

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFECTIVE MODEL PRUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce Effective Model Pruning (EMP), a context-agnostic, parameter-free rule addressing a fundamental question about pruning: how many entries to keep. EMP does not prescribe how to score the parameters or prune the models; instead, it supplies a universal adaptive threshold that can be applied to any pruning criterion: weight magnitude, attention score, KAN importance score, or even feature-level signals such as image pixel, and used on structural parts or weights of the models. Given any score vector s , EMP maps s to a built-in effective number N_{eff} which is inspired by the Inverse Simpson index of contributors. Retaining the N_{eff} highest scoring entries and zeroing the remainder yields sparse models with performance comparable to the original dense networks across MLPs, CNNs, Transformers/LLMs, and KAN, in our experiments. By leveraging the geometry of the simplex, we derive a tight lower bound on the preserved mass s_{eff} (the sum of retained scores) over the corresponding ordered probability simplex associated with the score vector s . We further verify the effectiveness of N_{eff} by pruning the model with a scaled threshold βN_{eff} across a variety of criteria and models. Experiments suggest that the default $\beta = 1$ yields a robust threshold for model pruning while $\beta \neq 1$ still serves as an optional adjustment to meet specific sparsity requirements.

1 INTRODUCTION

Deep Neural Networks have achieved remarkable results across numerous domains such as computer vision (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et al., 2021), natural language processing (Vaswani et al., 2017; Devlin et al., 2019), robotics (Zitkovich et al., 2024), and generative artificial intelligence (Ho et al., 2020), through the deployment of increasingly large and complex models. While this growth has led to more accurate and generalizable models, it also introduces significant deployment challenges on edge devices due to high demands on computation, memory, and energy. Lack of enough resources is particularly evident when deploying large language models (LLMs) (Touvron et al., 2023a;b; Bai et al., 2023) and other over-parameterized models (Liu et al., 2023) in latency-sensitive or resource-constrained environments.

To address deployment challenges of such over-parameterized models, pruning has emerged as a fundamental and widely studied technique (Frankle & Carbin, 2019; Han et al., 2016; Cheng et al., 2024). Pruning has developed a rich taxonomy, typically categorized along three dimensions: what to prune (unstructured weights (Han et al., 2016), structured filters/channels (Li et al., 2017; Liu et al., 2017), or attention heads (Michel et al., 2019; Voita et al., 2019)), when to prune (before (Lee et al., 2019; Wang et al., 2020), during (Louizos et al., 2018; Evci et al., 2020), or after training (Frantar & Alistarh, 2023; Sun et al., 2023)), and how to score parameters (e.g., by magnitude (Han et al., 2016), sensitivity (LeCun et al., 1990; Hassibi et al., 1993), or data-driven metrics (Molchanov et al., 2017)). Despite extensive research in model pruning, a critical and persistent question remains: given a score vector s derived from a pruning criterion, how many candidates should be retained?

The choice of sparsity budget is sensitive. An overly aggressive budget degrades model performance, while an overly conservative one forfeits potential efficiency gains. Current solutions remain unsatisfactory, as sparsity often relies on expensive iterative pruning procedures (Renda et al., 2020), manual or heuristic per-layer budgets, or hyperparameters that require careful tuning (Gale et al., 2019; Frantar & Alistarh, 2023). Recent work (Zhang et al., 2025) gives a sharp lower and upper bound for the pruning rate with specific change of loss tolerance ϵ .

In this paper, we develop Effective Model Pruning (EMP) as a new method to determine retention directly from the score distribution. EMP is a simple rule that automatically determines the effective number N_{eff} of candidates to retain. For any score vector s given by the criterion, EMP computes its effective number N_{eff} , inspired by the participation ratio in statistical physics and the inverse Simpson index in ecology (Mézard & Montanari, 2009; Laakso & Taagepera, 1979). This value N_{eff} intuitively represents the number of truly significant contributors. By keeping the top N_{eff} entries, EMP provides a simple computational criterion for deciding how many highest-scoring contributors to keep, in tandem with a tight theoretical lower bound on the retained mass, derived in Section 4.2.

EMP is a universal rule, agnostic of network architecture and pruning paradigm. It eliminates the need for manual budget scheduling and hyperparameter tuning, providing a versatile, robust and automatic pruning limit criterion. To validate the robustness of EMP, we examine the model’s performance across a diverse range of criteria and network structures by pruning the model’s entries by βN_{eff} across a range of scaling coefficients β . Empirical results demonstrate that models pruned by EMP consistently achieve competitive performance with their dense counterparts, underscoring its effectiveness and generality.

Our contributions are as follows:

- We develop Effective Model Pruning, a simple rule to convert any score vector s into a principled sparsity threshold N_{eff} , supported by a theoretically guaranteed lower bound on the preserved mass s_{eff} .
- We deduce a lower bound for the loss change ϵ between dense model and the sparse model with EMP pruning.
- We demonstrate the effectiveness of EMP across diverse architectures and pruning criteria, suggesting it may be combined with existing criteria to achieve strong performance without additional tuning.

2 RELATED WORK

2.1 PRUNING CRITERIA

Optimal Brain Damage (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi et al., 1993) estimate the loss increase caused by removing a parameter through second order approximations, and thereby prioritize removals that minimally perturb the objective. Magnitude based heuristics (Han et al., 2016) emerged as a simple and robust baseline in practice and were integrated into end to end compression pipelines that combine pruning with quantization and entropy coding. Empirical study (Gale et al., 2019) confirmed that magnitude-based criteria remain competitive across architectures when combined with careful scheduling and calibration.

Post-training pruning, which is particularly attractive for LLMs due to the prohibitive cost of retraining from scratch, has recently focused on simple but highly scalable criteria. SparseGPT (Frantar & Alistarh, 2023) performs one shot pruning with local least squares reconstruction to control the induced error in each block and achieves strong perplexity at high sparsity without prolonged fine tuning. Wanda (Sun et al., 2023) introduces an activation-aware magnitude score that multiplies absolute weights by a norm of the corresponding activation statistics, thereby adapting the criterion to the data distribution seen at inference. These approaches retain the practical appeal of magnitude-based rules while injecting task awareness through reconstruction or activation weighting.

2.2 WHAT TO PRUNE

Unstructured pruning (Han et al., 2016; Gale et al., 2019) removes individual weights and maximizes flexibility in shaping sparsity patterns, while structured pruning removes entire computational units and thereby preserves dense tensor shapes that map efficiently to commodity accelerators. Representative methods in CNNs target filters (Li et al., 2017; He et al., 2019), channels (Luo et al., 2017), or neurons using criteria based on magnitude, batch normalization scaling factors (Liu et al., 2017), or Taylor approximations of the loss (Molchanov et al., 2017). In Transformer architectures, structured pruning often targets attention heads and intermediate feed forward channels. Empirical

108 analyses showed that many heads are redundant for downstream tasks and can be excised with limited effect (Michel et al., 2019; Voita et al., 2019), while more recent large language model pipelines
 109 integrate structured removal of heads, MLP channels, or even layers with light recovery to obtain
 110 compact models amenable to further distillation or continued pretraining (Ma et al., 2023; Xia et al.,
 111 2024).

112 Semi-structured pruning strikes a compromise between irregular flexibility and hardware friendliness
 113 by enforcing local patterns such as $N : M$ -sparsity within rows or columns, which aligns with
 114 sparse tensor core primitives on modern GPUs. Learning and representing such patterns efficiently
 115 has been an active area of systems and algorithms research (Zhou et al., 2021; Castro et al., 2023).
 116 In practice, the choice among unstructured, structured, and semi-structured targets is driven by the
 117 deployment stack: when wall clock latency and throughput are paramount, structured or $N : M$ -
 118 patterns commonly yield more predictable gains (Gale et al., 2019; Cheng et al., 2024).

121 3 PRELIMINARY

122 In this section, we review the relationship between the sparsity and the model sharpness given
 123 by (Zhang et al., 2025, Lemma 3.5), appearing here as Lemma 1.

124 Let $\hat{y} = f(\theta, x)$ denote a well-trained dense deep neural network with weights $\theta^* \in \mathbb{R}^N$ and
 125 empirical loss $L(\theta^*)$. A pruned network derived from the dense network, whose weight is given by
 126 $\theta^k = \theta^* \odot M$, where M is a binary mask matrix with $\|M\|_0 = k$ and \odot is entrywise multiplication.
 127 Then the pruning ratio ρ is defined as $\rho \triangleq k/N$.

128 **Lemma 1.** *Given a well-trained neural network $f(\theta^*, x)$, let ϵ denote the loss difference, $|L(\theta^*) -$
 129 $L(\theta^k)|$, between the dense network and its pruned version, and let H denote the Hessian matrix of
 130 the loss function L with respect to the parameter, θ . Then,*

$$131 \rho \leq 1 - \frac{2\epsilon N}{\|\theta^* - \theta^k\|_2^2 \text{Tr}(H) + 2\epsilon N}, \quad (1)$$

132 where $\text{Tr}(H)$ is the trace of the matrix H .

133 Using Lemma 1, an upper bound for the loss change ϵ between the dense network and the EMP-
 134 pruned model is derived in Section 4.3, since EMP offers a built-in N_{eff} -sparse threshold.

140 4 EFFECTIVE MODEL PRUNING

141 4.1 EFFECTIVE POPULATION SIZE AND THE GEOMETRY OF THE SIMPLEX

142 Fix $N > 1$. Let $s \triangleq (s_1, \dots, s_N)$ be a vector of scores associated with a pruning object. Define the
 143 normalized probability weight vector ω via

$$144 \omega_i \triangleq \frac{|s_i|}{\sum_i |s_i|}, \quad i = 1, \dots, N. \quad (2)$$

145 Then the effective population size $N_{\text{eff}} = N_{\text{eff}}(\omega)$ is defined as

$$146 N_{\text{eff}} \triangleq \left\lfloor \frac{1}{\sum_i \omega_i^2} \right\rfloor.$$

147 This section will focus on the geometric interpretation of N_{eff} . Consider the standard $(N - 1)$ -
 148 simplex Δ in the Euclidean space $E = \mathbb{R}^N$ and the affine hyperplane Π it spans:

$$149 \Delta \triangleq \{\omega \in \mathbb{R}_{\geq 0}^N : \omega^\top \mathbf{1}_N = 1\}, \quad \Pi \triangleq \{\omega \in \mathbb{R}^N : \omega^\top \mathbf{1}_N = 1\}. \quad (3)$$

150 Thus, the vector ω constructed in equation 2 is a point of Δ . Since both Δ and N_{eff} are invariant
 151 under coordinate permutations, for any point $\omega \in \Delta$ and any $\nu \in [N]$, the coordinates can always
 152 be permuted so that the first ν coordinates are the largest ν weights. More precisely, if \mathfrak{S}_N is the
 153 group of permutations on the set $[N] \triangleq \{1, \dots, N\}$, then

$$154 \Delta = \bigcup_{\tau \in \mathfrak{S}_N} L_\sigma(\tilde{\Delta}), \quad \tilde{\Delta} \triangleq \{\omega \in \Delta : \omega_1 \geq \omega_2 \geq \dots \geq \omega_N\}, \quad (4)$$

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

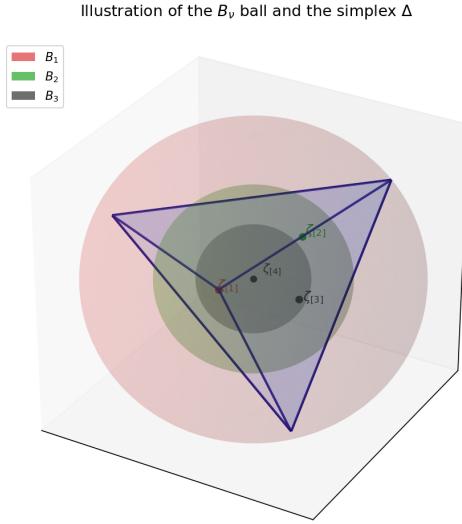


Figure 1: Illustration of the B_ν balls ($\nu = 1, 2, 3, 4$) and the simplex Δ . Note that ball B_4 degenerates to the barycenter $\zeta_{[4]}$.

where $L_\tau : E \rightarrow E$ is the linear transformation satisfying $L_\tau(\mathbf{e}_i) = \mathbf{e}_{\tau(i)}$ for all $i \in [N]$. It follows that $L_\tau(\Delta) = \Delta$ and $N_{\text{eff}}(\omega) = N_{\text{eff}}(L_\tau\omega)$ for all $\tau \in \mathfrak{S}_N$ and all $\omega \in \Delta$. Note also that $L_\sigma(\tilde{\Delta})$ and $L_\tau(\tilde{\Delta})$ are geometric $(N-1)$ -dimensional simplices with disjoint interiors whenever $\sigma, \tau \in \mathfrak{S}_N$ and $\sigma \neq \tau$.

The effective mass s_{eff} may then be defined as follows: given s , compute $\omega = \omega(s)$ and find $\sigma \in \mathfrak{S}_N$ such that $L_\sigma(\omega) \in \tilde{\Delta}$; then

$$s_{\text{eff}} \triangleq \sum_{i=1}^{N_{\text{eff}}} \omega_{\sigma(i)}. \quad (5)$$

It follows that $s_{\text{eff}} = (L_\tau s)_{\text{eff}}$ for all $\tau \in \mathfrak{S}_N$, which makes it sufficient to study s_{eff} restricted to $\tilde{\Delta}$, where one has the simplified formula

$$\omega \in \tilde{\Delta} \implies s_{\text{eff}} = \sum_{i=1}^{N_{\text{eff}}} \omega_i. \quad (6)$$

By its definition, the effective population size may be characterized as follows. Letting

$$A_\nu \triangleq \left\{ \omega \in \tilde{\Delta} : \nu \leq \|\omega\|^{-2} < \nu + 1 \right\}, \quad (7)$$

one observes that

$$N_{\text{eff}}(\omega) = \nu \iff \omega \in A_\nu. \quad (8)$$

Computing a lower bound on s_{eff} in terms of N_{eff} is then tantamount to calculating,

$$\inf_{\omega \in A_\nu} \varphi_\nu(\omega), \text{ where } \varphi_\nu(\omega) \triangleq \sum_{i=1}^\nu \omega_i = \nu \langle \omega \mid \zeta_{[\nu]} \rangle, \quad (9)$$

and where

$$\zeta_J \triangleq \frac{1}{|J|} \sum_{i \in J} \mathbf{e}_i, \quad J \subseteq [N], \quad (10)$$

denotes the barycenter of the simplex $\text{conv}(\{\mathbf{e}_i : i \in J\})$. The challenge is that this optimization problem is not convex, due to the right-hand side inequality in equation 7. From the identity

$$a, b \in \Delta \implies \langle a - \zeta_{[N]} \mid b - \zeta_{[N]} \rangle = \langle a \mid b \rangle - \frac{1}{N}, \quad (11)$$

it follows that $A_\nu = \tilde{\Delta} \cap (B_\nu - B_{\nu+1})$, where

$$B_\nu \triangleq \left\{ \omega \in \Pi : \|\omega - \zeta_{[N]}\|^2 \leq \frac{1}{\nu} - \frac{1}{N} \right\}, \quad (12)$$

216 for $\nu \in [N]$. Thus, φ_ν needs to be minimized over the intersection of $\tilde{\Delta}$ with the spherical shell
 217 in Π obtained by subtracting the ball $B_{\nu+1}$ from the ball B_ν . Note that $\zeta_{[N]}$ is both the barycenter
 218 of Δ and a vertex of $\tilde{\Delta}$. The vertices of $\tilde{\Delta}$ are precisely all the $\zeta_{[j]}$, $j \in [N]$, with $\zeta_{[1]}, \dots, \zeta_{[\nu-1]}$
 219 lying outside B_ν , $\zeta_{[\nu]}$ lying on its boundary, and $\zeta_{[\nu+1]}, \dots, \zeta_{[N]}$ lying in its interior. Each B_ν is
 220 a Euclidean ball in Π of radius $r_\nu \triangleq \sqrt{\frac{1}{\nu} - \frac{1}{N}}$ about $\zeta_{[N]}$, and it is tangent at $\zeta_{[\nu]}$ to the $(\nu - 1)$ -
 221 dimensional face of $\tilde{\Delta}$ given by $\text{conv}(\zeta_{[\nu]}, \zeta_{[\nu-1]}, \dots, \zeta_{[1]})$.
 222

223 One must pay attention to the boundary cases, though. If $\nu = 1$, then B_ν contains all of $\tilde{\Delta}$ (and
 224 hence all of Δ), while $B_{\nu+1} = B_2$ is the ball about $\zeta_{[N]}$ in Π “caged” by the edges of Δ . If $\nu = N$,
 225 then B_ν degenerates to a single point, $\zeta_{[N]}$. Finally, for $\nu = N - 1$, B_ν is the ball about $\zeta_{[N]}$ in Π ,
 226 inscribed in Δ , see Figure 1.
 227

228 4.2 LOWER BOUND ON THE EFFECTIVE MASS

230 With the observations of Section 4.1, a trivial lower bound on s_{eff} is obtained by observing that

$$232 \inf_{\omega \in A_\nu} \varphi_\nu(\omega) \geq \inf_{\omega \in \tilde{\Delta}} \varphi_\nu(\omega) = \min_{i \in [N]} \nu \langle \zeta_{[i]} \mid \zeta_{[\nu]} \rangle = \nu \langle \zeta_{[N]} \mid \zeta_{[\nu]} \rangle = \frac{\nu}{N}, \quad (13)$$

234 since expanding the minimization domain to $\tilde{\Delta}$ makes the problem convex. In other words, one
 235 always has $s_{\text{eff}} \geq \frac{N_{\text{eff}}}{N}$.
 236

237 This paper deduces, and then relies on, a new sharp lower bound as indicated by the following
 238 proposition.

239 **Proposition 1.** *The following bounds hold for $\nu \in \{1, N\}$:*

$$241 \inf_{\omega \in A_1} \varphi_1(\omega) = \varphi_1(\zeta_{[2]}) = \frac{1}{2}, \quad \inf_{\omega \in A_N} \varphi_N(\omega) = \varphi_N(\zeta_{[N]}) = 1.$$

243 Otherwise, if $2 \leq \nu \leq N - 1$, setting the point $p_\nu \in \tilde{\Delta}$ as

$$245 p_\nu = \zeta_{[N]} + \frac{r_{\nu+1}}{r_1} (\zeta_{[1]} - \zeta_{[N]}) \in \overline{A_\nu},$$

246 the following equality holds:

$$249 \inf_{\omega \in A_\nu} \varphi_\nu(\omega) = \varphi_\nu(p_\nu) = \frac{\nu}{N} + \frac{N - \nu}{N} \sqrt{\frac{N - \nu - 1}{(\nu + 1)(N - 1)}}. \quad (14)$$

251 A proof of Proposition 1 covering the cases $\nu \geq 2$ is presented in Appendix A. Since we are
 252 interested in regimes where $N_{\text{eff}} = \rho N$, $N \gg 1$, the proof for the $\nu = 1$ case is omitted.

254 In terms of s_{eff} , together with the observations of Section 4.1, Proposition 1 yields the following
 255 theorem.

256 **Theorem 2.** *For all non-zero $s \in \mathbb{R}^N$ with $2 \leq N_{\text{eff}} < N$, one has the inequality*

$$258 1 - s_{\text{eff}} \leq \frac{N - N_{\text{eff}}}{N} \left(1 - \sqrt{\frac{N - N_{\text{eff}} - 1}{(N_{\text{eff}} + 1)(N - 1)}} \right) \approx \frac{N - N_{\text{eff}}}{N} \left(1 - \sqrt{\frac{N - N_{\text{eff}}}{NN_{\text{eff}}}} \right). \quad (15)$$

262 4.3 UPPER BOUND OF THE PERFORMANCE DROP BY USING EMP

264 A lower bound on the effective mass is essential for bounding the performance drop in the transition
 265 from the dense well-trained network to a pruned network. In this section we study the case where the
 266 score vector s coincides with the parameter vector, θ of the network (in other words, the parameters
 267 are scored according to their magnitude). Invoking Lemma 1 with $k = N_{\text{eff}}$, one has

$$268 \rho = \frac{N_{\text{eff}}}{N} \leq 1 - \frac{2\epsilon N}{\|\theta^* - \theta^k\|_2^2 \text{Tr}(H) + 2\epsilon N}. \quad (16)$$

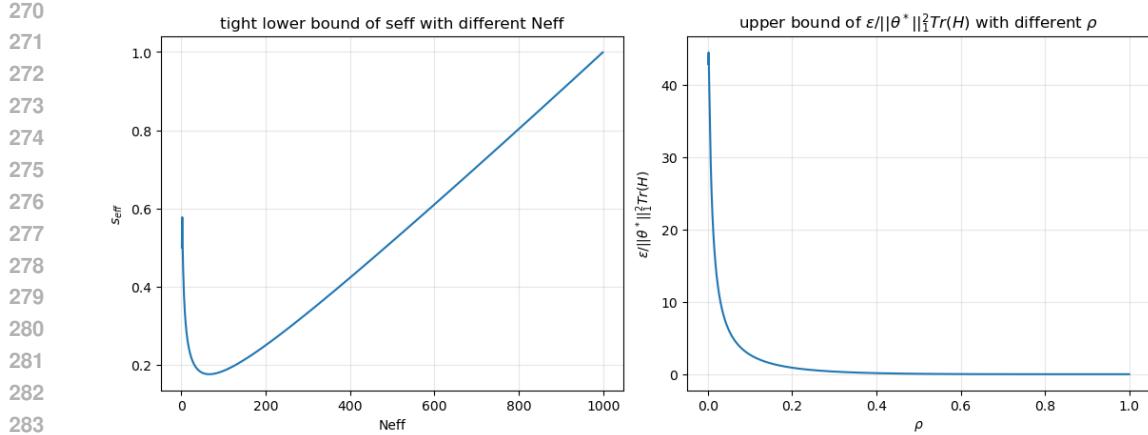


Figure 2: Lower and upper bounds associated with pruning. The left panel illustrates the tight lower bound of the effective mass s_{eff} as a function of N_{eff} for $N = 1000$. The right panel depicts the normalized upper bound of the loss change, $\epsilon/(\|\theta^*\|_1^2 \text{Tr}(H))$, showing its rapid decay as ρ increases.

Rearranging equation 16 yields

$$\epsilon \leq \frac{1-\rho}{2N\rho} \text{Tr}(H) \|\theta^* - \theta^{N_{eff}}\|_2^2, \quad (17)$$

where $\|\theta^* - \theta^{N_{eff}}\|_2^2$ can be bounded by

$$\begin{aligned} \|\theta^* - \theta^{N_{eff}}\|_2^2 &\leq \|\|\theta\|_1(\omega^* - \omega^k)\|_2^2 \\ &\leq \|\theta^*\|_1^2 \|(1 - s_{eff})\mathbf{1}_{[N - N_{eff}]}^T\|_2^2 \\ &= \|\theta^*\|_1^2 (1 - s_{eff})^2 (N - N_{eff}). \end{aligned}$$

Hence, the asymptotic upper bound (as $N \rightarrow \infty$) of the loss change ϵ is

$$\epsilon \lesssim \|\theta^*\|_1^2 \text{Tr}(H) \frac{(1-\rho)^4}{2\rho} \left(1 - \sqrt{\frac{1-\rho}{N\rho}}\right)^2. \quad (18)$$

The right panel of Figure 2 shows the relationship between $\epsilon/(\|\theta^*\|_1^2 \text{Tr}(H))$ and N_{eff} . For $N = 1000$, the value of $\epsilon/(\|\theta^*\|_1^2 \text{Tr}(H))$ is almost equal to 0 if $\rho > 0.2$.

We test the performance of pruning Fully-Connected networks (FCs), AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan & Zisserman, 2015) on CIFAR10 (Krizhevsky, 2009), ResNet18 and ResNet50 (He et al., 2016) on CIFAR100, and TinyImageNet (Krizhevsky & Hinton, 2024) with N_{eff} threshold in Section 5.1. As shown in Table 1, test outcomes indicate that the loss change between the dense network and the corresponding EMP pruned network is almost 0 ($\epsilon \leq 0.1$).

Note that the upper bound on ϵ is derived under the weight-magnitude pruning criterion, and this guarantee does not extend to alternative pruning strategies.¹ In contrast, the lower bound on the effective mass s_{eff} can be generalized across different criteria, thereby providing potential upper bounds that quantify performance differences.

4.4 EMP ALGORITHM

We provide the pseudo-code of the proposed EMP approach in Algorithm 1. Given a score matrix S , the probabilistic vector ω is derived by normalizing the absolute value $|S|$ with its 1-norm. We

¹Nevertheless, one expects that, for a known and sufficiently smooth scoring function, bounds on first and second derivatives could be used for deriving principles analogous to the one reflected in equation 18.

324	Algorithm 1 Effective Model Pruning
325	Require: Score matrix $S \in \mathbb{R}^N$, coefficient $\beta > 0$
326	Ensure: Binary mask $M \in \{0, 1\}^N$
327	1: $\omega \leftarrow S /\ S\ _1$ ▷ normalize the magnitude of score vector s
328	2: $N_{\text{eff}} \leftarrow \lfloor 1/\sum_i^N \omega_i^2 \rfloor$ ▷ get the effective number N_{eff}
329	3: $N_{\text{eff}} \leftarrow \text{clip}(\beta N_{\text{eff}}, 1, N)$
330	4: $M \leftarrow \mathbf{0}_N$
331	5: $\pi \leftarrow \text{argTopK}(S , N_{\text{eff}})$ ▷ indices of the N_{eff} largest candidates in S
332	6: for $i \in \pi$ do
333	7: $M_i \leftarrow 1$
334	8: return M
335	
336	

337 Table 1: Loss change between the dense models and the corresponding EMP pruned models.

Dataset	Model	Dense Loss	Sparsity(%)	EMP Loss	ϵ
CIFAR10	FC5	1.2582	47.41	1.2384	0.0198
	FC12	1.5123	42.89	1.4454	0.0669
	AlexNet	0.4664	62.22	0.4286	0.0378
	VGG16	0.4234	59.47	0.3184	0.1050
CIFAR100	ResNet18	0.8740	56.20	0.9287	0.0547
	ResNet50	0.8586	54.74	0.8387	0.0199
TinyImagenet	ResNet18	2.3028	53.37	2.2814	0.0214
	ResNet50	2.0213	48.10	1.9853	0.0360

348 then compute the effective number N_{eff} and multiply with the coefficient β , which is an option to
 349 meet the specific sparse requirement in practical deployment. The optional coefficient β also helps
 350 to verify the robustness of N_{eff} by range $\beta \in [0.5, 2.0]$. Since we multiply a potential larger than 1
 351 coefficient, the effective number N_{eff} needs to be constrained within the range of $[1, N]$. We then
 352 build a binary mask $M \in \{0, 1\}^N$. Set the i -th entry of M to 1 for every $i \in \pi$. The algorithm has
 353 a time complexity of $O(N \log N)$.
 354

5 EXPERIMENTS

356 In this section, we show that EMP can be applied to different network architectures, pruning cri-
 357 teria, and pruning objects. Through different values of the coefficient β , we demonstrate N_{eff} is a
 358 robust effective pruning threshold across criterion and architectures. We examine the EMP method
 359 across several model types: FCs and CNNs in Section 5.1, Kolmogorov-Arnold Networks (KAN)
 360 in Section 5.2, and Large Language Models (LLMs) in Section 5.3. Featurewise pruning results are
 361 presented in Section 5.4.

5.1 FC MODELS AND CNNS

362 We first confirm that the N_{eff} threshold yields negligible loss differences ϵ between the dense model
 363 and the EMP-pruned model. Specifically, we evaluate FC5, FC12, AlexNet, and VGG16 on CIFAR-
 364 10, as well as ResNet18 and ResNet50 on CIFAR-100 and TinyImageNet, using the N_{eff} threshold
 365 in conjunction with the magnitude pruning criterion.

366 Table 1 demonstrates that the loss difference between the dense network and the EMP pruned net-
 367 work are little ($\epsilon \leq 0.105$) across all tested models. To examine the robustness of N_{eff} as a pruning
 368 threshold across different model architectures, EMP is applied on FC2, FC5 and FC12 which are
 369 trained on MNIST and Fashion-MNIST. We report the detail training setting in Appendix B.1.

370 Figure 3 indicates that $\beta = 1$ is the optimal setting across all tested models. For $\beta < 1$, the
 371 model will prune more entries than N_{eff} , which results model accuracy consistently declines across
 372 all configurations. Conversely, for $\beta > 1$, accuracy plateaus, suggesting that any further increase

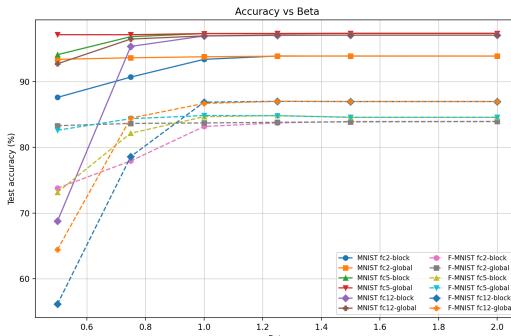


Figure 3: Test Accuracy of EMP-pruned models across different values of β . We examine 6 discrete values of $\beta = \{0.5, 0.75, 1, 1.25, 1.5, 2\}$ to demonstrate that N_{eff} is a robust pruning threshold across different models and methods and tested on MNIST (solid) and Fashion-MNIST (dashed) datasets.

would unnecessarily reduce model sparsity without yielding performance gains. To fit the specific sparsity requirement for the hardware, β can still serve as an optional adjustment.

5.2 KAN

From Liu et al. (2025) Section 2.5.1, the incoming score for i -th node in l -th layer and the outgoing score are defined as

$$I_{l,i} = \max_k (\|\phi_{l-1,i,k}\|_1), \quad O_{l,i} = \max_j (\|\phi_{l+1,j,i}\|_1).$$

In Liu et al. (2025), each node in the network is pruned when both the incoming score and the outgoing score fall below a predefined threshold θ . Instead of this predefined hyperparameter θ , we combine EMP with the criterion $s = \min\{I_{l,i}, O_{l,i}\}$ and preserve the nodes with highest N_{eff} scores entries per layer.

We performed numerical experiments using a KAN network with the initial width $[28 \times 28, 64, 10]$ on the MNIST dataset. After training for 10 epoches the validation loss reached 0.0923 with a validation accuracy of 97.15%. By applying EMP to KAN, the network structure changed to $[28 \times 28, 47, 10]$ with the validation loss increasing to 0.1810 and accuracy dropping to 94.36%.

5.3 LLMs

In this subsection, following the experimental setup in Sun et al. (2024), we evaluate LLama (Touvron et al., 2023a) and LLama-2 (Touvron et al., 2023b) model families’ perplexity (PPL) on Wiki-text and zero-shot accuracy across 7 sub-tasks. We examine the models under the pruning criterion magnitude, Wanda and the corresponding criterion composed with EMP: EMP-magnitude and EMP-Wanda. We show the average sparsity for EMP methods, the average PPL change and the average accuracy change for all 7 models in Table 2. The detail sparsity and PPL for each model and the detail accuracy of each task is shown in Appendix B.

From Table 2, the EMP based methods are able to perform a comparable performance with the dense network. Notably, the EMP-magnitude method reduced the PPL and increased the accuracy compared with the fixed sparsity magnitude method, in the cost of lower sparsity.

5.4 FEATUREWISE EFFECTIVE PRUNING

In this section, we show that EMP can also be applied to features, by yielding a pruned feature with almost the same as the original one. We apply EMP to an RGB image by processing each channel (R, G, B) independently. For a given channel, we defined the score matrix $s \triangleq X_c - \mu_c$, where X_c denotes the pixel values of channel $c \in \{R, G, B\}$, and μ_c is the corresponding channel mean. Two EMP-based pruning strategies were considered: EMP Global Magnitude and EMP Patch Magnitude.

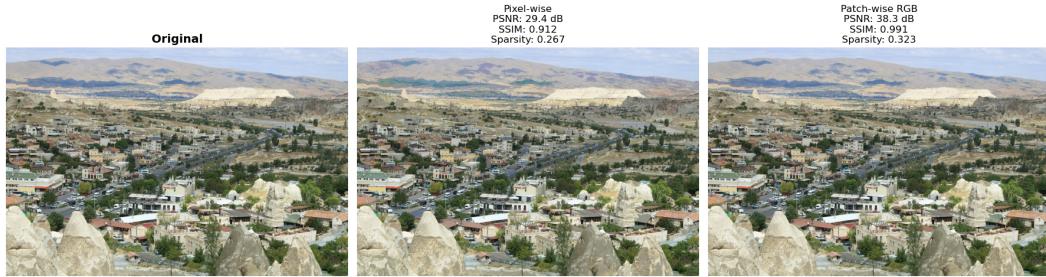


Figure 4: EMP magnitude pruning on an RGB image. Left: Original image (Figure Credit: <https://www.pexels.com/photo/scenic-view-of-goreme-in-cappadocia-turkey-34012268/>) Middle: EMP global magnitude pruning applied independently to each RGB channel. Right: patchwise EMP magnitude pruning with local EMP applied on non-overlapping 4×4 patches. The global method retains $PSNR = 29.4dB$ and $SSIM = 0.912$ at sparsity 0.267, while the patchwise method achieves higher fidelity ($PSNR = 38.3dB$, $SSIM = 0.991$) at increased sparsity 0.323.

Table 2: N_{eff} is an adaptive threshold for different criterion with different models. However, it yields near-constant sparsity within a method ($std \leq 0.33$). The EMP based methods, keeping the performance change small across methods, by utilizing the threshold N_{eff} , which reflects a different sparsity for different methods.

Method	Avg Sparsity(%)	Std	Avg ΔPPL	Avg $\Delta Acc.(\%)$
Wanda	50.00	0.00	+0.799	-1.40
Magnitude	50.00	0.00	+2.982	-2.60
EMP-Wanda	40.47	0.33	+0.678	-1.50
EMP-Magnitude	36.63	0.04	+0.752	-0.93

EMP Global Magnitude uses the score matrix s over the entire channel, and pruning was performed at the global scale, while EMP Patch Magnitude partitions the image into 4×4 non-overlapping patches, and EMP pruning was applied independently within each patch. After pruning, we restored the mean by adding μ_c back to each channel, followed by concatenation of the R, G, and B channels to reconstruct the pruned image.

To quantify the quality of the pruned image, we measured sparsity, structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) between the original and pruned images. The results are summarized in Fig 4.

6 CONCLUSION

In this paper, we developed a universal pruning threshold N_{eff} , which is agnostic to the scoring criterion, the network architecture, and the pruning paradigm. We show the theoretical tight lower bound for the preserved mass s_{eff} through the simplex geometry. With the support of the lower bound of s_{eff} , we derived the upper bound for model loss change ϵ between the dense model and the EMP pruned model. In the experiments, we show that EMP will reach a 0 loss change between the dense network and the pruned network, with different network architectures when using the magnitude criterion. By examining the coefficient β with 6 numbers from 0.5 to 2, we verified the effective number N_{eff} is the optimal setting. We show EMP can be paired with different pruning criterion, even feature level image pixels. In LLM, we examine the pruning performance of the Llama and Llama-2 model families with the magnitude, wanda and the corresponding EMP criterions. The results indicate that EMP trades sparsity for pruned model performance, which is shown significantly in the comparison between the magnitude method and EMP-magnitude method.

486 7 REPRODUCIBILITY STATEMENT
487488 All the experiments in this paper are reproducible. The code can be found in the
489 supplementary materials and in this url: <https://anonymous.4open.science/r/Effective-model-pruning-F1C3>
490
491492 REFERENCES
493494 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
495 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv*, 2023. URL <https://arxiv.org/abs/2309.16609>.
496
497498 Roberto L. Castro, Andrei Ivanov, Diego Andrade, Tal Ben-Nun, Basilio B. Fraguela, and Torsten
499 Hoefer. Venom: A vectorized n:m format for unleashing the power of sparse tensor cores.
500 In *Proceedings of the International Conference for High Performance Computing, Network-
501 ing, Storage and Analysis (SC'23)*, 2023. doi: 10.1145/3581784.3607087. URL <https://dl.acm.org/doi/10.1145/3581784.3607087>.
502
503504 Hongrong Cheng, Miao Zhang, and Javen Q. Shi. A survey on deep neural network pruning:
505 Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis
506 and Machine Intelligence*, 2024. doi: 10.1109/TPAMI.2024.3447085. URL <https://pubmed.ncbi.nlm.nih.gov/39278014/>.
507
508509 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
510 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of
the North American Chapter of the ACL: Human Language Technologies*, 2019. doi: 10.18653/
511 v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.
512
513514 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
515 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
516 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
517 tion at scale. In *International Conference on Learning Representations (ICLR)*, 2021. URL
518 <https://openreview.net/forum?id=YicbFdNTTy>.
519
520521 Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
522 Making all tickets winners. In *Proceedings of the 37th International Conference on Machine
523 Learning (ICML)*, PMLR Vol. 119, 2020. URL <https://proceedings.mlr.press/v119/evci20a.html>.
524
525526 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
527 networks. In *International Conference on Learning Representations (ICLR)*, 2019. URL <https://openreview.net/forum?id=rJl-b3RcF7>.
528
529530 Elias Frantar and Dan Alistarh. Sparsegpt: Massive lms can be accurately pruned in one-shot. In
531 *Proceedings of the 40th International Conference on Machine Learning (ICML)*, PMLR Vol. 202,
532 2023. URL <https://proceedings.mlr.press/v202/frantar23a.html>.
533
534535 Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. *arXiv*,
536 2019. URL <https://arxiv.org/abs/1902.09574>.
537
538539 Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing dnns with pruning,
540 trained quantization and huffman coding. In *International Conference on Learning Representa-
541 tions (ICLR) – OpenReview*, 2016. URL <https://openreview.net/>.
542
543544 Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general net-
545 work pruning. In *Proceedings of the IEEE International Conference on Neural Networks
546 (ICNN)*, 1993. doi: 10.1109/ICNN.1993.298572. URL <https://doi.org/10.1109/ICNN.1993.298572>.
547
548549 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
550 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
551 (CVPR)*, 2016. doi: 10.1109/CVPR.2016.90. URL <https://ieeexplore.ieee.org/document/7780459>.
552
553

540 Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
 541 deep convolutional neural networks acceleration. In *Proceedings of the IEEE/CVF Conference on*
 542 *Computer Vision and Pattern Recognition (CVPR)*, 2019. doi: 10.1109/CVPR.2019.00447. URL
 543 <https://openaccess.thecvf.com/CVPR2019>.

544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
 545 In *Advances in Neural Information Processing Systems 33 (NeurIPS 2020)*, 2020.
 546 URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

547 A. Krizhevsky and G. Hinton. Tiny imagenet visual recognition challenge, 2024. URL <https://www.tib.eu/en>.

548 Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. URL <http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

549 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
 550 convolutional neural networks. In *Advances in Neural Information Processing Systems 25*
 551 (*NIPS 2012*), 2012. URL <https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>.

552 Markku Laakso and Rein Taagepera. “effective” number of parties: A measure with application to
 553 west europe. *Comparative Political Studies*, 1979. doi: 10.1177/001041407901200101. URL
 554 <https://journals.sagepub.com/doi/10.1177/001041407901200101>.

555 Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In *Advances in Neural Infor-*
 556 *mation Processing Systems 2 (NIPS 1989)*, 1990. URL <https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf>.

557 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
 558 based on connection sensitivity. In *International Conference on Learning Representations (ICLR)*,
 559 2019. URL <https://openreview.net/forum?id=B1VZqjAcYX>.

560 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
 561 efficient convnets. In *International Conference on Learning Representations (ICLR)*, 2017. URL
 562 <https://openreview.net/forum?id=rJqFGTs1g>.

563 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv*, 2023.
 564 URL <https://arxiv.org/abs/2304.08485>.

565 Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
 566 Learning efficient convolutional networks through network slimming. In *Proceedings of the*
 567 *IEEE International Conference on Computer Vision (ICCV)*, 2017. doi: 10.1109/ICCV.2017.
 568 298. URL https://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html.

569 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 570 Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-Arnold networks, 2025. URL <https://arxiv.org/abs/2404.19756>.

571 Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
 572 l_0 regularization. In *International Conference on Learning Representations (ICLR)*, 2018. URL
 573 <https://openreview.net/forum?id=H1Y8hhg0b>.

574 Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
 575 network compression. In *Proceedings of the IEEE International Conference on Computer Vision*
 576 (*ICCV*), 2017. doi: 10.1109/ICCV.2017.541. URL <https://openaccess.thecvf.com/ICCV2017>.

577 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of llms. In
 578 *Advances in Neural Information Processing Systems 36 (NeurIPS 2023)*, 2023. URL <https://proceedings.neurips.cc/>.

594 Marc Mézard and Andrea Montanari. *Information, Physics, and Computation*. 2009. URL <https://global.oup.com/academic/>.
 595
 596

597 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better
 598 than one? In *Advances in Neural Information Processing Systems 32 (NeurIPS*
 599 *2019)*, 2019. URL <https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf>.
 600

601 Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
 602 neural networks for resource efficient inference. In *International Conference on Learning Repre-*
 603 *sentations (ICLR)*, 2017. URL https://openreview.net/forum?id=w2MJi_jKguz.
 604

605 Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
 606 network pruning. In *International Conference on Learning Representations (ICLR)*, 2020. URL
 607 <https://openreview.net/forum?id=S1gSj0NKvB>.
 608

609 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale im-
 610 age recognition. In *International Conference on Learning Representations (ICLR)*, 2015. URL
 611 <https://openreview.net/>.
 612

613 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
 614 for large language models (wanda). *arXiv*, 2023. URL <https://arxiv.org/abs/2306.11695>.
 615

616 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
 617 for large language models. *arXiv*, 2024. URL <https://arxiv.org/abs/2306.11695>.
 618

619 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, et al. Llama:
 620 Open and efficient foundation language models, 2023a. URL <https://arxiv.org/abs/2302.13971>.
 621

622 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open
 623 foundation and fine-tuned chat models, 2023b. URL <https://arxiv.org/abs/2307.09288>.
 624

625 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 626 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 627 *Processing Systems 30 (NeurIPS 2017)*, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/7181-Abstract.html>.
 628

629

630 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 631 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In *Proceedings*
 632 *of ACL 2019*, 2019. doi: 10.18653/v1/P19-1580. URL <https://aclanthology.org/P19-1580/>.
 633

634 Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
 635 preserving gradient flow. In *International Conference on Learning Representations (ICLR)*, 2020.
 636 URL <https://openreview.net/forum?id=SkgsACVKPH>.
 637

638 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 639 model pre-training via structured pruning. In *International Conference on Learning Representa-*
 640 *tions (ICLR)*, 2024. URL <https://openreview.net/>.
 641

642 Qiaozhe Zhang, Ruijie Zhang, Jun Sun, and Yingzhuang Liu. How sparse can we prune a deep
 643 network: A fundamental limit viewpoint, 2025. URL <https://arxiv.org/abs/2306.05857>.
 644

645 Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
 646 sheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In *Inter-
 647 national Conference on Learning Representations (ICLR)*, 2021. URL <https://openreview.net/forum?id=K9bw7vqp6wG>.
 648

648 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
649 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
650 to robotic control. In *Proceedings of the Conference on Robot Learning (CoRL), Proceedings of*
651 *Machine Learning Research*, Vol. 229, 2024. URL [https://proceedings.mlr.press/](https://proceedings.mlr.press/v229/zitkovich24a.html)
652 [v229/zitkovich24a.html](https://proceedings.mlr.press/v229/zitkovich24a.html).
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A PROOF OF PROPOSITION 1**
 703

704 *Proof.* For $\nu = N$, the result is trivial because A_ν is a single point. Now assume $1 < \nu < N$. Let
 705 $\omega \in \tilde{\Delta}$ be fixed. Clearly, p_ν minimizes φ_ν along the interval $[\zeta_{[1]}, \zeta_{[N]}]$ (note that this interval is the
 706 longest edge of $\tilde{\Delta}$). Therefore, without loss of generality, we may assume $\omega \notin [\zeta_{[1]}, \zeta_{[N]}]$. Then,
 707 there exist indices $1 < i \leq \nu$ and $\nu < j \leq N$ such that $\omega_i > \omega_j$. Among the pairs (i, j) satisfying
 708 this condition, select the one with smallest $j - i$ and smallest j . We denote this pair by $i = i(\omega)$ and
 709 $j = j(\omega)$. Let
 710

$$711 H_\omega = \{x \in \mathbb{R}^N : \langle \zeta_{[N]} | x \rangle = 0, \langle \omega | x \rangle \geq 0\}.$$

712 It follows that H_ω is contained in the tangent space to $\tilde{\Delta}$, as well as
 713

$$714 \|\omega + \epsilon x\| \geq \|\omega\| \quad (19)$$

715 for every $\epsilon > 0$.
 716

717 We construct a vector $x \in H_\omega$ as
 718

$$718 x_1 := 1, x_i := t, x_j := -(1+t), \text{ and } x_k := 0 \text{ for } k \neq 1, i, j,$$

719 where
 720

$$721 t = \frac{\omega_j - \omega_1}{\omega_i - \omega_j} \leq -1, \quad (20)$$

723 because $\omega_1 \geq \omega_i > \omega_j \geq \omega_N$. Also, note that x is orthogonal to $\zeta_{[N]}$, implying that it is in the
 724 tangent space to the simplex Δ . Furthermore, by the choice of the indices i, j , there exists $\epsilon > 0$
 725 small enough that the ordering among the weights is preserved upon adding ϵx to ω , and therefore
 726 $\omega + \epsilon x \in \tilde{\Delta}$.
 727

Consider the derivative of φ_ν at ω in the direction of x :

$$729 D\varphi_\nu|_\omega x = \nu \zeta_{[\nu]}^\top x = (1+t) \leq 0.$$

730 The function φ_ν is linear. Therefore, setting $\epsilon_1 := \max\{\epsilon > 0 : \omega + \epsilon x \in \tilde{\Delta}\}$ gives rise to a
 731 point $\omega^1 := \omega + \epsilon_1 x$ with $\varphi_\nu(\omega^1) < \varphi_\nu(\omega)$ and with the property that either $\omega_1 \in [\zeta_{[1]}, \zeta_{[N]}]$ or
 732 $j(\omega^1) - i(\omega^1) < j(\omega) - i(\omega)$. Therefore, the process of augmenting ω into ω_1 may be repeated at
 733 most $j - i$ times, generating a sequence of vectors $\omega^1, \dots, \omega^k$ with $k \leq j - i$ and $\omega^k \in [\zeta_{[1]}, \zeta_{[N]}]$,
 734 and such that $\varphi_\nu(\omega) > \varphi_\nu(\omega^1) > \dots > \varphi_\nu(\omega^k)$. Since $\omega^k \in [\zeta_{[1]}, \zeta_{[N]}]$, we finally have $\varphi_\nu(\omega^k) \geq$
 735 $\varphi_\nu(p_\nu)$ (with equality only if $\omega \neq p_\nu$ in the first place), as $\|\omega^k\| \geq \|p_\nu\|$.
 736

737 Given there exist such a point p_ν , let the vector u represent the direction from ζ_N point to $\zeta_{[1]}$ as
 738

$$739 u = \left[\frac{N-1}{N}, -\frac{1}{N}, \dots, -\frac{1}{N} \right].$$

740 Then the coordinate of p_ν is
 741

$$743 p_\nu = c + r_{\nu+1} \frac{u}{\|u\|}$$

$$744 = \left[\begin{array}{c} \frac{1}{N} + \frac{1}{N} \sqrt{\frac{(N-1)(N-\nu-1)}{\nu+1}} \\ \frac{1}{N} (1 - \sqrt{\frac{N-\nu-1}{(N-1)(\nu+1)}}) \\ \dots \\ \frac{1}{N} (1 - \sqrt{\frac{N-\nu-1}{(N-1)(\nu+1)}}) \end{array} \right]^\top$$

751 and the one-norm of the projection $T_\nu(p_\nu)$ is
 752

$$753 \varphi_\nu(\omega) = \|T_\nu(p_\nu)\|_1 = \frac{\nu}{N} + \frac{N-\nu}{N} \sqrt{\frac{N-\nu-1}{(\nu+1)(N-1)}}.$$

755 The proof is now complete. \square

756

757

Table 3: Network structure of FC models

758

759

Model	Layer Width
FC2	100, 10
FC5	1000, 600, 300, 100, 10
FC12	1000, 900, 800, 750, 700, 650, 600, 500, 400, 200, 100, 10

760

761

762

763

764

765

B EXPERIMENT DETAILS

766

In this section, we provide the experimental details corresponding to Section 5. To further demonstrate that EMP is a context-agnostic pruning method, we additionally evaluate loss change and gradient saliency pruning methods on VGG16.

767

768

769

B.1 TRAINING DETAILS

770

771

This section specifies the training configurations of all the dense models used in this paper. We report dataset, architecture, optimizer, schedule, and pruning settings precisely.

772

773

774

Datasets and preprocessing. We use the standard training and test splits of MNIST, FashionMNIST, CIFAR-10, CIFAR-100, and TinyImageNet. Images are resized to the model’s declared input size: 28 for MNIST/FashionMNIST, 32 for most CIFAR models, 224 for AlexNet (by upsampling), and 64 for TinyImageNet.

775

776

Architectures. Fully connected baselines are FC2, FC5, and FC12 (Table 3). For CNNs, we use AlexNet and VGG16 on CIFAR-10. For CIFAR-100 and Tiny ImageNet we use ResNet-18/50.

777

778

779

Optimization. Unless stated, batch size is 128 and epochs are 200. Optimizers and hyperparameters follow the configuration dictionary:

780

781

782

783

784

- **MNIST/FashionMNIST (FC2/5/12):** Adam, learning rate 10^{-4} , no cosine schedule, no warmup, weight decay 0; FC2/5 trained for 5 epochs and FC12 for 10 epochs.
- **CIFAR-10:** FC5/FC12 with SGD, learning rate 0.01, no cosine schedule, no warmup, weight decay 0; VGG16 and AlexNet with SGD, learning rate 0.01, cosine schedule enabled, 5 warmup epochs, weight decay 5×10^{-4} .
- **CIFAR-100:** ResNet-18/50 with SGD, learning rate 0.1, cosine schedule, 5 warmup epochs, weight decay 5×10^{-4} .
- **Tiny ImageNet:** ResNet-18/50 with SGD, learning rate 0.01, cosine schedule, 5 warmup epochs, weight decay 5×10^{-4} .

785

786

SGD uses momentum 0.9. Adam uses its standard defaults unless otherwise noted.

787

788

789

Learning-rate schedule. When cosine is enabled with warmup W , the step- t learning rate for total T epochs is

790

791

792

$$\text{lr}(t) = \begin{cases} \text{lr}_0 \cdot \frac{t}{W}, & 0 \leq t < W, \\ \text{lr}_0 \cdot \frac{1}{2} \left(1 + \cos\left(\pi \frac{t-W}{T-W}\right) \right), & W \leq t \leq T. \end{cases}$$

793

794

Table 4 reports the detailed pruning results of EMP with $\beta = 1$, along with comparisons to their corresponding dense models.

795

796

B.2 LLM

797

798

799

800

801

802

803

804

805

806

807

Meta LLama and LLama-2 checkpoints are from HuggingFace Hub. We load the pretrained, untuned weights and tokenizer; no fine-tuning or gradient updates occur. We run inference in *bfloat16* with device map set to auto across 4x NVIDIA B200 GPUs.

810

811

Table 4: Pruning results of FC models at $\beta = 1$ on MNIST and Fashion-MNIST.

812

813

Dataset	Model	Dense Acc. (%)	Prune type	Acc. (%)	Sparsity (%)	Δ Acc. (%)
MNIST	fc2	93.89	block	93.39	34.13	-0.50
		93.89	global	93.78	37.19	-0.11
	fc5	97.35	block	97.31	28.69	-0.04
		97.35	global	97.31	29.56	-0.04
	fc12	97.07	block	96.95	27.71	-0.12
		97.07	global	96.96	28.32	-0.11
	F-MNIST	83.93	block	83.17	33.86	-0.76
		83.93	global	83.71	36.72	-0.22
		84.57	block	84.65	28.90	+0.08
		84.57	global	84.84	29.63	+0.27
		86.97	block	86.87	27.58	-0.10
		86.97	global	86.68	28.16	-0.29

824

825

826

The detail of the sparsity, PPL, and mean accuracy across 7 subtasks are reported in Table 5. The detail accuracy for different tasks are reported in Table 6 for the LLama model family and Table 7 for the LLama-2 family models.

827

828

829

B.3 ADDITIONAL EXP EXPERIMENTS

830

831

We evaluate the effectiveness of the N_{eff} threshold on a VGG16 model trained on CIFAR-10. Three pruning criteria are considered: magnitude pruning, loss-change (Taylor) pruning, and gradient saliency pruning. We report accuracy, achieved sparsity, and FLOPs after pruning in Table 8.

832

833

For magnitude pruning N_{eff} threshold yields a high sparsity regime with minimal accuracy drop, while for sensitivity-based criteria it trades a very low sparsity with the model performance.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865
866
867
868
869
870
871
872

873 Table 5: Detail perplexity and 7-task mean accuracy for LLama and LLama-2 families pruning
874 model by Wanda, magnitude, EMP-Wanda, and EMP-magnitude.

Model	Method	Sparsity (%)	PPL	Δ PPL	Mean Acc. (%)	Δ Acc (pp)
LLaMA 7B	Dense	0.00	5.679	+0.000	51.10	+0.00
	Wanda	50.00	6.644	+0.965	49.48	-1.62
	Magnitude	50.00	11.002	+5.323	48.42	-2.68
	EMP-Wanda	40.60	6.362	+0.683	50.34	-0.76
	EMP-Magnitude	36.66	6.904	+1.225	51.11	+0.01
LLaMA 13B	Dense	0.00	5.090	+0.000	53.60	+0.00
	Wanda	50.00	5.836	+0.746	52.00	-1.60
	Magnitude	50.00	11.587	+6.497	49.25	-4.35
	EMP-Wanda	40.68	5.907	+0.817	52.74	-0.86
	EMP-Magnitude	36.58	6.666	+1.576	52.02	-1.58
LLaMA 30B	Dense	0.00	4.101	+0.000	54.84	+0.00
	Wanda	50.00	4.890	+0.789	54.16	-0.68
	Magnitude	50.00	5.553	+1.452	53.57	-1.27
	EMP-Wanda	40.18	4.687	+0.586	52.90	-1.94
	EMP-Magnitude	36.60	4.511	+0.410	54.82	-0.02
LLaMA 65B	Dense	0.00	3.531	+0.000	59.28	+0.00
	Wanda	50.00	4.267	+0.736	57.40	-1.88
	Magnitude	50.00	4.724	+1.193	55.83	-3.45
	EMP-Wanda	39.99	4.060	+0.529	57.08	-2.20
	EMP-Magnitude	36.61	3.865	+0.334	56.95	-2.33
LLaMA-2 7B	Dense	0.00	5.470	+0.000	51.59	+0.00
	Wanda	50.00	6.410	+0.940	50.27	-1.32
	Magnitude	50.00	9.712	+4.242	48.52	-3.07
	EMP-Wanda	41.07	6.513	+1.043	49.78	-1.81
	EMP-Magnitude	36.70	6.561	+1.091	51.16	-0.43
LLaMA-2 13B	Dense	0.00	4.881	+0.000	53.64	+0.00
	Wanda	50.00	5.591	+0.710	52.12	-1.52
	Magnitude	50.00	5.850	+0.969	52.59	-1.05
	EMP-Wanda	40.48	5.468	+0.587	51.96	-1.68
	EMP-Magnitude	36.62	5.162	+0.281	52.93	-0.71
LLaMA-2 70B	Dense	0.00	3.319	+0.000	60.00	+0.00
	Wanda	50.00	4.026	+0.707	58.81	-1.19
	Magnitude	50.00	4.514	+1.195	57.70	-2.30
	EMP-Wanda	40.32	3.821	+0.502	58.74	-1.26
	EMP-Magnitude	36.66	3.662	+0.343	58.57	-1.43

911
912
913
914
915
916
917

918
919

920

Table 6: Detailed zero-shot accuracy across 7 tasks (LLaMA).

Model	Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Mean
LLaMA 7B	Dense	69.63	53.07	54.25	49.17	67.05	38.74	25.80	51.10
	Wanda	70.24	52.71	51.12	50.67	62.25	35.75	23.60	49.48
	Magnitude	67.25	52.71	48.95	50.04	60.73	34.64	24.60	48.42
	EMP-Wanda	72.05	53.07	52.59	48.62	64.86	37.63	23.60	50.34
	EMP-Magnitude	72.81	53.43	52.94	49.41	65.32	37.46	26.40	51.11
LLaMA 13B	Dense	66.36	54.51	57.46	48.07	74.33	43.86	30.60	53.60
	Wanda	68.32	53.07	54.87	47.83	70.24	40.87	28.80	52.00
	Magnitude	65.57	51.99	49.47	49.64	62.54	36.52	29.00	49.25
	EMP-Wanda	68.20	57.04	55.93	47.75	69.28	41.38	29.60	52.74
	EMP-Magnitude	65.84	53.07	54.95	47.99	70.37	42.32	29.60	52.02
LLaMA 30B	Dense	66.91	53.79	60.75	49.64	75.08	46.93	30.80	54.84
	Wanda	68.99	54.51	58.89	49.96	72.85	44.28	29.60	54.16
	Magnitude	70.46	52.35	56.40	50.20	71.93	43.43	30.20	53.57
	EMP-Wanda	67.25	52.35	59.31	50.36	71.00	42.66	27.40	52.90
	EMP-Magnitude	67.68	53.43	59.85	50.28	74.58	45.90	32.00	54.82
LLaMA 65B	Dense	80.31	66.79	62.32	50.20	74.87	46.67	33.80	59.28
	Wanda	80.15	60.29	60.49	50.43	74.16	45.31	31.00	57.40
	Magnitude	81.31	52.71	59.89	50.91	71.93	44.28	29.80	55.83
	EMP-Wanda	79.88	61.73	60.46	50.20	72.39	45.90	29.00	57.08
	EMP-Magnitude	81.04	54.51	61.81	50.36	73.70	46.25	31.00	56.95

941

942

943

944

Table 7: Detailed zero-shot accuracy across 7 tasks (LLaMA-2).

Model	Method	BoolQ	RTE	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Mean
LLaMA-2 7B	Dense	66.57	52.71	54.56	50.43	69.23	39.85	27.80	51.59
	Wanda	72.39	52.71	51.12	49.57	65.74	36.18	24.20	50.27
	Magnitude	64.86	53.79	50.49	49.49	62.79	34.04	24.20	48.52
	EMP-Wanda	68.72	53.07	51.32	49.80	65.66	37.12	22.80	49.78
	EMP-Magnitude	69.79	53.07	54.35	48.86	68.98	38.65	24.40	51.16
LLaMA-2 13B	Dense	66.82	52.71	57.54	48.54	73.32	45.39	31.20	53.64
	Wanda	66.06	52.71	55.13	49.57	70.79	41.38	29.20	52.12
	Magnitude	67.31	52.71	55.92	50.20	70.29	41.13	30.60	52.59
	EMP-Wanda	63.55	52.71	56.05	49.49	70.41	42.49	29.00	51.96
	EMP-Magnitude	65.60	52.71	57.57	49.09	72.31	42.83	30.40	52.93
LLaMA-2 70B	Dense	77.55	64.98	62.81	51.30	77.44	50.34	35.60	60.00
	Wanda	81.38	60.65	61.14	50.99	75.63	48.29	33.60	58.81
	Magnitude	82.45	57.76	60.15	52.09	73.36	45.90	32.20	57.70
	EMP-Wanda	75.81	65.70	61.91	50.43	74.75	48.21	34.40	58.74
	EMP-Magnitude	79.42	56.32	62.17	51.30	77.23	48.55	35.00	58.57

960

961

962

963

964

Table 8: Comparison of pruning criteria on VGG16 (CIFAR-10). Dense baseline: 91.12% accuracy, 626M FLOPs. Neff threshold uses $\beta = 1.0$.

965

Method	Acc. (%)	Sparsity (%)	FLOPs
Dense	91.12	0.0	626M
EMP-Magnitude	90.98	59.5	397M
EMP-Loss change	91.12	2.1	623M
EMP-Saliency	90.97	25.7	579M

970

971

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989

Table 9: Pruning results on VGG16 trained on CIFAR-10. EMP pruning using $\beta \in \{0.8, 1.0, 1.2\}$.

Criterion	Pruning Scheme	Acc. (%)	Sparsity (%)	FLOPs
Magnitude	Original (50%)	90.99	50.0	436.7M
	Original (70%)	90.64	70.0	348.7M
	Original (90%)	69.08	90.0	221.0M
	Original (95%)	10.00	95.0	157.9M
	EMP ($\beta = 0.8$)	90.80	67.6	360.4M
	EMP ($\beta = 1.0$)	90.98	59.5	396.9M
	EMP ($\beta = 1.2$)	91.09	51.4	431.1M
Loss Change (Taylor)	Original (50%)	88.14	50.0	490.8M
	Original (70%)	49.86	70.0	410.1M
	Original (90%)	10.00	90.0	261.0M
	Original (95%)	10.00	95.0	169.8M
	EMP ($\beta = 0.8$)	91.12	2.1	623.1M
	EMP ($\beta = 1.0$)	91.12	2.1	623.1M
	EMP ($\beta = 1.2$)	91.14	2.3	622.8M
Gradient Saliency	Original (50%)	88.08	50.0	514.1M
	Original (70%)	45.19	70.0	449.6M
	Original (90%)	10.00	90.0	306.4M
	Original (95%)	10.00	95.0	189.9M
	EMP ($\beta = 0.8$)	91.10	20.6	590.7M
	EMP ($\beta = 1.0$)	90.97	25.7	578.8M
	EMP ($\beta = 1.2$)	90.82	30.9	566.2M