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ABSTRACT

CLIP, despite its robust zero-shot capabilities, often suffers from spurious correla-
tions that can lead to prediction errors, especially when deployed in environments
different from their training data. This paper addresses the challenge of correcting
errors in CLIP, particularly when only limited data is available and the underlying
biases causing errors are unknown. To tackle this issue, we introduce a novel
two-phase model editing framework. In the first phase, we propose to utilize a
data-driven approach to identify the spurious features that directly contribute to
errors without prior knowledge of the biases and nullify the corresponding com-
ponents in the model, creating a spurious-feature-ablated model. In the second
phase, we edit the original model by aligning the model’s outputs with those of the
spurious-feature-ablated model for misclassified samples to correct errors, while
also aligning with the original model for the remaining data to maintain locality.
Our experiments on the synthetic dataset and real-world datasets demonstrate the
effectiveness of our method in both identifying the causes of errors and rectifying
the model to significantly improve model performance.

1 INTRODUCTION

Contrastive Language-Image Pre-Training (CLIP) (Radford et al., 2021) has emerged as a ground-
breaking visual-language model, garnering substantial attention due to its remarkable zero-shot
performance across various downstream tasks (Zhou et al., 2022; Lüddecke & Ecker, 2022; Rom-
bach et al., 2022; Mokady et al., 2021; Ramesh et al., 2022). By employing a contrastive learning
framework, CLIP aligns image features with corresponding textual descriptions within a unified
embedding space. It is trained on a vast corpus of image-text data from the web, enabling it to learn
robust visual representations that contain rich semantic information. These representations facilitate
zero-shot predictions by classifying images into categories based on the closest embedding similarity
between the image and the text descriptions of category names. This method has demonstrated strong
performance, even in out-of-distribution (OOD) tasks.

Despite its impressive generalization capabilities, CLIP is not without its limitations. It may inadver-
tently learn spurious correlations between visual features and text descriptions. When downstream
data distributions significantly deviate from the pre-training distributions, these correlations can
change, leading to failures in prediction. For instance, CLIP might rely on background or other
context attributes in images for classification tasks (Zhang & Ré, 2022; Ma et al., 2024), which can
lead to incorrect predictions when the context shifts.

In practical scenarios, when prediction failures in the CLIP model are observed after deployment,
there is an urgent need to correct these errors, particularly when only limited data is available.
Numerous studies (Gao et al., 2024; Zhang & Ré, 2022; Kumar et al., 2022; Dehdashtian et al., 2024;
Chuang et al., 2023; Seth et al., 2023; Wang et al., 2022) have proposed methods to fine-tune the
pre-trained CLIP or to adapt the image representations, aiming at reducing spurious correlations and
enhancing the robustness of visual features. However, these methods typically require a large number
of training images, which is not feasible when available data for correcting errors is scarce.

Model editing (Mitchell et al., 2021; De Cao et al., 2021; Yao et al., 2023) offers a promising solution
in such scenarios. Model editing focuses on rectifying mistakes not just in the error samples but
also in all related samples that have the same underlying cause of the error (edit success) without
affecting other unrelated data (edit locality). Previous studies (Gandelsman et al., 2024; Bhalla et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Identify-then-ablate

Ablated
CLIP-ViT

Ablated
CLIP-ViT

CLIP-ViT CLIP-ViT

KL-divergence using incorrectly predicted samples

KL-divergence using correctly predicted
samples

Target
Classes

Other
Classes

CLIP-ViT
Edit Success

Locality

CLIP-ViT Ablated
CLIP-ViT

Ablated
CLIP-ViT

CLIP-ViT CLIP-ViT

KL-divergence using correctly predicted
samples

KL-divergence using incorrectly predicted samples

KL-divergence using correctly predicted samples

Target
Classes

Other
Classes

Edit Success

Locality

Projection
Matrix

+

Stage 1 Stage 2

Figure 1: An Overview of the proposed two-stage model editing framework

2024) have demonstrated that by reducing the reliance on the spurious correlations that cause the
failure, we can effectively correct the error for all related samples, thus achieving high edit success
rate. However, these methods require prior knowledge of these spurious correlations, which are often
latent and unidentified in real-world settings. Consequently, it remains a significant challenge to
correct errors in CLIP with limited data and without prior knowledge of the underlying biases.

To address this challenge, our approach involves identifying the components of the model that
contribute to errors in a data-driven manner. We start by following (Gandelsman et al., 2024) to break
down the image embedding into individual MLP and attention layers, and further decompose the
features of the attention layer into individual attention heads. We focus on attention heads, because,
according to findings in (Gandelsman et al., 2024), MLP layers usually have a negligible direct effect
on the prediction. We then performed a causal analysis (McGrath et al., 2023) using a small number
of misclassified and correctly classified samples from the same category to identify the attention heads
that contribute to prediction errors. This involves measuring the change of prediction after replacing
the attention head of a misclassified sample with the average feature of the same head from correctly
classified samples, and vice versa. Based on the causal analysis, we obtain the heads that are directly
responsible for incorrect predictions, without prior knowledge of the spurious correlations or the
specific role of the heads. Finally, we eliminate the effect of these misleading heads by zero-ablating
their contribution to the image embedding.

While our initial identify-then-ablate editing strategy achieves the desired edit success in rectifying
CLIP, it may fail to achieve locality especially when the identified spurious features are also causal
features for unrelated data. Moreover, this strategy requires an additional step of zero-ablating the
identified head feature which could complicate the deployment. In real-world applications, adding
new modules post-deployment can be challenging. To address these issues, we propose a two-stage
model editing framework, as outlined in Fig. 1. In the first stage, we apply our identify-then-ablate
editing strategy to obtain a spurious-feature-ablated model. In the second stage, we fine-tune the
original model. We use a KL divergence loss to align the output logits of the model with those of
spurious-feature-ablated model for misclassified data and a KL divergence loss between the output
logits and those of the original model for the remaining data. The former loss encourages the model to
learn the knowledge from the spurious-feature-ablated model such that the error in the original model
is corrected, ensuring edit success. The later loss encourages the model to preserve the knowledge of
the original model such that the effect of rectification is limited to the target samples, maintaining
edit locality.

Summary of contribution: In this paper, we tackle the challenge of rectifying the CLIP model when
only limited data is available and the biases causing errors are unknown and propose a two-phase
framework for model editing. In the first phase, we identify which parts of the model (specifically,
attention heads) are most responsible for errors by analyzing their direct contributions to the erroneous
predictions using the available data. We then nullify these parts to create a spurious-feature-ablated
model that is less influenced by misleading features. In the second phase, we edit the model
by learning the error-corrected knowledge from the spurious-feature-ablated model to ensure edit
success, and learning the error-unrelated knowledge from the original model to ensure edit locality.
We conduct extensive experiments on the Waterbirds (Sagawa et al., 2020) dataset with known
spurious correlations to validate the effectiveness of the proposed method in identifying the cause
of error. We also verify the superior performance of the proposed CLIP model editing method on
real-world datasets with misclassified samples.
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2 PRELIMINARIES

2.1 CLIP-VIT IMAGE REPRESENTATION DECOMPOSITION

CLIP comprises a text encoder Etext and an image encoder Eimage, both of which learn representa-
tions in a shared vision-language space. The CLIP model is pre-trained by maximizing the similarity
for matched pairs and minimizing that for all unmatched pairs. During inference, CLIP generates
representations for both the input image and the textual descriptions of each class. It then calculates
the similarity between the image representation and each text representation, selecting the class with
the highest similarity as the predicted class.

In this paper, we focus on a specific variant of CLIP, known as CLIP-ViT, which integrates the Vision
Transformer (ViT (Dosovitskiy et al., 2021)) as the backbone for the image encoder. ViT consists
of L residual blocks, each comprising a multi-head self-attention (MSA) layer followed by an MLP
layer. Layer normalization is applied before each MSA and MLP layer. Initially, ViT processes an
input image by dividing it into N patches, transforming these patches into N d-dimensional token
embeddings {z0i }i∈{1,...,N}. An additional class token z00 is also included, and together, these N + 1

tokens form the initial state of the residual stream Z0 ∈ Rd×(N+1). The residual blocks update this
stream sequentially:

Ẑl = MSAl(LNl(Zl−1)) +Zl−1, Zl = MLPl(L̂N
l
(Ẑl)) + Ẑl, l ∈ {1, 2, ..., L}. (1)

The output of ViT, specifically the class token from the last layer, is then mapped into the shared
embedding space using a linear projection P ∈ Rd×d′

, where d′ is the dimension of the shared
embedding. By unrolling Eq. (1) and denoting the column corresponding to the class token in the
residual stream, i.e. the first column in Zl, by [Zl]0, we can rewrite the representation for image x as

Eimage(x) = P [Z0]0 +

L∑
l=1

P [MSAl(LNl(Zl−1))]0 +

L∑
l=1

P [MLPl(L̂N
l
(Ẑl))]0. (2)

According to Elhage et al. (2021), the output of each attention layer can be described as the sum of
the outputs from each independent attention head, multiplied by its respective output matrix, W h

O.
Therefore, we break down the attention component for each layer as the sum of the independent
attention function outputs:

[MSAl(LNlZl−1)]0 =

H∑
h=1

[Headl,h
(
LNl(Zl−1)

)
]0 =

H∑
h=1

N∑
i=0

al,h0,iW
l,h
O W l,h

V LNl(z
l−1
i ) (3)

Here, H is the number of head in each layer; Headl,h is the h-th attention head in l-th layer; al,h0,i is
the attention weights from the class token to the i-th token; W l,h

O and W l,h
V are the output and value

transition matrix; and zl−1
i is the i-th token output by l − 1 layer.

By plugging Eq. (3) into Eq.(2) and defining hl,h = [Headl,h
(
LNl(Zl−1)

)
]0 for simplification, we

get the head-level decomposition of the image representation:

Eimage(x) = P [Z0]0 +

L∑
l=1

P [MLPl(L̂N
l
(Ẑl))]0 +

L∑
l=1

H∑
h=1

Phl,h. (4)

The decomposition in Eq. (4) illustrates the direct contribution of the initial class token, each MLP
layer, and each attention head in the MSA layers. Using a mean-ablation method to measure the
direct effect of each component in prediction, Gandelsman et al. (2024) demonstrated that the initial
class token and MLP layers have a negligible direct effect on the prediction performance and only
the latter MSA layers have a significant direct effect. Moreover, the attention heads in the late MSA
layers capture specific image properties. These insights guide our strategy for identifying failure
causes in image classification tasks as will introduced in Sec. 3.

2.2 PROBLEM FORMULATION: MODEL EDITING FOR CLIP

In this study, we address a common issue in the CLIP model, where it incorrectly predicts the label ŷe
for an image xe, despite the ground truth being ye. This error is not isolated to a single instance but
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is indicative of a broader, underlying bias affecting a specific subset of data. We denote this subset as
Ixe,ye,ŷe

= {x| argmaxy fθ(x) = ŷe}, where fθ represents the CLIP model parameterized by θ.

To correct this bias, model editing refines the model, aiming to correct the error not only for the
image xe but also for all similar instances in Ixe,ye,ŷe . This correction should achieve two main
objectives: edit success and edit locality. Edit success refers to the model’s ability to accurately
predict the correct labels for the problematic data after the modifications, measured by the accuracy
of the post-edit model θe on Ixe,ye,ŷe

. Edit locality ensures that these changes minimally impact the
model’s performance on unrelated data, maintaining its general accuracy. It can be examined by the
post-edit model’s accuracy on an unrelated dataset, defined as Oxe,ye,ŷe

= {x|x /∈ Ixe,ye,ŷe
}.

Typically, the failures in CLIP are discovered after using a small set of data from each class to validate
the model’s performance. These data, with both ground-truth labels and predicted labels, form the
data basis for performing editing. In many cases, not all the data points are misclassified. Therefore,
we assume that the dataset available for editing contains K1 correctly predicted samples and K2

misclassified samples for each targeted class.

3 REFINECLIP: MODEL EDITING FOR CLIP

This section presents our proposed two-phase model editing framework, RefineCLIP, designed
to rectify biases in CLIP that cause incorrect predictions. In the first phase, we employ a data-
driven method to identify the biases in the attention heads responsible for errors, followed by a
straightforward nullifying strategy to eliminate these biases and correct the errors. In the second
phase, our algorithm adapts the model to learn the error-correcting knowledge gained from the first
phase, enabling successful edits while preserving the predictions for unrelated data to achieve edit
locality.

3.1 REMOVE SPURIOUS FEATURE BY ZERO-ABLATION

By pre-training on vast diverse image-text pair data collected from web, CLIP learns rich visual and
language features. Moreover, as demonstrated by Gandelsman et al. (2024), certain attention heads in
CLIP-ViT capture specific image properties such as texture, shape, color, object count, location, etc.
However, CLIP also learns spurious correlations that can lead to incorrect predictions. For example,
CLIP associates the object “waterbirds” with “water background” and fails when the background
changes to “land background”. Therefore, to achieve successful editing, we aim to identify the
spurious features that cause the prediction errors and remove these features. Inspired by Gandelsman
et al. (2024), we focus on identifying the spurious features in the attention heads.

Assume we have identified a set of attention heads contributing to incorrect predictions in CLIP. To
mitigate their effect, we employ zero ablation, which modifies the image representation by effectively
removing the influence of these spurious features as:

Eablated
image (x,S) = P [Z0]0 +

L∑
l=1

P [MLPl(LNl(Ẑl))]0 +
∑
l,h ̸∈S

Phl,h

= Eimage(x)−
∑
l,h∈S

Phl,h,

(5)

where S is the indices set of the identified heads. Eq. (5) shows how the original image representation,
Eimage(x), is adjusted by subtracting the contributions from the spurious heads. This method
ensures that the features contributing to incorrect predictions are not considered in the final image
representation, potentially rectifying the prediction errors and improving the accuracy of the CLIP
model.

3.2 IDENTIFYING THE CAUSE OF ERRORS

To identify the attention heads containing spurious features, we employ an ablation study suggested
by McGrath et al. (2023); Nanda et al. (2023). We analyze (K1+K2) data samples that have the same
ground-truth label, of which K1 samples are correctly classified and K2 samples are misclassified by
CLIP, to measure each head’s contribution to the error. The contribution of a head hl,h is quantified

4
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by measuring the change in similarity between the image and text representations after the head has
been ablated:

∆l,h(x, y,h) = sim
(
Eimage(x)− Phl,h(x) + Ph,Etext(y)

)
− sim

(
Eimage(x),Etext(y)

)
, (6)

where sim denotes the similarity function in CLIP. The direct effect of the head hl,h on incorrect
predictions is then calculated as:

DEl,h
A = Exi∈Wye,ŷe

[
∆l,h

(
xi, ye, h̄

l,h
Cye

)
−∆l,h

(
xi, ŷe, h̄

l,h
Cye

)]
, (7)

where Wye,ŷe
is the set of incorrectly predicted samples with ground-truth label ye and predicted

label ŷe; Cye
is the set of correctly predicted samples with ground-truth label ye. By replacing the

head hl,h with the average feature from correctly classified samples, i.e. h̄l,h
Cye

= Exj∈Cye
hl,h(xj),

we assess whether the prediction shifts towards the correct label ye by ∆l,h
(
xi, ye, h̄

l,h
Cye

)
and away

from the incorrect label ŷe by −∆l,h
(
xi, ŷe, h̄

l,h
Cye

)
. If the model relies on the feature from head

hl,h in its misclassified predictions, the prediction would change significantly after this replacement.
Therefore, DEl,h

A quantifies the direct contribution of this particular head to incorrect predictions.
After evaluating all heads in the late MSA layers, we rank them based on their DEl,h

A values and
select the top T heads to generate a list of candidate attention heads for ablation arranged in order of
importance.

From a different perspective, the heads responsible for errors in misclassified samples should behave
differently in correctly predicted samples. In other words, the misleading features that these heads
capture in misclassified samples should not be present in correctly predicted ones. By replacing
the contributions of these heads with those from misclassified samples, we expect to observe a
performance degradation. Thus, we assess the heads by performing a similar ablation on correctly
classified data. We replace the head with the average features from the misclassified data, i.e.,
h̄l,h
Cye

= Exj∈Wye,ŷe
hl,h(xj) and calculate the contribution as:

DEl,h
B = Exi∈Cye

[
∆l,h(xi, ye, h̄

l,h
Wye,ŷe

)−∆l,h(xi, ŷe, h̄
l,h
Wye,ŷe

)
]
. (8)

Concretely, we assess whether the prediction shifts towards the correct label ye, measured by
∆l,h(xi, ye, h̄

l,h
Wye,ŷe

) and away from the incorrect label ŷe, measured by −∆l,h(xi, ŷe, h̄
l,h
Wye,ŷe

).
By analyzing these shifts, we can identify which heads contribute most to the differences between
correctly and incorrectly predicted samples for class ye. Heads with high negative values in this
metric are likely contributing to incorrect predictions. Therefore, we select the top T heads with the
lowest DEl,h

B values to create an ordered list of candidate heads for ablation.

To further investigate why a data point x with ground-truth label ye is incorrectly predicted to ŷe, we
introduce two new scores to estimate contributions to this error. However, it requires an additional
dataset Aŷe

which contains a few samples that are correctly classified as ŷe. We then evaluate the
contribution of each attention head to the incorrect predicted label ŷe as:

DEl,h
C = EAŷe

[
∆l,h(xi, ŷe, h̄

l,h
Wye,ŷe

)−∆l,h(xi, ye, h̄
l,h
Wye,ŷe

)
]
,

DEl,h
D = Exi∈Wye,ŷe

[
∆l,h(xi, ŷe, h̄

l,h
Aŷe

)−∆l,h(xi, ye, h̄
l,h
Aŷe

)
]
,

(9)

where h̄l,h
Aŷe

= Exj∈Aŷe
hl,h(xj). The first score DEl,h

C evaluates the effect of substituting the
head features of data from Aŷe

with the average features from Wye,ŷe
, by measuring the prediction

shift towards the correct label ŷe and away from the incorrect label ye. Intuitively, attention heads
that catch causal features should contribute positively to the correct label for both correctly and
incorrectly predicted data. In contrast, a “bad” attention head that we aim to identify is one that
produces negative impacts on both sets. Specifically, it will lead to predictions of the wrong label
ŷe for Wye,ŷe

, while also inducing predictions of other labels (labels excluding ŷe, which includes
ye) for correctly predicted samples in Aŷe

. Therefore, heads with high values in the score DEl,h
C are

more likely to be a “bad” attention head that cause confusion on both sides. We can select the top T

heads with the highest DEl,h
C scores to create a ranked candidate list of attention heads for ablation.

Similarly, DEl,h
D evaluates the effect of substituting the head of data from Wye,ŷe

with that from Aŷe
,

by measuring the prediction shift towards the incorrect label ŷe and away from the correct label ye. A

5
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more negative DEl,h
D indicates the potential benefit we can get by ablating this confusing attention

head, as it suggests that predictions shift in the correct direction. We also select the top T attention
heads with the lowest DEl,h

D to establish a prioritized list of attention heads for ablation.

How to obtain the identification results? We have proposed four scores DEl,h
A , DEl,h

B , DEl,h
C , DEl,h

D .
To identify the most effective results, we start by calculating four different scores: Each of these
scores helps us generate a list of T heads. For each candidate list, we perform an ablation study by
systematically removing the top t heads, for each t from 1 to T . We denote the set of heads removed
in each case as St. Next, we evaluate the utility of each ablated model configuration by comparing
how similar the ablated image representation is to the ground-truth label versus non-ground-truth
labels. The utility for each set St is calculated as follows:

U(St) = Exi

[
sim

(
Eablation

image (xi,St),Etext(ye)
)
−Ey ̸=yesim

(
Eablation

image (xi,St),Etext(y)
)]

. (10)

If multiple scores are available, we can generate T options using each score. Then we simply select
the option with largest utility among all the available options.

The ability to calculate each score depends on the availability of specific datasets. When data sets
Wye,ŷe

and Cye
are available, we can estimate the first two scores DEl,h

A and DEl,h
B . When data sets

Wye,ŷe and Aŷe are available, we can estimate the DEl,h
C and DEl,h

D . In cases where the dataset for
computing average head features is unavailable, we can approximate the score using a zero feature.
Furthermore, based on Proposition 1, which shows that DEl,h

A ≈ −DEl,h
B and DEl,h

C ≈ −DEl,h
D , we

can simplify our computations by choosing to use either DEl,h
A or DEl,h

B , as well as either DEl,h
C or

DEl,h
D , rather than both scores for each pair.

After obtaining the identified set of heads for removal, we can obtain the ablated image representation
through Eq. (5). Since the spurious information is removed from the image representation, we can
make correct prediction using the ablated image representation.

3.3 REFINE CLIP THROUGH REPRESENTATION ADAPTING

Removing spurious head features in CLIP by zero-ablation can achieve desirable success edit.
However, in visual models, the spurious features for one class would be causal features for another
class. Therefore, directly removing these features can degrade the model’s performance on unrelated
classes and does not ensure that changes are localized only to relevant data, failing to achieve edit
locality. Moreover, removing head features introduces an additional step in the forward process which
may not be compatible with the normal deployment of the model.

Therefore, we seek to directly update the parameters in CLIP to achieve both edit success and edit
locality. We introduce a trainable diagonal projection matrix diag(θ) ∈ R

d′×d′
where θ is the

diagonal elements. This matrix adapts the image representation as follows:

diag(θ)Eimage(x) = diag(θ)P [Z0]0 +

L∑
l=1

diag(θ)P [MLPl(L̂N
l
(Ẑl))]0 +

L∑
l=1

H∑
h=1

diag(θ)Phl,h

After training, this matrix can be merged with the projection matrix P by P = diag(θ)P , simplifying
the model by avoiding additional parameters or processing steps.

To achieve edit success, we propose to distill the knowledge from the spurious removed representation
Eablated

image (x) to the projected representation using KL-divergence on their predicted probabilities as:

Lsuccess(θ) = Ex∈Wye,ŷe
DKL

(
g
(
Eablated

image (x)
)
∥g (diag(θ)Eimage(x))

)
, (11)

where g is a function in CLIP mapping the image representation to class probabilities. Note that this
loss only applies to data that is incorrectly predicted.

To achieve edit locality, we propose to distill the knowledge from the original model to preserve the
output of correctly predicted samples in Cye

or Aŷe
as:

Llocality(θ) = Ex∈Cye∪Aŷe
DKL (g (Eimage(x)) ∥g (diag(θ)Eimage(x))) . (12)

Loss Lsuccess(θ) and Llocality(θ) can be seen as using a soft label, i.e. the output probability to supervise
the learning of θ. Since the true labels of these data are available, we can guide the learning of the

6
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model with a cross-entropy loss LCE. Combining these three losses, we obtain the loss for learning θ:
θ∗ = argmin

θ
αLsuccess(θ) + βLlocality(θ) + LCE(θ), (13)

where α and β are hyper-parameters that balance the trade-off between guidance from the ablated
model and the initial model.

4 RELATED WORK

4.1 DEBIASING CLIP

Studies have shown that CLIP models suffer from various biases (Agarwal et al., 2021) including
image background (Zhang & Ré, 2022; Ma et al., 2024) and demographic attributes (Wang et al.,
2021; 2022; Dehdashtian et al., 2024). Addressing these biases is crucial for improving the model’s
performance in zero-shot prediction tasks. Research efforts can be broadly categorized into two
approaches. The first approach involves fine-tuning the CLIP model using novel data construction
strategies to enhance robustness (Wang et al., 2021; Zhang & Ré, 2022; Berg et al., 2022). For
instance, Wang et al. (2021) introduced a fair sampling strategy to balance data concerning biased
attributes like gender. Similarly, Zhang & Ré (2022) developed an adapter training method with
conservative sampling aimed at improving group robustness. These strategies, however, often require
extensive data for training. The second approach focuses on manipulating the features directly to
reduce bias. This includes techniques like feature reweighting or projection (Chuang et al., 2023;
Wang et al., 2022; 2021; Adila et al., 2023; Dehdashtian et al., 2024). For example, RoboShot (Adila
et al., 2023) employs a projection method to eliminate harmful information and enhance beneficial
information in features by referring to harmful and helpful representations. Additionally, Wang
et al. (2022) uses a re-presentation matrix to adjust features, minimizing representation divergence
for target attributes while maximizing it for bias attributes. These methods are potent in reducing
spurious information but require prior knowledge of the biases.

4.2 MODEL EDITING

Model editing techniques (Mitchell et al., 2021; De Cao et al., 2021; Yao et al., 2023) aim to
refine the behavior of LLMs for specific input-output pairs, while preserving their performance on
other data. These methods fall into three main categories: classifier-based, meta-learning-based,
and locate-then-edit methods. Classifier-based model editing works by retaining the pre-trained
parameters and using a classifier to determine behavioral modifications. This method ensures
that the original model predictions remain unchanged for unrelated samples outside the edited
scope, while modifications are applied only to targeted samples. Locate-then-edit methods involve
identifying specific model parameters linked to particular knowledge through causal tracing. Once
these parameters are pinpointed, they are directly updated to achieve the desired edits. Meta-learning-
based model editing utilizes a hyper-network, known as an editor, to update parameters. This editor
is meta-trained across multiple editing tasks to learn how to generate the necessary updates based on
the provided edit samples. For a detailed review of these methods for language models, please refer
to Yao et al. (2023).

Despite its strides in large language models, adapting similar techniques to visual models like CLIP
and Vision Transformers (ViTs) remains largely untapped. Santurkar et al. (2021) adapted classifiers
in convolutional neural networks to mitigate concept-level spurious features by mapping misleading
visual concepts to correct targets. However, this requires prior knowledge of the erroneous visual
concept, its location, and the target concept, which may not always be available. Another work
(Gandelsman et al., 2024) proposes to ablate the spurious heads to rectify the errors, but it also
demands prior knowledge of which visual concept triggers the error and the specific role of the head
corresponding to the concepts.

Our proposed framework is partially similar to each of these approaches. In the first phase, similar to
Gandelsman et al. (2024), we perform ablation to edit, targeting spurious correlations. In the second
phase, akin to Santurkar et al. (2021), we adjust the classifier. However, our method distinguishes
itself by identifying spurious features through a data-driven approach, eliminating the need for prior
bias knowledge. This aspect is crucial for practical applications where such prior knowledge is
unavailable.
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5 EXPERIMENTS

We evaluate our proposed two-phase model editing approach using both synthetic datasets (Binary
Waterbirds (Sagawa et al., 2020)) and real-world datasets (CelebA (Liu et al., 2015), ImageNet-R
(Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b)). Our experiments aim to answer
the following key questions: Q1: Is our method effective in identifying attention heads associated
with spurious cues? (see Section 5.1) Q2: Can our method achieve stable editing success with only
a limited number of samples? (see Sections 5.2 and 5.3) Q3: Does our method achieve locality in
model editing? (see Section 5.3) The ablation study of RefineCLIP can be found in the Appendix B.

5.1 EXPERIMENTAL VALIDATION OF SPURIOUS CUE DETECTION

In Section 3.2, we propose four scores, DEl,h
A , DEl,h

B , DEl,h
C , and DEl,h

D , to evaluate whether an
attention head is associated with spurious cues. The rationale behind each score varies. DEl,h

A and
DEl,h

B focus on filtering features that contribute to prediction failures by comparing samples with the
same ground truth label. In contrast, DEl,h

C and DEl,h
D aim to filter features that have weak positive

effects in correctly predicted samples but strong negative effects in misclassified ones, by comparing
samples with the same predicted labels.

To evaluate whether they function as we hypothesized, we conducted experiments on the Binary
Waterbirds Dataset. This dataset combines thousands of waterbird and landbird photographs from
the CUB dataset (Wah et al., 2011) with water or land backgrounds from the Places dataset (Zhou
et al., 2016). As the goal is to classify the bird type, the background serves as a significant source of
spurious correlation.

The underlying idea of our evaluation is that, although the two kinds of scores target different types
of unknown spurious features, we can make the known spurious features (background) the target
cues for each group by selecting specific samples. By confirming that the identified attention regions
are largely consistent across both, we demonstrate that the methods function as expected. This
consistency is anticipated because the background-associated attention regions are fixed and should
be detected by both groups. We select T = 15 heads from the last 4 layers. The implementation
details is in Appendix A.1

We denote the head identification methods using DEl,h
A , DEl,h

B , DEl,h
C , and DEl,h

D by (A), (B), (C),
(D). The results, presented in Table 4 (in Appendix), show that methods (A) and (B), as well as
methods (C) and (D), yield identical outcomes, supporting the conclusion from Proposition 1 that
these methods are approximately equivalent.

Moreover, 8 of the 15 selected attention heads are shared across all methods. Referring to
TextSpan(Gandelsman et al., 2024), we list these shared attention heads along with their corre-
sponding TextSpan-generated textual descriptions in Table 5 (in appendix). We use Grad-CAM
(Selvaraju et al., 2017) to visualize the regions these common components focus, as shown in Figure
3 (Appendix).

The descriptions generated by TextSpan and the Grad-CAM visualizations confirm that the jointly
selected attention heads are predominantly associated with background features, as anticipated. There-
fore, we can confidently conclude that our method effectively identifies attention heads associated
with spurious cues, thereby answering the question Q1.

5.2 STABLE EDIT SUCCESS

To address Q2 and evaluate our method’s ability to achieve stable editing success in data-scarce
scenarios, we test our first-phase model in a zero-shot CLIP setting, leveraging CLIP’s zero-shot
capabilities without training additional classifiers. The experiments are conducted on the Binary
Waterbirds and CelebA datasets. CelebA is a large-scale, real-world dataset containing over 200,000
celebrity images, each annotated with 40 attributes. In contrast to synthetic datasets like Binary
Waterbirds, the spurious cues associated with attribute classification in CelebA are unknown, making
it impractical to apply human knowledge-based methods.
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Table 1: Average-group accuracy (%) and worst-group accuracy (%) on the Waterbirds Dataset.
Methods marked with an asterisk (*) indicate that they utilized additional data for training or
validation. The best result in each column is highlighted in bold, while the second highest value is
underlined.

Method ViT-B/16 ViT-L/14 ViT-H/14
Avg.↑ Wst.↑ Avg.↑ Wst.↑ Avg.↑ Wst.↑

Base 72.8 45.6 75.5 47.7 68.6 37.2
Tip-Adapter 74.4 46.9 77.4 52.6 70.3 38.0
Tip-Adapter-train 76.3 49.9 78.0 52.2 74.8 59.3
Ours 81.1 61.4 85.5 72.1 75.9 51.3
TextSpan * 78.5 57.5 84.4 72.9 72.9 43.3
Ours * 80.4 65.9 85.6 75.6 75.9 51.3

Table 3: Stability Analysis Results Across Varying Sample Sizes on the Binary Waterbirds Dataset

ViT-B/16 ViT-L/14 ViT-H/14
Avg.↑ Wst.↑ Avg.↑ Wst.↑ Avg.↑ Wst.↑

Base 72.8 45.6 75.5 47.7 68.6 37.2
Ours (n = 10) 79.8.8± 1.2 59.79± 1.7 85.5± 0.8 71.9± 0.8 74.5± 1.0 46.5± 3.3
Ours (n = 20) 80.8± 0.2 68.5± 2.3 85.7± 0.4 73.9± 1.1 74.9± 0.6 48.1± 1.0
Ours (n = 30) 80.4± 0.2 65.8± 2.3 85.5± 0.4 72.4± 2.1 73.5± 1.7 47.7± 3.2

Baseline For the Binary Waterbirds dataset, we compare our identify-then-ablate method with
applicable CLIP performance enhancement methods as follows. TextSpan treats the background as a
known spurious cue, analyzing the entire test set (over 5,000 images) to manually identify attention
heads associated with these spurious features using human expertise. Tip-adapter (Zhang et al.,
2021) is a robust, training-free method designed to enhance the accuracy of CLIP while preserving its
zero-shot capabilities. We compare our method to both its training-free and training-based versions,
even though our method does not require training at this stage. For the CelebA dataset, due to the
unknown spurious features, we only compare our performance to that of Tip-adapter.

Results For both our method and Tip-Adapter, we evaluate performance using 10 samples per class.
For TextSpan, we list its performance that used the entire test set to train textual descriptions, as
it requires a lot of data. The performances for different methods and different CLIP pre-trained
models on Binary Waterbirds are presented in Table 1. We report the average accuracy and the
worst-case accuracy among the 4 birds groups (landbirds on land, landbirds on water, waterbirds on
water and waterbirds on land). For CelebA, we show the performance of our method and Tip-Adapter
in predicting the ’Young’ or ’Old’ attribute using CLIP-B/16, as detailed in Table 2. We highlight the
following observations: (i) With the same number of samples per class, our method outperforms Tip-
Adapter on both the Waterbirds and CelebA datasets. (ii) Despite utilizing fewer samples, incurring
lower computational costs, and requiring no human intervention, our method generally outperforms
TextSpan on the Waterbirds dataset. Furthermore, by incorporating a validation set to enhance our
method, its performance can be further improved. Additional implementation details can be found in
the Appendix A.2

Stability Analysis To evaluate the stability of our proposed identify-then-ablate method, we conduct
a series of experiments on the Binary Waterbirds dataset. Specifically, we test with n = 10, 20, and
30, where n represents the number of randomly selected samples per class. For each sample size,
we use four different random seeds for sample selection. Table 3 presents the mean and estimated
standard deviation of the accuracies for each setting. Our method demonstrates stable editing capacity
across different sample sizes and sample selections.

5.3 LOCALITY
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In this section, we answer Q3 by evaluating whether our two-phase approach, RefineCLIP, can
achieve locality in a model editing scenario. We conduct tests on both a synthetic dataset and
ImageNet-A.

Table 2: Average-group accuracy
(%) and worst-group accuracy (%)
for classifying ’Young’ or ’Old’ on
the CelebA dataset using ViT-B/16.

Method Avg.↑ Wst.↑
Base 70.1 43.8

Tip-Adapter 73.7 52.2
Ours 74.1 56.4

Datasets and Settings ImageNet-R contains a diverse range of
real-world images that CLIP can classify with ease. We select
the 18 classes that have the highest number of cartoon-style
images from ImageNet-R and combine them with the Binary
Waterbirds dataset to create a new dataset consisting of 20
classes. Our goal with this dataset is to achieve editing success
for the bird classes while preserving locality by minimizing
side effects on the ImageNet-R classes, using only 10 samples
from the Binary Waterbirds dataset per class.

Similarly, we also evaluate RefineCLIP on ImageNet-A,
a dataset consisting of real-world images misclassified by
ResNet models. We select the 10 classes with the most images
and focus on improving CLIP’s performance on the 2 worst-
performing classes, while minimizing any negative impact on
the remaining eight. This is achieved using only 4 samples
from each of the two target classes.

Results Unlike most model-editing methods that rely on prior knowledge, our proposed RefineCLIP
is entirely data-driven. We compare it to standard fine-tuning using the same number of samples. As
shown in Fig. 2, on the combined Waterbirds and ImageNet-R dataset, RefineCLIP achieves higher
accuracy on the target classes than standard fine-tuning while significantly mitigating the performance
degradation on other classes caused by overfitting—a critical issue with standard fine-tuning. On
the ImageNet-A dataset, RefineCLIP strikes a balance between edit success and locality, achieving
comparable accuracy to standard fine-tuning on the target classes while effectively reducing its side
effects on unrelated classes.

0 1000 2000 3000
epoch

72.5

75.0

77.5

80.0

A
cc

ur
ac

y 
(%

)

Avg. Acc. (target classes)

RefineCLIP (ours)
Std. Fine-tune

0 1000 2000 3000
epoch

60

80

Avg. Acc.(other classes)

RefineCLIP (ours)
Std. Fine-tune

0 500 1000 1500
epoch

70

75

80

A
cc

ur
ac

y 
(%

)

Avg. Acc. (target classes)

RefineCLIP (ours)
Std. Fine-tune

0 500 1000 1500
epoch

70

75

80

85

Avg. Acc.(other classes)

RefineCLIP (ours)
Std. Fine-tune

Figure 2: Performance Comparison of RefineCLIP and Standard Fine-Tuning with ViT-L/14. From
left to right, the first two figures show the average accuracy for the target classes and other classes on
the Waterbirds-ImageNet-R combined dataset, while the next two figures display the corresponding
results for the ImageNet-A dataset. To reduce randomness, we use three random seeds for each
method.

6 CONCLUSION

In this paper, we introduce a two-phase model editing framework for rectifying the prediction errors in
CLIP which are caused by unknown spurious features. We show that the proposed measure effectively
identifies the heads causing incorrect predictions and removing these identified features from the
image representation repairs the model’s performance. We further propose using representation
adaption to refine CLIP features such that it reduces the influence of spurious features for incorrectly
predicted data while preserving the prediction of unrelated data.
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A EXPERIMENT DETAILS AND EXTRA RESULTS

A.1 MISSING DETAILS IN SECTION 5.1

To make the known spurious cue, image background, the target cues for each comparing method, we
select specific samples for each set. For methods (A) and (B), we use images where the background
matches the bird type in the correctly predicted sets and mismatched backgrounds in the misclassified
sets. For methods (C) and (D), to ensure the background serves as a spurious feature in both sets,
we select only samples with mismatched backgrounds. We fix K1 = K2 = 5, resulting in a total of
30 samples, with different correctly predicted samples used across the method groups. We evaluate
each attention head in the last four layers of the OpenCLIP ViT-L/14 model (Ilharco et al., 2021) and
select the top T = 15 attention heads that cause the largest expected model shift for each method.
The selected attention heads for each method are recorded in Table 4. The jointly selected attention
heads and their corresponding TextSpan-generated textual descriptions are presented in Table 5.

Table 4: Attention heads identified by each method. Those jointly selected attention heads are
highlighted in bold. (L22,H0) represents the (0+1)-th head in the (22+1)-th layer.

Method (A) Method (B) Method (C) Method (D)

(L23, H2) (L23, H2) (L23, H2) (L23, H2)
(L23, H5) (L23, H5) (L23, H6) (L23, H6)
(L22, H6) (L22, H6) (L22, H1) (L22, H1)
(L22, H4) (L22, H4) (L23, H5) (L23, H5)
(L23, H14) (L23, H14) (L23, H8) (L23, H8)
(L23, H3) (L23, H3) (L23, H0) (L23, H0)
(L22, H2) (L22, H2) (L22, H5) (L22, H5)
(L21, H0) (L21, H0) (L23, H3) (L23, H3)
(L23, H12) (L23, H12) (L23, H9) (L23, H9)
(L23, H8) (L23, H8) (L23, H1) (L23, H1)
(L22, H12) (L22, H12) (L21, H9) (L21, H9)
(L23, H9) (L23, H9) (L22, H9) (L22, H9)
(L22, H1) (L22, H1) (L23, H12) (L23, H12)
(L23, H6) (L23, H6) (L20, H10) (L20, H10)
(L21, H15) (L21, H15) (L22, H0) (L22, H0)

A.2 MISSING DETAILS IN SECTION 5.2

We randomly select 10 samples per class (waterbirds and landbirds for the Waterbirds dataset, young
and old celebrities for the CelebA dataset), with some correctly predicted by CLIP and others not.
These samples are categorized into four groups based on their ground-truth labels and predicted
labels. We then apply the comparison methods described in Section 3.2, skipping any methods that
are infeasible due to insufficient data in the comparison set. If the comparison reference set lacks
sufficient data, we assign zero as the average contribution for each attention head.

Next, we identify the attention heads contributing to incorrect predictions following the method
presented in Section 3.2. Concretely, we obtain the top 15 attention heads, as a candidate list, using
the proposed scores. Then we compute the utility defined in Eq. (10) for ablating the top t heads in
the candidate list. We repeat for all scores and perform the same ablation as the one with the largest
utility. For our method enhanced with a validation set, we perform ablation on the top t heads in each
ordered candidate list and select the list that delivers the best performance on the validation set, rather
than relying on the utility estimation.

Both our method and Tip-Adapter are evaluated in a zero-shot setting, leveraging CLIP’s zero-shot
capabilities without training additional classifiers. We show the results in Table 1 and Table 2.
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Table 5: Common attention head with their top-5 results of TEXTSPAN.

Layer 23, Head 5 Layer 23, Head 3

Intertwined tree branches Bustling city square
Flowing water bodies Serene park setting
A meadow Warm and cozy indoor scene
A smoky plume Modern airport terminal
Blossoming springtime blooms Remote hilltop hut

Layer 23, Head 8 Layer 23, Head 6

Photograph with a red color palette Picture taken in Sumatra
An image with cold green tones Picture taken in Alberta, Canada
Timeless black and white Picture taken in the geographical location of Spain
Image with a yellow color Image taken in New England
Photograph with a blue color palette Photo captured in the Arizona desert

Layer 23, Head 2 Layer 23, Head 12

Image showing prairie grouse Image with polka dot patterns
Image with a penguin Striped design
A magnolia Checkered design
An image with dogs Artwork with pointillism technique
An image with cats Photo taken in Galapagos Islands

Layer 23, Head 9 Layer 22, Head 1

ornate cathedral A semicircular arch
detailed reptile close-up An isosceles triangle
Image with a seagull An oval
A clover Rectangular object
Futuristic space exploration A sphere

A.3 COMPARE WITH CLIP-BASED PROMPT LEARNING APPROACHES IN FEW-SHOT SCENARIOS

Although RefineCLIP is primarily a model editing approach designed to achieve both edit success
and edit locality, its data-driven identify-then-ablate editing component can also be used as a basis
for comparison with various prompt learning approaches. Specifically, we compare this aspect of
the model with recent CLIP-based prompt learning methods: CoOp Zhou et al. (2021), Plot Chen
et al. (2023), and CLAP Cai et al. (2023). Since most of these methods are applied in a few-shot
CLIP setting that involves training additional classifiers, rather than leveraging CLIP’s zero-shot
capabilities, we also train an additional classifier after applying our identify-then-ablate method.
The experiments are conducted on the Waterbirds dataset. For each method, we randomly select 10
samples per class for training. As shown in Table 6, our method performs generally better than all of
the other three baselines.

B ABLATION STUDY AND SENSITIVITY ANALYSIS

Spurious-feature-ablated model To assess whether learning from the spurious-feature-ablated
model developed in the first phase contributes to edit success, we conduct an ablation experiment.
Specifically, we remove the component of the training objective related to this model and treat all
available samples equally. In other words, we train the model to minimize the KL divergence with
the initial model across all samples, instead of dividing them into two groups—one learning from the
ablated model and the other from the initial model. The results in Fig. 4 highlight the significance
of this component, as the model’s capacity to edit the target class degrades significantly when this
learning mechanism is excluded from the training process.
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Original CLIP Attention heads
removed by
RefineCLIP

Attention heads
removed by
TextSpan

Figure 3: Grad-Cam visualization.We present four examples from the Waterbirds dataset, each
illustrating the following from left to right: the original image, a heatmap showing the focus of the
initial CLIP model, a heatmap highlighting the attention heads identified by RefineCLIP as spurious
correlations based on all four scores, and a heatmap highlighting the attention heads selected by
TextSpan as related to the background. In the task of classifying waterbirds and landbirds, domain
knowledge identifies bird claws and beaks as causal features, while the background represents
spurious correlations. As shown in the examples, the attention heads selected by RefineCLIP as
spurious cues primarily focus on the images’ backgrounds. Furthermore, compared to TextSpan,
those attention heads selected by RefineCLIP demonstrates greater focus on spurious cues and less
attention on causal features, despite TextSpan relying on prior domain knowledge and requiring
significantly more human effort and computational resources.

Ablation study of Lsuccess(θ) and Llocality(θ) In accordance with Eq. (11), (12), and (13), the
fine-tuning loss function is defined as a combination of the edit success loss, Lsuccess(θ), the edit
locality loss, Llocality(θ), and the cross-entropy loss, LCE(θ). To evaluate the contribution of the first
two components to edit success and locality, we perform an ablation study on the ’Waterbirds +
Imagenet-R’ dataset by isolating each loss term. For clarity, the weight of the cross-entropy loss is
fixed at 1, while the weights of Lsuccess(θ) and Llocality(θ) are donated as α and β, respectively.

As illustrated in Fig. 5, the ablation study for Llocality(θ) is performed by fixing the weights of
LCE(θ) and Lsuccess(θ) at 1 and 0, respectively, while varying the weight β of Llocality(θ) from 0
to 108. As β increases, we observe a general improvement in the average accuracies of unseen
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Table 6: Average-group accuracy (%) and worst-group accuracy (%) on the Waterbirds dataset using
ViT-B/16. The results for each baseline are obtained using the public code released by the authors.

Method Avg.↑ Wst.↑
Original CLIP 80.4 72.3

CoOp 85.7 77.7
Plot 81.4 71.6

CLAP 81.9 72.3
Ours 85.2 81.0
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Figure 4: Performance comparison for the ablation study. (The weights of Llocality(θ), Llocality(θ),
LCE(θ) are set to 106, 104, and 1, respectively.)

classes, accompanied by a decline in the average accuracies of target classes during the training.
This behavior demonstrates the trade-off associated with the locality enhancement introduced by
Llocality(θ). Notably, when β = 103, the model achieves its highest peak average accuracy on the
target classes during training. This finding suggests that a moderate value of β can function as an
effective regularizer, guiding the training process in a favorable direction.

Similarly, we conduct an ablation study for Lsuccess(θ) by varying its weight, α, from 0 to 108, while
keeping the weights of LCE(θ) and Llocality(θ) fixed at 1 and 0, respectively. As shown in Fig. 6,
increasing α leads to a general improvement in the average accuracy of target classes during training,
with the best performance achieved at α = 104. Additionally, higher values of α also result in
improved accuracies for other classes. This is because, although learning from the ablated model for
edit success (Lsuccess(θ)) counteracts the model’s original locality objective (Llocality(θ)), it still helps
mitigate over-fitting compared to standard fine-tuning.

Finally, comparing Fig. 6 with Fig. 5, we observe that when weighted equally, Llocality(θ) demon-
strates a stronger ability to preserve edit locality at the point where the average accuracy on the target
classes peaks. For instance, when α = 104 and β = 0, the average accuracy on other classes remains
around 85% at the peak accuracy of the target classes. In contrast, when α = 0 and β = 104, the
average accuracy on other classes improves to nearly 90%. Conversely, α = 104 and β = 0 achieve
approximately 81% accuracy on the target classes, whereas α = 0 and β = 104 achieve only about
77%. These observations suggest that Llocality(θ) primarily emphasizes locality, while Lsuccess(θ)
prioritizes edit success.

Sensitivity analysis of α and β
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Figure 5: Ablation study for Llocality(θ). STD-FT refers to Standard Fine-tuning.
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Figure 6: Ablation study for Lsuccess(θ). STD-FT refers to Standard Fine-tuning.
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Figure 7: Sensitivity analysis on ’Waterbirds + ImageNet-R’
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Figure 8: Sensitivity analysis on ImageNet-A

Based on the ablation study of Lsuccess(θ) and Llocality(θ) on the ’Waterbirds+ImageNet-R’ dataset,
we observe that when the weights for Lsuccess(θ) and Llocality(θ) are set between 103 and 104, our
method achieves optimal performance in terms of both edit success and edit locality. To evaluate
whether this weight range consistently delivers stable performance across different datasets, we
conducted a sensitivity analysis of α and β on ’Waterbirds+ImageNet-R’ and ’ImageNet-A’. As
shown in Figures 7 and 8, our method demonstrates stable edit success and locality within this weight
range, outperforming standard fine-tuning. All the experiments are done based on CLIP-L/14.

Qualitative Discussion on the Effectiveness of Individual Scores In all the experiments conducted,
when we select the final list of ablated attention heads based on their performance on the available
samples, we observe that DEl,h

C and DEl,h
D generally outperform DEl,h

A and DEl,h
B in identifying better

attention heads for ablation. In the CelebA dataset, ablating only the attention heads selected by
DEl,h

A and DEl,h
B can even have negative effects, leading the model to predict all samples as belonging

to a single class. This occurs because DEl,h
A and DEl,h

B are based on the assumption that the data
can be fairly predicted without systemic bias. In cases where the model tends to predict everything
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as a single class and relies on only a few features to distinguish between labels, as seen with the
CelebA dataset, ablating those features (selected by DEl,h

A and DEl,h
B due to their negative impact on

misclassified samples compared to correctly classified ones) can exacerbate the model’s bias towards
a single label.

C DERIVE THE IDENTIFICATION RESULTS FROM THE FOUR SCORES

In the first phase of RefineCLIP, we identify the most effective attention heads to ablate by following
a systematic process:

1. Score Calculation: For each attention head in the final four layers, we calculate four scores:
DEA, −DEB , DEC , and −DED, using the available samples.

2. Candidate List Generation: For each score, we rank the attention heads in descending
order based on their respective score and select the top T heads to form a candidate list
associated with that score.

3. Generating Ablation Candidates: For each candidate list, we iteratively ablate the top t
heads (from t = 1 to T ). Let St represent the set of heads ablated at each step.

4. Utility Evaluation: For each ablation configuration St, we evaluate the resulting model’s
performance by calculating the utility score (defined in Eq. 10) on the available samples.
The set St that achieves the highest utility score is selected as the final list of attention heads
to ablate.

To ensure clarity, we provide pseudo-code below outlining this strategy step by step.

Algorithm 1 Derive the identification results from the four scores

Input: The breakdown of the image representation at the attention head level for each available
sample.
Output: A set of attention heads selected for ablation.
for DEB ,−DEB , DEC , −DED do

Calculate the score for each attention head in the final four layers using the breakdown of image
representations from the available samples.
Order the attention heads in descending order based on their respective score and select the top
T heads as a candidate list associated with that score.
for t in [1,2,...,T ] do

Select the top t attention heads from the candidate list to form St.
Ablate the attention heads from St in the breakdown of image representations from the
available samples.
Calculate the utility score based on the ablated image representations from the available
samples, represented as U(St)

end for
end for
Compare all available U(St) values and select the St with the largest U(St) as S∗

t .
return S∗

t

Algorithm 2 Refine CLIP

Obtain the image representation Eimage(x) and the breakdown of the image representation at the
attention head level for each available sample.
/* Phase 1 */
Call Algorithm 1 to obtain a set of attention heads selected for ablation as S∗

t
Compute the image representation Eablated

image (x,S) after removing the influence of these spurious
features by Eq. (5) using S = S∗

t
/* Phase 2 */
Obtain diag(θ) by minimize the objective function in Eq. (13)
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Figure 9: Sensitivity analysis for T
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Figure 10: Full matrix vs diagonal matrix on ’Waterbird+ImageNet-R’

As described above, the hyper-parameter T does not directly define the number of attention heads
to be ablated; rather, it sets the size of the pool from which we select attention heads based on their
utility scores. As a result, the improvement gained from ablation does not change significantly once
T becomes large enough. To support this claim, we conducted a sensitivity analysis on the Waterbirds
dataset using both ViT-B/16 and ViT-L/14. We used three random seeds to minimize variability. As
shown in Fig. 9, when T exceeds 10, the performance improvements become stable.

D UPDATE STRATEGIES

In the second phase, RefineCLIP’s primary contribution is the design of a loss function that effectively
balances edit success with edit locality. Regarding the update strategy, while our approach supports
various strategies—including a trainable full matrix—we primarily adopt the diagonal matrix update
strategy introduced in Section 3.3.

This choice is motivated by our method’s focus on scenarios where data for correcting errors is scarce,
and no additional data is available for unrelated classes. Although a full matrix introduces more
trainable parameters, which can improve training on target classes, it increases the risk of overfitting
to the limited available data, ultimately compromising edit locality.

To investigate this trade-off, we conducted experiments on the ’Waterbird+ImageNet-R’ and
’ImageNet-A’ datasets, comparing the performance of diagonal and full matrix update strategies. The
experimental setup matches that described in Section 5.3, and we used three random seeds to mitigate
randomness. The results are presented in Fig. 10 and Fig. 11.
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Figure 11: Full matrix vs diagonal matrix on ImageNet-A

As shown in Fig. 10, on the ’Waterbird+ImageNet-R’ dataset, the full matrix strategy achieved better
edit success and faster convergence, albeit with a slight loss in locality, likely due to the availability
of 10 samples per class for training. However, on the ’ImageNet-A’ dataset (Fig. 11), where only 4
samples per class were available, the full matrix strategy failed completely.

LoRAHu et al. (2021), typically used for fine-tuning parameters within transformers, can also be
integrated with RefineCLIP to fine-tune the projection matrix. The rank serves as a hyperparameter
that balances fine-tuning capacity and potential overfitting by controlling the scale of trainable
parameters. We conducted experiments on the ’ImageNet-A’ dataset, where the full matrix strategy
previously failed, to evaluate the impact of rank on performance. For each rank, we used three
random seeds to mitigate randomness. The results are presented in Fig. 12.

In summary, RefineCLIP supports various update strategies, including full matrix, diagonal matrix,
and LoRA. The scale of trainable parameters represents a trade-off between fine-tuning capacity and
the risk of over-fitting, which can ultimately compromise edit locality. We adopt the diagonal matrix
as the standard and representative update strategy in Section 3.3 because it demonstrates stability
even in tasks with extremely scarce data while largely preserving edit locality.

E PROPERTY OF THE FOUR DIRECT EFFECTS SCORES

In the framework of CLIP, the cosine similarity function is commonly employed to assess the similarity
between the representations of images and texts. This function normalizes the magnitude of the
vectors and only considers their direction, which is crucial for comparing vectors of different scales.
However, if we use the dot product similarity, we observe interesting properties: DEl,h

A = −DEl,h
B and

DEl,h
C = −DEl,h

D . We formally present this property in Proposition 1 with proof. Transitioning back
to cosine similarity, which is a normalized form of the dot product, the relationships approximately
hold: DEl,h

A ≈ −DEl,h
B and DEl,h

C ≈ −DEl,h
D . This insight is helpful for understanding the relation

between the proposed scores.

Proposition 1. By using the inner product as a similarity function, we have DEl,h
A = −DEl,h

B and
DEl,h

C = −DEl,h
D .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 500 1000 1500
epoch

55

60

65

70

75

80

A
cc

ur
ac

y 
(%

)

Avg. Acc. (target classes)

Rank = 1
Rank = 4
Rank = 8
Diagonal Matrix

0 500 1000 1500
epoch

0

20

40

60

80

Avg. Acc.(other classes)

Rank = 1
Rank = 4
Rank = 8
Diagonal Matrix

Figure 12: LoRA vs diagonal matrix on ImageNet-A

Proof. Combining Eq. (6), Eq. (7) and Eq. (8), ignoring the differences in normalization when
calculating cosine similarity, we can obtain:

∆l,h(x, y,h) = sim
(
Eimage(x)− Phl,h(x) + Ph,Etext(y)

)
− sim

(
Eimage(x),Etext(y)

)
=

(
Eimage(x)− Phl,h(x) + Ph

)⊤
Etext(y)−Eimage(x)

⊤Etext(y)

=
(
Ph− Phl,h(x)

)⊤
Etext(y)

Plugging it into DEl,h
A and DEl,h

B , we have

DEl,h
A = Exi∈Wye,ŷe

[
∆l,h

(
xi, ye, h̄

l,h
Cye

)
−∆l,h

(
xi, ŷe, h̄

l,h
Cye

)]
= Exi∈Wye,ŷe

[(
P h̄l,h

Cye
− Phl,h(xi)

)⊤
Etext(ye)−

(
P h̄l,h

Cye
− Phl,h(xi)

)⊤
Etext(ŷe)

]
=

(
P h̄l,h

Cye
−Exi∈Wye,ŷe

Phl,h(xi)
)⊤

Etext(ye)−
(
P h̄l,h

Cye
−Exi∈Wye,ŷe

Phl,h(xi)
)⊤

Etext(ŷe)

=
(
Exi∈Cye

Phl,h(xi)− P h̄l,h
Wye,ŷe

)⊤
Etext(ye)−

(
Exi∈Cye

Phl,h(xi)− P h̄l,h
Wye,ŷe

)⊤
Etext(ŷe)

= Exi∈Cye

[(
Phl,h(xi)− P h̄l,h

Wye,ŷe

)⊤
Etext(ye)−

(
Phl,h(xi)− P h̄l,h

Wye,ŷe

)⊤
Etext(ŷe)

]
= −DEl,h

B

Similar inference holds for DEl,h
C and DEl,h

D .

F LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this work, we focus on identifying the model components related to spurious correlations by
analyzing the direct effects of attention heads within the image encoder of CLIP-ViT. Specifically,
we examine how these attention heads impact the image representation. However, this analysis does
not account for the indirect effects of attention heads, which could also influence model behavior
in subtle ways. The exclusion of these indirect effects represents a key limitation of our current
approach. Future work could explore methods to incorporate or approximate the indirect relationships
between attention heads, potentially improving the robustness of spurious correlation identification.
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