STT: Soft Template Tuning for Few-Shot Learning

Anonymous ACL submission

Abstract

With the rapid expansion of large pre-trained
language models, fine-tuning all the model pa-
rameters for downstream tasks is becoming
computationally prohibitive. The recently de-
veloped prompt-based methods freeze the en-
tire model parameters and only update the so-
called prompt parameters appended to the in-
puts, significantly reducing the burden of fully
fine-tuning. However, standard prompt-based
methods mainly consider the case where suf-
ficient data of downstream tasks are available.
It is still unclear whether the advantage can be
transferred to the few-shot regime, where only
limited data are available for each downstream
task. Our empirical studies suggest there is
still a gap between prompt tuning and fully
fine-tuning for few-shot learning. We propose
a new prompt-tuning framework, called Soft
Template Tuning (STT), to bridge the gap. STT
combines manual prompts and auto-prompts,
and treats downstream classification tasks as a
masked language modeling task. STT can close
the gap between fine-tuning and prompt-based
methods without introducing additional param-
eters. Importantly, it can even outperform
the time- and resource-consuming fine-tuning
method on sentiment classification tasks.

1 Introduction

With the success of pre-trained large language mod-
els, an increasing number of techniques have been
proposed to adapt these general-propose models
to downstream tasks. Starting from GPT (Radford
et al., 2018) and BERT (Devlin et al., 2018), full
model fine-tuning is used as the default method
to adapt pre-trained language models to down-
stream tasks. With the rapid increase of model sizes
(Lewis et al., 2019; Liu et al., 2019a; Raffel et al.,
2019), it has gradually become more challenging
to update all model parameters during fine-tuning.

One extreme case is the GPT-3 model (Brown
et al., 2020), where the model size is too large

(175B model parameters) to even enable fine-
tuning, which sets a barrier for the community to
involve in the research. Alternatively, in-context
learning is proposed, which demonstrates few-
shot capabilities without tuning any model param-
eters. However, although in-context learning en-
ables jumbo language models to be applied on di-
verse downstream tasks, it is not as effective as
fine-tuning, which significantly restricts the advan-
tages and applicability of these large pre-trained
language models.

Meanwhile, the ideas have been explored to up-
date a small number of model parameters while
keeping most model parameters frozen. (Li and
Liang, 2021) proposes prefix-tuning and shows
strong performance on generative tasks. This
method freezes the model parameters and prop-
agates the error during fine-tuning to prefix ac-
tivation prepended to each layer in the encoder
stack, including the input layer. (Hambardzumyan
et al., 2021) simplifies this method by restricting
the trainable parameters only to the input and out-
put subnetworks of a masked language model, and
shows reasonable results on classification tasks.
(Lester et al., 2021) proposes a further simplifica-
tion — prompt-tuning for adapting language mod-
els, which shows that prompt tuning alone (with
no intermediate-layer prefixes) is sufficient to be
competitive with model tuning. However, (Lester
et al., 2021) only test prompt tuning in the case
where each task has enough data for adaptation. It
is not clear whether prompt tuning is still effec-
tive in the few-shot regime, where only a limited
number of samples are available for each task. We
find through empirical evidence that prompt tun-
ing lags far behind the fine-tuning in the few-shot
regime. This can be explained by the intuition that
using only a few samples to learn a relatively small
portion of parameters might be too flexible and
tend to overfit the few training data, similar to the
traditional machine-learning setting.

Prefix Tuning

Label:1/0

£

Prompt Tuning

Label:1/0

£

STT (Our Model)

Label: great / terrible

£

‘ Classification Head ‘

‘ Classification Head ‘

‘ Language Model Head ‘

n

Encoder Layers

n

Encoder Layers

£

Encoder Layers

The snacks are delicious .

The snacks are delicious .

The snacks are delicious It was [MASK]

Figure 1: Model Comparison: We compare STT with Prefix tuning (Li and Liang, 2021) and Prompt tuning (Lester
et al., 2021). The yellow box means parameters need to be updated. The white box means parameters are fixed.
STT, on the basis of the Prompt tuning method, adds a human-defined template to the input sentence, and replaces
the classifier head with the language model head to predict whether the word in the mask position is great or terrible.

We propose improved techniques to alleviate this
problem in the practical scenario where a moderate-
sized pre-trained language model (e.g., ROBERTa
large (Liu et al., 2019b)) and a small number of
examples for each downstream task (i.e., the few-
shot setting) are accessible. This setting is common
in practice: (1) Such types of models are publicly
available and the computational resources needed
are easily accessible for most researchers; (2) The
few-shot settings are realistic, as new tasks usually
come with few examples. To address the problems
mentioned above, we explore the idea of closing the
gap between pre-training and fine-tuning. Specifi-
cally, we propose to add manual prompts on the ba-
sis of prompt-tuning (Lester et al., 2021) and treat
the problem to be a masked language modeling
problem, as was done by most pre-training. Since
we combine manual template with soft prompt, we
call our method Soft Template Tuning (STT). Ex-
periments demonstrate that STT is able to close
the gap between prompt-based methods and fine-
tuning in the few-shot regime. Remarkably, STT
can even outperform the computationally heavy
fine-tuning on some tasks, though it tunes much
fewer parameters than the fully fine-tuning method.

2 Soft Template Tuning

Our task is to adapt a pre-trained masked language
model to downstream tasks with a dataset D. To
realize the few-shot regime, we only sample K
examples from D as the training dataset Dyin =
(24, yi)fil, and use the original test dataset Dieq for
verification. We define F':)V —) as a mapping
from the label space) to the word space with a

vocabulary V in the pre-trained language model.

Manual Template Design We first construct
prompted input &; by adding manual prompts to
the input data z;. Inspired by Gao et al. (2020), we
adapt manual prompts for different tasks, which
are defined in Table 3 in the Appendix. As an ex-
ample, we augment an input x1 (e.g., The snacks
are delicious.) as follows for the classification task:

21 = [CLS] z; it was [MASK] . [SEP]
After obtaining 21, we translate it into a hidden
vector representation with the pre-trained embed-
ding layer of the language model.

Soft Prompt Tuning We next combine the man-
ual template with a soft prompt to enrich the input.
We sample M words Z = (z1,--- , zpr) from the
vocabulary of the pre-trained language model, and
then initialize a random embedding layer to rep-
resent the input Z as hidden vectors, which are
learned during the tuning process.

We then concatenate the hidden representations
of the manual prompts and learnable prompts to
form a new hidden vector, which is fed as the input
to the transformer layers of language model. In-
stead of adopting the classification objective in the
standard prompt-based methods, we close the gap
between pre-training and fine-tuning by treating the
tuning task as an masked language model (MLM)
task. The probability of predicting the correspond-
ing class y is defined as

p(y |) = p(IMASK] = F(y) | &, Z)
_ exp(wpy) - hpvask))
> yey exp(wp(y) - hivask))’

D

Models SST-2 SST-5 MR CR MPQA TREC SNLI QNLI QQpP Average
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (acc) (F1)
2 Fine-tuning \ 53.1+44 23.4+18 533436 52.8+28 S51.3+18 28.7+106 352426 51.0£1.0 454+114 \ 43.8
'E Prefix-tuning | 51.0+2.8 22.9+39 51.2422 51.0£2.7 53.0+1.9 27.9+6.1 33.5+08 49.8+1.6 46.4+49 429
é Prompt-tuning | 51.5+22 22.7+£28 51.5+2.1 52.1+£35 51.9+21 173433 35.1+£20 50.6+05 47.8+8.7 423
STT (ours) 573456 23.5+33 52.1+13 55.5451 552437 26.0+11.7 33.841.5 51.8+1.0 454+11.9 44.5
= Fine-tuning \ 552488 27.0+£28 559430 58.5+34 55.6463 43.8+£69 364435 52.3x1.2 53.4+46 48.7
E Prefix-tuning | 51.7+24 23.5+23 52.1+18 53.443.6 553444 358440 34.4+06 51.3+25 46.0+6.8 44.8
5 Prompt-tuning | 51.945.0 19.9+24 51.64+23 53.5+£2.1 527437 223490 344+18 50.2+1.5 49.0+129 42.8
STT (ours) 61.942.7 26.0+3.5 53.9+44 60.3+42 60.6+33 23.6+55 334411 51.6+09 48.14+94 46.6
« Fine-tuning \ 60.0+£5.1 32.3+2.1 582437 63.9+60 592415 61.3+122 36.8+2.6 53.9+£33 53.5+52 53.2
'E Prefix-tuning | 54.9+58 254413 543430 564440 562437 29.6+140 34.4+1.1 515410 46.0+£103 45.4
.LE Prompt-tuning | 52.2+6.7 20.6+£3.5 55.6+64 56.4+44 53.7+22 21.2457 35.8+16 S51.8+1.7 47.8+95 43.9
STT (ours) 67.7+£5.1 30.6+2.1 62.1+3.0 62.9+4.1 61.5+23 254439 33.1+06 51.9+07 44.3£129 48.9

Table 1: Evaluation Results (mean and variance over 5 random trails) for one-shot, two-shot, and five-shot settings.
The best results across the prompt-based methods (Prefix-tuning, Prompt-tuning, and STT) are shown in bold. Our
STT approach exceeds both Prefix-tuning and Prompt-tuning in most tasks and on average.

Embedding Transformer Head

Models ‘ Layers Layers Layers' Total
Prefix-tuning 0.026M 20.752M 1.052M 21.83M
Prompt-tuning 0.026M oM 1.052M 1.08M
STT (ours) 0.026M oM 1.054M 1.08M

Table 2: Trainable parameters for the prompt-based
methods (with prompt length 25). Note that, the total
trainable parameters for fine-tuning is 355.36M, which
is much larger than all of the prompt-based methods.

where hmask] is the hidden vector of [MASK] and
wp(,) denotes the linear weights before softmax
function for class y. It is important to note that
we have re-used the language model linear weights
from the pre-trained language model. We also show
in Appendix A.4 that tuning the language model
head could gain significant improvement.

3 Experiments
3.1 Experimental Setup

Baselines We compared our proposed STT with
the two recent prompt-based methods: prefix-
tuning (Li and Liang, 2021) and prompt-tuning
(Lester et al., 2021). We show structure differences
between our model and these two prompt-based
methods in Figure 1. To illustrate the gap between
prompt tuning and fine-tuning more clearly, we
also provide the fine-tuning results. All of the base-
lines in our paper are based on the RoBERTa-large
(Liu et al., 2019b) model in the HuggingFace Trans-
formers codebase (Wolf et al., 2020).

Evaluation Tasks To conduct a systematic eval-
uation, we consider a total of 9 tasks, covering
different domains and difficulties. Broadly speak-
ing, the evaluation set includes 6 single-sentence

"This column is related to the number of task labels, and
is calculated based on bi-classification.

tasks and 3 sentence-pair tasks. Specifically, we
select 3 tasks from the GLUE benchmark (Wang
et al., 2018) (one from each category, including
SST-2, QQP, and QNLI), and 6 from other pop-
ular NLU benchmarks (SST-5, MR, CR, MPQA,
TREC, SNLI). All the details of selected tasks are
provided in Appendix A.2. We follow Gao et al.
(2020) for pre-processing and use the same way to
sample the testing set.

Evaluation Settings Without loss of fairness, we
evaluate our STT approach based on the pre-trained
RoBERTa-large (Liu et al., 2019b) model as per the
baseline methods. To realize the few-shot setting,
for each task, the evaluation is conducted by train-
ing on K samples per class, where K = 1,2,5. We
tested all the models with 5 seeds (13, 21, 42, 87,
100) and calculated the mean and variance. More
details can be found in Appendix A.3.

3.2 Main Results

Table 1 (Top) shows the one-shot evaluation re-
sults. Regarding the number of trainable param-
eters, our model only tunes 1.13M parameters,
which is almost the same as prompt-tuning (Lester
et al., 2021), less than prefix-tuning (Li and Liang,
2021), and far less than fine-tuning. In this set of
experiments, although prefix-tuning and prompt-
tuning surpass fine-tuning in some tasks, it still lags
behind fine-tuning on average. Comparing with the
prompt-tuning method (Lester et al., 2021), prefix-
tuning adds prefix parameters to each transformer
layer. It gains 0.6% performance improvement but
at the expense of introducing additional parame-
ters. Our method, on the basis of prompt-tuning
(Lester et al., 2021), improves the average accuracy
by 2.2 points. With only 0.3% trainable parame-

—e— 2-Shot 5-Shot e Prefix Tuning * Prompt Tuning ® STT

70 75 /./0
—_ 70 L
g 65 % ;\? ./
§60 /.\ ./ \. §65 o/ o
355| @ - 560 / /°/
g g | .

50 55

— /
45 507 i
5 10 15 20 25 30 1 2 5 8 16 64
Prompt Length K

Figure 2: Left: Performance on SST-2 task over differ-
ent prompt lengths. A prompt length of 25 generally
gives better results. Right: Performance comparison
over different K (# samples per class) size.

ters, it even surpasses the fine-tuning method in
most tasks, resulting in a 0.7 points improvement
on average.

Table 1 (Middle and Bottom) shows the eval-
uation results for two-shot and five-shot scenar-
ios. Similarly, our STT approach surpasses prefix-
tuning (Li and Liang, 2021) and prompt-tuning
(Lester et al., 2021) in general. Surprisingly,
when compared with fine-tuning, our method still
achieves significantly better results on SST-2, MR,
and MPQA.

Table 2 provides a comparison on model param-
eters. Although language model head used a lin-
ear transformation for mapping hidden vector to
dictionary size, we only utilize the matrix with
indices of the label words (which will be 2 for bi-
classification task, 3 for Tri-classification task, 6
for TREC task).

3.3 Ablation Studies

Prompt Length Prompt length is a critical hyper-
parameter for prompt-based methods. We, there-
fore, test the impact of prompt length on our STT.
We initialize STT with various prompt lengths from
5 to 30, with an increment of 5. Intuitively, more
prompt tokens indicate better expressive power but
introduce slightly more trainable parameters. The
results are plotted in Figure 2 (left). We observe
that the best results are achieved with around a cer-
tain prompt length (in our case, 25 for both 2-shot
and 5-shot settings), while inserting more prompt
tokens beyond this point may yield a performance
drop, especially in the few-shot setting.

K Size We also evaluate how well STT works
by increasing K in comparison with Prefix Tuning
(Li and Liang, 2021) and Prompt Tuning (Lester
et al., 2021). As shown in Figure 2 (Right), with
K increasing all the way up to 64, the performance
of STT keeps increasing, which consistently out-

performs the other prompt-based methods, demon-
strating a great potential when more training data
become available.

3.4 Discussion

We find that existing prompt-based methods do
not work well in this setting, whereas our STT
can dramatically improve over the prompt-based
methods without introducing additional parame-
ters. Although our trainable parameters are much
less than fine-tuning, STT can still outperform the
fine-tuning method on SST-2, MR, MPQA. Most
of these tasks belong to sentiment classification
tasks. The performance improvement over the fine-
tuning method may be attributed to the benefit of
the manually-designed templates. Therefore, the
performance of STT depends on the quality of man-
ual templates and label words choice, which can be
one limitation of our method.

In our experiments, we choose a public pre-
trained model (RoBERTa large) in the huggingface
transformer library with 355.36M parameters in
total, which is a moderate-sized pre-trained lan-
guage model. As the model size increases, the
advantage of the prompt-based models over fine-
tuning will be more obvious. (Lester et al., 2021)
concludes that the gap between fine-tuning and
prompt-based methods is closing when increas-
ing the pre-trained language model size. Prompt-
tuning method (Lester et al., 2021) could achieve
competitive results when the model size reaches
100B. We will validate our STT on a larger pre-
trained language model for future work.

4 Conclusion

To adapt prompt-based methods in the few-shot
regime, we propose STT, a simple method that com-
bines both manual templates and soft prompts, and
treats the downstream classification tasks as a lan-
guage modeling task. We conduct experiments on
9 downstream classification tasks. Experiment re-
sults reveal that STT outperforms both fine-tuning
and prompt-based methods under the one-shot set-
ting. In the two-shot and five-shot settings, our
approach closes the gap between the fine-tuning
method and prompted-based methods, which can
even outperform fine-tuning on classification tasks.
Our research indicates that prompt-tuning is an ef-
fective tool for adapting large pre-trained models,
yet still there is room for further improvement, es-
pecially in the few-shot regime.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-
tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Minging Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 168—
177.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al.
2017. First quora dataset release: Question pairs.

data. quora. com.

Teven Le Scao and Alexander M Rush. 2021. How
many data points is a prompt worth? In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2627-2636.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. arXiv preprint arXiv:2101.00190.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019a.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R Bow-
man. 2020. Intermediate-task transfer learning with
pretrained models for natural language understand-
ing: When and why does it work? arXiv preprint
arXiv:2005.00628.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Timo Schick and Hinrich Schiitze. 2020. Exploit-
ing cloze questions for few shot text classifica-
tion and natural language inference. arXiv preprint
arXiv:2001.07676.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631—
1642.

Ellen M Voorhees and Dawn M Tice. 2000. Build-
ing a question answering test collection. In
Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 200-207.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language resources and evaluation,
39(2):165-210.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Appendix
A.1 Related Works

Language Model Fine-tuning A prevalent idea
of adapting pre-trained language models for a wide
range of downstream tasks is to fine-tune the pre-
trained models with task specific heads. Since it
became a standard practise of transfer learning in
NLP domain, a number of efforts have been made
seeking better ways of language model fine-tuning
(Howard and Ruder, 2018; Gururangan et al., 2020;
Phang et al., 2018; Aghajanyan et al., 2021; Dodge
et al., 2020; Pruksachatkun et al., 2020; Zhang
et al., 2020). However, fine-tuning usually requires
the updating of all the model parameters, and there-
fore, a copy of the whole model needs to be stored
for each specific downstream task. It is hence
expensive for both computational and storage re-
sources. Another significant problem lies in the dif-
ferent objective formats between the pre-training
stage and fine-tuning stage. This not only leaves a
gap between the language model and downstream
tasks, but also introduces new parameters, making
the fine-tuning less effective in the few-shot setting.

Prompting Prompting was recently proposed
aiming at the above issues, especially for giant
language models like GPT-3 (Brown et al., 2020).
A prompt is usually referred to as some extra text
information added to the input. By concatenat-
ing the input with a sequence of tokens on which
the language model could condition, prompting en-
ables the downstream tasks to adopt the same type
of objective as the pre-training stage, and there-
fore, closes the gap between the 2 stages. Taking
sentiment analysis as an example, the input sen-
tence is concatenated with a prompt (e.g., “it was
[MASK]”), where the label word is masked and
to be predicted by the language model. Then the
sentiment class could be inferred based on which
of the selected label word is predicted (e.g., “great”
as positive and “terrible” as negative). In addition,
since prompting introduces no new parameters and
requires no training (all parameters are fixed), it
was demonstrated to be effective in the few-shot
setting (Le Scao and Rush, 2021), and designing or
searching for optimal prompts becomes a crucial
issue (Schick and Schiitze, 2020; Shin et al., 2020).

Prompt-tuning Instead of adding discrete
prompt tokens from the vocabulary, prompt-tuning
uses soft prompts (in the form of trainable
continuous embeddings) and achieved significant

improvements over prompting in many tasks
(Lester et al., 2021). Specifically, Li and Liang
(2021) proposed prefix-tuning for conditional
generation tasks, where continuous embeddings
were prepended to each layer of the encoder (and
decoder if applicable) architecture as prefix. By
tuning only the prefix parameters, comparable
performance to fine-tuning was observed in full
dataset setting. Soft prompts were also proved
to be effective in knowledge probing tasks when
inserting prompts into different positions of the
input according to a manually determined pattern
(Qin and Eisner, 2021; Liu et al., 2021). Some
other tasks (Hambardzumyan et al., 2021; Lester
et al., 2021) further simplified prefix-tuning
by excluding intermediate-layer prefixes and
only restricting the trainable parameters to the
input. Despite prompt-tuning has demonstrated
strength even comparable to fine-tuning when
given enough data, we observed a considerable
gap in performance between prompt-tuning and
fine-tuning in the few-shot setting.

A.2 Datasets

The evaluation datasets are composed of 6 single-
sentence tasks and 3 sentence-pair tasks. The
single-sentence tasks, including SST-2, SST-5
(Socher et al., 2013), MR (Pang and Lee, 2005), CR
(Hu and Liu, 2004), MPQA (Wiebe et al., 2005),
and TREC (Voorhees and Tice, 2000), are used
to test the model’s performance on predicting the
label word for each input sentence. The sentence-
pair tasks, including SNLI (Bowman et al., 2015),
QNLI (Rajpurkar et al., 2016), QQP (Iyer et al.,
2017), are introduced to measure how well a model
is by comparing the relationships between 2 input
sentences. Among them, SST-2, QQP, and QNLI
are each selected from one category of the GLUE
benchmark (Wang et al., 2018).

As summarized in Table 3, we select the evalu-
ation tasks of various types and cover diverse do-
mains. SST-2, SST-5, MR, CR, and MPQA be-
longs to sentiment analysis. TREC classifies open-
domain, fact-based questions in to different classes.
SNLI and QNLI, respectively, are datasets for the
inference of sentence relations and question an-
swers. And QQP is a sentence similarity task from
the social question-and-answer community Quora.
In formulating them as masked language modeling
task, we utilize manual templates and label words
intuitively designed for each task (Table 3).

Task Template Label Words

Domain

Sentiment Analysis Tasks

SST-2 <S1>it was [MASK] .
SST-5 <S1>it was [MASK] .
MR <S1> it was [MASK] .
CR <S1> it was [MASK] .
MPQA <S1>it was [MASK].

positive: great, negative: terrible
positive: great, neutral: okay, negative: terrible
positive: great, neutral: okay, negative: terrible
positive: great, neutral: okay, negative: terrible
positive: great, negative: terrible

movie reviews
movie reviews
movie reviews
customer reviews
news opinions

Question Classification Tasks

abbreviation: Expression, entity: Entity,

TREC [MASK]:<S1> description: Description, human: Human, misc.
location: Location, numeric: Number
Inference Tasks
SNLI <S1>? [MASK], <S2> entailment: yes, neutral: maybe, contradiction: no misc.
QNLI <S1>? [MASK], <S2> entailment: yes, not_entailment: no Wikipedia
Similarity Tasks
QQP <S1> [MASK], <S2> equivalent: yes, not_equivalent: no social QA questions

Table 3: Task types and domains in our experiments with manual templates and label words.

Seeds | 13 21 42 87 100 | Average

53.56 53.78 53.78 53.33 53.55 | 53.5640.2
62.73 63.07 68.92 5596 64.33 | 63.00+4.6

w/o updated Im_head
w/ updated Im_head

Table 4: Comparison between tuning with trainable
Im_head and fixed Im_head. Im_head stands for lan-
guage model head.

We follow Gao et al. (2020) for pre-processing
and use the same way to sample the testing set.

A.3 Evaluation Settings

Hyper-parameters tuning is performed with a small
development set, which is set to the same size as
the training set. As pointed out by Gao et al. (2020),
this can avoid the significant advantages of using
large development set and complies better with the
goal of few-shot setting. For simplicity, instead
of tuning hyper-parameters for each task, we only
tune and select the hyper-parameters on SST-2, and
apply the tuned parameters to remaining tasks. For
each task, we conduct training for 500 steps, with
a batch size of 2, a learning rate of 2¢7°, and a
prompt length of 25. Furthermore, the ameliorate
unstable performance induced by the randomness
of sampling a small dataset, we repeat each task
and average the performance with variance over 5
random trials.

A.4 The Role of Trainable Language Model
Head

To demonstrate the importance of tuning the lan-
guage model head, we conducted a comparative
experiment between making the language model
head fixed and trainable for tuning. The experiment

was performed on SST-2 task over five random tri-
als, and with a prompt length of 25. The results are
concluded in Table 4. Tuning with language model
head updated makes a marked improvement in all
experiments, illustrating that it is essential to make
the language model head trainable for our method.

A.5 Ethical Considerations

We need to point out, that bias might be introduced
by training. This, however, is owing to the limita-
tions of the dataset > and few-shot training samples
at hand, and does not represent a flaw in the model.

ZAs pointed out in https://huggingface.co/
roberta-large, the training data contains unfiltered and
un-neutral content from the internet. Therefore, the model can
have biased predictions.

https://huggingface.co/roberta-large
https://huggingface.co/roberta-large

