations
from the original instances. The contrastive learning objective can be integrated into any existing
end-to-end trainable deep ordinal regression methods to form a joint objective.
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Data Generative Process. We first explain the causal data generative process (Glymour & Zhang,
2019; Yao et al., 2023) as illustrated in Figure 2. The graph outlines the generative process for
ordinal regression data, segregating latent factors into different functional groups based on their
relationships to the observed variables.

Figure 2: The data genera-
tive process employed by our
method. The shaded vari-
ables are observable and the
unshaded variables are latent.

Specifically, zv denotes a set of invariant ordinal factors that cap-
ture all ordinal content relevant features across different ordinal cat-
egories. For example, in age estimation, zv encompasses a compre-
hensive collection of age-specific attributes such as the severity of
wrinkles or variations in skin texture across age groups. The ordinal
label y serves as a constraining variable, ensuring that zo selectively
retains only those features from zv that pertain to its corresponding
ordinal category. Similarly, zn denotes the set of non-ordinal, style-
related factors. Together, zo and zn collaboratively generate x, the
observed data instance. Our primary objective for the generative
model is to disentangle the learned latent factors ẑ into ẑo and ẑn,
in alignment with the proposed SCM. In this setup, ẑo is approxi-
mated to only contain ordinal content information that determines
the ordinal category, whereas ẑn holds styling information. Gen-
erating content-preserving samples hinges on accurately recovering
the true joint distribution of image and class, denoted as P (X,Y ).
Based on our proposed generative process, the causal factorization
of the joint distribution P (X,Y ,Zo,Zv,Zn) is:

P (X,Y ,Zo,Zv,Zn) = P (Y )P (Zv)P (Zn)P (Zo|Y ,Zv)P (X|Zo, Zn). (1)

Our method is designed to fulfill the this generative process by modelling each probability in Eq. 1.

3.1 PHILOSOPHY OF DISENTANGLING ORDINAL CONTENT FACTORS.

The principle of minimal change is pivotal in our generative process, aiding in the effective disen-
tanglement of non-ordinal factors from ordinal content factors. To underscore the importance of this
principle, we first discuss the limitations of relying solely on ordinal labels y. Subsequently, we
explore scenarios that incorporate the minimal change principle. We consider a generative model
(Zhou et al., 2023; Yao et al., 2021) that aligns with the generative process depicted in Figure 2
and infers the factors ẑn, ẑo, and ẑv. After the learning phase, in which the reconstruction error is
minimized, our goal is to align ẑn with non-ordinal factors zn; align ẑo with ordinal content factors
zo; and align ẑv with the set of invariant ordinal factors zv. Note that zn, zo and zv are the true latent
factors in the data generative process.

If we rely solely on ordinal labels y, the generation of ẑo is influenced by both y and ẑv. This
relationship can be mathematically expressed as: ẑo = g(y, ẑv) + ϵ. In essence, this generation
mechanism allows ẑo to assimilate information from both y and ẑv. Given the generative model’s
typical assumption that both ẑn and ẑv follow a standard Gaussian distribution, non-ordinal infor-
mation can feasibly reside in either ẑv or ẑn. These factors are fundamentally similar, and their
differences are purely notational. Hence, the choice of where to store non-ordinal information does
not influence the reconstruction error. As a result, ẑo, being influenced by both y and ẑv, inevitably
contains non-ordinal information. Thus, the disentanglement can not be achieved solely with y.

To address this, we apply the minimal change principle in the disentanglement process. The minimal
change principle serves as a constraint on image generation, ensuring that the influence of certain
factors during instance generation remains minimal. Specifically, when applied to ẑo, this principle
limits the factor’s influence. Consequently, the information within ẑo remains minimal and focused.
By introducing an additional constraint on the generative function g, we ensure that ẑv inherently
carries information related to Y . Assuming the reconstruction error is minimized, this suggests that
ordinal content information is primarily included within the latent factors ẑo. As ẑn is generated
independently of the ordinal label Y , it will not contain ordinal content information. Therefore, all
ordinal content information becomes localized within ẑo. Furthermore, by minimizing the influence
of ẑo, it becomes exclusively representative of ordinal content information.
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Figure 3: Architecture of Our Generative Model. The class label y is leveraged for both disentan-
gling latent factors and enforcing minimal change. An ordinal head is appended to the discriminator
to preserve the ordinal distribution of generated samples in relation to their class.

3.2 ORDINAL CONTENT AND NON-ORDINAL INFORMATION DISENTANGLEMENT VIA
MINIMAL CHANGE

Our primary objective is to achieve minimal change in the generation process, specifically by con-
straining the influence of ordinal content factors ẑo. This is realized by limiting the number of these
factors. To this end, we introduce a mask operation, consistent with our data generative process.
The essence of this mask is to regulate the quantity of ordinal content factors. A sparser mask trans-
lates to fewer ordinal content factors. To promote this sparsity, we impose an L1 loss on the mask,
represented as Lsp = ∥M∥1. Let’s define our latent factors as ẑ := [ẑo, ẑn] and ẑon := [ẑv, ẑn]. The
mask operation is then given by:

ẑon = ẑ +M ⊙ fy(ẑ), ẑ ∼ N (0, I), y ∼ P (Y ). (2)

In the above equation, ẑ encapsulates both the invariant ordinal content factors ẑv and the non-
ordinal factors ẑn. The label distribution P (Y ) is derived empirically by counting the occurrences
of each label within the dataset and then normalizing these counts to form a probability distribution.
We utilize the Deep Sigmoidal Flow (Huang et al., 2018) for the function fy . It is a type of nor-
malization flow characterized by the use of small neural networks with sigmoid units. These units
introduce inflection points in the transformation function, enabling the modeling of complex proba-
bility distributions. Within our context, it serves as a component-wise transformation function that
transforms ẑon in a component-wise manner. This function, when applied, acts as a label influence.
Although it impacts all elements in ẑ, each element undergoes an independent transformation. The
mask operation on ẑ rejects certain transformed elements. By adding ẑ back, we ensure that certain
elements remain uninfluenced by the label Y , effectively distinguishing them as non-ordinal factors.

It’s worth noting that for elements unaffected by the mask but influenced by y, the addition of
elements from ẑ is inconsequential. Given that ẑ is sampled from a high-dimensional Gaussian
distribution, adding it to these elements is akin to introducing random Gaussian noise, ensuring our
method remains consistent with the proposed data generative process.

To make latent factors, we employ a Generative Adversarial Network (GAN) model (Mirza & Osin-
dero, 2014). The architecture of this model is illustrated in Figure 3. The GAN comprises two main
components: a generator Gθ and a discriminator Dϕ, each parameterized by their respective learn-
able parameters θ and ϕ. The generator’s role is to craft realistic instances, while the discriminator
endeavors to differentiate between genuine and generated instances. The GAN loss, vital for image
reconstruction, is formally articulated as:

Lgan = E[log(Dϕ(x))] + E[log(1−Dϕ(Gθ(ẑon)))]. (3)

In the given formulation, Dϕ(x) represents the discriminator’s estimated probability that the in-
stance x is sampled from the real data distribution. The generator, denoted by Gθ, aims to produce
instances that the discriminator Dϕ perceives as real, maximizing the likelihood of them being clas-
sified as genuine. Conversely, the discriminator Dϕ endeavors to distinguish real instances from
those generated by Gθ, classifying them accurately as either real or fake.
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The objective function for disentangling ordinal content and non-ordinal information is combined
with the GAN loss and the sparsity loss, i.e.,

arg min
{ϕ,θ,fy,M}

LAug = arg min
{ϕ,θ,fy,M}

Lgan + λ · Lsp. (4)

where λ is the coefficient to control the contribution of the sparsity loss to the overall objective.

3.3 CONTENT-PRESERVING AUGMENTATION FOR ORDINAL REGRESSION

Our method is crafted to complement existing ordinal regression techniques, leveraging the strengths
of contrastive learning. After training, we could have a generator Gθ̂. To generate an instance x′
corresponding to a specific ordinal label, we employ Eq. 2. For instance, generating an example for
the ordinal label Y = 1 can be achieved by:

x′
i = Gθ̂(ẑon), ẑon = ẑ +M ⊙ f1(ẑ), ẑ ∼ N (0, I), Y = 1. (5)

Specifically, we start by sampling ẑon. By setting the ordinal label Y = 1, we utilize f1(ẑ) to
generate ẑon specific to the ordinal label Y = 1. By sampling different ẑon values and maintaining
the ordinal label Y = 1 constant, we can generate diverse instances that, while exhibiting stylistic
variations, consistently belong to the label Y .

To integrate with existing ordinal regression methods, x′ can be employed as the strongly augmented
data. We then incorporate the supervised contrastive loss (Khosla et al., 2020) as a regularization
term for the prevailing method. This loss emphasizes intra-class similarities while concurrently
maximizing inter-class disparities. Let’s define X as the feature space of x. We introduce hψ as
a model with learnable parameters ψ, which is used by the ordinal regression method. For a given
instance x, hψ(x) = z outputs the latent representation z used for ordinal regression. The contrastive
loss on hψ is defined as:

Lcon =
∑
i∈I

Lcon
i = −

∑
i∈I

1

|S(hψ(xi))|
∑

hψ(xs)∈S(hψ(xi))

log
exp (hψ(xi) · hψ(x′

i)/τ)∑
b∈B exp (hψ(xi) · hψ(xb)/τ)

.

(6)
In the equation above, I denotes the set of sample indices in the batch. For each instance xi belong-
ing to y, its strongly augmented counterpart x′i is generated using our method by setting the ordinal
label Y = y during the generation process.

4 EXPERIMENTS

In this section, we evaluate our method across three real-world applications within the domain of
ordinal regression: age estimation, diabetic retinopathy rating, and weather condition prediction.
Due to space constraints, we include qualitative analyses of our generative model in Appendix D.

Baselines. We employ five state-of-the-art deep learning-based ordinal regression methods as our
baselines. OR-CNN (Niu et al., 2016) utilizes a series of binary classifiers and optimizes the
model through the one-hot encoding of labels. CNNPOR (Liu et al., 2018b) reduces the multi-class
negative log-likelihood while concurrently maintaining the intrinsic ordinal relationship among in-
stances. SORD (Diaz & Marathe, 2019) employs a soft labeling strategy during training. POE (Li
et al., 2021) captures data uncertainty via probabilistic embeddings. MWR (Shin et al., 2022) lever-
ages an auxiliary set of reference images to model ordinal relationships. All these models are end-
to-end trainable. We seamlessly integrate our contrastive learning objective into their original loss
formulations, augmented with ordinal content-preserving data transformations.

Experimental Settings. For the generative model, we use StyleGAN2 (Karras et al., 2020) as
the base model, λ1 is set to 1e-4 across all settings. For all ordinal regression methods, we
use VGG16 (Simonyan & Zisserman, 2014) the base deep neural network architecture, with Im-
ageNet (Deng et al., 2009) pre-trained weight for initialization. We employ an embedding layer
before the final output layer in the model to extract feature embeddings. The dimension of feature
embedding is set to 128. The ratio of contrastive loss is consistently set to 1e-4 for OR-CNN, CN-
NPOR and POE, and 1e-5 for SORE and MWR. For the three datasets, the input images are resized
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Adience
w/o OCP-CL w/ OCP-CL

Accuracy (↑) MAE (↓) Accuracy (↑) MAE (↓)

OR-CNN (Niu et al., 2016) 54.6 ± 5.5 0.60 ± 0.09 57.1 ± 5.1 (+2.5) 0.56 ± 0.06 (+0.04)
CNNPOR (Liu et al., 2018b) 55.1 ± 6.0 0.60 ± 0.08 57.7 ± 4.2 (+2.6) 0.55 ± 0.07 (+0.05)
SORD (Diaz & Marathe, 2019) 57.8 ± 4.9 0.53 ± 0.06 59.9 ± 5.0 (+2.1) 0.49 ± 0.06 (+0.04)
POE (Li et al., 2021) 60.5 ± 4.8 0.47 ± 0.08 63.7 ± 4.6 (+3.2) 0.43 ± 0.07 (+0.04)
MWR (Shin et al., 2022) 62.6 ± 5.0 0.45 ± 0.08 63.6 ± 4.7 (+1.0) 0.43 ± 0.07 (+0.02)

Diabetic Retinopathy
w/o OCP-CL w/ OCP-CL

Accuracy (↑) MAE (↓) Accuracy (↑) MAE (↓)

OR-CNN (Niu et al., 2016) 71.9 ± 1.3 0.42 ± 0.01 72.8 ± 0.7 (+0.9) 0.41 ± 0.00 (+0.01)
CNNPOR (Liu et al., 2018b) 71.3 ± 1.1 0.42 ± 0.02 72.6 ± 1.0 (+1.3) 0.41 ± 0.01 (+0.01)
SORD (Diaz & Marathe, 2019) 69.1 ± 1.0 0.45 ± 0.01 69.9 ± 1.1 (+0.8) 0.44 ± 0.01 (+0.01)
POE (Li et al., 2021) 73.6 ± 1.0 0.40 ± 0.01 74.8 ± 0.8 (+1.2) 0.38 ± 0.00 (+0.02)
MWR (Shin et al., 2022) 74.5 ± 1.1 0.38 ± 0.02 75.1 ± 1.1 (+0.6) 0.37 ± 0.01 (+0.01)

SkyFinder
w/o OCP-CL w/ OCP-CL

Accuracy (↑) MAE (↓) Accuracy (↑) MAE (↓)

OR-CNN (Niu et al., 2016) 60.3 ± 2.1 0.48 ± 0.03 62.1 ± 2.3 (+1.8) 0.46 ± 0.04 (+0.02)
CNNPOR (Liu et al., 2018b) 57.6 ± 1.6 0.52 ± 0.03 59.7 ± 1.5 (+2.1) 0.49 ± 0.03 (+0.03)
SORD (Diaz & Marathe, 2019) 58.2 ± 1.9 0.51 ± 0.06 60.5 ± 2.0 (+2.3) 0.48 ± 0.04 (+0.03)
POE (Li et al., 2021) 61.9 ± 1.7 0.46 ± 0.05 64.1 ± 1.6 (+2.2) 0.42 ± 0.05 (+0.04)
MWR (Shin et al., 2022) 62.4 ± 1.8 0.45 ± 0.05 63.2 ± 1.9 (+0.8) 0.44 ± 0.06 (+0.01)

Table 1: Accuracy (%) and MAE comparison on Adience dataset (Eidinger et al., 2014), Diabetic
Retinopathy dataset (Liu et al., 2018a) and SkyFinder dataset (Mihail et al., 2016).

into 256 × 256 and center cropped into a sub-region of 224 × 224. Adam (Kingma & Ba, 2014)
optimizer is used for all baseline methods, with a base learning rate of 1e-4. We uniformly train all
baseline models for 200 epochs with a batch size of 256 for all baselines except MWR. For MWR,
the batch size is set to 128 due to memory constraints. We report the results via the accuracy and
mean absolute error (MAE) metrics. For the other parameters in the baselines, we adhere to the orig-
inal settings designed in the papers unless specified in our experimental settings. While we employ
our techniques for strong augmentations, weak augmentations are achieved solely through resizing,
center cropping, and normalizing the original instances. No other augmentation methods are applied
to the data. All experiments are conducted in on two 48GB NVIDIA RTX A6000 GPUs.

4.1 AGE ESTIMATION

Dataset. Age estimation is the task of predicting age groups based on facial images. The Adience
dataset (Eidinger et al., 2014) comprises 26,580 photos from Flickr, featuring 2,284 subjects. These
photos are annotated across eight age groups: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, and over
60 years. The dataset adheres to a standard five-fold, subject-exclusive cross-validation protocol, as
widely utilized in previous studies (Rothe et al., 2018; Shen et al., 2018; Li et al., 2019; 2021). The
generative model is trained in accordance with the training fold of this protocol. For each instance
in the dataset, we generate 3 augmented views using the generative model, the augmented views and
the original instances are jointly trained by the models.

Results. We present the experimental results in Table 1 (Top). Employing our proposed OCP-CL
method, OR-CNN experiences a 4.58% boost in accuracy and a 6.67% reduction in MAE. CN-
NPOR benefits from a 4.72% increase in accuracy and an 8.33% improvement in MAE. SORD’s
performance is uplifted by 3.63% in accuracy and 7.55% in MAE. POE sees the largest accuracy
improvement of 5.29% and an MAE reduction of 8.51%. Lastly, MWR has a modest 1.6% increase
in accuracy and a 4.44% decrease in MAE. This consistent improvement across multiple ordinal
regression methods validate the efficacy of our OCP-CL approach for the task of age estimation.
Additionally, we visualise the generative augmentations in Figure 1. We observe that the augmen-
tations have preserved the ordinal content information for their respective age groups, capturing
details such as the sparse eyebrows of children, silky skin texture of young adults, and the pro-
nounced wrinkles of seniors, thereby allowing the ordinal regression methods and the contrastive
learning framework to effectively learn the critical ordinal content information.
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Age Group: 4-6 Age Group: 25-32 Age Group: 60+

Figure 4: Generated augmentations for the age estimate task, the collections corresponds to the age
group of (4-6), (25-32), and 60+ respectively.

4.2 DIABETIC RETINOPATHY RATING

Dataset. The Diabetic Retinopathy dataset1 is utilized for predicting the severity stages of Diabetic
Retinopathy based on high-resolution RGB retina images. The dataset consists of 35,126 individual
instances, each annotated into one of five ordinal categories representing increasing levels of severity
(i.e., No DR, Mild, Moderate, Severe, and Proliferative DR). The dataset is partitioned into training,
validation, and testing sets, which constitute 80%, 5%, and 15% of the total dataset, respectively.
The dataset contains 25,810, 2443, 5292, 873 and 708 images for each category, respectively. Ac-
count for the imbalances between adjacent categories, we generate augmented views dynamically
depending on the ground truth label, which mitigates the class imbalance issue. Specifically, the
number of augmentations for instances from each increasing level of severity is set as [1, 3, 2, 5, 5].

Results. In Table 1 (Middle), we evaluate the performance of various ordinal regression methods
on the Diabetic Retinopathy dataset, with and without the incorporation of our proposed OCP-CL
(Ordinal Content-Preserving Contrastive Learning) module. Remarkably, all the compared meth-
ods exhibit improvement in both accuracy and MAE upon integration with the OCP-CL module.
Practicularly, the incorporation of the OCP-CL module results in accuracy improvements of 1.25%,
1.82%, 1.16%, 1.63%, and 0.81% for OR-CNN, CNNPOR, SORD, POE, and MWR, respectively.
Concurrently, the MAE reduces by 2.38%, 2.38%, 2.22%, 5.00%, and 2.63%, respectively. These
results collectively indicate that the introduction of the OCP-CL module consistently enhances the
performance across a diverse set of ordinal regression models. This validates the generalizability and
efficacy of our proposed OCP-CL approach in boosting performance for ordinal regression tasks.

4.3 WEATHER CONDITION PREDICTION

Dataset. The SkyFinder Dataset (Mihail et al., 2016) comprises 94,804 labeled outdoor images,
sourced from 53 static webcams affiliated with the Archive of Many Outdoor Scenes (AMOS). These
images encapsulate a broad spectrum of weather and lighting conditions. A specialized subset of
62,988 images, specifically featuring the weather conditions of Clear, Partly Cloudy, and Mostly
Cloudy, has been curated to create a weather prediction dataset. This subset is further partitioned
into training, validation, and testing sets, constituting 80%, 5%, and 15% of the dataset, respectively.
For each instance in the dataset, we generate 3 augmented views using the generative model, the
augmented views and the original instances are jointly trained by the models.

Results. Table 1 (Bottom) presents the results of our experiments, highlighting the performance
improvements achieved by all baseline models upon the incorporation of the contrastive module.
Specifically, the accuracy improvements for the baselines are 2.9%, 3.5%, 3.8%, 3.4%, and 1.1% for
OR-CNN, CNNPOR, SORD, POE, and MWR, respectively. Similarly, the improvements in MAE
for the baselines are 4.2%, 5.8%, 5.9%, 8.7%, and 2.2%, respectively. With an average improvement
of 2.94% in accuracy and 5.42% in MAE, these results demonstrate the efficacy of our method in en-
hancing the performance of deep-learning-based ordinal regression models on the weather condition
estimation task.

4.4 ANALYSIS

Transfer Learning. In this section, we evaluate the transfer learning performance of our con-
trastive learning approach. Initially, we pre-train the encoder using a contrastive learning objective

1Accessible from https://www.kaggle.com/competitions/diabetic-retinopathy-detection
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Dataset
SupMoCo SupCon S-LooC SupCReg OCP-CL

(He et al., 2019) (Khosla et al., 2020) (Xiao et al., 2021) (Zha et al., 2022) (Ours)

Accuracy MAE Accuracy MAE Accuracy MAE Accuracy MAE Accuracy (↑) MAE (↓)

DR 63.6 0.52 60.5 0.55 63.0 0.52 62.7 0.53 65.2 0.50
Adience 51.9 0.65 51.7 0.67 52.4 0.64 51.2 0.63 53.1 0.61

SkyFinder 56.1 0.55 53.9 0.59 55.6 0.56 55.1 0.55 57.5 0.52

Table 2: Linear evaluation on supervised contrastive learning frameworks. Accuracy (%) and MAE
are reported for various ordinal datasets including Diabetic Retinopathy dataset, Adience (Levi &
Hassner, 2015) and SkyFinder dataset (Mihail et al., 2016).

for feature extraction. Following this, we freeze the trained encoder and employ the extracted fea-
tures as input to a single-layer MLP predictor, which is then fine-tuned on the training data. We
assess the efficacy of our approach against recent state-of-the-art supervised contrastive learning
frameworks across three different tasks. To mitigate performance degradation due to parameter set-
tings, we dynamically adopt the recommended configurations from the original papers. However,
for SupCon (Khosla et al., 2020), a batch size of 1024 is unfeasible for image instances of size
224 by 224. To ensure convergence, we reduced the image size to 64 by 64 and the batch size to
512. The results are presented in Table 2. Notably, our method significantly outperforms all ex-
isting approaches in the task of ordinal regression. The benefits of ordinal content-preserving data
augmentation become evident when benchmarked against SupMoCo (He et al., 2019). Specifically,
we adopt the SupMoCo framework as the baseline contrastive learning framework and integrate our
augmentation strategy by replacing the original data augmentation modules. This aids in evaluating
transfer learning performance. The contrastive loss formulation in SupMoCo aligns with our Eq. 6,
and an additional momentum encoder is incorporated to ensure training convergence. The MoCo
strategy is not employed in other experiments.

Figure 5: Influence of minimal
change in image generation.

Minimal Change in Image Generation. We study the effect
of minimal change on ordinal data generation by manipulating
the mask hyperparameter. When this hyperparameter is set to
zero, sparsity is not enforced, effectively removing the minimal
change constraint from the generative process. As illustrated in
Figure 5 (λmask = 0 → no minimal change), the absence of mini-
mal change leads to the inclusion of non-ordinal features, such as
hair, which do not contribute to identifying infant age groups and
should be considered non-ordinal factors. However, in the case
where minimal change is not applied, these features are learned
as ordinal content factors and appear in all generated images,
thereby demonstrating poor disentanglement performance. By
enforcing minimal change, these non-ordinal elements are sup-
pressed, enhancing the overall quality of the generated instances.

5 CONCLUSION

In this paper, we address the open challenge of applying contrastive learning to ordinal regression
tasks. We find that the strong data augmentations in the contrastive learning frameworks often dimin-
ish the intrinsic discriminative semantic information associated with ordinal labels. Consequently,
when contrastive learning is used to identify invariant features between weakly and strongly aug-
mented views, the extracted features frequently lack the essential ordinal content information. To
mitigate this issue, we introduce a novel augmentation method grounded in the principle of minimal
change. This generative approach ensures that the images retain the essential ordinal content infor-
mation during the data augmentation process. As a result, our method enhances the applicability of
contrastive learning to ordinal regression tasks. Extensive experiments validate the efficacy of this
approach in improving the performance of existing ordinal regression models. This work not only
broadens the scope of contrastive learning in ordinal regression but also provides valuable insights
for future research aimed at preserving crucial task-specific information during data augmentation.
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APPENDIX

A ABLATION ANALYSIS

Number of Augmented Instances. We conduct an experiment to assess the sensitivity of the
models to the number of augmented instances. Specifically, we adjust the number of views from
the set [1,3,5,10] and “dynamic”, and exam the performance on POE w/ OCP-CL. As illustrated
in Figure 6, the models’ performance remains relatively stable when the number of augmented
instances ranges between 3 and 5. However, over-supplementing the data with augmented instances
can lead to a degradation in model performance. Interestingly, we find that a dynamic number of
augmentations depending on the class could benefit the models. This is particularly relevant for
ordinal regression datasets that suffer from class imbalance. Specifically, by increasing the number
of instances in underrepresented classes, we observe an improvement in the overall performance of
the methods.

Figure 6: Ablation Study on the Number of Augmented Views.

Figure 7: Sensitivity Analysis on λ1 ratio.

Sensitivity Analysis on λ1. We conduct experiments to assess the impact of the mask sparsity
ratio, denoted as λ1, on the performance of the ordinal regression model across three downstream
tasks. For this purpose, we utilize POE w/ OCP-CL to examine sensitivity to changes in λ1. We
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test five different sparsity ratios within the range of 1e-3 and 1. The results, presented in Figure 7,
indicate that the ordinal regression model achieves optimal performance when λ1 is set to 0.1 for all
downstream tasks, and its performance decreases linearly with increases in the ratio beyond 0.1.

B ADDITIONAL RELATED WORKS

In this section, we provide additional background discussions relevant to our work. Specifically,
we discuss recent advancements in Generative Data Augmentation, Disentangled Representation
Learning, and Nonlinear ICA and explore their relationship with our research.

Generative Models for Data Augmentations. Instead of generating data augmentations using
predefined transformations, Generative Data Augmentation (GDA) employs an alternative approach
that leverages Deep Latent Variable Models (DLVMs) to generate new synthetic views from existing
samples, based on conditional generative processes. Antoniou et al. (2017) and Tran et al. (2017)
propose the use of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Xia et al.,
2022) to create a broader set of augmented data. More recently, Diffusion Models (DMs) (Sohl-
Dickstein et al., 2015) have been utilized to alter high-level semantic attributes, thereby addressing
the problem of lack of diversity along key semantic axes in data augmentation (Trabucco et al.,
2023). While these approaches can generate impressive results that appear both realistic and novel,
most of them are not guaranteed to maintain the invariance of the original data. Our proposed
method fulfills the need for controllable generative data augmentation, offering a more trustworthy
GDA approach.

Disentangled Representation Learning. The objective of Disentangled Representation Learning
(DRL) is to construct a model proficient in recognizing and isolating the latent factors concealed
within observable data (Wang et al., 2022). This isolation into semantically meaningful factors
enhances the model’s ability to produce interpretable data representations, thereby simulating the
cognitive processes humans employ in understanding objects or relationships. In the context of gen-
erative modeling, Higgins et al. (2017) introduce a β-penalty coefficient for the KL divergence term
in the evidence lower bound of a Variational Autoencoder (VAE) (Kingma & Welling, 2013; Li et al.,
2022b; Huang et al., 2022; Hong et al., 2024; Lin et al., 2023) to balance latent channel capacity and
independence constraints with reconstruction accuracy. Subsequently, various modifications to VAE
have been introduced to improve its capability for disentanglement (Chen et al., 2018; Kumar et al.,
2017). These include the incorporation of either implicit or explicit inductive biases as well as the
utilization of diverse regularization techniques. On the other hand, InfoGAN (Chen et al., 2016) was
the first to address the problem of disentangling latent factors in Generative Adversarial Networks,
introducing an extra variational regularization of mutual information. Lin et al. (2019) introduced
InfoGAN-CR, an unsupervised extension of InfoGAN that includes a contrastive regularizer to infer
latent dimensions. Zhu et al. (2021) present PS-SC GAN, which builds upon InfoGAN and features
a Spatial Constriction (SC) strategy to extract significant areas influenced by each latent dimension,
along with a Perceptual Simplicity (PS) approach to make the latent factors more unambiguous.
Wei et al. (2021) propose a method known as Orthogonal Jacobian Regularization (OroJaR) aimed
at enhancing disentanglement in generative models. OroJaR uses the Jacobian matrix to examine
how output alterations correspond to changes in input variables, specifically the latent dimensions.
Our methods are parallel to GAN-based DRL methods, wherein we disentangle the latent factors by
introducing the principle of minimal change.

Nonlinear ICA. Nonlinear independent component analysis (ICA) theoretically addresses the
problem of disentangling latent factors when a nonlinear invertible transformation function exists,
mapping independent samples to the latent space Hyvarinen & Morioka (2016; 2017). Recent de-
velopments Locatello et al. (2020); Zimmermann et al. (2021); Xie et al. (2022); Kong et al. (2022)
indicate that, within a conditional generative process, the true latent factors might become identifi-
able when auxiliary information is provided. Khemakhem et al. (2020) demonstrate that the joint
data and latent space distributions can be recovered, up to a simple transformation in the latent space,
provided the generative process conditions on a variable observed alongside the data. Von Kügelgen
et al. (2021) employ two views of the same image to disentangle the latent factors into ordinal con-
tent and non-ordinal components, with only the content component associating with the image’s
semantics. Our generative model leverages Nonlinear ICA theories to theoretically justify the disen-
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tanglement of latent factors. By manipulating the ordinal content variable, while keeping the ordinal
content factors consistent, our model can generate augmented views that preserve ordinal content.

C INTUITION OF WHY AUGMENTING NON-ORDINAL FACTORS

Here, we provide further discussion on why augmenting non-ordinal factors in images can benefit
the training of ordinal regression/classfication models. In general, data augmentation aims to modify
the styling factors in original examples that are not related to the predictive objectives of downstream
tasks (Von Kügelgen et al., 2021).

In computer vision tasks, by changing the styles in images, we add more variety to the training data.
This helps the model not to focus too much on the specific styles it sees in the training images. It
teaches the model to recognize objects or features in images, no matter how the style of the image
changes. This is important because in the real world, images can come in many different styles. So,
adding style changes in training helps the model perform well on all kinds of images

In the context of ordinal regression, style information is referred to as non-ordinal information, gov-
erned by underlying non-ordinal factors. Our method also aims to enrich style diversity by altering
non-ordinal information. This is achieved by randomly sampling non-ordinal factors while main-
taining the ordinal content factors, then generating examples based on these factors. By preserving
the ordinal content factors, we can change the image’s style while keeping its ordinal content un-
changed, thereby generating synthetic (counterfactual) images not seen in the training data. This
approach enables neural networks to access more samples with diverse styles, thereby improving
the generalization capabilities of ordinal regression models for unseen samples. As demonstrated in
Figure 7, by randomly sampling non-ordinal factors while maintaining the ordinal content factors,
we can alter various aspects of the image’s style, such as people’s dressing, background, and camera
angles, etc., ensuring the ordinal content remains unchanged.

It is also important to emphasize two major advantages of our data augmentation methods: Firstly,
existing image augmentation strategies do not guarantee the preservation of ordinal information dur-
ing the augmentation process. For example, color jittering can change an image’s color, potentially
altering white hair to yellow, which could obscure the age of the person in the image. Secondly,
our proposed data augmentation method is general. Our approach can be broadly applied to au-
tomatically infer ordinal content from other types of information and generate new examples with
guarantees. While primarily tested on image data, our method’s framework should be adaptable
to non-image data. This adaptability is not achievable with traditional data augmentation methods,
which mainly focus on image data. For instance, applying rotations to non-image data is not feasible.

D VISUALISATION OF DATA AUGMENTATION

We provide additional visualizations of the augmentation results. As shown in Figure 8, we con-
ducted experiments on three ordinal regression datasets. Our findings indicate that our augmentation
method effectively retains age-related and weather-related features, while simultaneously introduc-
ing significant stylistic variations. In the case of diabetic retinopathy instances, the differences
between the original and augmented views are subtle. Without domain-specific knowledge, it is
challenging to conclusively determine whether the ordinal content has been preserved. Figure 9
demonstrates the generative results for altering the ordinal factors. For each instance, we fix the
non-ordinal factors and replace the ordinal factors with age-specific ordinal factors (i.e., represent-
ing different age groups). The age-specific ordinal factor is extracted from training images of the
corresponding age group. By visualizing the results, we can observe that the age of the individ-
uals has changed following augmentation, while the styling information from non-ordinal factors
remains similar. This effectively illustrates the efficacy of our method in disentangling ordinal and
non-ordinal factors. We also present image generation results from a conventional GAN (Karras
et al., 2020) in Figure 10. It is important to note an advantage of our method over conventional
GANs: the inability of conventional GANs to disentangle ordinal factors from non-ordinal factors.
This means they cannot guarantee the preservation of an image’s semantic information. Addition-
ally, our model focuses more on fine-grained details when constructing novel samples. This is evi-
dent in the detailed modeling of age-related components in facial images. While conventional GANs
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can achieve high generative quality, they sometimes fail to accurately represent certain age-related
features in the images, such as generate hair for infants and child face for seniors.

Augmentations

Instances

Augmentations

Instances

Augmentations

Instances

Figure 8: Generated augmentations by augmenting the non-ordinal factors ẑn.

Augmentations

Instances

Figure 9: Generated augmentations by augmenting the ordinal factors ẑo with age-specific factors.

Ours

Conventional 
GAN

Figure 10: Unconditional image generation results of conventional GAN (the first Row) and Our
method (the second Row).
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