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ABSTRACT

Various contrastive learning approaches have been proposed in recent years and
achieve significant empirical success. While effective and prevalent, contrastive
learning has been less explored for time series data. A key component of con-
trastive learning is to select appropriate augmentations imposing some priors to
construct feasible positive samples, such that an encoder can be trained to learn
robust and discriminative representations. Unlike image and language domains
where “desired” augmented samples can be generated with the rule of thumb
guided by prefabricated human priors, the ad-hoc manual selection of time se-
ries augmentations is hindered by their diverse and human-unrecognizable tem-
poral structures. How to find the desired augmentations of time series data that
are meaningful for given contrastive learning tasks and datasets remains an open
question. In this work, we address the problem by encouraging both high fidelity
and variety based upon information theory. A theoretical analysis leads to the
criteria for selecting feasible data augmentations. On top of that, we employ the
meta-learning mechanism and propose an information-aware approach, InfoTS,
that adaptively selects optimal time series augmentations for contrastive represen-
tation learning. The meta-learner and the encoder are jointly optimized in an end-
to-end manner to avoid sub-optimal solutions. Experiments on various datasets
show highly competitive performance with up to 11.4% reduction in MSE on fore-
casting task and up to 2.8% relative improvement in accuracy on classification task
over the leading baselines.

1 INTRODUCTION

Time series data in the real world is high dimensional, unstructured, and complex with unique prop-
erties, leading to challenges for data modeling (Yang & Wu, 2006). In addition, without human
recognizable patterns, it is much harder to label time series data than images and languages in real-
world applications. These labeling limitations hinder deep learning methods, which typically require
a huge amount of labeled data for training, been applied on time series data (Eldele et al.l [2021).
Representation learning learns a fixed-dimension embedding from the original time series that keeps
their inherent features. Comparing to the raw time series data, these representations are with better
transferability and generalization capacity. To deal with labeling limitations, contrastive learning
methods have been widely adopted in various domains for their soaring performance on represen-
tation learning, including vision, language, and graph-structured data (Chen et al., [2020; |Xie et al.,
2019; [You et al.,2020). In a nutshell, contrastive learning methods typically train an encoder to map
instances to an embedding space where dissimilar (negative) instances are easily distinguishable
from similar (positive) ones and model predictions to be invariant to small noise applied to either
input examples or hidden states.

Despite being effective and prevalent, contrastive learning has been less explored in the time series
domain (Eldele et al., 2021} [Franceschi et al.,[2019; [Fan et al.,|2020; Tonekaboni et al.,[2021)). Exist-
ing contrastive learning approaches often involve a specific data augmentation strategy that creates
novel and realistic-looking training data without changing its label to construct positive alternatives
for any input sample. Their success relies on carefully designed rules of thumb guided by domain
expertise. Routinely used data augmentations for contrastive learning are mainly designed for image
and language data, such as color distortion, flip, word replacement, and back-translation (Chen et al.,
2020; [Luo et al.} 2021). These augmentation techniques generally do not apply to time series data.
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Meta-network selects the optimal data augmentations
during training.
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Figure 1: InfoTS is composed of three parts: (1) candidate transformation that generates different
augmentations of the original inputs, (2) a meta-network that selects the optimal augmentations,
(3) an encoder that learns representations of time series instances. The meta-network is learned in
tandem with contrastive encoder learning.

Recently, some researchers propose augmentations for time series to enhance the size and quality of
the training data (Wen et al.,[2021)). For example, |[Eldele et al.|(2021) and [Fan et al.| (2020) propose
to adopt jittering, scaling, and permutation strategies to generate augmented instances. [Franceschi
et al.|(2019) extracts subsequences for data augmentation. In spite of the current progress, existing
methods have two main limitations. First, unlike images with human recognizable features, time
series data are often associated with inexplicable underlying patterns. Strong augmentation such as
permutation may ruin such patterns and consequently, the model will mistake the negative handcrafts
for positive ones. While weak augmentation methods such as jittering may generate augmented in-
stances that are too similar to the raw inputs to be informative enough for contrastive learning. On
the other hand, time series datasets from different domains may have diverse nature. Adapting a
universal data augmentation method, such as subsequence in [Xie et al.| (2019), for all datasets and
tasks leads to sub-optimal performances. Other works follow empirical rules to select suitable aug-
mentations from expensive trial-and-error. Akin to hand-crafting features, hand-picking choices of
data augmentations are undesirable from the learning perspective. The diversity and heterogeneity
of real-life time series data further hinder these methods away from wide applicability.

To address the challenges, we first introduce the criteria for selecting good data augmentations in
contrastive learning. Data augmentation benefits generalizable, transferable, and robust represen-
tation learning by correctly extrapolating the input training space to a larger region (Wilk et al.,
2018). The positive instances enclose a discriminative zone in which all the data points should be
similar to the original instance. The desired data augmentations for contrastive representation learn-
ing should have both high fidelity and high variety. High fidelity encourages the augmented data
to maintain the semantic identity that is invariant to transformations (Wilk et al., 2018)). For exam-
ple, if the downstream task is classification, then the generated augmentations of inputs should be
class-preserving. Meanwhile, generating augmented samples with high variety benefits representa-
tion learning by increasing the generalization capacity (Chen et al., 2020). From the motivation, we
theoretically analyze the information flows in data augmentations based upon information theory
and derive the criteria for selecting desired time series augmentations. Due to the inexplicability
in practical time series data, we assume that the semantic identity is presented by the target in the
downstream task. Thus, high fidelity can be achieved by maximizing the mutual information be-
tween the downstream label and the augmented data. A one-hot pseudo label is assigned to each
instance in the unsupervised setting when downstream labels are unavailable. These pseudo labels
encourage augmentations of different instances to be distinguishable from each other. We show
that data augmentations preserving these pseudo labels can add new information without decreasing
the fidelity. Concurrently, we maximize the entropy of augmented data conditional on the original
instances to increase the variety of data augmentations.

Based on the derived criteria, we propose an adaptive data augmentation method, InfoTS (as shown
in Figure [T)), by employing a meta-learning mechanism to avoid ad-hoc choices or painstakingly
trial-and-error tuning. Specifically, we utilize a meta-network to learn the augmentation prior in
tandem with contrastive learning. The meta-learner automatically selects optimal augmentations
from candidate augmentations to generate feasible positive samples. Along with random sampled
negative instances, augmented instances are then fed into a time series encoder to learn representa-
tions in a contrastive manner. With a reparameterization trick, the meta-network can be efficiently
optimized with back-propagation based upon the proposed criteria. Therefore, the meta-network
can automatically select data augmentations in a per dataset and per learning task manner without
resorting to expert knowledge or tedious downstream validation. Our main contributions include:
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* We propose criteria to guide the selection of data augmentations for contrastive time series
representation learning without prefabricated knowledge.

* We propose a meta-learning based method to automatically select feasible data augmen-
tations for different time series datasets, which can be efficiently optimized with back-
propagation.

* We empirically verify the effectiveness of the proposed criteria to find optimal data aug-
mentations. Extensive experiments demonstrate that InfoTS can achieve highly competitive
performance with up to 11.4% reduction in MSE on forecasting task and up to 2.8% relative
improvement in accuracy on classification task over the leading baselines.

2 METHODOLOGY

2.1 NOTATIONS AND PROBLEM DEFINITION

A time series instance x has dimension T' x F', where T is the length of sequence and F' is the
dimension of features. Given a set of time series instances X, we aim to learn an encoder fg(z)
that maps each instance x to a fixed-length vector z € R, where 6 is the learnable parameters of
the encoder network and D is the dimension of representation vectors. In semi-supervised settings,
each instance x in the labelled set X; C X is associated with a label y for the downstream task.
Specially, X; = X holds in the fully supervised setting. In the work, we use the Sans-serif style
lowercase letters, such as x, to denote random time series variables and italic lowercase letters, such
as x, for sampled instances.

2.2  WHAT ARE GOOD AUGMENTATIONS FOR CONTRASTIVE LEARNING?

The goal of data augmentation for contrastive learning is to create realistically rational instances that
maintain semantics through different transformation approaches. Unlike instances in vision and lan-
guage domains, the underlying semantics of time series data is not recognizable to human, making
it hard, if not impossible, to include human knowledge to data augmentation for time series data.
For example, rotating an image will not change its content or the label. While permuting a time
series instance may ruin its signal patterns and generates a meaningless time series instance. In ad-
dition, the tremendous heterogeneity of real-life time series datasets further makes selections based
on trial-and-errors impractical. Although multiple data augmentation methods have been proposed
for time series data, there is less discussion on what is a good augmentation that is meaningful for a
given learning task and dataset without prefabricated human priors. From our perspective, ideal data
augmentations for contrastive representation should keep high fidelity, high variety, and adaptive to
different datasets. The illustration and examples are shown in Figure [2]

High Fidelity. Augmentations with high fidelity maintain the semantic identity that is invariant to
transformations. Considering the inexplicability in practical time series data, it is challenging to
visually check the fidelity of augmentations. Thus, we assume that the semantic identity of a time
series instance is presented by its label in the downstream task, which might be either available
or unavailable during the training period. Here, we start our analysis from the supervised case
and will extend it to the unsupervised case later. Based on the information theory (Tishby et al.,
2000), we define the objective that keeps high fidelity as the large mutual information (MI) between
augmentation v and the label y, i.e., MI(v;y).

We consider augmentation v as a probabilistic function of x and a random variable ¢, thatv = g(x; €).
From the definition of mutual information, we have MI(v;y) = H(y) — H(y|v), where H(y) is the
(Shannon) entropy of y and H (y|v) is the entropy of y conditioned on augmentation v. Since H (y)
is irrelevant to data augmentations, the objective is equivalent to minimizing the conditional entropy
H(y|v). Considering the efficient optimization, we follow |Ying et al.| (2019) and [Luo et al.|(2020)
to approximate it with cross-entropy between y and y, where y is the prediction with augmentation
v as the input and calculated via

v=g(xe)  z=fo(v) Y= hy(z), (1)

where z is the representation and h,, (-) is a prediction projector parameterized by w. The predic-
tion projector is optimized by the classification objective. Then, the objective of high fidelity for
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Figure 2: Tllustration of the criteria. (a) The proposed criteria have two components: high fidelity,
and variety. Fidelity is represented by the area of A+B, the mutual information between augmented
data v and label y. Variety is denoted by A+D, the entropy of v conditioned on the raw input x.
(b) In the supervised setting, good data augmentations generate instances in the area constrained by
the label to enlarge the input training space. In the unsupervised setting, with one-hot-based pseudo
labels, the generated instances are constrained to the region around the raw input. Such that they are
still distinguishable from other instances.

supervised or semi-supervised cases is to minimize

C
CE(y;§) = — Y _ Py =)log P(§ = ¢), )
c=1

where C' is the number of labels.

In the unsupervised settings where y is unavailable, one-hot encoding y, € RI¥! is utilized as the
pseudo label to replace y in Eq. (Z). The motivation is that augmented instances are still distin-
guishable from other instances with the classifier. We theoretically show that augmentations that
preserving pseudo labels have the following properties.

Property 1 (Preserving Fidelity). If augmentation v preserves the one-hot encoding pseudo label,
the mutual information between v and the downstream task label y (although not visible to training)
is equivalent to that between raw input x and y, i.e., MI(v;y) = MI(x;y).

Property 2 (Adding New Information). By preserving the one-hot encoding pseudo label, augmen-
tation v contains new information comparing to the raw input x, i.e., H(v) > H(x).

Detailed proofs are shown in the Appendix[A] These properties show that in the unsupervised setting,
preserving the one-hot encoding pseudo label guarantees that the generated augmentations will not
decrease the fidelity, regardless of the downstream tasks and variances inherent in the augmentations.
Concurrently, it may introduce new information for contrastive learning.

Since the number of labels is equal to the number of instances in dataset X in an unsupervised case,
direct optimization of Eq. (Z) is inefficient and unscalable. Thus, we further relax it by approximat-
ing y with the batch-wise one-hot encoding yp, which decreases the number of labels C' from the
dataset size to the batch size.

High Variety. Sufficient variances in augmentations improve the generalization capacity of con-
trastive learning models. In the information theory, the uncertainty inherent in the random variable’s
possible outcomes is described by its entropy. Considering that augmented instances are generated
based on the raw input x, we maximize the entropy of v conditioned on x, H (v|x), to maintain a high
variety of augmentations. From the definition of conditional entropy, we have

H(v|x) = H(v) — MI(v;x). 3)

We dismiss the first part since the unconstrained entropy of v can be dominated by meaningless
noise. Considering the continuity of both v and x, we adopt a mutual information neural estimator,
InfoNCE (Oord et al., 2018}, Tian et al.,|2020) to approximately compute the mutual information for
its practical effectiveness. Other MI estimators, such as Jensen-Shannon (JSD) estimator (Nowozin
et al., 2016), normalized temperature-scaled cross-entropy (NT-Xent) (Chen et al.,2020), and leave-
one-out (Poole et al.|[2019) can also conveniently be the plug-and-play component in our framework.
Then, the objective to encourage high variety is to maximize the InfoNCE between v and x:

exp(sim(z;, z,))
Z:L”EX eXp(Sim(ZCE7 Zv’))

InfoNCE(v; x) = —E, |log ) “)

4
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where v’ is an augmented instance of input instance z’. z., z,, and z, are representations of
instance z, v, and v’ respectively. sim(z1,2s) = z7 25 is the inner product of vectors z; and zs.

Criteria. Combining the information aware definition of both high fidelity and variety, we propose
the criteria for selecting good augmentations without prior knowledge,

min —InfoNCE(v; x) 4+ BCE(y; hw (fo(V))), ®)

where [ is a hyper-parameter to achieve the trade-off between fidelity and variety. Note that in the
unsupervised settings, y is replaced by one-hot encoding pseudo label..

Relation to Information Bottleneck. Although the formation is similar to information bottleneck
in data compression, miny, e|x) MI(x; e) — SMI(e;y), our criteria are different in the following as-
pects. First, e in the information bottleneck is a representatlon of input x, while v in Eq.(3)) represents
the augmented instances. Second, information bottleneck aims to keep minimal and sufficient infor-
mation for data compression, while our criteria are designed for data augmentations in contrastive
learning. Third, in information bottleneck, the compressed representation e is a deterministic func-
tion of input x with no variances. Ml(e;y) and Ml(e; x) are constraint by MI(x;y) and H (x) that
Ml(e;y) < MI(x;y) and MI(e;x) = H(e), where H (e) is the entropy of e. In our criteria, v is a
probabilistic function of input x. As a result, the variances of v makes the augmentation space much
larger than the compression representation space in information bottleneck.

Relation to InfoMin. InfoMin is designed based on the information bottleneck that good views
should keep minimal and sufficient information from the original input (Tian et al.l [2020). Similar
to the information bottleneck, InfoMin assumes that augmented views are functions of the input,
which heavily constrains the variance of data augmentations. Besides, high fidelity property is
dismissed in the unsupervised setting. It works for image datasets due to the availability of human
knowledge. However, it may fail to generate reasonable augmentations for time series data.

2.3 TIME SERIES META-CONTRASTIVE LEARNING

We aim to design a learnable augmentation selector that learns to select feasible augmentations in
a data-driven manner. With such adaptive data augmentations, the contrastive loss is then used to
train the encoder that learns representations from raw time series.

2.3.1 ARCHITECTURE

The adopted encoder fg(x) : RT>*F — RP consists of two components, a fully connected layer, and
a 10-layer dilated CNN module (Franceschi et al., 2019; Yue et al., [2021). To explore the inherent
structure of time series, we include both global-wise (instance-level) and local-wise (subsequence-
level) losses in the contrastive learning framework to train the encoder.

Global-wise contrastive loss is designed to capture the instance level relations in a time series
dataset. Formally, given a batch of time series instances Xp C X, for each instance z € Xp,
we generate an augmented instance v with an adaptively selected transformation, which will be
introduced later. (x,v) is regarded as a positive pair and other (B —1) combinations {(x, v')}, where
v’ is an augmented instance of 2’ and 2’ # x, are considered as negative pairs. Following |Chen et al.
(2020); You et al.|(2020), we design the global-wise contrastive loss based on InfoNCE (Hjelm et al.,
2018)). The batch-wise instance-level contrastive loss is

‘, Z log exp(sim(z,2,)) . (6)

ZI'EXB eXp(Sim(va Z’U/))

LEXB

Local-wise contrastive loss is proposed to explore the intra-temporal relations in time series. For
an augmented instance v of a time series instance x, we first split it into a set of subsequences S,
each with length L. For each subsequence s € S, we follow [Tonekaboni et al.|(2021) to generate
a positive pair (s, p) by selecting another subsequence close to it. Non-neighboring samples, N,
are adopted to generate negative pairs. Detailed descriptions can be found in Appendix [B] Then, the
local-wise contrastive loss for an instance z is:
_ Z exp(sim(zs, z,))
o BEE ® exp(sim(zs, 7)) + 3, c, OXD(SIM(25, 27))

)
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Across all instances in a batch, we have £, = @ > Lc,.. Then, the final contrastive objective

is:

rzeXp
mein Ly+aLle, ()

where « is a hyper-parameter to achieve the trade-off between global and local contrastive losses.

2.3.2 META-LEARNER NETWORK

Previous time series contrastive learning methods (Franceschi et al.| 2019} [Fan et al.l |2020; [Eldele
et al., 2021} [Tonekaboni et al., 2021) generate augmentations with either rule of thumb guided by
prefabricated human priors or tedious trial-and-errors, which are designed for specific datasets and
learning tasks. In this part, we discuss how to adaptively select the optimal augmentations with a
meta-learner network based on the proposed information-aware criteria. We can regard its choice of
optimal augmentation as a kind of prior selection. We first choose a set of candidate transformations
T, such as jittering and time warping. Each candidate transformation ¢; € T is associated with an
important weight p; € (0, 1), inferring the probability of selecting transformation ¢;. For an instance
x, the augmented instance v; through transformation ¢; can be computed by:

a; ~ Bernoulli(p;) v, = (1 —as)x + a;ti(x). )

Considering multiple transformations, we pad all v; to be with the same length. Then, the adaptive
augmented instance can be achieved by combing candidate ones, v = ﬁ > Vi

To enable the efficient optimization with gradient-based methods, we approximate discrete Bernoulli
processes with binary concrete distributions (Maddison et al. |2016). Specifically, we approximate
a; in Eq. (9) with

¢ ~ Uniform(0, 1) a; = o((loge —log(l —¢€) + log )/T) (10)
where o(-) is the sigmoid function and 7 is the temperature controlling the approx1mation. The
rationality of such approximation is given in Appendix [A] Moreover, with temperature 7 > 0, the

gradient ‘9—? is well-defined. Therefore, our meta-network is end-to-end differentiable. Detailed

algorithm is shown in Appendix

3 RELATED WORK

3.1 CONTRASTIVE TIME SERIES REPRESENTATION LEARNING

Contrastive learning has been utilized widely in representation learning with superior performances
in various domains (Chen et al., 2020; | Xie et al., 2019; [You et al.| 2020). Recently, some efforts
have been devoted to applying contrastive learning to the time series domain (Oord et al.l 2018;
Franceschi et al.| [2019; [Fan et al.l [2020; [Eldele et al.l [2021; [Tonekaboni et al., 2021} |Yue et al.,
2021). Time Contrastive Learning trains a feature extractor with a multinomial logistic regression
classifier to discriminate all segments in a time series (Hyvarinen & Moriokal [2016)). [Franceschi
et al.|(2019) generates positive and negative pairs based on subsequences. TNC employs a debiased
contrastive objective to ensure that in the representation space, signals in the local neighborhood
are distinguishable from non-neighboring signals (Tonekaboni et al,2021)). SelfTime adopts multi-
ple hand-crafted augmentations for unsupervised time series contrastive learning by exploring both
inter-sample and intra-sample relations (Fan et al.,[2020). TS2Vec learns a representation for each
time stamp and conducts contrastive learning in a hierarchical way (Yue et al., 2021). However, data
augmentations in these methods are either universal or selected by error-and-trail, hindering them
away from been widely applied in complex real-life datasets.

3.2 TIME SERIES FORECASTING

Forecasting is a critical task in time series analysis. Deep learning architectures used in the literature
include Recurrent Neural Networks (RNNs) (Salinas et al., [2020; |Oreshkin et al., [2019)), Convolu-
tional Neural Networks (CNNSs) (Bai et al., 2018)), Transformers (L1 et al., 2019} [Zhou et al .| 2021]),
and Graph Neural Networks (GNNs) (Cao et al.l [2021). N-BEATS deeply stacks fully-connected
layers with backward and forward residual links for univariate times series forecasting (Oreshkin
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et al.l 2019). TCN utilizes a deep CNN architecture with dilated causal convolutions (Bai et al.,
2018). Considering both long-term dependencies and short-term trends in multivariate time series,
LSTnet combines both CNNs and RNNS in a unified model (Lai et al., |2018)). LogTrans brings the
Transformer model to time series forecasting with causal convolution in its attention mechanism |Li
et al.| (2019). Informer further proposes a sparse self-attention mechanism to reduce the time com-
plexity and memory usage (Zhou et al.l 2021)). StemGNN is a GNN based model that considers the
intra-temporal and inter-series correlations simultaneously |Cao et al.| (2021). Unlike these works,
we aim to learn general representations for time series data that can not only be used for forecasting
but also other tasks, such as classification. Besides, the proposed framework is compatible with
various architectures as encoders.

3.3 ADAPTIVE DATA AUGMENTATION

Data augmentation is an important component in contrastive learning. Existing researches reveal
that the choices of optimal augmentation are dependent on downstream tasks and datasets (Chen
et al., [2020; [Fan et al., 2020). Some researchers have explored adaptive selections of optimal
augmentations for contrastive learning in the vision field. AutoAugment automatically searches
the combination of translation policies via a reinforcement learning method (Cubuk et al.| [2019).
Faster-AA improves the searching pipeline for data augmentation using a differentiable policy net-
work (Hataya et al.,[2020). DADA further introduces an unbiased gradient estimator for an efficient
one-pass optimization strategy (Li et al.,|2020). Within contrastive learning frameworks, [Tian et al.
(2020) applies the Information Bottleneck theory that optimal views should share minimal and suffi-
cient information, to guide the selection of good views for contrastive learning in the vision domain.
Considering the inexplicability of time series data, directly applying the InfoMin framework may
keep insufficient information during augmentation. Different from [Tian et al.| (2020), we focus on
the time series domain and propose an end-to-end differentiable method to automatically select the
optimal augmentations for each dataset.

4 EXPERIMENTS

In this section, we compare InfoTS with SOTA baselines on time series forecasting and classification
tasks. We also conduct case studies to show insights into the proposed criteria and meta-learning
framework. Detailed experimental setups are shown in Appendix [C] Full experimental results and
extra experiments, such as parameter sensitivity studies, are presented in Appendix [D]

4.1 TIME SERIES FORECASTING

Time series forecasting aims to predict the future L,, time stamps, with the last L, observations.
We follow |Yue et al.| (2021)) to train a linear model regularized with the L2 norm penalty to make
predictions. The output has dimension L, in the univariate case and L, x F' for the multivariate
case, where F' is the feature dimension.

Datasets and Baselines. Four benchmark datasets for time series forecasting are adopted, includ-
ing ETTh1, ETTh2, ETTm1 (Zhou et al., 2021), and the Electricity dataset (Dua & Graff] [2017).
These datasets are used in both univariate and multivariate settings. We compare unsupervised In-
foTS to the SOTA baselines, including TS2Vec (Yue et al., 2021)), Informer (Zhou et al. [2021),
StemGNN (Cao et al.,2021), TCN (Bai et al., [2018]), LogTrans (Li et al.| 2019), LSTnet (Lai et al.,
2018)), and N-BEATS (Oreshkin et al.,|2019). Among these methods, N-BEATS is merely designed
for the univariate and StemGNN is for multivariate only. We refer to [Yue et al.| (2021)) to set up
baselines for a fair comparison. Standard metrics for a regression problem, Mean Squared Error
(MSE), and Mean Absolute Error (MAE) are utilized for evaluation. Evaluation results of univariate
time series forecasting are shown in Table [T} while multivariate forecasting results are reported in
the Appendix due to the space limitation.

Performance. As shown in Tabel[I|and Tabel[d] comparison in both univariate and multivariate set-
tings indicates that InfoTS consistently matches or outperforms the leading baselines. Some results
of StemGNN are unavailable due to the out-of-memory issue (Yue et al., |2021). Specifically, we
have the following observations. TS2Vec, another contrastive learning method with data augmenta-
tions, achieves the second-best performance in most cases. The consistent improvement of TS2Vec
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Table 1: Univariate time series forecasting results.
InfoTS TS2Vec Informer LogTrans N-BEATS TCN LSTnet
Dataset L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.039 0.148 0.039 0.152 0.098 0.247 0.103 0.259 0.094 0.238 0.075 0.210 0.108 0.284
48 0.056 0.179 0.062 0.191 0.158 0.319 0.167 0.328 0.210 0.367 0.227 0.402 0.175 0.424
ETTh; 168 0.099 0.237 0.134 0282 0.183 0346 0.207 0.375 0232 0391 0316 0493 0.396 0.504
336 0.114 0.260 0.154 0310 0.222 0.387 0.230 0.398 0.232 0388 0.306 0.495 0.468 0.593
720  0.147 0.309 0.163 0.327 0.269 0.435 0.273 0.463 0322 0490 0390 0.557 0.659 0.766

24 0.081 0.215 0.090 0.229 0.093 0.240 0.102 0.255 0.198 0.345 0.103 0249 3.554 0.445
48 0115 0.261 0.124 0273 0.155 0314 0.169 0.348 0234 0386 0.142 0.290 3.190 0.474
ETTh, 168 0.171 0.327 0.208 0360 0.232 0389 0.246 0.422 0331 0453 0227 0.376 2800 0.595
336 0.183 0.341 0.213 0369 0.263 0417 0.267 0.437 0431 0.508 0296 0430 2.753 0.738
720 0.194 0.357 0214 0374 0277 0431 0303 0493 0437 0517 0325 0463 2878 1.044

24 0.014 0.085 0.015 0.092 0.030 0.137 0.065 0202 0.054 0.184 0.041 0.157 0.090 0.206
48 0.024 0.113 0.027 0.126 0.069 0.203 0.078 0.220 0.190 0361 0.101 0.257 0.179 0.306
ETTm; 96 0.036 0.142 0.044 0.161 0.194 0372 0.199 0386 0.183 0.353 0.142 0311 0.272 0.399
288 0.077 0.208 0.103 0.246 0401 0.554 0411 0572 0.186 0362 0.318 0.472 0462 0.558
672 0115 0.257 0.156 0307 0512 0.644 0598 0.702 0.197 0368 0.397 0.547 0.639 0.697

24 0249 0.273 0260 0.288 0251 0.275 0528 0447 0427 0330 0.263 0279 0.281 0.287
48 0294 0299 0319 0324 0346 0339 0409 0414 0551 0392 0373 0.344 0381 0.366
Electricity 168  0.401  0.368 0.427 0.394 0.544 0424 0959 0.612 0.893 0.538 0.609 0.462 0.599 0.500
336 0536 0453 0.565 0474 0.713 0512 1.079 0.639 1.035 0.669 0.855 0.606 0.823 0.624

Avg. 0.155 0.254 0.175 0278 0.263 0.367 0.336 0419 0338 0402 0.289 0359 1.090 0.516

Table 2: Multivarite time series classification on 30 UEA datasets.
Method InfoTS; InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW

Avg. ACC  0.724 0.711 0.704 0.658 0.670  0.668 0.617 0.629
Avg. Rank  2.133 2.633 2.933 3733 4233  4.033 4867 4.233

over other baselines indicates the effectiveness of contrastive learning for time series representa-
tions learning. However, such universal data augmentations may not be the most informative ones
to generate positive pairs. Comparing to TS2Vec, InfoTS decreases the average MSE by 11.4%, and
the average MAE by 8.6% in the univariate setting. In the multivariate setting, the MSE and MAE
decrease by 4.6% and 2.3%, respectively. The reason is that InfoTS can adaptively select the most
suitable augmentations in a data-driven manner with high variety and high fidelity. Encoders trained
with such informative augmentations learn representations with higher quality.

4.2 TIME SERIES CLASSIFICATION

Following the previous setting, we evaluate the quality of representations on time series classification
in a standard supervised manner (Franceschi et al., 2019; [Yue et al., |2021). We train an SVM
classifier with a radial basis function kernel on top of representations in the training split and then
compare the prediction in the test set.

Datasets and Baselines. Two types of benchmark datasets are used for evaluations. The UCR
archive (Dau et al.l [2019) is a collection of 128 univariate time series datasets and the UEA
archive (Bredin, [2017) consists of 30 multivariate datasets. We compare InfoTS with baselines
including TS2Vec (Yue et al.}2021)), T-Loss (Franceschi et al.,2019), TS-TCC (Eldele et al.l|2021),
TST (Zerveas et al., 2021), and DTW (Franceschi et al., [2019). For our methods, InfoTSj;, training
labels are only used to train the meta-network to select suitable augmentations, and InfoTS is with a
purely unsupervised setting for representation learning.

Performance. The results on the UEA datasets are summarized in Table[2] Full results are provided
in Appendix With the ground-truth label guiding the meta-network, InfoTS, substantially
outperforms other baselines. On average, it improves the classification accuracy by 2.8% over the
best baseline, TS2Vec, with an average rank value 2.133 on all 30 UEA datasets. Under the purely
unsupervised setting, InfoTS preserves fidelity by adopting one-hot encoding as the pseudo labels.
InfoTS achieves the second best average performance in Table [2] with an average rank value 2.633.
Performances on the 128 UCR datasets are shown in Table [0]in Appendix These datasets are
univariate with easily recognized patterns, where data augmentations have marginal or even negative
effects (Yue et al., 2021). However, with adaptively selected augmentations for each dataset based
on our criteria, InfoTS, and InfoTS still outperform the state-of-the-arts.

4.3 EVALUATION OF THE CRITERIA

In Section [2.2] we propose criteria of data augmentations for time series based on information the-
ory that good augmentations should have high variety and fidelity. With mutual information neural
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Figure 3: Evaluation of the criteria.
Table 3: Ablation studies.
InfoTS Contrastive Objective Data Augmentation Meta Objective
w/o Local w/o Global Random All w/o Fidelity w/o Variety

L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.249 0.273 0.249 0273 0.261 0.385 0.255 0280 0.255 0276 0.248 0274 0251 0.273
48 0.294 0.299 0.298 0304 0.307 0.313 0301 0308 0.303 0308 0.294 0301 0293 0.299
168 0401 0368 0405 0373 0420 0385 0413 0378 0410 0376 0402 0.371 0403 0.369
336 0.536 0.453 0.545 0457 0.557. 0474 0.549 0466 0.552 0470 0.537 0.460 0.537 0.459

Avg. 0370 0.348 0.380 0.358 0.380 0.357 0.374 0352 0.386 0.365 0.370 0.351 0.371 0.350

estimation and cross-entropy as approximations, we get the criteria in Eq. (3). To empirically verify
the effectiveness of the proposed criteria, we adopt the dataset CricketX from the UCR archive (Dau
et al., 2019; [Fan et al., 2020), and conduct augmentations with different configurations, such as jit-
tering with noise from A/ (0, 0.3) and cutout 10% time stamps. For each configuration, we calculate
the criteria score and the corresponding classification accuracy within the setting in Section[d.2] As
shown in Figure 3] in general, accuracy performance is positively related to the proposed criteria
in both supervised and unsupervised settings, verifying the correctness of using the criteria as the
objective in the meta-network training.

4.4 ABLATION STUDIES

To present deep insights into the proposed method, we verify key components in InfoTS with mul-
tiple ablation studies on the Electricity dataset. Results are shown in Table 3} 1) We verify the
effectiveness of the adopted contrastive learning objective, Eq. (8), by comparing InfoTS with
its two variants. “w/o Local” removes the local contrastive loss between subsequences and “w/o
Global” removes the instance-level contrastive loss. The comparison between these variants and
InfoTS demonstrates that both instance-level and intra-temporal objectives are important in con-
trastive learning for time series data. 2) To demonstrate the advantage of adaptive selection of
augmentations, we compare InfoTS with variants “Random” and “All”. “Random” randomly se-
lects an augmentation from candidate transformation functions each time and “All” sequentially
applies transformations to generate augmented instances. Performance decreases are observed in
these variances, verifying the key role of adaptive selection in our method. 3) To show the effects of
variety and fidelity objectives in meta-network training, we include two variants, “w/o Fidelity”” and
“w/o Variety”, which dismiss the fidelity or variety objective, respectively. The comparison between
InfoTS and the variants empirically confirms both variety and fidelity are important for data aug-
mentation in contrastive learning. Note that the adopted basic augmentations are manually tuned in
a previous paper (Fan et al.|[2020) with high qualities for contrastive learning. Including low quality
basic augmentations, we conduct more ablation studies are shown in Appendix [D-3]

5 CONCLUSIONS

We propose criteria of data augmentations for time series data based on the information theory that
good augmentations should preserve high variety and high fidelity. We approximate the criteria with
mutual information neural estimation and cross-entropy estimation. Based on the approximated cri-
teria, we present a meta-learning method to adaptively select optimal augmentations for contrastive
representation learning. Comprehensive experiments show that representations produced by our
method are high qualified and easy to use in various downstream tasks, such as time series forecast-
ing and classification, with state-of-the-art performances.



Under review as a conference paper at ICLR 2022

STATEMENTS

Reproducibility Statement. The training algorithm of the proposed InfoTS is shown in Ap-
pendix [B] Detailed experimental settings, including architectures and hyper-parameters settings, are
given in Appendix [C] Core source codes with an example of usages are attached in the supplemen-
tary material. Full version will be made available upon acceptance.
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A DETAILED PROOFS

Properties of data augmentations that preserve pseudo labels.

We assume that v; and v; are two augmented instances of inputs x; and x;, respectively. Preserving
pseudo labels defined in one-hot encoding requires that the map between variable x and v is one-to-
many. Formally, x; # x; — v; # v;. This can be proved by contradiction. If we have a pair of
(,7) that ¢ # j and v; = v;, then we have fg(v;) = fo(v;), showing that augmentations cannot
preserve pseudo labels.

Property 1 (Preserving Fidelity). If augmentation v preserves the one-hot encoding pseudo label,
the mutual information between v and downstream task label y (although not visible to training) is
equivalent to that between raw input x and y, i.e., MI(v;y) = MI(x;y).

Proof. From the definition of mutual information, we have

Mi(v;y) = H(y) — H(ylv) = H(y) + Zp v,y)log (1(151)
+ Z Z v, y log (;)?)J) )
z,y veV(x)

where V(z) is the set of augmented instances of a time series instance z. In the unsupervised setting
where the ground-truth label y is unknown, we assume that the augmentation v is a (probabilistic)
function of 2 only. The only qualifier means p(v|x,y) = p(v|z). Since the mapping from x to v is
one-to-many. For each v € V() we have p(v,y) = p(v,z,y) and p(v) = p(v|x)p(z). Thus, we
have

pwy) _ pw,zy) _ plz,yp(zy)  pllo)py)  pl,y)

p(v) — pllr)plx)  plr)px)  plle)p(z)  pl)
MI(viy) = Hy)+ > > p(v,y)log? P )
z,y veV(x) ( )
—|—Z Z (v,9) 1og p(@,y)
T,y veV(z) ( )
(v) + %p(x, y) log p](gfg’j)
= MI(x;y).

Property 2 (Adding New Information). By preserving the one-hot encoding pseudo label, augmen-
tation v contains new information comparing to the raw input x, i.e., H(v) > H(x).

In information theory, entropy describes the amount of information of a random variable. For sim-
plicity, we assume a finite number of augmented instances for each input, and each augmented
instance is generated independently. Then, we have p(z) = 3~ cv(,) P(v). Then we have that the

entropy of variable x is no larger than the entropy of v.

Zp Yogp(z) ==Y [ Y p)]log[ > p(v)]

z veV(z) veV(x)
-3 Y el X plo)
T veV(z) veV(z)
<5 X sesnts
z veV(z)

=—Zp ) log p(v) = H(v)

Rationality of approximation of Bernoulli distribution with binary concrete distribution in

Eq. (10).
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In the binary concrete distribution, parameter 7 controls the temperature that achieves the trade-off
between binary output and continuous optimization. When 7 — 0, we have lim,_,q P(a; = 1) =
pi, which is equivalent to the Bernoulli distribution.

Proof.
lim P(a; = 1) = lim P(o((loge —log(1 — €) + log Pi )/7)=1)
T—0 T—0 1-— Di
= P(loge —log(1l —€) + log 1 Pi - > 0)
1—pi
= P(log £ log i s 0)
1—c¢ i
€ 1-— Pi
=P > —
>
Since ¢, and p; are both in (0,1), and function *— are monotonically increasing in this region.

Thus, we have
lim P(a; =1)=Ple>1—p;) =p;

7—=0
B ALGORITHMS

B.1 TRAINING ALGORITHM

The training algorithm of InfoTS under both supervised and unsupervised settings is described in
Algorithm[T] We first randomly initiate parameters in the encoder, meta-network, and classifier (line
2). Given a batch of training instances Xp C X, for each candidate transformation ¢;, we utilize
binary concrete distribution to get parameters a; (lines 6-7), which indicates whether the transfor-

mation should be applied (line 8). Vg) denotes the batch of augmented instances generated from
transformation function ¢;. The final augmented instances are generated by adaptively considering
all candidates transformations (line 10). Parameters € in the encoder are updated by minimizing the
contrastive objective (lines 11-13). Meta-network is then optimized with information-aware criteria
(lines 14-16). Then, classifier h,, is optimized with the classification objective (line 17).

Algorithm 1: Algorithm for InfoTS in both supervised and unsupervised settings

1: Input: time series dataset X, the label set Y (supervised setting), a set of candidate transformations T,
hyper-parameters o and /3,

2: Initialize the encoder fg, parameters in meta-network {qi}gl, and the classifier hq,.

3: for each epoch do

4 for each training batch Xp C X do

5 for each transformation ¢; € T do

6: pi  o(qi)

7: a; < binaryConcrete(p;)

8 Vg) < transform each z € Xp with Eq. (@)

9

: end for )
10: Get Vp by averaging {Vg)}pﬂl.
11: Compute global contrastive loss L4 with Eq. (6)
12: Compute local contrastive loss £. with Eq. (7)
13: Update parameters @ in the encoder with Eq. (8)
14: Compute fidelity loss with Eq.
15: Compute variety loss with Eq. (4)
16: Update parameters {ql}g1 in the meta-network with Eq.
17: Update parameters w in the classifier h., with the cross-entropy loss
18:  end for
19: end for

B.2 IMPLEMENTATION OF LOCAL-WISE CONTRASTIVE

Local-wise contrastive loss aims to capture the intra-temporal relations in each time series instance.
For an augmented instance v, we first split it into multiple subsequences, as shown in Figure
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Figure 4: Positive and negative samples for a subsequence s.

Each subsequence has length L. For each subsequence s, the neighboring subsequences within
window size 1 are considered as positive samples. If s locates at the end of v, then we choose the
subsequence in front of s as the positive pair p. Otherwise, we choose the subsequence following s
instead. Subsequences out of window size 1 are considered as negative samples.

C EXPERIMENTAL SETTINGS

C.1 DATA AUGMENTATIONS

We follow (2020) to set up candidate data augmentations, including jittering, scaling,
cutout, time warping, window slicing, window warping and subsequence augmentation (Franceschi

2019). Detailed descriptions are listed as follows.

* Jittering augmentation adds the random noise sampled from a Gaussian distribution
N(0,0.3) to the input time series.

* Scaling augmentation multiplies the input time series by a scaling factor sampled from a
Gaussian distribution A(0,0.5).

* Cutout operation replaces features of 10% randomly sampled time stamps of the input with
Zeros.

* Time warping random changes the speed of the timelineﬂ The number of speed changes is
100 and the maximal ratio of max/min speed is 10. If necessary, over-sampling or sampling
methods are adopted to ensure the length of the augmented instance is the same as the
original one.

* Window slicing randomly crops half the input time series and then linearly interpolates it
back to the original length (Le Guennec et al., 2016).

» Window warping first randomly selects 30% of the input time series along the timeline
and then warps the time dimension by 0.5 or 2. Finally, we adopt linear interpolation to
transform it back to the original length (Le Guennec et al., 2016).

* Subsequence operation random selects a subsequence from the input time series (Yue et al.|
2021).

With the first 100 time stamps in the univariate Electricity dataset as an example, we visualize the
original time series and the augmented ones in Figure 3]

C.2 HARDWARE AND IMPLEMENTATIONS

All experiments are conducted on a Linux machine with 4 NVIDIA GeForce RTX 2080 Ti GPUs,
each with 11GB memory. CUDA version is 10.1 and Driver Version is 418.56. Our method InfoTS
is implemented with Python 3.7.7 and Pytorch 1.7.1.

'"https://tsaug.readthedocs.io/
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Figure 5: Examples of candidate augmentations on Electricity univariate dataset. Blue lines are the
original time series data and orange ones are augmented instances.

C.3 HYPERPARAMETERS
We train and evaluate our methods with the following hyperparameters and configurations.

* Optimizer: Adam optimizer (Kingma & Ba,[2014) with learning rate and decay rates setting
to 0.001 and (0.9,0.999), respectively.

» SVM: scikit-learn implementation (Pedregosa et al., 2011) with penalty C' € {10%]i €
[—4, 4] U 0o} [Franceschi et al.|(2019).

* Encoder architecture: We follow |Yue et al.| (2021)) to design the encoder. Specifically, the
output dimension of the linear projection layer is set to 64, the same for the number of
channels in the following dilated CNN module. In the CNN module, GELU (Hendrycks
& Gimpel, 2016)) is adopted as the activation function, and the kernel size is set to 3. The
dilation is set to 2% in the i-the block.

* Classifier architecture: a fully connected layer that maps the representations to the label is
adopted.

* Trade-off hyperparameters: (3 in Eq. (3) and a in Eq. (8) are searched in
[0.1,0.5,1.0,5, 10]. Parameter sensitivity studies are shown in Section[D.1]

» Temperature in binary concrete distribution: we follow the practice in (Jang et al.| [2016)
to adopt the strategy by starting the training with a high temperature and anneal to a small
value with a guided schedule.

D MORE EXPERIMENTAL RESULTS

D.1 PARAMETER SENSITIVITY STUDIES

In this part, we adopt the electricity dataset to analyze the effects of two important hyper-parameters
in our method InfoTS. The hyperparameter « in Eq. (8) controls the trade-off between local and
global contrastive losses when training the encoder. 3 in Eq. (3) achieves the balance between
high variety and high fidelity when training the meta-network. We tune these parameters in range
[0.1,0.5,1.0, 5, 10] and show the results in Figure @ These figures show that our method achieves
high performance with a wide range of selections, demonstrating the robustness of the proposed
method. In general, setting trade-off parameters to 0.5 or 1 achieves good performance.

D.2 CASE STUDY ON SIGNAL DETECTION

In this part, we show the potential usage of InfoTS to detect the informative signals in the time
series. We adopt the CricketX dataset as an example for the case study. Subsequence augmentations
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Table 4: Multivariate time series forecasting results.

InfoTS TS2Vec Informer StemGNN TCN LogTrans LSTnet
Dataset L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0564 0.520 0599 0.534 0577 0.549 0.614 0571 0.767 0.612 0.686 0.604 1.293 0.901
48  0.607 0553 0.629 0.555 0.685 0.625 0.748 0.618 0.713 0.617 0.766 0.757 1.456 0.960

ETTh; 168 0.746  0.638 0.755 0.636 0.931 0.752 0.663 0.608 0995 0.738 1.002 0.846 1.997 1214
336 0904 0722 0.907 0.717 1.128 0.873 0.927 0.730 1.175 0.800 1362 0.952 2.655 1.369
720 1.098 0.811 1.048 0.790 1.215 0.896 - - 1453 1311 1.397 1291 2.143 1.380

24 0397 0456 0398 0461 0.720 0.665 1.292 0.883 1.365 0.888 0.828 0.750 2.742 1.457
48 0584 0572 0.580 0.573 1.457 1.001 1.099 0.847 1395 0960 1.806 1.034 3.567 1.687

ETTh, 168 1.787 1.035 1901 1.065 3.489 1515 2282 1.228 3.166 1407 4.070 1.681 3.242 2513
336 2249 1187 2304 1.215 2723 1340 3.086 1.351 3.256 1481 3.875 1.763 2.544 2.591
720 2511 1316 2.650 1.373 3.467 1.473 - - 3.690 1.588 3913 1.552 4.625 3.709

24 0391 0408 0443 0436 0323 0369 0620 0570 0324 0374 0419 0412 1968 1.170
48 0503 0475 0.582 0515 0494 0.503 0.744 0.628 0.477 0.450 0.507 0.583 1.999 1215
ETTm; 96 0537 0.503 0.622 0.549 0.678 0.614 0.709 0.624 0.636 0.602 0.768 0.792 2.762 1.542
288 0.653 0.579 0.709 0.609 1.056 0.786 0.843 0.683 1270 1.351 1462 1320 1.257 2.076
672 0757 0.642 0.786 0.655 1.192 0.926 - - 1.381 1.467 1.669 1461 1917 2941

24 0255 0350 0287 0374 0312 0.387 0439 0388 0.305 0.384 0297 0374 0356 0.419
48 0279 0368 0.307 0388 0.392 0431 0413 0455 0317 0392 0316 0389 0429 0.456
Electricity 168 0.302 0.385 0.332 0.407 0515 0.509 0.506 0.518 0.358 0.423 0426 0466 0372 0425
336 0320 0399 0349 0420 0.759 0.625 0.647 0.596 0349 0416 0365 0417 0352 0.409

Avg. 0.813 0.627 0852 0.645 1.164 0781 0977 0706 1.243 0854 1402 1.032 1836 1374
T T T T
0.39 - MSE —+— .. 4 039 | MSE —+— .. s
MAE MAE
g 4% E M
m m +
0.36 0.36
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Figure 6: Parameter sensitivity studies.

on 0-100, 100-200, and 200-300 periods are adopted as candidate transformations. We observe
that the one operated on 100-200 period has high fidelity and variety, leading to better accuracy
performance, which is consistent with the visualization results in Figure[7}
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Figure 7: The informative signals locate in the middle periods of time series in the CricketX dataset.

D.3 MORE ABLATION STUDIES
D.3.1 UPDATING PROCESS OF INFOTS

To show that our InfoTS can adaptively detect the most effective augmentation based on the data
distribution, we follow the setting in Section [#.4] and conduct more ablation studies to investigate
comprehensively into the proposed model. We compare performances of variants that each applies
a single transformation to generate augmented instances in Table 5] From the table, we know that
augmentation with subsequence benefits the most for the Electricity dataset. We visualize the weight
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Figure 8: Weight updating process of meta-network in InfoTS.

Table 5: Effectiveness of each candidate data transformation.
InfoTS Cutout Jittering Scaling Time Warp Window Slice  Window Warp  Subsequence
y MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0249 0.273 0.254 0.277 0.251 0.275 0252 0273 0251 0274 0.258 0.280 0.253 0.277 0.248 0.273
48 0.294 0.299 0304 0.309 0.297 0.302 0.302 0.307 0.305 0309 0310 0.314 0.307 0310 0295 0.301
168 0401 0368 0412 0381 043 0373 0407 0377 0415 0382 0415 0381 0416 0.382 0405 0.372
336 0.536 0.453 0555 0.465 0.545 0.458 0.552 0461 0.555 0469 0551 0470 0.554 466 0.546 0.456

Avg. 0370 0.348 0381 0358 0374 0352 0377 0354 0381 0359 0.383 0361 0383 0359 0374 0.350

updating process of InfoTS in Figure [8] with each line representing the normalized importance
score of the corresponding transformation. The weight for subsequence increase with the epoch,
showing that InfoTS tends to adopt subsequence as the optimal transformation. Consistency between
accuracy performance and weight updating process demonstrates the effectiveness of InfoTS to
adaptively select feasible transformations. Besides, as shown in Table [5] InfoTS outperforms the
variant that uses subsequence only. This comparison shows that the meta-network learns to consider
the combinations, which is better than any (single) candidate augmentation.

D.3.2 INFOTS WITH CONTROLLABLE AUGMENTATIONS.

We observe that in Table 3] the improvement of InfoTS over its two variants without Variety and
Fidelity objectives is not significant. The reason is that basic augmentations are adopted from a
previous paper 2020), which have been manually tuned to generate relatively good per-
formances for contrastive learning. To provide deep insights into the proposed criteria and model,
in this part, we consider more augmentations with controllable hyper-parameters for the Electricity
dataset.

Two groups of augmentations, subsequence augmentations with different lengths and jitter augmen-
tations with different standard deviations, are considered in this part. Subsequence augmentations
work on the temporal dimension, and jitter augmentations work on the feature dimension. For the
subsequence augmentations, we range the ratio of subsequences 7 in the range [0.01,0.99]. The
subsequence augmentation with ratio r is denoted by Sub,., such as Subg o;. For the jitter augmen-
tations, the standard deviations are chosen from the range [0.01, 3.0]. The jitter augmentation with
standard deviation std is denoted by Jitters;, such as Jitterg o .

Intuitively, with r increasing, Sub, generates augmented instances with lower variety and higher
fidelity. For example, with » = 0.01, Sub, generates subsequences that only keep 1% time stamps
from the original input, leading to high variety but extremely low fidelity. Similarly, for jitter aug-
mentations, with std increasing, Jittery;y generates augmented instances with higher variety but
lower fidelity. We show their forecasting performances in Table [§] and Table [7]] We observed that
augmentations that only keeps high variety, such as Suby o1, Jitters o achieve worse performances in
terms of MSE and MAE compared to the ones considering both criteria, such as Subg 3 and Jitter 3.
On the other hand, augmentations that only keep high fidelity, such as Suby g9, Jittery o1, and Jitterg 1
cannot lead to satisfactory performances either. Thus, we empirically verify the importance of both
variety and fidelity for the selection of optimal data augmentations for contrastive learning. In Fig-
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Table 6: Forecasting performances of Sub,..
0.01 0.3 0.5 0.7 0.99
L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.262 0.292 0.249 0278 0278 0.277 0.252 0279 0.253 0.279
48 0.309 0.321 0300 0310 0.298 0.306 0.302 0.309 0.305 0.311
168 0417 0395 0310 0.384 0409 0378 0418 0.384 0414 0.381
336 0.550 0.475 0550 0.467 0.553 0460 0562 469 0.558 0.463

Avg. 0384 0371 0379 0360 0377 0355 0.384 0362 0383 0.358

Table 7: Forecasting performances of Jittery .
0.01 0.1 0.3 1.0 3.0
L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.252 0.277 0.253 0.278 0250 0.276 0.249 0.250 0.281 0.277
48 0.303 0.314 0.303 0310 0.295 0.304 0.300 0.302 0314 0.306
168 0416 0385 0413 0.383 0401 0373 0418 0418 0.391 0.378
336 0.559 0473 0554 0472 0.545 0.458 0.559 0.570 0.476 0.460

Avg. 0383 0362 0381 0361 0373 0353 0381 0366 0385 0.366

ure 9] we show the relationship between forecasting performance and our proposed criteria. The
results are consistent with the conclusion drawn from classification results that forecasting perfor-
mance, evaluated with both MSE and MAE, is positively related to the proposed criteria.
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Figure 9: Evaluation of the criteria on forecasting.

With the proposed criteria, we empirically show the advantage of the developed meta-network on
learning optimal augmentations. The overall observations are consistent with ones from Section[4.4]
Here, we provide more details. 1) “Random” is a variant that randomly selects a candidate augmen-
tation method to generate augmented instances. “All” combines all candidate augmentations evenly
to generate augmented instances. These two variances are routinely utilized in previous works
let al}, 2020; [You et al.} [2020). They work well when candidate augmentations are manually verified.
Otherwise, their performances are heavily affected by the low-quality candidate augmentations, as
shown in Tabel[§] On the other hand, by adaptively selecting optimal augmentations, InfoTS signifi-
cantly improve the forecasting performances even with low-quality candidate augmentations. 2) By
comparing InfoTS to its variant w/o Fidelity and w/o Variety, we further empirically demonstrate
that both variety and fidelity make contributions to the superior performances of InfoTS.

D.4 FULL RESULTS OF TIME SERIES PREDICTION AND CLASSIFICATION

The full results of multivariate time series forecasting are shown in Tabel @] Results of StemGNN
with L,, = 720 are not available due to the out-of-memory error PE_IO_LZTD Full results of
univariate time series classification on 128 UCR datasets are shown in Tabel |9} Results of T-Loss,
TS-TCC, and TNC are not reported on several datasets because they are not able to deal with missing
observations in time series data. These unavailable accuracy scores are dismissed when computing
average accuracy and considered as O when calculating the average rank. Results of multivariate
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Table 8: Ablation studies with controllable augmentations.
Data Augmentation Meta Objective

InfoTS

Random All w/o Fidelity w/o Variety
L, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.246 0.269 0.252 0284 0.249 0279 0.250 0274 0.251 0.274
48 0.294 0.298 0303 0316 0303 0312 0301 0308 0.297 0.303
168  0.400 0.369 0414 0386 0414 0388 0404 0369 0409 0.376
336 0.542 0455 0.565 0477 0.563 0480 0.554 0456 0542 0.353

Avg. 0370 0.348 0.384 0366 0.382 0365 0377 0352 0375 0.353

classification on 30 UEA datasets are listed in Tabel [I0] Computations of average accuracy scores
and ranks follow the ones in 128 UCR datasets.
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InfoTS, InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW
Adiac 0.795 0.788 0.775 0.675 0.726 0.767 0.550  0.604
ArrowHead 0.874 0.874 0.857 0.766 0.703 0.737 0.771  0.703
Beef 0.900 0.833 0.767 0.667 0.733 0.600 0.500  0.633
BeetleFly 0.950 0.950 0.900 0.800 0.850 0.800 1.000  0.700
BirdChicken 0.850 0.900 0.800 0.850 0.750 0.650 0.650  0.750
Car 0.900 0.883 0.883 0.833 0.683 0.583 0.550  0.733
CBF 1.000 0.999 1.000 0.983 0.983 0.998 0.898  0.997
ChlorineConcentration 0.825 0.822 0.832 0.749 0.760 0.753 0.562  0.648
CinCECGTorso 0.896 0.928 0.827 0.713 0.669 0.671 0.508  0.651
Coffee 1.000 1.000 1.000 1.000 1.000 1.000 0.821 1.000
Computers 0.720 0.748 0.660 0.664 0.684 0.704 0.696  0.700
CricketX 0.780 0.774 0.805 0.713 0.623 0.731 0385  0.754
CricketY 0.774 0.774 0.769 0.728 0.597 0.718 0.467  0.744
CricketZ 0.792 0.787 0.792 0.708 0.682 0.713 0.403  0.754
DiatomSizeReduction 0.997 0.997 0.987 0.984 0.993 0.977 0961  0.967
DistalPhalanxOutlineCorrect 0.808 0.801 0.775 0.775 0.754 0.754 0.728  0.717
DistalPhalanxOutline AgeGroup 0.763 0.763 0.727 0.727 0.741 0.755 0.741  0.770
DistalPhalanxTW 0.720 0.727 0.698 0.676 0.669 0.676 0.568  0.590
Earthquakes 0.821 0.821 0.748 0.748 0.748 0.748 0.748  0.719
ECG200 0.950 0.930 0.920 0.940 0.830 0.880 0.830  0.770
ECG5000 0.945 0.945 0.935 0.933 0.937 0.941 0928  0.924
ECGFiveDays 1.000 1.000 1.000 1.000 0.999 0.878 0.763  0.768
ElectricDevices 0.691 0.702 0.721 0.707 0.700 0.686 0.676  0.602
FaceAll 0.929 0.929 0.805 0.786 0.766 0.813 0.504  0.808
FaceFour 0.864 0.818 0.932 0.920 0.659 0.773 0511  0.830
FacesUCR 0.917 0.913 0.930 0.884 0.789 0.863 0.543  0.905
FiftyWords 0.809 0.793 0.774 0.732 0.653 0.653 0.525  0.690
Fish 0.949 0.937 0.937 0.891 0.817 0.817 0.720  0.920
FordA 0.925 0.915 0.948 0.928 0.902 0.930 0.568  0.555
FordB 0.795 0.785 0.807 0.793 0.733 0.815 0.507  0.620
GunPoint 1.000 1.000 0.987 0.980 0.967 0.993 0.827  0.907
Ham 0.848 0.838 0.724 0.724 0.752 0.743 0.524 0467
HandOutlines 0.946 0.946 0.930 0.922 0.930 0.724 0.735  0.881
Haptics 0.545 0.546 0.536 0.490 0.474 0.396 0357 0.377
Herring 0.703 0.656 0.641 0.594 0.594 0.594 0.594  0.531
InlineSkate 0.420 0.424 0.415 0.371 0.378 0.347 0.287  0.384
InsectWingbeatSound 0.664 0.639 0.630 0.597 0.549 0.415 0266  0.355
ItalyPowerDemand 0.971 0.966 0.961 0.954 0.928 0.955 0.845  0.950
LargeKitchenAppliances 0.851 0.853 0.875 0.789 0.776 0.848 0.595  0.795
Lightning2 0.934 0.934 0.869 0.869 0.869 0.836 0.705  0.869
Lightning7 0.863 0.877 0.863 0.795 0.767 0.685 0411  0.726
Mallat 0.967 0.974 0.915 0.951 0.871 0.922 0.713  0.934
Meat 0.967 0.967 0.967 0.950 0.917 0.883 0.900  0.933
Medicallmages 0.920 0.820 0.793 0.750 0.754 0.747 0.632  0.737
MiddlePhalanxOutlineCorrect 0.859 0.859 0.838 0.825 0.818 0.818 0.753  0.698
MiddlePhalanxOutline AgeGroup 0.662 0.662 0.636 0.656 0.643 0.630 0.617  0.500
MiddlePhalanxTW 0.636 0.617 0.591 0.591 0.571 0.610 0.506  0.506
MoteStrain 0.854 0.871 0.863 0.851 0.825 0.843 0.768  0.835
NonInvasiveFetalECGThorax 1 0.941 0.941 0.930 0.878 0.898 0.898 0.471  0.790
NonlInvasiveFetal ECGThorax2 0.943 0.944 0.940 0.919 0.912 0.913 0.832  0.865
OliveOil 0.933 0.933 0.900 0.867 0.833 0.800 0.800  0.833
OSULeaf 0.760 0.760 0.876 0.760 0.723 0.723 0.545  0.591
PhalangesOutlinesCorrect 0.826 0.826 0.823 0.784 0.787 0.804 0.773  0.728
Phoneme 0.272 0.281 0.312 0.276 0.180 0.242 0.139  0.228
Plane 1.000 1.000 1.000 0.990 1.000 1.000 0.933  1.000
ProximalPhalanxOutlineCorrect 0.924 0.927 0.900 0.859 0.866 0.873 0.770  0.784
ProximalPhalanxOutlineAgeGroup 0.883 0.883 0.844 0.844 0.854 0.839 0.854  0.805
ProximalPhalanxTW 0.849 0.844 0.824 0.771 0.810 0.800 0.780  0.761
RefrigerationDevices 0.624 0.624 0.589 0.515 0.565 0.563 0483  0.464
ScreenType 0.510 0.493 0.411 0.416 0.509 0.419 0.419  0.397
ShapeletSim 0.856 0.856 1.000 0.672 0.589 0.683 0.489  0.650
ShapesAll 0.855 0.852 0.905 0.848 0.788 0.773 0.733  0.768
SmallKitchenAppliances 0.773 0.773 0.733 0.677 0.725 0.691 0592  0.643
SonyAIBORobotSurfacel 0.921 0.927 0.903 0.902 0.804 0.899 0.724  0.725
SonyAIBORobotSurface2 0.953 0.953 0.890 0.889 0.834 0.907 0.745  0.831
StarLightCurves 0.973 0.973 0.971 0.964 0.968 0.967 0.949  0.907
Strawberry 0.978 0.978 0.965 0.954 0.951 0.965 0916  0.941
SwedishLeaf 0.954 0.950 0.942 0.914 0.880 0.923 0.738  0.792
Symbols 0.979 0.979 0.976 0.963 0.885 0.916 0.786  0.950
SyntheticControl 1.000 1.000 0.997 0.987 1.000 0.990 0.490  0.993
ToeSegmentationl 0.930 0.934 0.947 0.939 0.864 0.930 0.807  0.772
ToeSegmentation2 0.923 0.915 0.915 0.900 0.831 0.877 0.615  0.838
Trace 1.000 1.000 1.000 0.990 1.000 1.000 1.000  1.000
TwoLeadECG 0.999 0.998 0.987 0.999 0.993 0.976 0.871  0.905
TwoPatterns 1.000 1.000 1.000 0.999 1.000 0.999 0.466  1.000
UWaveGestureLibraryX 0.820 0.819 0.810 0.785 0.781 0.733 0.569  0.728
UWaveGestureLibrary Y 0.745 0.736 0.729 0.710 0.697 0.641 0.348  0.634
UWaveGestureLibraryZ 0.768 0.768 0.770 0.757 0.721 0.690 0.655  0.658
UWaveGestureLibraryAll 0.966 0.967 0.934 0.896 0.903 0.692 0475  0.892

21



Under review as a conference paper at ICLR 2022

InfoTS, InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW
Wafer 0.999 0.998 0.998 0.992 0.994 0.994 0.991  0.980
Wine 0.963 0.963 0.889 0.815 0.759 0.778 0.500  0.574
WordSynonyms 0.715 0.704 0.704 0.691 0.630 0.531 0422 0.649
Worms 0.766 0.753 0.701 0.727 0.623 0.753 0455  0.584
WormsTwoClass 0.818 0.857 0.805 0.792 0.727 0.753 0.584  0.623
Yoga 0.937 0.869 0.887 0.837 0.812 0.791 0.830  0.837
ACSF1 0.850 0.850 0.910 0.900 0.730 0.730 0.760  0.640
AllGestureWiimoteX 0.560 0.630 0.777 0.763 0.703 0.697 0.259  0.716
AllGestureWiimoteY 0.623 0.686 0.793 0.726 0.699 0.741 0423 0.729
AllGestureWiimoteZ 0.633 0.629 0.770 0.723 0.646 0.689 0.447  0.643
BME 1.000 1.000 0.993 0.993 0.973 0.933 0.760  0.900
Chinatown 0.985 0.988 0.968 0.951 0.977 0.983 0936 0.957
Crop 0.766 0.766 0.756 0.722 0.738 0.742 0.710  0.665
EOGHorizontalSignal 0.577 0.572 0.544 0.605 0.442 0.401 0373 0.503
EOG VerticalSignal 0.459 0.459 0.503 0.434 0.392 0.376 0298  0.448
EthanolLevel 0.710 0.712 0.484 0.382 0.424 0.486 0.260  0.276
FreezerRegularTrain 0.998 0.996 0.986 0.956 0.991 0.989 0922 0.899
FreezerSmallTrain 0.991 0.988 0.894 0.933 0.982 0.979 0.920  0.753
Fungi 0.866 0.946 0.962 1.000 0.527 0.753 0.366  0.839
GestureMidAirD1 0.592 0.592 0.631 0.608 0.431 0.369 0.208  0.569
GestureMidAirD2 0.459 0.492 0.515 0.546 0.362 0.254 0.138  0.608
GestureMidAirD3 0.323 0.315 0.346 0.285 0.292 0.177 0.154  0.323
GesturePebbleZ1 0.895 0.802 0.930 0.919 0.378 0.395 0.500  0.791
GesturePebbleZ2 0.905 0.842 0.873 0.899 0.316 0.430 0.380  0.671
GunPointAgeSpan 0.997 1.000 0.994 0.994 0.984 0.994 0991 0918
GunPointMaleVersusFemale 1.000 1.000 1.000 0.997 0.994 0.997 1.000  0.997
GunPointOld Versus Young 1.000 1.000 1.000 1.000 1.000 1.000 1.000  0.838
HouseTwenty 0.941 0.924 0.941 0.933 0.782 0.790 0.815  0.924
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000  0.872
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000  0.735
MelbournePedestrian 0.964 0.962 0.959 0.944 0.942 0.949 0.741  0.791
MixedShapesRegularTrain 0.940 0.935 0.922 0.905 0.911 0.855 0.879  0.842
MixedShapesSmallTrain 0.892 0.887 0.881 0.860 0.813 0.735 0.828  0.780
PickupGestureWiimoteZ 0.820 0.820 0.820 0.740 0.620 0.600 0.240  0.660
PigAirwayPressure 0.433 0.432 0.683 0.510 0.413 0.380 0.120  0.106
PigArtPressure 0.820 0.830 0.966 0.928 0.808 0.524 0.774  0.245
PigCVP 0.654 0.653 0.870 0.788 0.649 0.615 0.596  0.154
PLAID 0.356 0.355 0.561 0.555 0.495 0.445 0.419  0.840
PowerCons 0.995 1.000 0.972 0.900 0.933 0.961 0911  0.878
Rock 0.760 0.760 0.700 0.580 0.580 0.600 0.680  0.600
SemgHandGenderCh2 0.939 0.944 0.963 0.890 0.882 0.837 0.725  0.802
SemgHandMovementCh2 0.833 0.836 0.893 0.789 0.593 0.613 0.420  0.584
SemgHandSubjectCh2 0.945 0.924 0.951 0.853 0.771 0.753 0.484  0.727
ShakeGestureWiimoteZ 0.920 0.920 0.940 0.920 0.820 0.860 0.760  0.860
SmoothSubspace 1.000 1.000 0.993 0.960 0.913 0.953 0.827  0.827
UMD 1.000 1.000 1.000 0.993 0.993 0.986 0910  0.993
DodgerLoopDay 0.675 0.675 0.562 - - - 0.200  0.500
DodgerLoopGame 0.971 0.942 0.841 - - - 0.696  0.877
DodgerLoopWeekend 0.986 0.986 0.964 - - - 0.732  0.949
AVG 0.841 0.839 0.836 0.806 0.761 0.757 0.639  0.729
Rank 1.773 1.969 2.328 3.648 4.515 4.391 6.125  5.133

Table 9: Full results of univariate time series classification on 128 UCR datasets.
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Dataset InfoTSg InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW
ArticularyWordRecognition 0.993 0.987 0.987 0.943 0.973 0.953 0977  0.987
AtrialFibrillation 0.267 0.200 0.200 0.133 0.133 0.267 0.067  0.200
BasicMotions 1.000 0.975 0.975 1.000 0.975 1.000 0975  0.975
CharacterTrajectories 0.987 0.974 0.995 0.993 0.967 0.985 0975  0.989
Cricket 1.000 0.986 0.972 0.972 0.958 0.917 1.000  1.000
DuckDuckGeese 0.600 0.540 0.680 0.650 0.460 0.380 0.620  0.600
EigenWorms 0.748 0.733 0.847 0.840 0.840 0.779 0.748  0.618
Epilepsy 0.993 0.971 0.964 0.971 0.957 0.957 0.949  0.964
ERing 0.911 0.911 0.874 0.133 0.852 0.904 0.874  0.133
EthanolConcentration 0.323 0.281 0.308 0.205 0.297 0.285 0262 0.323
FaceDetection 0.525 0.534 0.501 0.513 0.536 0.544 0.534  0.529
FingerMovements 0.620 0.580 0.480 0.580 0.470 0.460 0.560  0.530
HandMovementDirection 0.514 0.392 0.338 0.351 0.324 0.243 0.243  0.231
Handwriting 0.554 0.452 0.515 0.451 0.249 0.498 0.225  0.286
Heartbeat 0.771 0.722 0.683 0.741 0.746 0.751 0.746  0.717
Japanese Vowels 0.986 0.984 0.984 0.989 0.978 0.930 0978  0.949
Libras 0.889 0.883 0.867 0.883 0.817 0.822 0.656  0.870
LSST 0.593 0.591 0.537 0.509 0.595 0.474 0.408  0.551
MotorImagery 0.610 0.630 0.510 0.580 0.500 0.610 0.500  0.500
NATOPS 0.939 0.933 0.928 0.917 0.911 0.822 0.850  0.883
PEMS-SF 0.757 0.751 0.682 0.676 0.699 0.734 0.740  0.711
PenDigits 0.989 0.990 0.989 0.981 0.979 0.974 0.560  0.977
PhonemeSpectra 0.233 0.249 0.233 0.222 0.207 0.252 0.085  0.151
RacketSports 0.796 0.855 0.855 0.855 0.776 0.816 0.809  0.803
SelfRegulationSCP1 0.887 0.874 0.812 0.843 0.799 0.823 0.754  0.775
SelfRegulationSCP2 0.572 0.578 0.578 0.539 0.550 0.533 0.550  0.539
SpokenArabicDigits 0.927 0.947 0.988 0.905 0.934 0.970 0923  0.963
StandWalkJump 0.467 0.467 0.467 0.333 0.400 0.333 0.267  0.200
UWaveGestureLibrary 0.884 0.884 0.906 0.875 0.759 0.753 0.575  0.903
InsectWingbeat 0.465 0.465 0.466 0.156 0.469 0.264 0.105 -

Avg. ACC 0.724 0.711 0.704 0.658 0.670 0.668 0.617  0.629
Avg. Rank 2.133 2.633 2.933 3.733 4233 4.033 4.867  4.233

Table 10: Full results of multivariate time series classification on 30 UEA datasets.
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