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Abstract

With the rapid expansion of large pre-trained001
language models, fine-tuning all the model pa-002
rameters for downstream tasks is becoming003
computationally prohibitive. The recently de-004
veloped prompt-based methods freeze the en-005
tire model parameters and only update the so-006
called prompt parameters appended to the in-007
puts, significantly reducing the burden of fully008
fine-tuning. However, standard prompt-based009
methods mainly consider the case where suf-010
ficient data of downstream tasks are available.011
It is still unclear whether the advantage can be012
transferred to the few-shot regime, where only013
limited data are available for each downstream014
task. Our empirical studies suggest there is015
still a gap between prompt tuning and fully016
fine-tuning for few-shot learning. We propose017
a new prompt-tuning framework, called Soft018
Template Tuning (STT), to bridge the gap. STT019
combines manual prompts and auto-prompts,020
and treats downstream classification tasks as a021
masked language modeling task. STT can close022
the gap between fine-tuning and prompt-based023
methods without introducing additional param-024
eters. Importantly, it can even outperform025
the time- and resource-consuming fine-tuning026
method on sentiment classification tasks.027

1 Introduction028

With the success of pre-trained large language mod-029

els, an increasing number of techniques have been030

proposed to adapt these general-propose models031

to downstream tasks. Starting from GPT (Radford032

et al., 2018) and BERT (Devlin et al., 2018), full033

model fine-tuning is used as the default method034

to adapt pre-trained language models to down-035

stream tasks. With the rapid increase of model sizes036

(Lewis et al., 2019; Liu et al., 2019a; Raffel et al.,037

2019), it has gradually become more challenging038

to update all model parameters during fine-tuning.039

One extreme case is the GPT-3 model (Brown040

et al., 2020), where the model size is too large041

(175B model parameters) to even enable fine- 042

tuning, which sets a barrier for the community to 043

involve in the research. Alternatively, in-context 044

learning is proposed, which demonstrates few- 045

shot capabilities without tuning any model param- 046

eters. However, although in-context learning en- 047

ables jumbo language models to be applied on di- 048

verse downstream tasks, it is not as effective as 049

fine-tuning, which significantly restricts the advan- 050

tages and applicability of these large pre-trained 051

language models. 052

Meanwhile, the ideas have been explored to up- 053

date a small number of model parameters while 054

keeping most model parameters frozen. (Li and 055

Liang, 2021) proposes prefix-tuning and shows 056

strong performance on generative tasks. This 057

method freezes the model parameters and prop- 058

agates the error during fine-tuning to prefix ac- 059

tivation prepended to each layer in the encoder 060

stack, including the input layer. (Hambardzumyan 061

et al., 2021) simplifies this method by restricting 062

the trainable parameters only to the input and out- 063

put subnetworks of a masked language model, and 064

shows reasonable results on classification tasks. 065

(Lester et al., 2021) proposes a further simplifica- 066

tion – prompt-tuning for adapting language mod- 067

els, which shows that prompt tuning alone (with 068

no intermediate-layer prefixes) is sufficient to be 069

competitive with model tuning. However, (Lester 070

et al., 2021) only test prompt tuning in the case 071

where each task has enough data for adaptation. It 072

is not clear whether prompt tuning is still effec- 073

tive in the few-shot regime, where only a limited 074

number of samples are available for each task. We 075

find through empirical evidence that prompt tun- 076

ing lags far behind the fine-tuning in the few-shot 077

regime. This can be explained by the intuition that 078

using only a few samples to learn a relatively small 079

portion of parameters might be too flexible and 080

tend to overfit the few training data, similar to the 081

traditional machine-learning setting. 082

1



Embedding

The snacks are delicious .

Encoder Layers

Language Model Head

Label: great / terrible

STT (Our Model)

The snacks are delicious .  

Label: 1 / 0

Prompt TuningPrefix Tuning

Embedding

Encoder Layers

Classification Head

The snacks are delicious   .  

Label: 1 / 0

Embedding

Encoder Layers

Classification Head

It was [MASK]

Figure 1: Model Comparison: We compare STT with Prefix tuning (Li and Liang, 2021) and Prompt tuning (Lester
et al., 2021). The yellow box means parameters need to be updated. The white box means parameters are fixed.
STT, on the basis of the Prompt tuning method, adds a human-defined template to the input sentence, and replaces
the classifier head with the language model head to predict whether the word in the mask position is great or terrible.

We propose improved techniques to alleviate this083

problem in the practical scenario where a moderate-084

sized pre-trained language model (e.g., RoBERTa085

large (Liu et al., 2019b)) and a small number of086

examples for each downstream task (i.e., the few-087

shot setting) are accessible. This setting is common088

in practice: (1) Such types of models are publicly089

available and the computational resources needed090

are easily accessible for most researchers; (2) The091

few-shot settings are realistic, as new tasks usually092

come with few examples. To address the problems093

mentioned above, we explore the idea of closing the094

gap between pre-training and fine-tuning. Specifi-095

cally, we propose to add manual prompts on the ba-096

sis of prompt-tuning (Lester et al., 2021) and treat097

the problem to be a masked language modeling098

problem, as was done by most pre-training. Since099

we combine manual template with soft prompt, we100

call our method Soft Template Tuning (STT). Ex-101

periments demonstrate that STT is able to close102

the gap between prompt-based methods and fine-103

tuning in the few-shot regime. Remarkably, STT104

can even outperform the computationally heavy105

fine-tuning on some tasks, though it tunes much106

fewer parameters than the fully fine-tuning method.107

2 Soft Template Tuning108

Our task is to adapt a pre-trained masked language109

model to downstream tasks with a dataset D. To110

realize the few-shot regime, we only sample K111

examples from D as the training dataset Dtrain =112

(xi, yi)
K
i=1, and use the original test dataset Dtest for113

verification. We define F : Y −→ V as a mapping114

from the label space Y to the word space with a115

vocabulary V in the pre-trained language model. 116

Manual Template Design We first construct 117

prompted input x̂i by adding manual prompts to 118

the input data xi. Inspired by Gao et al. (2020), we 119

adapt manual prompts for different tasks, which 120

are defined in Table 3 in the Appendix. As an ex- 121

ample, we augment an input x1 (e.g., The snacks 122

are delicious.) as follows for the classification task: 123

124
x̂1 = [CLS] x1 it was [MASK] . [SEP] 125

After obtaining x̂1, we translate it into a hidden 126
vector representation with the pre-trained embed- 127

ding layer of the language model. 128

Soft Prompt Tuning We next combine the man- 129

ual template with a soft prompt to enrich the input. 130

We sample M words Z ≜ (z1, · · · , zM ) from the 131

vocabulary of the pre-trained language model, and 132

then initialize a random embedding layer to rep- 133

resent the input Z as hidden vectors, which are 134

learned during the tuning process. 135

We then concatenate the hidden representations 136

of the manual prompts and learnable prompts to 137

form a new hidden vector, which is fed as the input 138

to the transformer layers of language model. In- 139

stead of adopting the classification objective in the 140

standard prompt-based methods, we close the gap 141

between pre-training and fine-tuning by treating the 142

tuning task as an masked language model (MLM) 143

task. The probability of predicting the correspond- 144

ing class y is defined as 145

p(y | x) = p([MASK] = F (y) | x̂,Z)

=
exp(wF (y) · h[MASK])∑

y′∈Y exp(wF (y′) · h[MASK])
,

(1) 146
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Models SST-2
(acc)

SST-5
(acc)

MR
(acc)

CR
(acc)

MPQA
(acc)

TREC
(acc)

SNLI
(acc)

QNLI
(acc)

QQP
(F1)

Average
O

ne
-s

ho
t Fine-tuning 53.1±4.4 23.4±1.8 53.3±3.6 52.8±2.8 51.3±1.8 28.7±10.6 35.2±2.6 51.0±1.0 45.4±11.4 43.8

Prefix-tuning 51.0±2.8 22.9±3.9 51.2±2.2 51.0±2.7 53.0±1.9 27.9±6.1 33.5±0.8 49.8±1.6 46.4±4.9 42.9
Prompt-tuning 51.5±2.2 22.7±2.8 51.5±2.1 52.1±3.5 51.9±2.1 17.3±3.3 35.1±2.0 50.6±0.5 47.8±8.7 42.3

STT (ours) 57.3±5.6 23.5±3.3 52.1±1.3 55.5±5.1 55.2±3.7 26.0±11.7 33.8±1.5 51.8±1.0 45.4±11.9 44.5

Tw
o-

sh
ot Fine-tuning 55.2±8.8 27.0±2.8 55.9±3.0 58.5±3.4 55.6±6.3 43.8±6.9 36.4±3.5 52.3±1.2 53.4±4.6 48.7

Prefix-tuning 51.7±2.4 23.5±2.3 52.1±1.8 53.4±3.6 55.3±4.4 35.8±4.0 34.4±0.6 51.3±2.5 46.0±6.8 44.8
Prompt-tuning 51.9±5.0 19.9±2.4 51.6±2.3 53.5±2.1 52.7±3.7 22.3±9.0 34.4±1.8 50.2±1.5 49.0±12.9 42.8

STT (ours) 61.9±2.7 26.0±3.5 53.9±4.4 60.3±4.2 60.6±3.3 23.6±5.5 33.4±1.1 51.6±0.9 48.1±9.4 46.6

Fi
ve

-s
ho

t Fine-tuning 60.0±5.1 32.3±2.1 58.2±3.7 63.9±6.0 59.2±1.5 61.3±12.2 36.8±2.6 53.9±3.3 53.5±5.2 53.2

Prefix-tuning 54.9±5.8 25.4±1.3 54.3±3.0 56.4±4.0 56.2±3.7 29.6±14.0 34.4±1.1 51.5±1.0 46.0±10.3 45.4
Prompt-tuning 52.2±6.7 20.6±3.5 55.6±6.4 56.4±4.4 53.7±2.2 21.2±5.7 35.8±1.6 51.8±1.7 47.8±9.5 43.9

STT (ours) 67.7±5.1 30.6±2.1 62.1±3.0 62.9±4.1 61.5±2.3 25.4±3.9 33.1±0.6 51.9±0.7 44.3±12.9 48.9

Table 1: Evaluation Results (mean and variance over 5 random trails) for one-shot, two-shot, and five-shot settings.
The best results across the prompt-based methods (Prefix-tuning, Prompt-tuning, and STT) are shown in bold. Our
STT approach exceeds both Prefix-tuning and Prompt-tuning in most tasks and on average.

Models Embedding
Layers

Transformer
Layers

Head
Layers1 Total

Prefix-tuning 0.026M 20.752M 1.052M 21.83M
Prompt-tuning 0.026M 0M 1.052M 1.08M

STT (ours) 0.026M 0M 1.054M 1.08M

Table 2: Trainable parameters for the prompt-based
methods (with prompt length 25). Note that, the total
trainable parameters for fine-tuning is 355.36M, which
is much larger than all of the prompt-based methods.

where h[MASK] is the hidden vector of [MASK] and147

wF (y) denotes the linear weights before softmax148

function for class y. It is important to note that149

we have re-used the language model linear weights150

from the pre-trained language model. We also show151

in Appendix A.4 that tuning the language model152

head could gain significant improvement.153

3 Experiments154

3.1 Experimental Setup155

Baselines We compared our proposed STT with156

the two recent prompt-based methods: prefix-157

tuning (Li and Liang, 2021) and prompt-tuning158

(Lester et al., 2021). We show structure differences159

between our model and these two prompt-based160

methods in Figure 1. To illustrate the gap between161

prompt tuning and fine-tuning more clearly, we162

also provide the fine-tuning results. All of the base-163

lines in our paper are based on the RoBERTa-large164

(Liu et al., 2019b) model in the HuggingFace Trans-165

formers codebase (Wolf et al., 2020).166

Evaluation Tasks To conduct a systematic eval-167

uation, we consider a total of 9 tasks, covering168

different domains and difficulties. Broadly speak-169

ing, the evaluation set includes 6 single-sentence170

1This column is related to the number of task labels, and
is calculated based on bi-classification.

tasks and 3 sentence-pair tasks. Specifically, we 171

select 3 tasks from the GLUE benchmark (Wang 172

et al., 2018) (one from each category, including 173

SST-2, QQP, and QNLI), and 6 from other pop- 174

ular NLU benchmarks (SST-5, MR, CR, MPQA, 175

TREC, SNLI). All the details of selected tasks are 176

provided in Appendix A.2. We follow Gao et al. 177

(2020) for pre-processing and use the same way to 178

sample the testing set. 179

Evaluation Settings Without loss of fairness, we 180

evaluate our STT approach based on the pre-trained 181

RoBERTa-large (Liu et al., 2019b) model as per the 182

baseline methods. To realize the few-shot setting, 183

for each task, the evaluation is conducted by train- 184

ing on K samples per class, where K = 1, 2, 5. We 185

tested all the models with 5 seeds (13, 21, 42, 87, 186

100) and calculated the mean and variance. More 187

details can be found in Appendix A.3. 188

3.2 Main Results 189

Table 1 (Top) shows the one-shot evaluation re- 190

sults. Regarding the number of trainable param- 191

eters, our model only tunes 1.13M parameters, 192

which is almost the same as prompt-tuning (Lester 193

et al., 2021), less than prefix-tuning (Li and Liang, 194

2021), and far less than fine-tuning. In this set of 195

experiments, although prefix-tuning and prompt- 196

tuning surpass fine-tuning in some tasks, it still lags 197

behind fine-tuning on average. Comparing with the 198

prompt-tuning method (Lester et al., 2021), prefix- 199

tuning adds prefix parameters to each transformer 200

layer. It gains 0.6% performance improvement but 201

at the expense of introducing additional parame- 202

ters. Our method, on the basis of prompt-tuning 203

(Lester et al., 2021), improves the average accuracy 204

by 2.2 points. With only 0.3% trainable parame- 205
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Figure 2: Left: Performance on SST-2 task over differ-
ent prompt lengths. A prompt length of 25 generally
gives better results. Right: Performance comparison
over different K (# samples per class) size.

ters, it even surpasses the fine-tuning method in206

most tasks, resulting in a 0.7 points improvement207

on average.208

Table 1 (Middle and Bottom) shows the eval-209

uation results for two-shot and five-shot scenar-210

ios. Similarly, our STT approach surpasses prefix-211

tuning (Li and Liang, 2021) and prompt-tuning212

(Lester et al., 2021) in general. Surprisingly,213

when compared with fine-tuning, our method still214

achieves significantly better results on SST-2, MR,215

and MPQA.216

Table 2 provides a comparison on model param-217

eters. Although language model head used a lin-218

ear transformation for mapping hidden vector to219

dictionary size, we only utilize the matrix with220

indices of the label words (which will be 2 for bi-221

classification task, 3 for Tri-classification task, 6222

for TREC task).223

3.3 Ablation Studies224

Prompt Length Prompt length is a critical hyper-225

parameter for prompt-based methods. We, there-226

fore, test the impact of prompt length on our STT.227

We initialize STT with various prompt lengths from228

5 to 30, with an increment of 5. Intuitively, more229

prompt tokens indicate better expressive power but230

introduce slightly more trainable parameters. The231

results are plotted in Figure 2 (left). We observe232

that the best results are achieved with around a cer-233

tain prompt length (in our case, 25 for both 2-shot234

and 5-shot settings), while inserting more prompt235

tokens beyond this point may yield a performance236

drop, especially in the few-shot setting.237

K Size We also evaluate how well STT works238

by increasing K in comparison with Prefix Tuning239

(Li and Liang, 2021) and Prompt Tuning (Lester240

et al., 2021). As shown in Figure 2 (Right), with241

K increasing all the way up to 64, the performance242

of STT keeps increasing, which consistently out-243

performs the other prompt-based methods, demon- 244

strating a great potential when more training data 245

become available. 246

3.4 Discussion 247

We find that existing prompt-based methods do 248

not work well in this setting, whereas our STT 249

can dramatically improve over the prompt-based 250

methods without introducing additional parame- 251

ters. Although our trainable parameters are much 252

less than fine-tuning, STT can still outperform the 253

fine-tuning method on SST-2, MR, MPQA. Most 254

of these tasks belong to sentiment classification 255

tasks. The performance improvement over the fine- 256

tuning method may be attributed to the benefit of 257

the manually-designed templates. Therefore, the 258

performance of STT depends on the quality of man- 259

ual templates and label words choice, which can be 260

one limitation of our method. 261

In our experiments, we choose a public pre- 262

trained model (RoBERTa large) in the huggingface 263

transformer library with 355.36M parameters in 264

total, which is a moderate-sized pre-trained lan- 265

guage model. As the model size increases, the 266

advantage of the prompt-based models over fine- 267

tuning will be more obvious. (Lester et al., 2021) 268

concludes that the gap between fine-tuning and 269

prompt-based methods is closing when increas- 270

ing the pre-trained language model size. Prompt- 271

tuning method (Lester et al., 2021) could achieve 272

competitive results when the model size reaches 273

100B. We will validate our STT on a larger pre- 274

trained language model for future work. 275

4 Conclusion 276

To adapt prompt-based methods in the few-shot 277

regime, we propose STT, a simple method that com- 278

bines both manual templates and soft prompts, and 279

treats the downstream classification tasks as a lan- 280

guage modeling task. We conduct experiments on 281

9 downstream classification tasks. Experiment re- 282

sults reveal that STT outperforms both fine-tuning 283

and prompt-based methods under the one-shot set- 284

ting. In the two-shot and five-shot settings, our 285

approach closes the gap between the fine-tuning 286

method and prompted-based methods, which can 287

even outperform fine-tuning on classification tasks. 288

Our research indicates that prompt-tuning is an ef- 289

fective tool for adapting large pre-trained models, 290

yet still there is room for further improvement, es- 291

pecially in the few-shot regime. 292
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A Appendix444

A.1 Related Works445

Language Model Fine-tuning A prevalent idea446

of adapting pre-trained language models for a wide447

range of downstream tasks is to fine-tune the pre-448

trained models with task specific heads. Since it449

became a standard practise of transfer learning in450

NLP domain, a number of efforts have been made451

seeking better ways of language model fine-tuning452

(Howard and Ruder, 2018; Gururangan et al., 2020;453

Phang et al., 2018; Aghajanyan et al., 2021; Dodge454

et al., 2020; Pruksachatkun et al., 2020; Zhang455

et al., 2020). However, fine-tuning usually requires456

the updating of all the model parameters, and there-457

fore, a copy of the whole model needs to be stored458

for each specific downstream task. It is hence459

expensive for both computational and storage re-460

sources. Another significant problem lies in the dif-461

ferent objective formats between the pre-training462

stage and fine-tuning stage. This not only leaves a463

gap between the language model and downstream464

tasks, but also introduces new parameters, making465

the fine-tuning less effective in the few-shot setting.466

Prompting Prompting was recently proposed467

aiming at the above issues, especially for giant468

language models like GPT-3 (Brown et al., 2020).469

A prompt is usually referred to as some extra text470

information added to the input. By concatenat-471

ing the input with a sequence of tokens on which472

the language model could condition, prompting en-473

ables the downstream tasks to adopt the same type474

of objective as the pre-training stage, and there-475

fore, closes the gap between the 2 stages. Taking476

sentiment analysis as an example, the input sen-477

tence is concatenated with a prompt (e.g., “it was478

[MASK]”), where the label word is masked and479

to be predicted by the language model. Then the480

sentiment class could be inferred based on which481

of the selected label word is predicted (e.g., “great”482

as positive and “terrible” as negative). In addition,483

since prompting introduces no new parameters and484

requires no training (all parameters are fixed), it485

was demonstrated to be effective in the few-shot486

setting (Le Scao and Rush, 2021), and designing or487

searching for optimal prompts becomes a crucial488

issue (Schick and Schütze, 2020; Shin et al., 2020).489

Prompt-tuning Instead of adding discrete490

prompt tokens from the vocabulary, prompt-tuning491

uses soft prompts (in the form of trainable492

continuous embeddings) and achieved significant493

improvements over prompting in many tasks 494

(Lester et al., 2021). Specifically, Li and Liang 495

(2021) proposed prefix-tuning for conditional 496

generation tasks, where continuous embeddings 497

were prepended to each layer of the encoder (and 498

decoder if applicable) architecture as prefix. By 499

tuning only the prefix parameters, comparable 500

performance to fine-tuning was observed in full 501

dataset setting. Soft prompts were also proved 502

to be effective in knowledge probing tasks when 503

inserting prompts into different positions of the 504

input according to a manually determined pattern 505

(Qin and Eisner, 2021; Liu et al., 2021). Some 506

other tasks (Hambardzumyan et al., 2021; Lester 507

et al., 2021) further simplified prefix-tuning 508

by excluding intermediate-layer prefixes and 509

only restricting the trainable parameters to the 510

input. Despite prompt-tuning has demonstrated 511

strength even comparable to fine-tuning when 512

given enough data, we observed a considerable 513

gap in performance between prompt-tuning and 514

fine-tuning in the few-shot setting. 515

A.2 Datasets 516

The evaluation datasets are composed of 6 single- 517

sentence tasks and 3 sentence-pair tasks. The 518

single-sentence tasks, including SST-2, SST-5 519

(Socher et al., 2013), MR (Pang and Lee, 2005), CR 520

(Hu and Liu, 2004), MPQA (Wiebe et al., 2005), 521

and TREC (Voorhees and Tice, 2000), are used 522

to test the model’s performance on predicting the 523

label word for each input sentence. The sentence- 524

pair tasks, including SNLI (Bowman et al., 2015), 525

QNLI (Rajpurkar et al., 2016), QQP (Iyer et al., 526

2017), are introduced to measure how well a model 527

is by comparing the relationships between 2 input 528

sentences. Among them, SST-2, QQP, and QNLI 529

are each selected from one category of the GLUE 530

benchmark (Wang et al., 2018). 531

As summarized in Table 3, we select the evalu- 532

ation tasks of various types and cover diverse do- 533

mains. SST-2, SST-5, MR, CR, and MPQA be- 534

longs to sentiment analysis. TREC classifies open- 535

domain, fact-based questions in to different classes. 536

SNLI and QNLI, respectively, are datasets for the 537

inference of sentence relations and question an- 538

swers. And QQP is a sentence similarity task from 539

the social question-and-answer community Quora. 540

In formulating them as masked language modeling 541

task, we utilize manual templates and label words 542

intuitively designed for each task (Table 3). 543
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Task Template Label Words Domain

Sentiment Analysis Tasks
SST-2 <S1> it was [MASK] . positive: great, negative: terrible movie reviews
SST-5 <S1> it was [MASK] . positive: great, neutral: okay, negative: terrible movie reviews
MR <S1> it was [MASK] . positive: great, neutral: okay, negative: terrible movie reviews
CR <S1> it was [MASK] . positive: great, neutral: okay, negative: terrible customer reviews
MPQA <S1> it was [MASK] . positive: great, negative: terrible news opinions

Question Classification Tasks

TREC [MASK] : <S1>
abbreviation: Expression, entity: Entity,
description: Description, human: Human,
location: Location, numeric: Number

misc.

Inference Tasks
SNLI <S1> ? [MASK] , <S2> entailment: yes, neutral: maybe, contradiction: no misc.
QNLI <S1> ? [MASK] , <S2> entailment: yes, not_entailment: no Wikipedia

Similarity Tasks
QQP <S1> [MASK] , <S2> equivalent: yes, not_equivalent: no social QA questions

Table 3: Task types and domains in our experiments with manual templates and label words.

Seeds 13 21 42 87 100 Average

w/o updated lm_head 53.56 53.78 53.78 53.33 53.55 53.56±0.2
w/ updated lm_head 62.73 63.07 68.92 55.96 64.33 63.00±4.6

Table 4: Comparison between tuning with trainable
lm_head and fixed lm_head. lm_head stands for lan-
guage model head.

We follow Gao et al. (2020) for pre-processing544

and use the same way to sample the testing set.545

A.3 Evaluation Settings546

Hyper-parameters tuning is performed with a small547

development set, which is set to the same size as548

the training set. As pointed out by Gao et al. (2020),549

this can avoid the significant advantages of using550

large development set and complies better with the551

goal of few-shot setting. For simplicity, instead552

of tuning hyper-parameters for each task, we only553

tune and select the hyper-parameters on SST-2, and554

apply the tuned parameters to remaining tasks. For555

each task, we conduct training for 500 steps, with556

a batch size of 2, a learning rate of 2e−5, and a557

prompt length of 25. Furthermore, the ameliorate558

unstable performance induced by the randomness559

of sampling a small dataset, we repeat each task560

and average the performance with variance over 5561

random trials.562

A.4 The Role of Trainable Language Model563

Head564

To demonstrate the importance of tuning the lan-565

guage model head, we conducted a comparative566

experiment between making the language model567

head fixed and trainable for tuning. The experiment568

was performed on SST-2 task over five random tri- 569

als, and with a prompt length of 25. The results are 570

concluded in Table 4. Tuning with language model 571

head updated makes a marked improvement in all 572

experiments, illustrating that it is essential to make 573

the language model head trainable for our method. 574

A.5 Ethical Considerations 575

We need to point out, that bias might be introduced 576

by training. This, however, is owing to the limita- 577

tions of the dataset 2 and few-shot training samples 578

at hand, and does not represent a flaw in the model. 579

2As pointed out in https://huggingface.co/
roberta-large, the training data contains unfiltered and
un-neutral content from the internet. Therefore, the model can
have biased predictions.
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