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Abstract
Sparsely-gated Mixture-of-Experts (MoEs) have proven to be more efficient than dense
Transformers because they can dynamically activate a subset of their overall parameters
by routing tokens to selected “experts”, allowing practitioners to scale up model parameter
counts without significantly increasing total compute. However, current MoE training
approaches only update the router with a sparse gradient and suffer from issues such as
load imbalance. We propose a new router that can receive a dense gradient update from a
sparse forward pass. Our method adds minimal overhead, but improves on the common
Top-K routing in both performance and load balance.

1. Introduction

The Transformer architecture [26] is the backbone of most modern language models. As
language models have been trained on rapidly increasing scales, empirical analyses on
scaling laws have shown that models with more parameters are more sample-efficient and
require less training to reach the same performance [16]. As a result, researchers have
sought to explore efficient strategies for training Transformer-based models with more
parameters. One approach to training larger language models while limiting the increase
in computational cost is to train sparse models.

The mixture of experts (MoE) approach [14, 15] involves combining the outputs of
many parallel modules - referred to as experts - by assigning a weight to each expert’s out-
put. The weight of each expert’s output is decided by a gating network. Ideally, each expert
learns to solve a subproblem corresponding to a given task, and the results of these sub-
problems are aggregated by the weights provided by the gating network. This approach
can be generalized into an MoE layer with parallel MLP modules [22], which was first
applied to LSTMs [11] and later to Transformers [9].

The latest wave of foundation models such as GPT-4 [19], Gemini [24], Deepseek [7],
etc. all use MoEs. Sparsely-activated MoEs dominate industry AI deployments because
they can dynamically activate a subset of their overall parameters, allowing practitioners
to scale up model parameter counts without significantly increasing total compute [22].

However, MoEs face significant challenges in routing experts effectively, as we will
describe in the next section. One critical issue is the load imbalance problem — where a
few experts are over-utilized — which leads to inefficient training and resource usage [29,
30]. Additionally, context-independent routing schemes often struggle to generalize across

© .



DENSE BACKPROPAGATION IMPROVES ROUTING FOR SPARSELY-GATED MIXTURE-OF-EXPERTS

diverse tasks, and fine-tuning MoEs can be challenging because the router distribution
does not change when the data distribution changes [28]. We propose a new router that
can receive a dense gradient update from a sparse forward pass to address the instability
issues arising from sparse routing. Our method adds minimal overhead, but improves on
the common Top-K routing in both performance and load balance.

2. Background & Related Work

MoEs. The MoE layer replaces the feedforward networks (FFN) of transformers and
consists of two components : 1) N FFNs (experts), E0(x), E1(x), . . . EN(x) and 2) a router
that assigns tokens to experts. Each input to the MoE layer is processed by K experts
where K < N and is thus the source of sparsity in MoEs. The K experts are chosen by the
router, which is a learnable component that maps each token to a set of weights over the
experts. The router performs a linear transformation Rdtoken → RN which produces logits;
these are normalized using softmax, resulting in a probability distribution over the experts.
With the router’s linear transformation parameterized by a matrix W, we can represent the
expert weights π in the following way:

π ∈ RN = Softmax(Wx) (1)

Once we have these expert weights, we apply a routing function to decide which of K
experts to route and process this token through.

Top-K routing. A standard method to select K out of N experts given the expert
weights is to select the experts corresponding to the K highest weights. Top-K routing [9]
passes the token to the K selected experts and averages the expert outputs using these
weights to produce the final output. Experts not selected by the Top-K routing function do
not process the token, and this introduces sparsity in MoEs. By representing the K chosen
experts as the set A, we can express the output of the MoE layer as:

y = Σi∈AπiEi(x) (2)

Thus, the expert weights have a dual purpose : They are used by the routing function
to decide which of the K experts to process a token through, and also provide the weights
for combining the outputs of the expert.

The Top-K routing scheme makes the MoE layer desirable for training large, compute-
efficient neural networks. It allows models to be scaled up, by way of increasing the total
number of experts, while keeping the compute per token constant (as it is a function of K
and not N).

The Router Gradient. Consider the gradient of the MoE layer’s output y with respect
to the router parameters W. We can express y as a function of W by combining Eq. (1) and
Eq. (2). With the chain rule, we can backpropagate through this function by considering
the gradient at each respective step:

∂y
∂W

=
∂y
∂π

∂π

∂W
(3)
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(a) Original Router (b) Dense Approximation Router (ours)

Figure 1: Overview of Routing with Dense Approximations. The original mixture of
experts router only receives gradients corresponding to experts the token is routed to,
because there is no output from other experts. Our approach provides the router with
a complete (dense) gradient, by approximating the activations of experts that a token is
not routed to. As indicated by the dashed green arrows, the approximated gradients are
not actually connected to the token in the computation graph; instead, they are artificially
applied in the backward pass.

The steps in Eq. (1) are easily differentiable as they consist of linear operations and acti-
vations. Thus, the first term in Eq. (3), ∂y

∂π , is straightforward to compute. Eq. (2), how-
ever, isn’t differentiable because the Top-K expert selection is a discrete function: given the
continuous router weights π ∈ RN , the set of selected experts A is one of (N

K) combina-
tions. One way to get around backpropagation of nondifferentiable operations is to use
the straight-through estimator [4], which treats the operator as the identity function. In
this setting, the Top-K routing function is bypassed and Eq. (2) becomes the dot product
between π and the vector of all Ei(x) with the following gradient:

∂y
∂π

=
[
E1(x), E2(x) · · · EN(x)

]
(4)

This gradient requires the output of all of the experts for that token. Passing a token
through all the experts will destroy the sparsity of the MoE layer. In this work, we develop
methods for applying the straight-through estimator while maintaining the sparsity of the
MoE layer by approximating the output of the experts not selected by Top-K routing.

Related Works. Previous work has tried to address the issue of routing in MoEs.
Separate from Top-K is the Sinkhorn routing method [5]. Fedus et al. [9] which proposes
an auxiliary loss that encourages load balancing. Dai et al. [6] propose multiple addi-
tional auxiliary loss terms. Recently, Wang et al. [27] propose learning biases rather than
an auxiliary load balancing loss. Even more recently, Phi-3.5-MoE Abdin et al. [1] uses
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SparseMixer [17], another estimator for ∂y/∂π not involving straight-through (we provide
a more direct comparison to SparseMixer in the Appendix). Our approach is to still use
straight-through, but approximate these additional expert outputs.

3. Designing a New Routing Method

In this section we design a new router that can receive a dense gradient update while
being sparsely activated. In a standard MoE, the embedding corresponding to expert i in
the routing layer (i.e. the ith row of the routing weight matrix) receives no gradient update
from a token x if x is not routed to expert i. This is because Ei(x) is never computed, so
it provides no upstream gradient. This corresponds to experts that are not in the top K
being omitted in Eq. (2). We apply an approximation Êi(x) as a substitute for the upstream
gradient, so that the router can receive some non-zero signal corresponding to this expert.
Thus, the router can factor in outputs from all experts when learning to route each token.

3.1. Approximating Expert Activations

To approximate the dense gradient in Eq. (4), we must approximate Ei(x) for every expert
i that a token x was not passed to. Although we have no information about what the
function Ei looks like for x, when training with large token batch sizes it is very likely that
we have outputs of Ei for many other tokens. We develop two general approaches to to
develop an estimator Êi(x), using the expert outputs of other relevant tokens. Expert group
approximation: We first apply a single approximation to a large group of tokens that were
not routed to expert i. This is efficient, but it may not necessarily be a viable approximation
for any specific x. However, we hypothesize that this is a good estimator for the expert
output across the entire batch - this is sufficient as we will only need an approximation for
the batch gradient to update the router. Attention approximation: Our secondary approach
produces an expert output approximation specifically for each token (see Appendix A).

3.2. Notation on Expert Routing

Let R(x) be the set of indices corresponding to the K experts that a token x is routed to. This
can be thought of as the routing decision for x, based on the selected experts A in Eq. (2). For
example, in a top-k sparse mixture of experts block with N = 8 experts and K = 2, x routed
to the first and last experts will have R(x) = {1, 8}. Note R(x) will have (N

K) possible
discrete outputs. We can partition all tokens X based on their routing decisions and denote
XR as the subset of tokens routed to experts indexed by R. In the preceding example, x
would belong to the set X{1,8}. Some of our methods involve denoting whether a token was
routed to a set of experts instead of its exact routing decision. We denote tokens routed to
expert i along with any other experts as X{i,·}. For example, X{1,8} = X{1,·}

⋂
X{8,·}

3.3. Expert Group Approximation

We primarily consider the case where we approximate the expert output Ei(x) for many
tokens at a time. For a token x, we want to approximate outputs of experts that x was
not routed to, i.e. Ei(x) where i /∈ R(x). We hypothesize that tokens being routed to the
same expert is a strong indicator of similarity between the tokens. This is supported by
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Figure 2: Architecture of the Expert Group Approximation method. In this example, we
have 4 experts with K = 2. Consider all inputs routed to experts 1 and 3, characterized by
the routing decision R = {1, 3}. As described in Figure 1b, we need to approximate these
inputs’ activations for all other experts. In approximating expert 2, for example, we collect
all inputs x′ with a routing decision similar to R specifically including expert 2: R′ = {1, 2}
and R′ = {2, 3}. In general there will be K such adjacent groups. The aggregation of these
inputs’ activations for expert 2 is used to approximate expert 2 for all inputs routed to
experts 1 and 3.

our empirical observations in Appendix B.2. We develop an approximation for Ei(x) by
aggregating outputs of Ei for tokens that were routed to both expert i and an expert x was
routed to. Formally, we consider an alternate routing decision R′ = {i, j, ·}, j ∈ R(x) that
consists of one expert x is routed to, the expert i we wish to approximate, and any other
experts (if K > 2). Then, the adjacent token space XR′ will consist of tokens that are very
similar to x by virtue of having similar routing decisions (see Fig. 8). Moreover, they will be
routed to expert i, and we hypothesize that their outputs ∑x′∈XR′

Ei(x′) will approximately
represent Ei(x). We can aggregate such outputs over all possible routing decisions:

∀x ∈ XR : Êi(x) =
1
K ∑

j∈R

1
|X{i,j,·}| ∑

x′∈X{i,j,·}

Ei(x′) (5)

We apply a single aggregate approximation for each routing decision to all tokens with
that routing decision. Note that we only compute N2 individual sums as that is the number
of possible combinations {i, j, ·}. In Fig. 2 we visualize this method for K = 2.

4. Evaluation

4.1. Evaluation

Main Result. Our main result compares the Expert Group Approximation, which per-
forms a dense update of the router weights by approximating the dense gradient, to base-
line Top-K routing. Details on model training are provided in Appendix C. In Table 1
we find that our lightweight approximation method improves performance by a similar
amount as activating an additional expert (that is, going from K = 2 to K = 3), without
the additional computational overhead during training and inference of actually needing
to use the parameters of a third expert. The choice of K = 2 follows Zoph et al. [30].
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Table 1: Our expert group approximation obtains the best validation perplexity after 20B
tokens, achieving the same performance as K = 3 without activating an additional expert.

Activated Experts Routing Method Validation Perplexity

K = 1 Baseline 19.61
K = 2 Baseline 18.92
K = 3 Baseline 18.56

K = 2 Expert Group Approx. (Ours) 18.55

Load Balance. Our method improves over the baseline in perplexity, but the reason
for this is in how it improves the routing distribution. Without gradient signal for un-
activated experts, top-K routing may not be able to learn a balanced distribution across
experts. This would lead to many more tokens being routed to some experts than others.
In Fig. 11 we validate that the baseline top-K (K = 2) routing has an “imbalanced load”, as
measured by the proportion of tokens being routed to different experts (labeled by color)
relative to the baseline (dotted red line) of an even distribution of tokens across experts.
Our method improves load balance, which may be one cause for improved performance
and is of independent interest on its own because it will lead to greater efficiency during
inference.

Ablations. We conduct further ablations on design choices and efficiency in Ap-
pendix C.1.

5. Discussion

Limitations. The scope of our evaluation is limited; we only train models for at most 20B
tokens, and the largest MoE we train has fewer than 1B active parameters. Furthermore,
we only report the validation perplexity on a held-out subset of the training dataset and do
not report any benchmark scores. The scope of problems caused by routers includes load
balance and inability to handle distribution shifts during finetuning, but we only analyze
the impact of our method on load balance and do not know whether it actually makes it
easier to finetune MoEs. We plan to address these limitations in a future version of this
work.

Future Work. Our methods are somewhat unique in that they scale with the token
batch size per GPU, and improvements in memory efficiency therefore are critical. Devel-
oping and integrating kernels to reduce the memory requirements of the MoE itself will
allow us to use larger microbatches. Another avenue for future work is developing en-
tirely custom kernels using our methods in order to reduce the computational overhead of
approximating the dense router gradient.
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Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-
Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Vic-
tor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek
Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenx-
iang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos
Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars
Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xi-
aodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt
Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen,
Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael San-
tacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang,
Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward,
Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can
Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan
Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen
Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3
technical report: A highly capable language model locally on your phone, 2024. URL
https://arxiv.org/abs/2404.14219.

[2] Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo
Gao, Eric Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker,
Michael Pieler, Jason Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander,
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[13] Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L. Richter, Quentin Anthony,
Timothée Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies
to continually pre-train large language models, 2024. URL https://arxiv.org/
abs/2403.08763.

[14] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adap-
tive Mixtures of Local Experts. Neural Computation, 3(1):79–87, 03 1991. ISSN 0899-
7667. doi: 10.1162/neco.1991.3.1.79. URL https://doi.org/10.1162/neco.
1991.3.1.79.

[15] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
In Maria Marinaro and Pietro G. Morasso, editors, ICANN ’94, pages 479–486, Lon-
don, 1994. Springer London. ISBN 978-1-4471-2097-1.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Re-
won Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models, 2020. URL https://arxiv.org/abs/2001.08361.

[17] Liyuan Liu, Jianfeng Gao, and Weizhu Chen. Sparse backpropagation for moe train-
ing, 2023. URL https://arxiv.org/abs/2310.00811.

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL
https://arxiv.org/abs/1711.05101.

[19] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Bal-
tescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine,

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2211.15841
https://arxiv.org/abs/2211.15841
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2310.00811
https://arxiv.org/abs/1711.05101


DENSE BACKPROPAGATION IMPROVES ROUTING FOR SPARSELY-GATED MIXTURE-OF-EXPERTS

Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage,
Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen,
Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory De-
careaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan,
Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David
Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan
Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff
Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey,
Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaf-
tan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak
Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew
Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David
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(a) Direct Attention (b) Attention w/ LSH

Figure 3: Attention scores of direct and LSH attention methods. For each expert, we
define an attention head which uses queries corresponding to inputs not routed to the
expert, and keys corresponding to inputs routed to the expert. Grey entries denote queries
and keys which do not meet this criteria, and whose attention scores are masked out. The
attention scores of each head will then be multiplied by the values, corresponding to expert
outputs of tokens routed to that expert. This implementation is common to both the direct
and LSH attention method. In the latter, we further optimize the attention calculation by
sorting inputs into buckets based on cosine similarity. This creates a block-sparse attention
map, allowing kernels to entirely skip a majority of the attention computation.

Appendix A. Token-specific Approximations Using Attention

A.1. Global Attention

Our Expert Group Approximation computes an approximation, for each expert, for all to-
kens routed to it from each other expert, and in this manner computes N2 approximations.
However, we may want to actually compute an approximation for specific tokens. Con-
sider tokens belonging to the set x ∈ XC

{i,·}, i.e. tokens not routed to expert i. We want
to approximate Ei(x) for such x. At a high level, we want to search for similar tokens
to x, select their expert outputs Ei(xj), and aggregate these outputs as a weighted linear
combination. A well-known approach to this problem is attention. We want to query with
all tokens not routed to expert i, i.e. XC

{i,·}. The keys will correspond to tokens that were
routed to expert i, i.e. X{i,·}. And the values will be the expert outputs of these relevant in-
puts. Fig. 3a (left) outlines how we compute an approximation using multi-head attention,
where each head corresponds to approximating for a single expert.

A.2. Sparse Attention using LSH

Computing attention across all tokens on an accelerator is computationally expensive, and
we do not need attention scores for all the tokens to compute the approximation, just for
the most similar tokens to x. With a block-sparse attention mask, we can greatly reduce
the attention computation especially when most of the computed scores would be redun-
dant. In Fig. 3b we outline our attention approximation that uses locality-sensitive hashing
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(LSH) to group tokens into buckets, with a high probability that the nearest neighbors to a
token will lie in the same bucket. The attention mask now has an additional condition: the
query index q and key index k must correspond to tokens in the same bucket. We sort the
QKV into groups based on their assigned buckets to encourage a block-diagonal attention
mask, and verify that this sparsity reduces the runtime of our attention approximation.
Note that as exemplified in Fig. 3b, it is possible that some tokens receive no approxima-
tion because there are no keys to query in the bucket. In this case, we set the approximation
to 0.

Appendix B. Approximation Statistics

B.1. Approximation Fidelity

We verify that our method is indeed faithfully approximating the dense router gradient
i.e. the gradient to the router if all experts were activated. We track the dense gradient by
routing to all experts and backpropagating only on the MoE output (independent of the
full forward pass). This dense gradient is compared to the actual router gradient for each
of our approaches in Fig. 4. We also observe a major difference between the gradient of the
standard Top-K router and our approach.

The differences in our approaches become clear as we scale the model to become more
sparse. We expand to N = 32 experts while maintaining K = 2 in Fig. 5 and find that it is
more difficult to approximate the true dense router gradient. While all of our approaches
sufficiently approximate the dense gradient with N = 8 experts, the performance gap be-
tween them is apparent with N = 32. The expert group approximation and LSH attention
methods are significantly better than the direct attention method, and this is also consistent
with our validation results in Table 1. This is likely due to the heuristics we apply to re-
strict our approximation to only the most relevant tokens: the expert group approximation
requires inputs to have an expert in common, and LSH requires inputs to be similar. More-
over, the gap between our methods and Top-K is wider with 32 experts. We believe that
in larger models with even more experts, our method will yield increasingly significant
improvements over Top-K routing.

In Fig. 6 we reproduce the gradient similarity plots with SparseMixer [17]. Surpris-
ingly, we find that SparseMixer is the worst approximation of the dense gradient across
the board. Initial experiments also validate that SparseMixer does not outperform any of
the other methods.

In Fig. 7 we provide an additional analysis of the gradient norm of our approximation
compared to the dense gradient. We include statistics for SparseMixer as well. This logging
is also done with N = 8 and K = 2. The Top-K gradient has significantly lower norm than
the dense gradient, and the SparseMixer is an order of magnitude lower in many cases.
Our methods closely approximate the dense gradient norm consistently; replicating both
the direction and magnitude suggests that we are sufficiently approximating the dense
gradient entirely.
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Figure 4: Accuracy in approximating the dense router gradient for each approach. This
is recorded using a model with 8 experts and K = 2. The dense gradient of the output
with respect to the router weights is artificially computed at each step by passing inputs
through a dense mixture of experts layer, where all experts are selected. This is done in-
dependently from the actual forward pass computation, while using the same set of MoE
parameters. The similarity between this dense gradient and the actual gradient propa-
gated to the router indicates how well the router is learning from all experts. We plot this
similarity using a standard TopK router, along with using each of our proposed router
modifications. Our approaches are much more accurate and stable in approximating the
dense router gradient.

Figure 5: Dense router gradient approximation accuracy with fine-grained experts. We
implement fine-grained experts as in DeepSeekMoE [7] to observe the behavior of our ap-
proximation methods across more experts while keeping parameter count fixed. In this
example, the model now has 32 experts with K = 2. With more experts, it becomes in-
creasingly hard to approximate the dense gradient, and the difference between our meth-
ods and the Top-K router is more apparent. Moreover, we can clearly compare the efficacy
of each method and see that the attention approximation with LSH is the best. Note the
average number of tokens per expert also decreases by a factor of 4 as well, and we would
expect even better performance in our approximations by scaling the train batch size.
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Figure 6: Comparison of gradient approximation with our methods and SparseMixer.
We provide additional results showing how our gradient approximations compare against
SparseMixer, another method to estimate the dense gradient.

Figure 7: Comparison of gradient norms relative to the dense gradient. When computing
the dense gradient, we also record its L2 norm and log the ratio of this to the L2 norms of
the actual router gradients during training. Our methods produce router gradients with
approximately the same magnitude. Along with the results showing strong cosine simi-
larity, this suggests that we are almost perfectly approximating the dense gradient.

B.2. Empirical Observations on Input Similarity

Our methods operate on the assumption that expert outputs for an input can be approx-
imated by taking outputs from other similar inputs. We observe this during training by
partitioning each batch of inputs based on the experts that they are routed to. For each ex-
pert, we compute cosine similarity among all possible pairs of inputs routed to the expert
and cosine similarity between expert outputs of the corresponding pairs. We specifically
track the expert output similarity when these inputs have a cosine similarity > 0.75. In
Fig. 9 we demonstrate that when inputs are very similar, they tend to have very similar
expert outputs on average. Thus, we can approximate a missing expert output for a token
by taking a nearby token’s expert output.

Moreover, our expert group approximation method specifically assumes that being
routed to the same expert is a proxy indicating similarity. For this method to work, it
must be the case that two inputs that share experts in common are similar on average.
Another desirable property is that these inputs have a similarity above some threshold
(> 0.75) with a very high probability. Then, when approximating an expert output for a
token, it suffices to use the output for another token routed to one of the same experts.
We demonstrate the two above properties empirically in Fig. 8. Inputs with one expert in
common are not only very similar on average, they are also very similar with a high prob-
ability. This suggests that our gradient estimator using the expert group approximation
method is both accurate and consistent.
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(a) Input Similarity

(b) Proportion of Highly Similar Inputs

Figure 8: Similarity of Inputs Routed to Same Experts. In a model with N = 8 experts
and K = 2, we consider three distinct groups of input pairs: those were not routed to
any of the same experts, those that have exactly one expert in common, and those that
have both experts in common. Fig. 8a denotes the cosine similarity, on average, between
inputs of each group. As expected, we see that inputs that are routed to both the same
experts become highly similar, especially as training progresses. We also see inputs with
no experts in common diverge in terms of similarity. However, inputs that have just one
expert in common are still very similar, regardless of the other expert they are routed to.
Moreover, Fig. 8b shows that a high percentage of inputs are highly similar — we define
”highly similar” as having a cosine similarity > 0.75. This suggests that having at least
one expert in common is a consistent indicator of similarity across groups of inputs.

Figure 9: Similarity of Expert Outputs With Similar Inputs. For each expert in a model
with N = 8 experts and K = 2, we consider the similarity of expert outputs when the
inputs are ”highly similar” i.e. with cosine similarity > 0.75. After a few training steps,
the average similarity is very high and approaches the maximum value of 1. This supports
our assumption about the expert networks being Lipschitz continuous, as similar inputs
indeed produce very similar expert outputs.

23



DENSE BACKPROPAGATION IMPROVES ROUTING FOR SPARSELY-GATED MIXTURE-OF-EXPERTS

0 4 8 12 16 20
Training Tokens (Billions)

20

25

30

35

Va
lid

at
io

n 
P

er
pl

ex
ity

Baseline (Top­K=2)
Our Expert Group Approximation (Top­K=2)

Figure 10: We plot the validation perplexity on FineWeb for the baseline Top-K router
and our expert group approximation router. Without incurring significant overhead, we
improve over the baseline.

Appendix C. Experimental Setup

Model Architecture. We train an MoE with 24 blocks, a hidden dimension of 1024, and 8
experts, for a total of 2B parameters, 780M of which are activated when we use the standard
K = 2 top-K routing. We use SwiGLU [21] MLPs following Llama [25], using an expansion
factor such that the intermediate size of the MLP is 2816, 16 attention heads with dimension
is 64, LayerNorm [3] and RoPE [23].

Dataset. We train on FineWeb [20] with the Llama3 tokenizer [8]. We split it into train,
validation, and test splits and report the validation perplexity.

Hyperparameters. We use the AdamW optimizer [18]. We use the modified cosine
learning rate schedule from Ibrahim et al. [13]. We set the minimum learning rate to 6 ×
10−5, the max learning rate to 6 × 10−4, and the number of warmup iterations to 1000.
We use a sequence length of 2048 and a global batch size of 1024, resulting in a global
token batch size of 221. The total number of iterations is 10, 000 so that we train on 20B
tokens, roughly following the compute-optimal [12] number of training tokens for a 1B
dense model. We set the auxiliary loss [9] to 0.01.

Implementation. We train with the gpt-neox library [2] integrated with Megablocks [10].
The TFLOPS vary depending on the method and the number of experts chosen; for sim-
plicity, we do not account for the router or the number of experts activated when reporting
the TFLOPS, so that the number of flops we count in a forward and backward pass is the
same as a dense model.

We plot validation results throughout training in Fig. 10. We also track the load balance
and observe an improvement using our method in Fig. 11

C.1. Ablating Design Choices

We now present additional results on ablating our main design choices.
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Figure 11: Load Balancing using Expert Group Approximation. By sending a complete
gradient signal to the router, our model has better distribution of load than the baseline.

Expert Group Approximation. We consider two variations on the expert group
approximation method. As a reminder, in this method we construct a mask of shape
experts, experts for each token. The row is the expert that token was routed to, and the
column is the expert we want an approximation for. When we take the product of this
mask and the router scores, we can weight each row by the probability corresponding to
the expert we want an approximation for, or weight each approximation by the probability
for the expert we’re using the approximation for. The former should give us more “accu-
rate” approximations, because it will prioritize tokens that are more likely to be routed to
the expert we want an approximation for. The latter should give us more “viable” approx-
imations, because it weights by closeness to the space we’re using the approximation for.
We compare these methods to the baseline in Table 2. Neither method improves over the
baseline, but we think this may warrant further investigation.

Routing Method Validation Perplexity
Expert Group Approx. 20.81

“Accurate” 20.97
“Viable” 21.14

Table 2: Ablating design choices in the expert group approximation method. Validation
perplexity is reported after 12B tokens.

Comparing Different Approximation Methods. We use the Expert Group Approxi-
mation method for our main results because it is lightweight, easy to implement, and pro-
vides good performance. However, the other two methods we consider also outperform
the top-K (K = 2) baseline. Indeed, as we showed in Fig. 4, the Attention+LSH method
seems to obtain a better approximation of the true dense gradient. The primary reason
why we report our main results with Expert Grouping is because the Expert Group Ap-
proximation method requires no additional memory overhead, allowing us to use larger
microbatches, and there are therefore more tokens on each GPU that we can use for the
approximation. In Table 3 we find that even with a microbatchsize 4× smaller than that of
the Expert Group method, the Attention+LSH method is competitive.

Method Overhead. We have already outlined the implementation of the Expert Group
Approximation method, which only requires materializing two additional tensors of size
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Routing Method Microbatchsize Validation Perplexity
Attention 4 18.72

Attention+LSH 4 18.64
Expert Group 16 18.55

Baseline 16 18.92

Table 3: Comparison of activated experts, routing methods, and validation perplexity after
training on 20B tokens.

experts, experts and experts, micro batch size × sequence length. In Table 4 we compare the
throughput of our method to the baseline, and find that even with an unoptimized method,
we achieve 97.7% of the throughput of the baseline. We anticipate that we can further close
this gap by directly modifying the gradient in the backward pass, rather than performing
the approximation in the forward pass as we currently do and letting PyTorch’s autograd
compute the gradient.

Routing Method TFLOPS
Top-K (K=2) 73.4

Expert Group Approx. 71.7

Table 4: Comparing the throughput of the baseline and our method.
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