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ABSTRACT

We introduce Effective Model Pruning (EMP), a context-agnostic, parameter-free
rule addressing a fundamental question about pruning: how many entries to keep.
EMP does not prescribe how to score the parameters or prune the models; instead,
it supplies a universal adaptive threshold that can be applied to any pruning crite-
rion: weight magnitude, attention score, KAN importance score, or even feature-
level signals such as image pixel, and used on structural parts or weights of the
models. Given any score vector s, EMP maps s to a built-in effective number
Neff which is inspired by the Inverse Simpson index of contributors. Retaining
the Neff highest scoring entries and zeroing the remainder yields sparse models
with performance comparable to the original dense networks across MLPs, CNNs,
Transformers/LLMs, and KAN, in our experiments. By leveraging the geometry
of the simplex, we derive a tight lower bound on the preserved mass seff (the sum
of retained scores) over the corresponding ordered probability simplex associated
with the score vector s. We further verify the effectiveness of Neff by pruning
the model with a scaled threshold βNeff across a variety of criteria and models.
Experiments suggest that the default β = 1 yields a robust threshold for model
pruning while β ̸= 1 still serves as an optional adjustment to meet specific sparsity
requirements.

1 INTRODUCTION

Deep Neural Networks have achieved remarkable results across numerous domains such as com-
puter vision (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et al., 2021), natural language
processing (Vaswani et al., 2017; Devlin et al., 2019), robotics (Zitkovich et al., 2024), and genera-
tive artificial intelligence (Ho et al., 2020), through the deployment of increasingly large and com-
plex models. While this growth has led to more accurate and generalizable models, it also introduces
significant deployment challenges on edge devices due to high demands on computation, memory,
and energy. Lack of enough resources is particularly evident when deploying large language models
(LLMs) (Touvron et al., 2023a;b; Bai et al., 2023) and other over-parameterized models (Liu et al.,
2023) in latency-sensitive or resource-constrained environments.

To address deployment challenges of such over-parameterized models, pruning has emerged as a
fundamental and widely studied technique (Frankle & Carbin, 2019; Han et al., 2016; Cheng et al.,
2024). Pruning has developed a rich taxonomy, typically categorized along three dimensions: what
to prune (unstructured weights (Han et al., 2016), structured filters/channels (Li et al., 2017; Liu
et al., 2017), or attention heads (Michel et al., 2019; Voita et al., 2019)), when to prune (before (Lee
et al., 2019; Wang et al., 2020), during (Louizos et al., 2018; Evci et al., 2020), or after training
(Frantar & Alistarh, 2023; Sun et al., 2023)), and how to score parameters (e.g., by magnitude (Han
et al., 2016), sensitivity (LeCun et al., 1990; Hassibi et al., 1993), or data-driven metrics (Molchanov
et al., 2017)). Despite extensive research in model pruning, a critical and persistent question remains:
given a score vector s derived from a pruning criterion, how many candidates should be retained?

The choice of sparsity budget is sensitive. An overly aggressive budget degrades model performance,
while an overly conservative one forfeits potential efficiency gains. Current solutions remain unsat-
isfactory, as sparsity often relies on expensive iterative pruning procedures (Renda et al., 2020),
manual or heuristic per-layer budgets, or hyperparameters that require careful tuning (Gale et al.,
2019; Frantar & Alistarh, 2023). Recent work (Zhang et al., 2025) gives a sharp lower and upper
bound for the pruning rate with specific change of loss tolerance ϵ.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper, we develop Effective Model Pruning (EMP) as a new method to determine retention
directly from the score distribution. EMP is a simple rule that automatically determines the effective
number Neff of candidates to retain. For any score vector s given by the criterion, EMP computes
its effective number Neff , inspired by the participation ratio in statistical physics and the inverse
Simpson index in ecology (Mézard & Montanari, 2009; Laakso & Taagepera, 1979). This value Neff

intuitively represents the number of truly significant contributors. By keeping the top Neff entries,
EMP provides a simple computational criterion for deciding how many highest-scoring contributors
to keep, in tandem with a tight theoretical lower bound on the retained mass, derived in Section 4.2.

EMP is a universal rule, agnostic of network architecture and pruning paradigm. It eliminates the
need for manual budget scheduling and hyperparameter tuning, providing a versatile, robust and
automatic pruning limit criterion. To validate the robustness of EMP, we examine the model’s per-
formance across a diverse range of criteria and network structures by pruning the model’s entries by
βNeff across a range of scaling coefficients β. Empirical results demonstrate that models pruned by
EMP consistently achieve competitive performance with their dense counterparts, underscoring its
effectiveness and generality.

Our contributions are as follows:

• We develop Effective Model Pruning, a simple rule to convert any score vector s into a
principled sparsity threshold Neff , supported by a theoretically guaranteed lower bound on
the preserved mass seff .

• We deduce a lower bound for the loss change ϵ between dense model and the sparse model
with EMP pruning.

• We demonstrate the effectiveness of EMP across diverse architectures and pruning criteria,
suggesting it may be combined with existing criteria to achieve strong performance without
additional tuning.

2 RELATED WORK

2.1 PRUNING CRITERIA

Optimal Brain Damage (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi et al., 1993) esti-
mate the loss increase caused by removing a parameter through second order approximations, and
thereby prioritize removals that minimally perturb the objective. Magnitude based heuristics (Han
et al., 2016) emerged as a simple and robust baseline in practice and were integrated into end to end
compression pipelines that combine pruning with quantization and entropy coding. Empirical study
(Gale et al., 2019) confirmed that magnitude-based criteria remain competitive across architectures
when combined with careful scheduling and calibration.

Post-training pruning, which is particularly attractive for LLMs due to the prohibitive cost of retrain-
ing from scratch, has recently focused on simple but highly scalable criteria. SparseGPT (Frantar
& Alistarh, 2023) performs one shot pruning with local least squares reconstruction to control the
induced error in each block and achieves strong perplexity at high sparsity without prolonged fine
tuning. Wanda (Sun et al., 2023) introduces an activation-aware magnitude score that multiplies
absolute weights by a norm of the corresponding activation statistics, thereby adapting the criterion
to the data distribution seen at inference. These approaches retain the practical appeal of magnitude-
based rules while injecting task awareness through reconstruction or activation weighting.

2.2 WHAT TO PRUNE

Unstructured pruning (Han et al., 2016; Gale et al., 2019) removes individual weights and maxi-
mizes flexibility in shaping sparsity patterns, while structured pruning removes entire computational
units and thereby preserves dense tensor shapes that map efficiently to commodity accelerators.
Representative methods in CNNs target filters (Li et al., 2017; He et al., 2019), channels (Luo et al.,
2017), or neurons using criteria based on magnitude, batch normalization scaling factors (Liu et al.,
2017), or Taylor approximations of the loss (Molchanov et al., 2017). In Transformer architectures,
structured pruning often targets attention heads and intermediate feed forward channels. Empirical
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analyses showed that many heads are redundant for downstream tasks and can be excised with lim-
ited effect (Michel et al., 2019; Voita et al., 2019), while more recent large language model pipelines
integrate structured removal of heads, MLP channels, or even layers with light recovery to obtain
compact models amenable to further distillation or continued pretraining (Ma et al., 2023; Xia et al.,
2024).

Semi-structured pruning strikes a compromise between irregular flexibility and hardware friendli-
ness by enforcing local patterns such as N : M -sparsity within rows or columns, which aligns with
sparse tensor core primitives on modern GPUs. Learning and representing such patterns efficiently
has been an active area of systems and algorithms research (Zhou et al., 2021; Castro et al., 2023).
In practice, the choice among unstructured, structured, and semi-structured targets is driven by the
deployment stack: when wall clock latency and throughput are paramount, structured or N : M -
patterns commonly yield more predictable gains (Gale et al., 2019; Cheng et al., 2024).

3 PRELIMINARY

In this section, we review the relationship between the sparsity and the model sharpness given
by (Zhang et al., 2025, Lemma 3.5), appearing here as Lemma 1.

Let ŷ = f(θ, x) denote a well-trained dense deep neural network with weights θ∗ ∈ RN and
empirical loss L(θ∗). A pruned network derived from the dense network, whose weight is given by
θk = θ∗⊙M , where M is a binary mask matrix with

∥∥M∥∥
0
= k and⊙ is entrywise multiplication.

Then the pruning ratio ρ is defined as ρ ≜ k/N .
Lemma 1. Given a well-trained neural network f(θ∗, x), let ϵ denote the loss difference, |L(θ∗)−
L(θk)|, between the dense network and its pruned version, and let H denote the Hessian matrix of
the loss function L with respect to the parameter, θ. Then,

ρ ≤ 1− 2ϵN∥∥θ∗ − θk
∥∥2
2
Tr(H) + 2ϵN

, (1)

where Tr(H) is the trace of the matrix H .

Using Lemma 1, an upper bound for the loss change ϵ between the dense network and the EMP-
pruned model is derived in Section 4.3, since EMP offers a built-in Neff -sparse threshold.

4 EFFECTIVE MODEL PRUNING

4.1 EFFECTIVE POPULATION SIZE AND THE GEOMETRY OF THE SIMPLEX

Fix N > 1. Let s ≜ (s1, . . . , sN ) be a vector of scores associated with a pruning object. Define the
normalized probability weight vector ω via

ωi ≜
|si|∑
i |si|

, i = 1, . . . , N. (2)

Then the effective population size Neff = Neff(ω) is defined as

Neff ≜

⌊
1∑
i ω

2
i

⌋
.

This section will focus on the geometric interpretation of Neff . Consider the standard (N − 1)-
simplex ∆ in the Euclidean space E = RN and the affine hyperplane Π it spans:

∆ ≜
{
ω ∈ RN

≥0 : ω⊤1N = 1
}
, Π ≜

{
ω ∈ RN : ω⊤1N = 1

}
. (3)

Thus, the vector ω constructed in equation 2 is a point of ∆. Since both ∆ and Neff are invariant
under coordinate permutations, for any point ω ∈ ∆ and any ν ∈ [N ], the coordinates can always
be permuted so that the first ν coordinates are the largest ν weights. More precisely, if SN is the
group of permutations on the set [N ] ≜ {1, . . . , N}, then

∆ =
⋃

τ∈SN
Lσ(∆̃), ∆̃ ≜ {ω ∈ ∆: ω1 ≥ ω2 ≥ · · · ≥ ωN} , (4)
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Figure 1: Illustration of the Bν balls (ν = 1, 2, 3, 4) and the simplex ∆. Note that ball B4 degener-
ates to the barycenter ζ[4].

where Lτ : E → E is the linear transformation satisfying Lτ (ei) = eτ(i) for all i ∈ [N ]. It
follows that Lτ (∆) = ∆ and Neff(ω) = Neff(Lτω) for all τ ∈ SN and all ω ∈ ∆. Note also that
Lσ(∆̃) and Lτ (∆̃) are geometric (N − 1)-dimensional simplices with disjoint interiors whenever
σ, τ ∈ SN and σ ̸= τ .

The effective mass seff may then be defined as follows: given s, compute ω = ω(s) and find σ ∈ SN

such that Lσ(ω) ∈ ∆̃; then
seff ≜

∑Neff

i=1 ωσ(i). (5)

It follows that seff = (Lτs)eff for all τ ∈ SN , which makes it sufficient to study seff restricted to
∆̃, where one has the simplified formula

ω ∈ ∆̃ =⇒ seff =
∑Neff

i=1 ωi. (6)

By its definition, the effective population size may be characterized as follows. Letting

Aν ≜
{
ω ∈ ∆̃ : ν ≤

∥∥ω∥∥−2
< ν + 1

}
, (7)

one observes that
Neff(ω) = ν ⇐⇒ ω ∈ Aν . (8)

Computing a lower bound on seff in terms of Neff is then tantamount to calculating,

inf
ω∈Aν

φν(ω), where φν(ω) ≜
∑ν

i=1 ωi = ν
〈
ω
∣∣ ζ[ν] 〉 , (9)

and where
ζJ ≜ 1

|J|
∑

i∈J ei, J ⊆ [N ], (10)

denotes the barycenter of the simplex conv({ei : i ∈ J}). The challenge is that this optimization
problem is not convex, due to the right-hand side inequality in equation 7. From the identity

a, b ∈ ∆ =⇒
〈
a− ζ[N ]

∣∣ b− ζ[N ]

〉
= ⟨a | b ⟩ − 1

N , (11)

it follows that Aν = ∆̃ ∩ (Bν −Bν+1), where

Bν ≜

{
ω ∈ Π:

∥∥ω − ζ[N ]

∥∥2 ≤ 1

ν
− 1

N

}
, (12)
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for ν ∈ [N ]. Thus, φν needs to be minimized over the intersection of ∆̃ with the spherical shell
in Π obtained by subtracting the ball Bν+1 from the ball Bν . Note that ζ[N ] is both the barycenter
of ∆ and a vertex of ∆̃. The vertices of ∆̃ are precisely all the ζ[j], j ∈ [N ], with ζ[1], . . . , ζ[ν−1]

lying outside Bν , ζ[ν] lying on its boundary, and ζ[ν+1], . . . , ζ[N ] lying in its interior. Each Bν is

a Euclidean ball in Π of radius rν ≜
√

1
ν −

1
N about ζ[N ], and it is tangent at ζ[ν] to the (ν − 1)-

dimensional face of ∆̃ given by conv
(
ζ[ν], ζ[ν−1], . . . , ζ[1]

)
.

One must pay attention to the boundary cases, though. If ν = 1, then Bν contains all of ∆̃ (and
hence all of ∆), while Bν+1 = B2 is the ball about ζ[N ] in Π “caged” by the edges of ∆. If ν = N ,
then Bν degenerates to a single point, ζ[N ]. Finally, for ν = N − 1, Bν is the ball about ζ[N ] in Π,
inscribed in ∆, see Figure 1.

4.2 LOWER BOUND ON THE EFFECTIVE MASS

With the observations of Section 4.1, a trivial lower bound on seff is obtained by observing that

inf
ω∈Aν

φν(ω) ≥ inf
ω∈∆̃

φν(ω) = min
i∈[N ]

ν
〈
ζ[i]
∣∣ ζ[ν] 〉 = ν

〈
ζ[N ]

∣∣ ζ[ν] 〉 = ν

N
, (13)

since expanding the minimization domain to ∆̃ makes the problem convex. In other words, one
always has seff ≥ Neff

N .

This paper deduces, and then relies on, a new sharp lower bound as indicated by the following
proposition.
Proposition 1. The following bounds hold for ν ∈ {1, N}:

inf
ω∈A1

φ1(ω) = φ1(ζ[2]) =
1

2
, inf

ω∈AN

φN (ω) = φN (ζ[N ]) = 1.

Otherwise, if 2 ≤ ν ≤ N − 1, setting the point pν ∈ ∆̃ as

pν = ζ[N ] +
rν+1

r1
(ζ[1] − ζ[N ]) ∈ Aν ,

the following equality holds:

inf
ω∈Aν

φν(ω) = φν(pν) =
ν

N
+

N − ν

N

√
N − ν − 1

(ν + 1)(N − 1)
. (14)

A proof of Proposition 1 covering the cases ν ≥ 2 is presented in Appendix A. Since we are
interested in regimes where Neff = ρN , N ≫ 1, the proof for the ν = 1 case is omitted.

In terms of seff , together with the observations of Section 4.1, Proposition 1 yields the following
theorem.
Theorem 2. For all non-zero s ∈ RN with 2 ≤ Neff < N , one has the inequality

1− seff ≤
N −Neff

N

(
1−

√
N −Neff − 1

(Neff + 1)(N − 1)

)
≈ N −Neff

N

(
1−

√
N −Neff

NNeff

)
. (15)

4.3 UPPER BOUND OF THE PERFORMANCE DROP BY USING EMP

A lower bound on the effective mass is essential for bounding the performance drop in the transition
from the dense well-trained network to a pruned network. In this section we study the case where the
score vector s coincides with the parameter vector, θ of the network (in other words, the parameters
are scored according to their magnitude). Invoking Lemma 1 with k = Neff , one has

ρ =
Neff

N
≤ 1− 2ϵN∥∥θ∗ − θk

∥∥2
2
Tr(H) + 2ϵN

. (16)

5
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Figure 2: Lower and upper bounds associated with pruning. The left panel illustrates the tight
lower bound of the effective mass seff as a function of Neff for N = 1000. The right panel depicts
the normalized upper bound of the loss change, ϵ/(

∥∥θ∗∥∥2
1
Tr(H)), showing its rapid decay as ρ

increases.

Rearranging equation 16 yields

ϵ ≤ 1− ρ

2Nρ
Tr(H)

∥∥θ∗ − θNeff
∥∥2
2
, (17)

where
∥∥θ∗ − θNeff

∥∥2
2

can be bounded by∥∥θ∗ − θNeff
∥∥2 ≤ ∥∥∥∥θ∥∥

1
(ω∗ − ωk)

∥∥2
≤
∥∥θ∗∥∥2

1

∥∥(1− seff)1[N−Neff ]

∥∥2
=
∥∥θ∗∥∥2

1
(1− seff)

2(N −Neff).

Hence, the asymptotic upper bound (as N →∞) of the loss change ϵ is

ϵ ≲
∥∥θ∗∥∥2

1
Tr(H)

(1− ρ)4

2ρ

(
1−

√
1− ρ

Nρ

)2

. (18)

The right panel of Figure 2 shows the relationship between ϵ/(
∥∥θ∗∥∥2

1
Tr(H)) and Neff . For N =

1000, the value of ϵ/(
∥∥θ∗∥∥2

1
Tr(H)) is almost equal to 0 if ρ > 0.2.

We test the performance of pruning Fully-Connected networks (FCs), AlexNet (Krizhevsky et al.,
2012) and VGG16 (Simonyan & Zisserman, 2015) on CIFAR10 (Krizhevsky, 2009), ResNet18 and
ResNet50 (He et al., 2016) on CIFAR100, and TinyImageNet (Krizhevsky & Hinton, 2024) with
Neff threshold in Section 5.1. As shown in Table 1, test outcomes indicate that the loss change
between the dense network and the corresponding EMP pruned network is almost 0 (ϵ ≤ 0.1).

Note that the upper bound on ϵ is derived under the weight-magnitude pruning criterion, and this
guarantee does not extend to alternative pruning strategies.1 In contrast, the lower bound on the
effective mass seff can be generalized across different criteria, thereby providing potential upper
bounds that quantify performance differences.

4.4 EMP ALGORITHM

We provide the pseudo-code of the proposed EMP approach in Algorithm 1. Given a score matrix
S, the probabilistic vector ω is derived by normalizing the absolute value |S| with its 1-norm. We

1Nevertheless, one expects that, for a known and sufficiently smooth scoring function, bounds on first and
second derivatives could be used for deriving principles analogous to the one reflected in equation 18.
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Algorithm 1 Effective Model Pruning
Require: Score matrix S ∈ RN , coefficient β > 0
Ensure: Binary mask M ∈ {0, 1}N

1: ω ← |S|/
∥∥S∥∥

1
▷ normalize the magnitude of score vector s

2: Neff ← ⌊1/
∑N

i ω2
i ⌋ ▷ get the effective number Neff

3: Neff ← clip
(
βNeff , 1, N

)
4: M ← 0N

5: π ← argTopK(|S|, Neff) ▷ indices of the Neff largest candidates in |S|
6: for i ∈ π do
7: Mi ← 1

8: return M

Table 1: Loss change between the dense models and the corresponding EMP pruned models.
Dataset Model Dense Loss Sparsity(%) EMP Loss ϵ

CIFAR10 FC5 1.2582 47.41 1.2384 0.0198
FC12 1.5123 42.89 1.4454 0.0669
AlexNet 0.4664 62.22 0.4286 0.0378
VGG16 0.4234 59.47 0.3184 0.1050

CIFAR100 ResNet18 0.8740 56.20 0.9287 0.0547
ResNet50 0.8586 54.74 0.8387 0.0199

TinyImagenet ResNet18 2.3028 53.37 2.2814 0.0214
ResNet50 2.0213 48.10 1.9853 0.0360

then compute the effective number Neff and multiply with the coefficient β, which is an option to
meet the specific sparse requirement in practical deployment. The optional coefficient β also helps
to verify the robustness of Neff by range β ∈ [0.5, 2.0]. Since we multiply a potential larger than 1
coefficient, the effective number Neff needs to be constrained within the range of [1, N ]. We then
build a binary mask M ∈ {0, 1}N . Set the i-th entry of M to 1 for every i ∈ π. The algorithm has
a time complexity of O(N logN).

5 EXPERIMENTS

In this section, we show that EMP can be applied to different network architectures, pruning cri-
teria, and pruning objects. Through different values of the coefficient β, we demonstrate Neff is a
robust effective pruning threshold across criterion and architectures. We examine the EMP method
across several model types: FCs and CNNs in Section 5.1, Kolmogorov-Arnold Networks (KAN)
in Section 5.2, and Large Language Models (LLMs) in Section 5.3. Featurewise pruning results are
presented in Section 5.4.

5.1 FC MODELS AND CNNS

We first confirm that the Neff threshold yields negligible loss differences ϵ between the dense model
and the EMP-pruned model. Specifically, we evaluate FC5, FC12, AlexNet, and VGG16 on CIFAR-
10, as well as ResNet18 and ResNet50 on CIFAR-100 and TinyImageNet, using the Neff threshold
in conjunction with the magnitude pruning criterion.

Table 1 demonstrates that the loss difference between the dense network and the EMP pruned net-
work are little (ϵ ≤ 0.105) across all tested models. To examine the robustness of Neff as a pruning
threshold across different model architectures, EMP is applied on FC2, FC5 and FC12 which are
trained on MNIST and Fashion-MNIST. We report the detail training setting in Appendix B.1.

Figure 3 indicates that β = 1 is the optimal setting across all tested models. For β < 1, the
model will prune more entries than Neff , which results model accuracy consistently declines across
all configurations. Conversely, for β > 1, accuracy plateaus, suggesting that any further increase

7
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Figure 3: Test Accuracy of EMP-pruned models across different values of β. We examine 6 discrete
values of β = {0.5, 0.75, 1, 1.25, 1.5, 2} to demonstrate that Neff is a robust pruning threshold
across different models and methods and tested on MNIST (solid) and Fashion-MNIST (dashed)
datasets.

would unnecessarily reduce model sparsity without yielding performance gains. To fit the specific
sparsity requirement for the hardware, β can still serve as an optional adjustment.

5.2 KAN

From Liu et al. (2025) Section 2.5.1, the incoming score for i-th node in l-th layer and the outgoing
score are defined as

Il,i = max
k

(
∥∥ϕl−1,i,k

∥∥
1
), Ol,i = max

j
(
∥∥ϕl+1,j,i

∥∥
1
).

In Liu et al. (2025), each node in the network is pruned when both the incoming score and the
outgoing score fall below a predefined threshold θ. Instead of this predefined hyperparameter θ, we
combine EMP with the criterion s = min{Il,i, Ol,i} and preserve the nodes with highest Neff scores
entries per layer.

We performed numerical experiments using a KAN network with the initial width [28× 28, 64, 10]
on the MNIST dataset. After training for 10 epoches the validation loss reached 0.0923 with a
validation accuracy of 97.15%. By applying EMP to KAN, the network structure changed to [28×
28, 47, 10] with the validation loss increasing to 0.1810 and accuracy dropping to 94.36%.

5.3 LLMS

In this subsection, following the experimental setup in Sun et al. (2024), we evaluate LLama (Tou-
vron et al., 2023a) and LLama-2 (Touvron et al., 2023b) model families’ perplexity (PPL) on Wiki-
text and zero-shot accuracy across 7 sub-tasks. We examine the models under the pruning criterion
magnitude, Wanda and the corresponding criterion composed with EMP: EMP-magnitude and EMP-
Wanda. We show the average sparsity for EMP methods, the average PPL change and the average
accuracy change for all 7 models in Table 2. The detail sparsity and PPL for each model and the
detail accuracy of each task is shown in Appendix B.

From Table 2, the EMP based methods are able to perform a comparable performance with the
dense network. Notably, the EMP-magnitude method reduced the PPL and increased the accuracy
compared with the fixed sparsity magnitude method, in the cost of lower sparsity.

5.4 FEATUREWISE EFFECTIVE PRUNING

In this section, we show that EMP can also be applied to features, by yielding a pruned feature with
almost the same as the original one. We apply EMP to an RGB image by processing each channel
(R, G, B) independently. For a given channel, we defined the score matrix s ≜ Xc − µc, where Xc

denotes the pixel values of channel c ∈ {R,G,B}, and µc is the corresponding channel mean. Two
EMP-based pruning strategies were considered: EMP Global Magnitude and EMP Patch Magnitude.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: EMP magnitude pruning on an RGB image. Left: Orig-
inal image (Figure Credit: https://www.pexels.com/photo/
scenic-view-of-goreme-in-cappadocia-turkey-34012268/) Middle: EMP
global magnitude pruning applied independently to each RGB channel. Right: patchwise EMP
magnitiude pruning with local EMP applied on non-overlapping 4 × 4 patches. The global method
retains PSNR = 29.4dB and SSIM = 0.912 at sparsity 0.267, while the patchwise method
achieves higher fidelity (PSNR = 38.3dB, SSIM = 0.991) at increased sparsity 0.323.

Table 2: Neff is an adaptive threshold for different criterion with different models. However, it
yields near-constant sparsity within a method (std ≤ 0.33). The EMP based methods, keeping the
performance change small across methods, by utilizing the threshold Neff , which reflects a different
sparsity for different methods.

Method Avg Sparity(%) Std Avg ∆PPL Avg ∆Acc.(%)

Wanda 50.00 0.00 +0.799 -1.40
Magnitude 50.00 0.00 +2.982 -2.60
EMP-Wanda 40.47 0.33 +0.678 -1.50
EMP-Magnitude 36.63 0.04 +0.752 -0.93

EMP Global Magnitude uses the score matrix s over the entire channel, and pruning was performed
at the global scale, while EMP Patch Magnitude partitions the image into 4 × 4 non-overlapping
patches, and EMP pruning was applied independently within each patch. After pruning, we restored
the mean by adding µc back to each channel, followed by concatenation of the R, G, and B channels
to reconstruct the pruned image.

To quantify the quality of the pruned image, we measured sparsity, structural similarity index
(SSIM), and peak signal-to-noise ratio (PSNR) between the original and pruned images. The re-
sults are summarized in Fig 4.

6 CONCLUSION

In this paper, we developed a universal pruning threshold Neff , which is agnostic to the scoring crite-
rion, the network architecture, and the pruning paradigm. We show the theoretical tight lower bound
for the preserved mass seff through the simplex geometry. With the support of the lower bound of
seff , we derived the upper bound for model loss change ϵ between the dense model and the EMP
pruned model. In the experiments, we show that EMP will reach a 0 loss change between the dense
network and the pruned network, with different network architectures when using the magnitude
criterion. By examining the coefficient β with 6 numbers from 0.5 to 2, we verified the effective
number Neff is the optimal setting. We show EMP can be paired with different pruning criterion,
even feature level image pixels. In LLM, we examinate the pruning performance of the LLama and
LLama-2 model familes with the magnitude, wanda and the corresponding EMP criterions. The re-
sults indicate that EMP trades sparsity for pruned model performance, which is shown significantly
in the comparison between the magnitude method and EMP-magnitude method.
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7 REPRODUCIBILITY STATEMENT

All the experiments in this paper are reproducible. The code can be found in the
supplementary materials and in this url: https://anonymous.4open.science/r/
Effective-model-pruning-F1C3
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A PROOF OF PROPOSITION 1

Proof. For ν = N , the result is trivial because Aν is a single point. Now assume 1 < ν < N . Let
ω ∈ ∆̃ be fixed. Clearly, pν minimizes φν along the interval [ζ[1], ζ[N ]] (note that this interval is the
longest edge of ∆̃). Therefore, without loss of generality, we may assume ω /∈ [ζ[1], ζ[N ]]. Then,
there exist indices 1 < i ≤ ν and ν < j ≤ N such that ωi > ωj . Among the pairs (i, j) satisfying
this condition, select the one with smallest j− i and smallest j. We donote this pair by i = i(ω) and
j = j(ω). Let

Hω = {x ∈ RN :
〈
ζ[N ] |x

〉
= 0, ⟨ω |x ⟩ ≥ 0}.

It follows that Hω is contained in the tangent space to ∆̃, as well as∥∥ω + ϵx
∥∥ ≥ ∥∥ω∥∥ (19)

for every ϵ > 0.

We construct a vector x ∈ Hω as

x1 := 1, xi := t, xj := −(1 + t), and xk := 0 for k ̸= 1, i, j,

where

t =
ωj − ω1

ωi − ωj
≤ −1, (20)

because ω1 ≥ ωi > ωj ≥ ωN . Also, note that x is orthogonal to ζ[N ], implying that it is in the
tangent space to the simplex ∆. Furthermore, by the choice of the indices i, j, there exists ϵ > 0
small enough that the ordering among the weights is preserved upon adding ϵx to ω, and therefore
ω + ϵx ∈ ∆̃.

Consider the derivative of φν at ω in the direction of x:

Dφν

∣∣
ω
x = νζ[ν]

⊤x = (1 + t) ≤ 0.

The function φν is linear. Therefore, setting ϵ1 := max{ϵ > 0 : ω + ϵx ∈ ∆̃} gives rise to a
point ω1 := ω + ϵ1x with φν(ω

1) < φν(ω) and with the property that either ω1 ∈ [ζ[1], ζ[N ]] or
j(ω1) − i(ω1) < j(ω) − i(ω). Therefore, the process of augmenting ω into ω1 may be repeated at
most j − i times, generating a sequence of vectors ω1, . . . , ωk with k ≤ j − i and ωk ∈ [ζ[1], ζ[N ]],
and such that φν(ω) > φν(ω

1) > . . . > φν(ω
k). Since ωk ∈ [ζ[1], ζ[N ]], we finally have φν(ω

k) ≥
φν(pν) (with equality only if ω ̸= pν in the first place), as

∥∥ωk

∥∥ ≥ ∥∥pν∥∥.

Given there exist such a point pν , let the vector u represent the direction from ζN point to ζ[1] as

u =

[
N − 1

N
,− 1

N
, . . . ,− 1

N

]
.

Then the coordinate of pν is

pν =c+ rν+1
u∥∥u∥∥

=


1
N + 1

N

√
(N−1)(N−ν−1)

ν+1

1
N (1−

√
N−ν−1

(N−1)(ν+1) )

. . .
1
N (1−

√
N−ν−1

(N−1)(ν+1) )


⊤

and the one-norm of the projection Tν(pν) is

φν(ω) =
∥∥Tν(pν)

∥∥
1
=

ν

N
+

N − ν

N

√
N − ν − 1

(ν + 1)(N − 1)
.

The proof is now complete.
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Table 3: Network structure of FC models
Model Layer Width

FC2 100, 10
FC5 1000, 600, 300, 100, 10
FC12 1000, 900, 800, 750, 700, 650, 600, 500, 400, 200, 100, 10

B EXPERIMENT DETAILS

In this section, we provide the experimental details corresponding to Section 5. To further demon-
strate that EMP is a context-agnostic pruning method, we additionally evaluate loss change and
gradient saliency pruning mehtods on VGG16.

B.1 TRAINING DETAILS

This section specifies the training configures of all the dense modeles used in this paper. We report
dataset, architecture, optimizer, schedule, and pruning settings precisely.

Datasets and preprocessing. We use the standard training and test splits of MNIST, FashionM-
NIST, CIFAR-10, CIFAR-100, and TinyImageNet. Images are resized to the model’s declared input
size: 28 for MNIST/FashionMNIST, 32 for most CIFAR models, 224 for AlexNet (by upsampling),
and 64 for TinyImageNet.

Architectures. Fully connected baselines are FC2, FC5, and FC12 (Table 3). For CNNs, we use
AlexNet and VGG16 on CIFAR-10. For CIFAR-100 and Tiny ImageNet we use ResNet-18/50.

Optimization. Unless stated, batch size is 128 and epochs are 200. Optimizers and hyperparame-
ters follow the configuration dictionary:

• MNIST/FashionMNIST (FC2/5/12): Adam, learning rate 10−4, no cosine schedule, no
warmup, weight decay 0; FC2/5 trained for 5 epochs and FC12 for 10 epochs.

• CIFAR-10: FC5/FC12 with SGD, learning rate 0.01, no cosine schedule, no warmup,
weight decay 0; VGG16 and AlexNet with SGD, learning rate 0.01, cosine schedule en-
abled, 5 warmup epochs, weight decay 5× 10−4.

• CIFAR-100: ResNet-18/50 with SGD, learning rate 0.1, cosine schedule, 5 warmup
epochs, weight decay 5× 10−4.

• Tiny ImageNet: ResNet-18/50 with SGD, learning rate 0.01, cosine schedule, 5 warmup
epochs, weight decay 5× 10−4.

SGD uses momentum 0.9. Adam uses its standard defaults unless otherwise noted.

Learning-rate schedule. When cosine is enabled with warmup W , the step-t learning rate for
total T epochs is

lr(t) =

{
lr0 · t

W , 0 ≤ t < W,

lr0 · 12
(
1 + cos

(
π t−W

T−W

))
, W ≤ t ≤ T.

Table 4 reports the detailed pruning results of EMP with β = 1, along with comparisons to their
corresponding dense models.

B.2 LLM

Meta LLama and LLama-2 checkpoints are from HuggingFace Hub. We load the pretrained, untuned
weights and tokenizer; no fine-tuning or gradient updates occur. We run inference in bfloat16 with
device map set to auto across 4× NVIDIA B200 GPUs.
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Table 4: Pruning results of FC models at β = 1 on MNIST and Fashion-MNIST.

Dataset Model Dense Acc. (%) Prune type Acc. (%) Sparsity (%) ∆ Acc. (%)
MNIST fc2 93.89 block 93.39 34.13 -0.50

93.89 global 93.78 37.19 -0.11
fc5 97.35 block 97.31 28.69 -0.04

97.35 global 97.31 29.56 -0.04
fc12 97.07 block 96.95 27.71 -0.12

97.07 global 96.96 28.32 -0.11
F-MNIST fc2 83.93 block 83.17 33.86 -0.76

83.93 global 83.71 36.72 -0.22
fc5 84.57 block 84.65 28.90 +0.08

84.57 global 84.84 29.63 +0.27
fc12 86.97 block 86.87 27.58 -0.10

86.97 global 86.68 28.16 -0.29

The detail of the sparsity, PPL, and mean accruacy across 7 subtasks are reported in Table 5. The
detail accuracy for different tasks are reported in Table 6 for the LLama model family and Table 7
for the LLama-2 family models.

B.3 ADDITIONAL EMP EXPERIMENTS

We evaluate the effectiveness of the Neff threshold on a VGG16 model trained on CIFAR-10. Three
pruning criteria are considered: magnitude pruning, loss-change (Taylor) pruning, and gradient
saliency pruning. We report accuracy, achieved sparsity, and FLOPs after pruning in Table 8.

For magnitude pruning Neff threshold yields a high sparsity regime with minimal accuracy drop,
while for sensitivity-based criteria it trades a very low sparsity with the model performance.
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Table 5: Detail perplexity and 7-task mean accuracy for LLama and LLama-2 families pruning
model by Wanda, magnitude, EMP-Wanda, and EMP-magnitude.

Model Method Sparsity (%) PPL ∆PPL Mean Acc. (%) ∆Acc (pp)

LLaMA 7B Dense 0.00 5.679 +0.000 51.10 +0.00
Wanda 50.00 6.644 +0.965 49.48 -1.62
Magnitude 50.00 11.002 +5.323 48.42 -2.68
EMP-Wanda 40.60 6.362 +0.683 50.34 -0.76
EMP-Magnitude 36.66 6.904 +1.225 51.11 +0.01

LLaMA 13B Dense 0.00 5.090 +0.000 53.60 +0.00
Wanda 50.00 5.836 +0.746 52.00 -1.60
Magnitude 50.00 11.587 +6.497 49.25 -4.35
EMP-Wanda 40.68 5.907 +0.817 52.74 -0.86
EMP-Magnitude 36.58 6.666 +1.576 52.02 -1.58

LLaMA 30B Dense 0.00 4.101 +0.000 54.84 +0.00
Wanda 50.00 4.890 +0.789 54.16 -0.68
Magnitude 50.00 5.553 +1.452 53.57 -1.27
EMP-Wanda 40.18 4.687 +0.586 52.90 -1.94
EMP-Magnitude 36.60 4.511 +0.410 54.82 -0.02

LLaMA 65B Dense 0.00 3.531 +0.000 59.28 +0.00
Wanda 50.00 4.267 +0.736 57.40 -1.88
Magnitude 50.00 4.724 +1.193 55.83 -3.45
EMP-Wanda 39.99 4.060 +0.529 57.08 -2.20
EMP-Magnitude 36.61 3.865 +0.334 56.95 -2.33

LLaMA-2 7B Dense 0.00 5.470 +0.000 51.59 +0.00
Wanda 50.00 6.410 +0.940 50.27 -1.32
Magnitude 50.00 9.712 +4.242 48.52 -3.07
EMP-Wanda 41.07 6.513 +1.043 49.78 -1.81
EMP-Magnitude 36.70 6.561 +1.091 51.16 -0.43

LLaMA-2 13B Dense 0.00 4.881 +0.000 53.64 +0.00
Wanda 50.00 5.591 +0.710 52.12 -1.52
Magnitude 50.00 5.850 +0.969 52.59 -1.05
EMP-Wanda 40.48 5.468 +0.587 51.96 -1.68
EMP-Magnitude 36.62 5.162 +0.281 52.93 -0.71

LLaMA-2 70B Dense 0.00 3.319 +0.000 60.00 +0.00
Wanda 50.00 4.026 +0.707 58.81 -1.19
Magnitude 50.00 4.514 +1.195 57.70 -2.30
EMP-Wanda 40.32 3.821 +0.502 58.74 -1.26
EMP-Magnitude 36.66 3.662 +0.343 58.57 -1.43
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Table 6: Detailed zero-shot accuracy across 7 tasks (LLaMA).
Model Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

LLaMA Dense 69.63 53.07 54.25 49.17 67.05 38.74 25.80 51.10
7B Wanda 70.24 52.71 51.12 50.67 62.25 35.75 23.60 49.48

Magnitude 67.25 52.71 48.95 50.04 60.73 34.64 24.60 48.42
EMP-Wanda 72.05 53.07 52.59 48.62 64.86 37.63 23.60 50.34
EMP-Magnitude 72.81 53.43 52.94 49.41 65.32 37.46 26.40 51.11

LLaMA Dense 66.36 54.51 57.46 48.07 74.33 43.86 30.60 53.60
13B Wanda 68.32 53.07 54.87 47.83 70.24 40.87 28.80 52.00

Magnitude 65.57 51.99 49.47 49.64 62.54 36.52 29.00 49.25
EMP-Wanda 68.20 57.04 55.93 47.75 69.28 41.38 29.60 52.74
EMP-Magnitude 65.84 53.07 54.95 47.99 70.37 42.32 29.60 52.02

LLaMA Dense 66.91 53.79 60.75 49.64 75.08 46.93 30.80 54.84
30B Wanda 68.99 54.51 58.89 49.96 72.85 44.28 29.60 54.16

Magnitude 70.46 52.35 56.40 50.20 71.93 43.43 30.20 53.57
EMP-Wanda 67.25 52.35 59.31 50.36 71.00 42.66 27.40 52.90
EMP-Magnitude 67.68 53.43 59.85 50.28 74.58 45.90 32.00 54.82

LLaMA Dense 80.31 66.79 62.32 50.20 74.87 46.67 33.80 59.28
65B Wanda 80.15 60.29 60.49 50.43 74.16 45.31 31.00 57.40

Magnitude 81.31 52.71 59.89 50.91 71.93 44.28 29.80 55.83
EMP-Wanda 79.88 61.73 60.46 50.20 72.39 45.90 29.00 57.08
EMP-Magnitude 81.04 54.51 61.81 50.36 73.70 46.25 31.00 56.95

Table 7: Detailed zero-shot accuracy across 7 tasks (LLaMA-2).
Model Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

LLaMA-2 Dense 66.57 52.71 54.56 50.43 69.23 39.85 27.80 51.59
7B Wanda 72.39 52.71 51.12 49.57 65.74 36.18 24.20 50.27

Magnitude 64.86 53.79 50.49 49.49 62.79 34.04 24.20 48.52
EMP-Wanda 68.72 53.07 51.32 49.80 65.66 37.12 22.80 49.78
EMP-Magnitude 69.79 53.07 54.35 48.86 68.98 38.65 24.40 51.16

LLaMA-2 Dense 66.82 52.71 57.54 48.54 73.32 45.39 31.20 53.64
13B Wanda 66.06 52.71 55.13 49.57 70.79 41.38 29.20 52.12

Magnitude 67.31 52.71 55.92 50.20 70.29 41.13 30.60 52.59
EMP-Wanda 63.55 52.71 56.05 49.49 70.41 42.49 29.00 51.96
EMP-Magnitude 65.60 52.71 57.57 49.09 72.31 42.83 30.40 52.93

LLaMA-2 Dense 77.55 64.98 62.81 51.30 77.44 50.34 35.60 60.00
70B Wanda 81.38 60.65 61.14 50.99 75.63 48.29 33.60 58.81

Magnitude 82.45 57.76 60.15 52.09 73.36 45.90 32.20 57.70
EMP-Wanda 75.81 65.70 61.91 50.43 74.75 48.21 34.40 58.74
EMP-Magnitude 79.42 56.32 62.17 51.30 77.23 48.55 35.00 58.57

Table 8: Comparison of pruning criteria on VGG16 (CIFAR-10). Dense baseline: 91.12% accuracy,
626M FLOPs. Neff threshold uses β = 1.0.

Method Acc.(%) Sparsity(%) FLOPs
Dense 91.12 0.0 626M
EMP-Magnitude 90.98 59.5 397M
EMP-Loss change 91.12 2.1 623M
EMP-Saliency 90.97 25.7 579M
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Table 9: Pruning results on VGG16 trained on CIFAR-10. EMP pruning using β ∈ {0.8, 1.0, 1.2}.
Criterion Pruning Scheme Acc.(%) Sparsity (%) FLOPs

Magnitude

Original (50%) 90.99 50.0 436.7M
Original (70%) 90.64 70.0 348.7M
Original (90%) 69.08 90.0 221.0M
Original (95%) 10.00 95.0 157.9M
EMP (β = 0.8) 90.80 67.6 360.4M
EMP (β = 1.0) 90.98 59.5 396.9M
EMP (β = 1.2) 91.09 51.4 431.1M

Loss Change (Taylor)

Original (50%) 88.14 50.0 490.8M
Original (70%) 49.86 70.0 410.1M
Original (90%) 10.00 90.0 261.0M
Original (95%) 10.00 95.0 169.8M
EMP (β = 0.8) 91.12 2.1 623.1M
EMP (β = 1.0) 91.12 2.1 623.1M
EMP (β = 1.2) 91.14 2.3 622.8M

Gradient Saliency

Original (50%) 88.08 50.0 514.1M
Original (70%) 45.19 70.0 449.6M
Original (90%) 10.00 90.0 306.4M
Original (95%) 10.00 95.0 189.9M
EMP (β = 0.8) 91.10 20.6 590.7M
EMP (β = 1.0) 90.97 25.7 578.8M
EMP (β = 1.2) 90.82 30.9 566.2M
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