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ABSTRACT

Data scarcity in offline multi-agent reinforcement learning (MARL) is a key chal-
lenge for real-world applications. Recent advances in offline single-agent reinforce-
ment learning (RL) demonstrate the potential of data synthesis to mitigate this issue.
However, in multi-agent systems, interactions between agents introduce additional
challenges. These interactions complicate the synthesis of multi-agent datasets,
leading to data distortion when inter-agent interactions are neglected. Furthermore,
the quality of the synthetic dataset is often constrained by the original dataset. To
address these challenges, we propose INteraction-aware Synthesis (INS), which
synthesizes high-quality multi-agent datasets using diffusion models. Recognizing
the sparsity of inter-agent interactions, INS employs a sparse attention mechanism
to capture these interactions, ensuring that the synthetic dataset reflects the under-
lying agent dynamics. To overcome the limitation of diffusion models requiring
continuous variables, INS implements a bit action module, enabling compatibility
with both discrete and continuous action spaces. Additionally, we incorporate a
select mechanism to prioritize transitions with higher estimated values, further
enhancing the dataset quality. Experimental results across multiple datasets in
MPE and SMAC environments demonstrate that INS consistently outperforms ex-
isting methods, resulting in improved downstream policy performance and superior
dataset metrics. Notably, INS can synthesize high-quality data using only 10%
of the original dataset, highlighting its efficiency in data-limited scenarios. The
source code is available at here.

1 INTRODUCTION

Recent advances in offline multi-agent reinforcement learning make it possible to train policies
for real-world applications, such as autonomous driving (Zhang et al., 2024), robotics (Li et al.,
2024a), and network control (Ma et al., 2024), entirely from previously collected multi-agent datasets.
This approach eliminates the need for online interactions with environments, mitigating the high
costs associated with trial-and-error in online MARL. However, offline MARL faces challenges
due to the fixed dataset with incomplete coverage of the state-action space (Fujimoto et al., 2019),
leading to the distribution shift problem and suboptimal policy performance. Furthermore, data
collection in real-world scenarios is expensive and potentially dangerous (Gao et al., 2024; Canese
et al., 2021), restricting the dataset scalability and resulting in policy overfitting (Agarwal et al., 2020).
Consequently, learning effective MARL policies from limited datasets remains a critical challenge.

The data scarcity challenge also exists in offline single-agent reinforcement learning, where using
generative models for data synthesis is a prevalent approach to overcome this issue. Despite the
promising results in single-agent settings, extending this approach to multi-agent scenarios presents
unique challenges. Firstly, multi-agent systems involve complex inter-agent interactions (Georgeff,
1988), such as collisions and information exchange, which influence agent dynamics. Therefore,
merely applying existing data synthesis methods by treating each agent independently often results
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in lower-quality synthetic datasets, as these methods fail to capture the true agent dynamics. In
Appendix A, we present a motivating example to illustrate this phenomenon. Moreover, an agent
typically interacts with only a subset of other agents (DeWeese & Qu, 2024; Liu et al., 2024), and
considering interactions with irrelevant agents can introduce distractions into the synthesis process.
Secondly, research shows that both the diversity and quality of datasets are crucial for effective
policy training (Corrado & Hanna, 2024). While generative models aim to preserve diversity by
approximating the original dataset distribution, their effectiveness is constrained by the dataset quality.
Low-quality original datasets often lack sufficient high-value transitions, leading to imbalanced
synthetic datasets and ultimately hindering effective policy learning. Finally, since most diffusion
models are limited to generating continuous data, existing synthesis methods primarily focus on
continuous action spaces, such as D4RL (Fu et al., 2020) and MPE (Lowe et al., 2017). This restricts
their applicability to multi-agent environments with discrete action spaces, such as SMAC (Samvelyan
et al., 2019) and FightingICE (Tang et al., 2023). In summary, there is a critical need for a method that
can synthesize high-quality multi-agent datasets applicable to both continuous and discrete action
spaces in the offline MARL domain.

Our Methods

Figure 1: Preliminary evaluation. Our INS con-
sistently outperforms existing data synthesis methods
across policy performance and dataset metrics.

To meet this need, we propose INteraction-
aware Synthesis (INS), which leverages
a powerful generative model, diffusion
model (Ho et al., 2020), to synthesize multi-
agent datasets. Diffusion models excel at
ensuring broad coverage of the data distri-
bution while maintaining high quality, mak-
ing them ideal for modeling complex multi-
agent transitions. To model the inter-agent
interaction during the synthesis process,
INS integrates a sparse attention mecha-
nism (Martins & Astudillo, 2016). This
mechanism assigns different weights to
agents based on their interactions and fil-
ters out irrelevant ones. To further improve dataset quality, we design a value-based select mechanism
that estimates transition values and prioritizes higher-value transitions for the synthetic dataset. To
ensure compatibility with discrete action environments, INS implements a bit action module, bridging
the gap between continuous diffusion models and transitions with discrete actions. We conduct a
preliminary evaluation of INS with existing synthesis methods on various multi-agent datasets. As
illustrated in Figure 1, our method outperforms baseline methods in both policy performance and
dataset metrics. In contrast, baseline methods that ignore inter-agent interactions yield performance
comparable to, or even worse than, that of the original datasets. More details of the preliminary
evaluation are provided in Appendix B.

Our contributions are three-fold: (1) We propose an interaction-aware synthesis method, INS,
which leverages diffusion models to synthesize high-quality multi-agent datasets, applicable to both
continuous and discrete action spaces. INS is compatible with any offline MARL methods, as it
synthesizes data without modifying the policy learning algorithms. To the best of our knowledge,
INS is the first diffusion-based data synthesis approach for offline MARL. (2) We introduce a sparse
attention mechanism to capture inter-agent interactions in the synthesis process, effectively reducing
the irrelevant interaction modeling. Additionally, we design a select mechanism to improve dataset
quality by increasing the proportion of high-value transitions. (3) We conduct extensive evaluations
on MPE and SMAC datasets, showing that our method enhances both dataset metrics and policy
performance across various offline MARL methods. Moreover, INS can synthesize high-quality data
with only 10% of the original dataset, underscoring its effectiveness in data-limited scenarios.

2 RELATED WORKS

Data Synthesis in Offline MARL. In offline reinforcement learning, agents frequently encounter
challenges stemming from dataset scarcity (Wang et al., 2022). To mitigate this challenge, recent
advances leverage diffusion models for data synthesis, e.g., MTDiff-S (He et al., 2024) and Syn-
thER (Lu et al., 2024). MTDiff-S generates trajectory-level data for multi-task settings, producing
trajectories for unseen tasks. SynthER, closely related to our method, synthesizes data at the transition
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level for subsequent policy training. In offline MARL, data synthesis has not yet achieved the same
level of performance as that observed in single-agent RL. This disparity is pronounced due to the
complex dynamics in multi-agent systems (Tian et al., 2023; Chai et al., 2024), where multiple agents
interact within a shared environment. Our method diverges from existing approaches by explicitly
considering inter-agent interactions and improving dataset quality.

Diffusion Models in Offline MARL. Diffusion models (Ho et al., 2020; Karras et al., 2022), as a
powerful class of generative models, have recently been adopted in offline reinforcement learning as
planners and policies (Zhu et al., 2023b). The application of diffusion models in the field of MARL
remains underexplored. Building on the foundational work of Janner et al. (2022) and Wang et al.
(2023), recent studies extend diffusion models to the MARL domain, such as MADiff (Zhu et al.,
2023a) and DOM2 (Li et al., 2023). Specifically, MADiff formulates a planner as a return-conditional
diffusion model designed to maximize cumulative rewards in multi-agent decision-making. DOM2,
on the other hand, focuses on enhancing policy expressiveness and diversity by leveraging diffusion
models. In contrast to these methods, which focus on the policy level and aim to maximize rewards or
optimize action selection, INS leverages diffusion models to synthesize multi-agent datasets, thereby
improving offline MARL performance from a data-centric perspective. Further details regarding the
differences between our method and related works can be found in Appendix D and Table A1.

3 PRELIMINARIES

3.1 OFFLINE MULTI-AGENT REINFORCEMENT LEARNING

We focus on the fully cooperative MARL, which can be modeled as a Decentralized-Partially
Observable Markov Decision Process (Dec-POMDP) (Oliehoek et al., 2016), defined by the tuple
⟨S,A,P,O,Ω, R, n, γ⟩. Here, s ∈ S denotes the global state of the environment and A represents
the action set for each of the n agents. At each time step, each agent i ∈ N := {1, 2, . . . , n} receives
a local observation oi ∈ O, generated by the observation function Ω(s, i) : S ×N → O. Each agent
i selects and executes its own action ai ∈ A, resulting in a joint action a ∈ An that induces the next
state according to the state transition function P(s,a) : S × An → S. The environment provides
a global reward r shared by agents, determined by the reward function R(s,a) : S × An → R.
The objective is to find the optimal policies π = (π1, . . . , πn) that maximize the discounted return
G =

∑T
t=0 γ

trt, where T denotes the horizon and γ ∈ [0, 1) represents the discount factor.

In the offline MARL setting, access to each agent’s transition is restricted to a fixed multi-agent
dataset Dori. := {x1,x2, . . . ,x|Dori.|}. Each joint transition is defined as x := (o,a,o′, r) , and the
transition of agent i is given by xi := (oi, ai, oi

′, r) ∈ Rdx . The dataset is typically collected by
arbitrary policies like human experts or random policies. However, these policies fail to guarantee
sufficient coverage of the whole state-action space, which grows exponentially with the number of
agents. As a result, learning effective decision-making policies that surpass the behavior policy from
scarce and potentially suboptimal multi-agent datasets poses a significant challenge. Existing offline
MARL methods (Yang et al., 2021; Pan et al., 2022) attempt to address these issues by incorporating
policy constraints and conservative estimation techniques. Moving beyond these methods, another
intuitive yet underexplored solution to dataset scarcity is data synthesis (Levine et al., 2020).

3.2 DIFFUSION MODELS

Diffusion models (DM) (Ho et al., 2020) represent a class of generative models that generate data x0

by incrementally removing noise from a Gaussian distribution. These models comprise two primary
processes: a forward noising process and a reverse denoising process. Given the data distribution p(x)
and the noise standard deviation σ, the data distribution with added noise is denoted by p(x;σ). The
forward process is characterized by a Markov chain, starting from the data x0 ∼ p(x) and gradually
increasing the noise level to σmax. The reverse process involves K times sequential denoising, starting
with noise xK sampled from a Gaussian distribution N (0, σ2

maxI), and following a decreasing fixed
sequence of noise levels σmax = σ0 > σ1 > · · · > σK = 0. As a result, the endpoint x0 of this
process aligns with the original data distribution p(x).

In this work, we adopt the Elucidated Diffusion Model (EDM) architecture (Karras et al., 2022),
which implements both forward and reverse processes through the continuous schedule of noise
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Figure 2: Overview of INS framework. The framework consists of three phases: In the first phase,
we train a diffusion model. Following this, we synthesize and select transition data. Lastly, we
employ the synthetic transitions to train offline MARL policy.

levels in a probability flow ordinary differential equation (ODE):

dx = −σ̇(k)σ(k)∇x log p(x;σ(k))dk, (1)

where the dot notation represents the time derivative, and σ(k) denotes the noise level at time k.
∇x log p(x;σ(k)) is the score function, which can be computed via the connection between score
matching and denoising: ∇x log p(x;σ) = (Dθ(x;σ)−x)/σ2. Dθ(x;σ) denotes the denoiser with
parameters θ. The L2 loss objective for denoising, applied to the denoiser Dθ(x;σ) is defined as:

Ldm(θ) = Ex∼p(x),ϵ∼N (0,σ2I) ∥Dθ(x+ ϵ, σ)− x∥2 . (2)

Subsequently, we can sample transitions via solving Eq. (1) with the trained denoising network
Dθ(x;σ) and score function ∇x log p (x;σ(k)).

4 METHOD

In this section, we present interaction-aware synthesis (INS), which synthesizes high-quality multi-
agent transitions and is compatible with any offline MARL methods. As illustrated in Figure 2, our
method consists of three phases: (i) train the diffusion model, (ii) synthesize and select transition
data, and (iii) train offline MARL policy.

4.1 PHASE A: TRAIN DIFFUSION MODEL

Diffusion Model Architecture. In order to synthesize multi-agent transitions, we employ a diffusion
model to learn the distribution of the original dataset Dori.. While existing methods typically use a U-
Net (Ronneberger et al., 2015) denoising network, INS adopts a Transformer encoder (Vaswani et al.,
2017) as its basic architecture, incorporating a sparse attention mechanism along the agent dimension.
This design offers two key advantages: First, in multi-agent systems, interaction relationships are
often sparse (Liu et al., 2024; Fu et al., 2025; Li et al., 2019), with agents typically interacting only
with specific nearby agents. The conventional dense attention mechanism in the Transformer encoder
assigns non-zero weights to all agent pairs, implicitly assuming universal interaction. This mechanism
is inefficient and complicates learning the true interaction distribution. Moreover, modeling irrelevant-
agent interaction can distract diffusion models, potentially hindering the denoising process. In
contrast, the sparse attention focuses on critical inter-agent interactions, thereby simplifying the
learning task for models. Second, prior research (Dong et al., 2024) indicates that Transformer-
based diffusion models exhibit improved training stability and achieve superior performance in
reinforcement learning contexts. The diffusion model architecture of INS is detailed in Appendix K.1.
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Sparse Attention for Inter-agent Interaction. In the denoising process, the transition sample
xk = [x1,k, . . . , xn,k] ∈ Rn×dx at denoising step k is initially embedded into xk,e ∈ Rn×de via an
embedding layer. For notational simplicity, we denote the embedding matrix as X instead of xk,e.
The embedding features of each agent are then projected into query Q = XWQ, key K = XWK ,
and value V = XW V representations, where WQ, WK , and W V are learnable parameters. The
product of query and keys is denoted as Z = QK⊺ ∈ Rn×n, comprising n rows {z1, . . . ,zn}. To
focus on the critical interactions, we replace the dense Softmax in conventional dense attention with
Sparsemax (Martins & Astudillo, 2016), which tends to produce sparse attention weights:

Sparsemax(z) = argmin
p∈∆n−1

∥p− z∥2 , (3)

where z ∈ Rn is the input, p ∈ Rn is the output, and ∆n−1 := {p ∈ Rn|p ≥ 0, ∥p∥1 = 1} is the
(n− 1)-dimensional simplex. The solution to Eq. (3) is given as follows:

p = [z − σ(z)1]+, (4)

where σ(z) is the Sparsemax threshold, 1 ∈ Rn is the all-one vector, and [·]+ denotes the ReLU
function. In order to get the solution p, we calculate the threshold σ(z) as follows:

σ(z) =

(∑
i≤m(ẑ) ẑi − 1

)
m(ẑ)

, (5)

where ẑ is z sorted in descending order, and m(ẑ) is the number of non-zero elements in p:

m(ẑ) = argmax
m∈{1,...,n}

mẑm >
∑
i≤m

ẑi − 1

 . (6)

Thus, the resulting sparse attention weight is given by P = Sparsemax(Z) ∈ Rn×n. The output
of sparse attention is

(
P /

√
de
)
V , which preserves key properties of Softmax while assigning zero

probability to irrelevant agents. This approach allows the diffusion model to concentrate on critical
inter-agent interactions, effectively mitigating distractions during the denoising process. A detailed
discussion of Sparsemax and its comparison with related work can be found in Appendix E.

Bit Action. While the current diffusion model inherently generates continuous data, many multi-agent
environments, such as SMAC (Samvelyan et al., 2019), feature discrete action spaces. To bridge
this gap, we introduce a bit action module inspired by Bit Diffusion in Chen et al. (2023). The bit
action module maps a discrete action space containing M actions to a real-valued bit vector of length
L = ⌈log2(M)⌉, as {0.0, 1.0}L. During the denoising process, this bit vector is concatenated with
other continuous variables in the transition. After that, the output vector corresponding to the action is
thresholded into a binary bit vector via a quantization mechanism. Then this vector is mapped back to
the original discrete action space. The bit action design offers two key advantages. Firstly, it enables
INS to be universally applicable to multi-agent environments with either discrete or continuous action
spaces without requiring additional modifications. Secondly, compared to alternative discretization
techniques such as one-hot encoding, the bit action module effectively reduces the action space
dimensionality from M to ⌈log2(M)⌉, thereby decreasing computational complexity.

Diffusion Model Training. Given the original multi-agent dataset Dori. containing transitions x
and the denoising network Dθ(x;σ), we train a diffusion model pdm(x) to approximate the joint
distribution p(x) of multi-agent transitions. The parameters θ of the denoising network are optimized
by minimizing the L2 loss for denoising score matching, as described in Eq. (2). With the trained
model, we can generate numerous transitions from the original dataset, as shown in the next phase.

4.2 PHASE B: SYNTHESIZE DATASETS

The synthesis process begins by sampling an initial noisy transition xK , which is considered the
result of multiple noise additions to the original transition. Following the diffusion steps described in
Eq. (1), the final joint transition is obtained as:

(ô, â, ô′, r̂)︸ ︷︷ ︸
xK

K steps−−−−−→ (o,a,o′, r)︸ ︷︷ ︸
x0

. (7)
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In offline MARL, both dataset diversity and high-value transitions are crucial, implying that the
relative importance of each transition varies (Schweighofer et al., 2022). Previous approaches
primarily focused on diversity, overlooking the role of high-value transitions, which led to an
imbalance in transition quality within the synthetic dataset Dsyn.. To mitigate this imbalance, we
propose a transition select mechanism that prioritizes transitions based on their estimated values.
Specifically, a state value estimator is trained simultaneously with the diffusion model during Phase
A to estimate transition values:

LV
ϕ (o) = E(o,r,o′)∼Dori.

[r + γVϕ̄(o
′)− Vϕ(o)]

2, (8)

where ϕ and ϕ̄ are parameters of the value estimator, and γ is the discount factor. During the synthesis
process, B transitions are generated as candidates. The value estimator evaluates each transition, and
candidates within the proportion η are selected for inclusion in the final output synthetic dataset. In
this paper, we propose two select mechanisms:

• Top-K: All candidate transitions are sorted by their estimated values, and the top η proportion
of them are selected. While this approach intuitively selects the most valuable transitions for
training, it may reduce dataset diversity and degrade policy performance.

• Softmax: A Softmax probability is calculated based on the estimated values of transitions:

p(xi
0) =

exp(Vϕ(o
i
0))∑B

j=1 exp(Vϕ(o
j
0))

. (9)

Then the η proportion of candidates are sampled according to these probabilities. Despite
the additional computational cost, empirical results show that it enhances downstream policy
performance. Therefore, the Softmax select mechanism is employed in the primary experiments.

The selection proportion η represents a trade-off between dataset diversity and quality. Increasing
this proportion tends to concentrate more high-value transitions but at the cost of reduced diversity.
This parameter can be fine-tuned according to the specific requirements of the synthetic data.

4.3 PHASE C: TRAIN OFFLINE MARL

In the final phase, the high-quality dataset synthesized in the previous stages is used for offline multi-
agent policy training. As previously mentioned, our approach is orthogonal to existing offline MARL
methods. Therefore, rather than designing new policy training algorithms, we directly integrate INS
with these methods to assess its effectiveness. The overall algorithm is given in Appendix C.

5 EXPERIMENTS

In this section, we evaluate INS across different multi-agent settings, including both discrete and
continuous action spaces. We initially evaluate our method on multiple datasets, replacing the original
datasets with synthetic datasets to isolate and highlight the impact of synthesis methods. We also
investigate how the quality and size of synthetic data affect downstream policy performance in offline
MARL. Additionally, we conduct an extensive ablation study to empirically validate the effectiveness
of key components and hyperparameters within our method. We provide visualizations of data
coverage, attention weights, reward distributions, and value distributions to illustrate the effects of
our method. Finally, we demonstrate the advantage of INS when trained on small original datasets.

5.1 EXPERIMENTAL SETUP

We conduct experiments on two widely used offline MARL environments: Multi-Agent Particle
Environment (MPE) (Lowe et al., 2017) for continuous action space tasks and StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019) for discrete action space tasks. We use a diverse range
of original datasets, including 12 from MPE and 9 from SMAC. All datasets are categorized based on
the quality of the policies used for collection. In MPE, datasets are categorized as expert, medium,
medium replay (md-replay), or random, while in SMAC, they are classified as good, medium, or
random. In our primary experiments, the size of the synthetic dataset is fixed at 5M . More information
about datasets is provided in Appendix H.
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Table 1: The normalized average scores of INS and baselines in MPE and SMAC. Original
means training policies on the original datasets. We show the mean and standard deviation of scores
averaged over 8 seeds. The best performance is highlighted in bold.

MA-ICQ MA-CQL OMAR/MA-BCQDatasets
Original MA-SynthER INS (ours) Original MA-SynthER INS (ours) Original MA-SynthER INS (ours)

Expert 102.8 ± 3.3 104.7 ± 5.2 107.0 ± 4.4 97.9 ± 5.3 96.8 ± 4.6 98.5 ± 5.0 114.1 ± 3.3 111.3 ± 1.9 115.6 ± 3.1

Medium 26.8 ± 4.8 27.9 ± 3.8 30.2 ± 2.5 34.1 ± 7.1 35.6 ± 8.2 36.6 ± 6.5 47.4 ± 17.3 45.6 ± 11.2 48.0 ± 11.3

Md-replay 12.9 ± 6.1 14.4 ± 5.6 15.2 ± 5.4 20.3 ± 6.4 18.1 ± 7.1 21.1 ± 8.8 37.8 ± 10.5 38.1 ± 12.1 38.8 ± 13.0
Spread

Random 5.1 ± 2.3 4.2 ± 0.6 5.2 ± 3.5 23.9 ± 5.9 23.0 ± 10.5 23.6 ± 7.3 34.2 ± 6.2 33.8 ± 7.5 36.7 ± 4.6

Expert 111.7 ± 15.1 114.1 ± 15.6 114.2 ± 17.2 93.8 ± 12.2 92.5 ± 15.7 93.9 ± 16.6 117.2 ± 18.8 114.4 ± 20.3 119.1 ± 19.6

Medium 62.3 ± 19.6 61.6 ± 18.6 64.7 ± 20.3 60.8 ± 22.7 60.2 ± 24.3 61.4 ± 21.3 66.8 ± 20.9 64.1 ± 23.4 67.5 ± 27.3

Md-replay 33.9 ± 25.9 36.2 ± 28.0 36.4 ± 30.3 24.8 ± 17.5 25.2 ± 16.1 26.1 ± 18.1 46.1 ± 13.6 44.9 ± 16.3 48.6 ± 14.9
Tag

Random 1.8 ± 2.3 1.6 ± 2.4 1.9 ± 4.1 4.7 ± 8.8 3.8 ± 9.4 4.8 ± 8.0 11.0 ± 2.4 9.3 ± 1.1 10.8 ± 2.7

Expert 108.5 ± 20.7 110.7 ± 24.3 111.4 ± 22.4 72.4 ± 31.1 72.8 ± 28.7 73.8 ± 28.0 110.4 ± 25.7 108.9 ± 22.3 112.7 ± 25.8

Medium 71.2 ± 19.2 73.6 ± 19.4 72.1 ± 17.9 57.9 ± 11.9 55.0 ± 10.6 58.8 ± 10.1 74.3 ± 14.5 72.1 ± 19.5 75.0 ± 16.3

Md-replay 12.2 ± 9.8 12.6 ± 6.4 11.9 ± 7.0 29.3 ± 12.8 27.1 ± 16.2 30.4 ± 14.2 43.0 ± 20.5 42.6 ± 21.2 46.2 ± 14.5

MPE

(continuous)

World

Random 0.8 ± 3.4 0.3 ± 2.9 0.8 ± 1.3 0.7 ± 1.5 0.2 ± 3.3 0.4 ± 2.7 5.7 ± 2.2 4.2 ± 3.3 6.9 ± 3.1

Total Score 550.0 561.9 573.0 520.6 510.3 529.1 708.0 689.3 725.9

Good 18.1 ± 0.6 18.6 ± 1.5 19.9 ± 1.4 18.5 ± 0.5 18.2 ± 0.9 20.1 ± 0.3 3.4 ± 0.8 3.4 ± 0.8 4.1 ± 0.5

Medium 16.9 ± 0.8 17.9 ± 1.1 18.5 ± 1.8 16.3 ± 0.8 16.2 ± 1.1 17.9 ± 1.0 4.1 ± 1.5 4.5 ± 0.9 4.4 ± 1.33m

Poor 13.0 ± 1.2 13.5 ± 2.5 13.8 ± 0.9 5.6 ± 0.6 4.0 ± 2.1 5.0 ± 1.6 3.3 ± 1.0 3.6 ± 1.6 3.1 ± 1.1

Good 16.3 ± 0.8 16.4 ± 1.2 17.2 ± 1.7 12.8 ± 2.1 13.6 ± 4.1 14.3 ± 2.9 2.1 ± 0.4 2.8 ± 0.7 3.0 ± 0.4

Medium 12.8 ± 0.6 12.7 ± 1.0 13.9 ± 1.1 14.8 ± 1.7 14.1 ± 1.9 16.1 ± 2.1 3.9 ± 0.7 4.2 ± 0.8 4.3 ± 0.75m_vs_6m

Poor 9.4 ± 0.5 9.5 ± 0.7 9.9 ± 0.4 10.5 ± 0.7 10.8 ± 1.0 12.3 ± 2.7 3.2 ± 0.6 2.9 ± 0.2 3.3 ± 0.2

Good 19.3 ± 0.9 20.2 ± 2.0 20.7 ± 1.4 11.1 ± 5.1 10.1 ± 5.9 12.5 ± 4.2 4.5 ± 0.8 4.9 ± 1.0 5.0 ± 1.2

Medium 18.0 ± 1.2 18.8 ± 0.5 19.3 ± 0.5 15.4 ± 3.3 15.1 ± 4.0 16.4 ± 2.5 5.6 ± 0.5 5.3 ± 0.3 5.7 ± 1.1

SMAC

(discrete)

8m

Poor 9.8 ± 0.6 10.2 ± 1.4 10.1 ± 1.1 4.4 ± 2.0 3.8 ± 3.3 5.4 ± 1.9 3.4 ± 0.8 2.7 ± 1.2 2.9 ± 0.6

Total Score 133.6 137.8 143.3 109.4 105.9 120.0 33.5 34.3 35.8

(a) Spread_expert (b) Spread_medium (c) 3m_good (d) 3m_medium

Figure 3: Dataset metrics of the synthetic dataset. We compare datasets synthesized by INS and
MA-SynthER across different datasets. Details of metrics are provided in Appendix F.

We compare our method against SynthER (Lu et al., 2024), a recently proposed synthetic method for
offline single-agent RL. To ensure a fair comparison, we implement a multi-agent version of SynthER
(MA-SynthER) and evaluate it in the same settings. The detailed implementation of MA-SynthER is
provided in Appendix J. The data synthesis methods used in the preliminary evaluation (Additive
Noise and VAE Augmented) are excluded from the main experiments due to their poor performance.
In order to demonstrate the broad applicability of our method, we select four widely used offline
MARL algorithms for downstream policy training: MA-ICQ (Yang et al., 2021), MA-CQL (Kumar
et al., 2020), OMAR (Pan et al., 2022), and MA-BCQ (Wu et al., 2019). More information on these
algorithms is provided in Appendix I.

5.2 COMPARATIVE EVALUATION

We begin our evaluation by comparing the performance of INS combined with different offline MARL
algorithms across multiple environments. Due to constraints in the official code implementations,
we evaluate OMAR only in MPE and MA-BCQ only in SMAC. The main results are presented
in Table 1, which demonstrate that offline MARL algorithms using INS synthetic datasets outper-
form all other baseline datasets across all algorithms on the total score. Among different types of
original datasets (expert/good, medium, md-replay, and random), synthetic datasets generated from
expert/good and md-replay datasets lead to more substantial improvements in downstream policy
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Figure 4: Module ablation. The nor-
malized average score of the down-
stream policy with ablation variants.
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Figure 5: Parameter ablation. Ablation studies on the
selection proportion and the select mechanism type across
different datasets.

performance compared with those generated from medium and random datasets. This discrepancy
can be attributed to two key factors. First, the narrow coverage of medium datasets constrains the
potential improvements in data coverage achievable by the diffusion model of INS, thereby limiting
the synthesis fidelity. Second, the inherently low quality of random datasets hinders the capacity of
synthetic datasets to enhance downstream policy performance. These findings underscore the critical
role of initial dataset quality in synthesis methods. Additionally, the limited performance gains of
MA-SynthER, and in some cases, performance degradation (such as when combined with OMAR
in the MPE environment), can be attributed to its failure to consider the inter-agent interaction. To
summarize, these results underline the effectiveness of INS across various offline MARL algorithms.

5.3 DATASET QUALITY ANALYSIS

In order to analyze the dataset quality of synthetic data, we employ multiple data metrics to evaluate
the synthetic data synthesized by INS and MA-SynthER. Inspired by prior works (Lu et al., 2024; Lee
et al., 2024), we conduct a comprehensive analysis using five metrics: Similarity measures the distance
between the synthetic and original data distributions, while Correlation evaluates their statistical
relationships, whether casual or not; Oracle Reward represents the true reward of the synthetic data,
which indicates optimality; Dynamic MSE evaluates how well the synthetic data aligns with the
environment dynamics; Novelty quantifies the uniqueness of the synthetic transition, reflecting the
extent of data coverage. Detailed definitions and calculation methods for these metrics are provided
in Appendix F. We exclude Oracle Reward and Dynamic MSE for the SMAC environment due to the
unavailability of true environment rewards and environment dynamics. Figure 3 illustrates the metrics
of synthetic datasets generated from original datasets of different quality. The results demonstrate
that our method consistently outperforms MA-SynthER across all metrics and datasets. This superior
performance indicates that INS not only enhances the true reward and data coverage of the synthetic
data but also preserves its similarity and correlation with the original dataset. Furthermore, it
demonstrates INS’s ability to capture the dynamic information inherent in the original dataset.

5.4 ABLATION STUDY

To verify the effectiveness of each component in our method and to analyze the impact of hyperpa-
rameters and dataset size, we conduct a series of ablation experiments. All experiments are performed
in both MPE and SMAC environments, with MA-ICQ serving as the downstream policy algorithm.

Module Ablation. We evaluate the contribution of key modules through several ablations. These
include replacing sparse attention with dense attention (w/o sparse), removing the select mechanism
retaining all synthetic data (w/o select), and replacing the attention module with an MLP, allowing
each agent to independently synthesize transitions (w/o attention). Figure 4 illustrates the impact of
each module on dataset quality and policy performance. The results demonstrate that the attention
mechanism significantly enhances the ability of INS to learn inter-agent interactions, improving
synthetic data accuracy and policy performance. The select mechanism effectively prioritizes high-
value transitions, which proves crucial in complex environments such as SMAC. Additionally, sparse
attention reduces redundant information in agent interactions, mitigating distraction impact in the
denoising process. We also analyze the metrics of synthetic data generated by different ablation
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variants. As shown in Figure 3, the select mechanism enhances the true reward of synthetic data,
while sparse attention improves the accuracy and state-action coverage of the method. Details of the
ablation variants and more results are provided in Appendix G.3.

Parameter Ablation. We investigate the effect of selection proportion η and select mechanism
type within INS. As mentioned in previous sections, the selection proportion represents a trade-off
between dataset diversity and quality, with higher proportions favoring high-value transitions at
the cost of diversity. As shown in Figure 5, the relationship between policy performance and the
selection proportion varies across different environments. In the Spread environment, the offline
MARL algorithm benefits from high-value transitions in the dataset, while in 5m_vs_6m, agents
require a more diverse offline dataset to achieve optimal performance. We find that the selection
proportion of 0.8 provides sufficient performance on different datasets, so we fix it in our primary
experiments. Additionally, our experiments on select mechanisms show that the Softmax approach
used in primary experiments balances high-value distribution and dataset diversity. Across various
selection proportions in different environments, the Softmax select mechanism achieves superior
performance compared to the Top-K select mechanism.

(a) Spread (MPE) (b) 5m_vs_6m (SMAC)

Figure 6: Impact of synthetic dataset size. Each curve
displays the mean and standard deviation of the normal-
ized score across 5 random seeds.

Synthetic Dataset Size. In order to inves-
tigate the relationship between synthetic
dataset size and downstream policy per-
formance, we conduct experiments with
varying dataset sizes. We select five differ-
ent dataset sizes spanning two orders of
magnitude: {0.1M, 0.5M, 1.0M, 5.0M,
10.0M} transitions. As shown in Fig-
ure 6, as the dataset size increases, policy
performance improves. However, the im-
provement does not scale linearly with the
dataset size. Similar to findings reported
by He et al. (2023) and Lu et al. (2024),
the performance tends to saturate as the
dataset size increases beyond a certain threshold. Based on these observations, we conclude that a
dataset size of 5M offers a reasonable balance between performance and computational cost.

5.5 VISUALIZATION

To provide intuitive insights into the effectiveness of INS in synthesizing multi-agent interaction
datasets, we present four types of visualizations: data coverage, attention weights, value distributions,
and reward distributions. These visualizations aim to demonstrate the improvements in dataset quality,
the impact of the sparse attention mechanism, and the effect on value and reward distributions.

Data Coverage. To assess the improvement in dataset coverage, we employ t-SNE (van der Maaten
& Hinton, 2008) to project both the generated data and the original (o, a) pairs onto a 2D space for
both MPE and SMAC, as illustrated in Figure 7. Our analysis reveals that INS not only fills in parts
of the data distribution that are not well explored by the real interaction but also augments the empty
spaces around the existing transition distribution. In other words, it demonstrates an interpolation
effect, potentially filling gaps in the original dataset distribution.

Attention Weights. To elucidate the impact of our attention mechanism on agent interactions, we
visualize the attention weights during the synthesis process across multiple multi-agent scenarios.
Specifically, we use the real transitions as input for the final diffusion step in INS, then synthesize
transition using sparse and dense attention mechanisms, visualizing their respective attention weights.
Additionally, we compute the inverse distance 1/d(i, j) between each agent pair (i, j) to reflect the
true interaction relationships between agents. As shown in Figure 8, sparse attention effectively
focuses on agents that are more likely to interact based on their proximity. In contrast, dense attention
distributes focus more broadly, disregarding agents’ relative distances, which introduces irrelevant
interactions and reduces the fidelity of the synthetic dataset. Overall, sparse attention offers two key
advantages: lower computational cost during synthesis and less distraction from irrelevant agents.
These advantages contribute to more efficient and accurate multi-agent interaction synthesis.
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(a) Spread (MPE) (b) 5m_vs_6m (SMAC)

Figure 7: Data coverage visualization. Visualization of
a t-SNE projection on the observation-action space of the
original dataset and INS synthetic dataset.

8m

Spread

Distance Sparse Dense

5m_vs_6m

Figure 8: Attention visualization. Vi-
sualization of attention weights in the
synthesis process.

Oracle Reward and Value Distribution. To further evaluate the impact of our method on the
synthetic dataset, we visualize the oracle reward distribution (in Appendix G.1) and the actual value
distribution (in Appendix G.2) of the original dataset and synthetic datasets. The results indicate that
the select mechanism introduced in INS’s Phase B guides the synthetic dataset toward regions with
higher rewards, effectively improving the actual value distribution of the offline MARL policy.

5.6 SYNTHESIZE FROM SMALL DATASETS

Table 2: Synthesize from small datasets. We only
present two expert/good dataset results for brevity,
with additional results provided in Appendix G.4.

Dataset Original 10% 50% 100%

Spread 102.8 102.3 106.3 107.0

5m_vs_6m 16.3 16.3 16.8 17.2

We evaluate the ability of INS to synthe-
size transitions from limited-size datasets
by subsampling each dataset in proportion
to its original size. Specifically, we select
{10%, 50%, 100%} of the original dataset as
training data for INS, and then assess the pol-
icy performance on the corresponding syn-
thetic data. The denoising network uses the
same hyperparameters as in the main evalu-
ation. The experimental results in Table 2
show that our method can synthesize effective transitions even when using only 10% of the original
data, with the performance comparable to that of the original dataset. These results validate the
capability of INS to synthesize high-quality datasets from small-size multi-agent datasets, taking a
step towards addressing the data scarcity in real-world offline MARL tasks.

6 CONCLUSION

In this paper, we propose INteraction-aware Synthesis (INS), a method that leverages diffusion models
to synthesize high-quality datasets for offline MARL. INS employs a sparse attention mechanism for
inter-agent interactions and selects transitions based on a value estimator. The method is orthogonal
to existing offline MARL algorithms and adaptable to datasets with both discrete and continuous
action spaces. Our experiments demonstrate that datasets synthesized by INS lead to superior policy
performance and improved dataset metrics compared to the original datasets and those synthesized
by baseline methods. Additionally, INS can synthesize datasets using as little as 10% of the original
data while maintaining comparable policy performance. INS enables MARL agents to benefit from
synthetic datasets, taking a step towards effective training on scarce real-world datasets.

Limitations. Real-world multi-agent systems often involve a variable number of agents, making
dataset synthesis for varying agent numbers a promising research direction. Additionally, given the
high computational demands of diffusion models, acceleration techniques will be employed to scale
our method to large-scale multi-agent systems. Finally, to balance diversity and fidelity, we did not
apply guidance in INS. However, applying guided diffusion models to specific domains (e.g., safety
MARL) presents an interesting future direction.
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A MOTIVATING EXAMPLE: FIREBOY AND WATERGIRL

Single-agent Synthesis Multi-agent Synthesis
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2 4

5

8 6
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Figure A1: Motivating example. Fireboy and watergirl are situated in a grid world where they must
collaborate to retrieve the diamonds located behind each other. In this environment, fireboy and
watergirl cannot occupy the same grid cell, requiring them to follow different paths to reach their
respective diamonds.

In this section, we present a simple motivating example to illustrate the importance of inter-agent
interactions during data synthesis. As shown in Figure A1, two agents must select different paths
to reach opposite ends of the grid, as they cannot occupy the same grid cell. The original dataset
contains transitions where each agent follows either the upper or lower path. However, applying
single-agent data synthesis methods independently, without considering inter-agent interactions, leads
to the scenario depicted in Figure A1 (mid), where both agents (fireboy and watergirl) are synthesized
to follow the same upper path. This transition is infeasible in the real environment, resulting in a
distorted synthetic dataset. By considering inter-agent interactions, multi-agent data synthesis can
effectively avoid this issue and synthesize high-quality datasets, as shown in Figure A1 (right).

B DETAILS OF THE PRELIMINARY STUDY

In this section, we provide more details of the experimental setting of our preliminary study, as
illustrated in Figure 1. We compare our method against three baseline approaches: Additive Noise,
VAE Augmented, and MA-SynthER. The Additive Noise method (Laskin et al., 2020) augments the
original dataset by introducing Gaussian noise. The VAE Augmented approach employs a variational
autoencoder to learn from the original dataset and subsequently generate new data through sampling.
MA-SynthER, our multi-agent implementation of SynthER (Lu et al., 2024) utilizes a diffusion model
based on the MLP-Mixer architecture (Tolstikhin et al., 2021). These models synthesize transitions
for each agent independently, without considering interactions between multiple agents. To adapt the
Additive Noise, VAE Augmented method, and MA-SynthER for discrete action environments, we
incorporated our proposed bit action module into these methods.

Specifically, Figure 1 (left) compares the performance of MA-ICQ using various purely synthetic
datasets in MPE and SMAC environments. The dashed line indicates the policy performance trained
on the original dataset. Our method demonstrates superior performance compared to both the original
dataset and the baseline synthetic dataset, indicating the efficacy of INS synthetic dataset in enhancing
downstream policy training. Additive Noise and VAE Augmented methods yield results comparable to
or even worse than the original dataset. MA-SynthER shows a modest improvement over the original
dataset but underperforms relative to our proposed method, potentially due to its limited consideration
of inter-agent interactions and dataset quality enhancement. Figure 1 (right) presents a comparison
of various dataset metrics across different synthetic datasets. INS demonstrates consistently high
performance across all dataset metrics, suggesting the effectiveness of our method in synthesizing
high-quality synthetic datasets.
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C PSEUDOCODE OF INTERACTION-AWARE SYNTHESIS

We describe the training and synthesis processes of INS, as shown in Algorithm 1.

Algorithm 1 Interaction-aware Synthesis

Input: Offline MARL dataset Dori., number of candidates B and selection proportion η

Output: Synthetic dataset Dsyn. and trained joint policy π

// Diffusion model training process
1: Transform Dori. into (|Dori.|, n, dx) shaped tensor
2: Update diffusion model pdm(x) and state value estimator Vϕ(o) with samples from Dori. using

Eq. (2) and Eq. (8), respectively
// Dataset synthesis process

3: Initialize synthetic dataset Dsyn. = ∅ and transition candidate set Dcan. = ∅
4: for i = 1, . . . ,B do
5: Sample the i-th new joint transition xi = (oi,ai,o′i, ri) using diffusion model pdm(x)
6: Add transitions into the candidate set Dcan.

7: Calculate the value of each candidate transition using state value estimator Vϕ(o
i)

8: end for
9: Select a proportion η of the candidate set by their values

10: Add all transitions of selected candidates to Dsyn.

// Policy training process
11: Initialize and train the offline MARL policy π using Dsyn.

12: return Dsyn. and π

D MAIN DIFFERENCES BETWEEN INS AND RELATED WORKS

Diffusion Models in Offline MARL. Diffusion models (Ho et al., 2020; Karras et al., 2022), as
a powerful class of generative models, have recently been adopted in reinforcement learning as
planners and policies (Zhu et al., 2023b; Li et al., 2024b). In this section, we discuss related works,
MTDiff-S (He et al., 2024), SynthER (Lu et al., 2024) and MADiff (Zhu et al., 2023a), to clarify the
differences between our approach and existing methods. Motivationally, both MTDiff-S and SynthER
are designed for single-agent settings. MTDiff-S generates data at the trajectory level for unknown
tasks, focusing on multi-task scenarios, which is why it is not included as a baseline in our work.
SynthER, on the other hand, generates data at the transition level and is applicable to both online and
offline reinforcement learning. Unlike these methods, INS is specifically designed for multi-agent
environments, incorporating inter-agent interactions during synthesis to produce enhanced datasets
for improving offline MARL performance. Technically, MTDiff-S adopts a Transformer architecture,
treating trajectory generation as a sequence modeling problem, while SynthER employs an MLP-
Mixer architecture. In contrast, INS uses a Sparse Transformer Encoder architecture, treating each
agent as an individual token input. Additionally, neither MTDiff-S nor SynthER can handle discrete
action spaces, whereas INS achieves this compatibility action spaces through bit action. MADiff is an
offline MARL method, which models a planner as a return-conditional diffusion model to maximize
the cumulative reward. At each time step, MADiff generates a trajectory of length H − 1 based on
the agent’s current or historical observations and then uses only the observations (ot, ot+1) along
with an inverse dynamics model to determine the action at.

• Theoretically, data synthesis in reinforcement learning often refers to the ability to generate data
that can be used to train policies, rather than directly engaging in decision-making (as a planner or
policy) (Dong et al., 2024; Cho et al., 2022). In two overviews on diffusion models for RL (Dong
et al., 2024; Zhu et al., 2023b), MADiff is consistently categorized as a planner (notably, the first
author of Zhu et al. (2023b) is also the first author of MADiff). In contrast, INS and SynthER
generate synthetic data without maximizing rewards or selecting actions, and should therefore
be categorized under Data Synthesizers. Thus, we believe that MADiff and our method are
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Table A1: A comparison of INS and the related works.

Method Key Feature Input Output Requires Real State Requires Policy Action Space

SynthER Data Synthesizer (single-agent) None {o, a, o′, r} No No Continuous

MTDiff-S Multi-task Data Synthesizer (single-agent) ht {ot+i, at+i, ot+i+1, rt+i}i=1,...,H−1 Yes No Continuous

MADiff Planner ot, r {ot+i}i=1,...,H−1 Yes No None

MOMA-PPO Model-based MARL (Dyna) ht, π {(hj , aj , rj)}j=t,...,t+k−1 Yes Yes None

INS (ours) Data Synthesizer None {o,a,o′, r} No No Continuous/Discrete

fundamentally different. Furthermore, MADiff generates observation sequences based on the
agent’s current state and only uses the next observation (ot, ot+1) to produce an action, meaning
it cannot generate a dataset from scratch that can be used for policy training. In contrast, our
method requires no input and can generate a complete dataset of transitions {(ot, at, ot+1, rt)}
suitable for subsequent offline multi-agent reinforcement learning.

• Technically, while both MADiff and our approach leverage the generative capabilities of diffusion
models, we believe this similarity may cause confusion. In terms of the learned targets, MADiff
trains on observation sequences ot, while INS learns from transitions (ot, at, ot+1, rt). When
it comes to the generated output, MADiff produces observation sequences for inverse decision-
making, while INS generates multiple transitions (ot, at, ot+1, rt) that form a dataset. In terms
of training, MADiff uses classifier-free guidance, requiring the agent’s current observation and
team rewards as inputs, whereas our method needs no input and can generate multi-agent datasets
from scratch.

Model-based MARL. Model-based multi-agent reinforcement learning involves interacting with a
predictive model of the environment, often referred to as a world model (Ha & Schmidhuber, 2018),
to facilitate policy learning (Sutton, 1991). One class of these methods relevant to INS optimizes
a policy by unrolling trajectories "in the imagination" of the world model (Yu et al., 2020; Barde
et al., 2024). They employ the world model as a simulator, which takes the current observation and
action as input to predict the next observation and reward. We note that our method shares some
similarities with model-based MARL, particularly with Dyna-like algorithms (Sutton, 1990), which
involve unrolling trajectories "in the imagination" of the world model to optimize a policy. In contrast,
INS is a data synthesis method that generates new experiences without starting from a real state or
the current policy, and the generated experiences follow the distribution of the dataset. Moreover,
INS is an orthogonal method that can be combined with forward dynamics models by generating
initial states via diffusion, potentially enhancing diversity. A summary of the differences between
INS and the related works mentioned above is provided in Table A1.

E COMPARISON OF THE SPARSEMAX IN RELATED WORKS

In OPT (Liu et al., 2024) and SparseMAAC (Li et al., 2019), sparsemax is used to extract relationships
between the real observations of multiple agents, enabling agents to focus on specific targets during
inference, which helps in effective decision-making. Therefore, in these works, the input to sparsemax
is the encoding of agent observations or observation-action pairs, and the output is used for subsequent
action generation or Q-value computation. In contrast, our work is a generative task, where sparsemax
is applied during the denoising process of transitions (which are initially sampled entirely from noise).
During training, sparsemax learns the interaction patterns present in the dataset, and during synthesis,
it progressively incorporates agent interactions into the noise, rather than extracting pre-existing
relationships. Therefore, we believe the role of sparsemax in INS is fundamentally different from its
role in the aforementioned works.

F DATASET QUALITY METRICS

In this section, we define the metrics employed to assess the quality of the synthetic dataset. Our
evaluation framework consists of five distinct metrics: Similarity, Correlation, Oracle Reward,
Dynamic Mean Squared Error (MSE), and Novelty. The Similarity and Correlation metrics quantify
the statistical fidelity and relational consistency between the synthetic and original datasets, while
the Oracle Reward metric evaluates the true reward magnitudes associated with the synthetic data.
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The Dynamic MSE metric assesses the fidelity of the synthetic data to the environment dynamics,
quantifying how accurately it represents the transitions. The Novelty metric quantifies the uniqueness
and diversity of the synthetic dataset, providing insights into its coverage of the observation-action
space. All metrics are computed from 200K samples from each synthetic dataset. The formal
mathematical definitions and computational procedures of these metrics are provided below.

F.1 SIMILARITY

This metric means Kolmogorov-Smirnov (KS) distance (Massey Jr, 1951), which measures the
maximum distance between the cumulative distribution functions of the original and synthetic
datasets. The Similarity is defined as:

Similarity(Dori.,Dsyn.) = sup
x

|Fori.(x)− Fsyn.(x)|, (A1)

where Fori.(x) and Fsyn.(x) are the cumulative distribution functions of the original and synthetic
datasets, respectively.

F.2 CORRELATION

This metric is pairwise rank Pearson correlation (Fieller et al., 1957), which measures the statistical
relationship between the original and synthetic datasets. The Correlation is defined as:

Correlation(Dori.,Dsyn.) =

∑
(rankori.(xi)− r̄ori.) (ranksyn.(xi)− r̄syn.)√∑

(rankori.(xi)− r̄ori.)
2 ∑

(ranksyn.(xi)− r̄syn.)
2
, (A2)

where rank(xi) is the rank of joint transition xi, and r̄ is the mean rank of the dataset.

F.3 ORACLE REWARD

This metric is the average true reward of the synthetic dataset, which measures the optimality of
synthetic data. The Oracle Reward is defined as:

OracleReward(Dsyn.) =
1

|Dsyn.|
∑

x∈Dsyn.

rtrue, (A3)

where the true reward rtrue is obtained by querying the environment with the generated joint observa-
tions and actions (o,a).

F.4 DYNAMIC MSE

This metric is the mean squared error (MSE) between the predicted next observation and the true
next observation, which evaluates how well synthetic data fits the environment dynamics. Prior to
error computation, we normalize each observation. The Dynamic MSE is defined as:

DynamicMSE(Dsyn.) =
1

|Dsyn.|
∑

x∈Dsyn.

(P(o,a)− o′)2, (A4)

where P(o,a) is the true next state by the environment dynamics.

F.5 NOVELTY

This metric is the average distance between synthetic data and the closest original dataset, which
quantifies the uniqueness of datasets. The Novelty is defined as:

Novelty(Dsyn.,Dori.) =
1

|Dsyn|
∑

x∈Dsyn.

min
x̄∈Dori.

((o,a)− (ō, ā))
2
, (A5)

where x̄ is the nearest neighbor of x in the original dataset.
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ORACLE REWARD DISTRIBUTION VISUALIZATION

We visualize the reward of the original dataset and real reward computed from the environment using
observation and action generated from MA-SynthER and INS to visualize that INS can improve the
data distribution to high reward region while preserving environmental dynamics. Figure A2 presents
these distributions. The results demonstrate that our method effectively enhances the proportion of
high-reward transitions in the dataset while simultaneously broadening the overall range of rewards
compared to the original dataset. This dual improvement is particularly beneficial for subsequent
policy learning, as it provides a richer and more diverse reward landscape for agents to learn from.

(a) Spread-Expert (b) Spread-Medium

Figure A2: Oracle reward distribution visualization. Comparison of the oracle reward distributions
among original, MA-SynthER, and INS datasets.

G.2 ACTUAL VALUE DISTRIBUTION VISUALIZATION

To further evaluate the impact of our method on dataset quality, we visualize the actual value
distributions of the original, MA-SynthER, and INS datasets, as shown in Figure A3. We first train a
policy on the dataset and then obtain the actual value for the trained policy by running it in the real
environment. The results demonstrate that our method effectively enhances the value distribution of
transitions in the dataset under the policy, while the value distribution of MA-SynthER synthetic data
exhibits a decrease compared to the original dataset.

(a) Spread-Expert (b) Spread-Medium

Figure A3: Actual value distribution visualization. Comparison of the actual value distributions
among original, MA-SynthER, and INS datasets.
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G.3 MODULE ABLATION

We conduct more ablation studies on the components of INS across 14 datasets from 4 different
scenarios. These include replacing the sparse attention mechanism in the Transformer Encoder with a
dense attention mechanism (w/o sparse), removing the select mechanism retaining all synthetic data
(w/o select), and replacing the attention module with an MLP, allowing each agent to independently
synthesize transitions (w/o attention). In the w/o attention variant, we concatenate the transitions
of individual agents and replace the attention module in the Transformer Encoder with multiple
MLPs, removing the dot-product and Sparsemax components. This modification results in each
agent synthesizing transitions independently, disregarding interactions between agents. The results
are shown in the Figure A4. The results demonstrate that the attention mechanism significantly
enhances agents’ ability to learn inter-agent interactions, improving synthetic data accuracy and policy
performance. The select mechanism effectively screens high-value transitions, which is particularly
crucial in complex environments like SMAC. Additionally, the sparse attention mechanism reduces
redundant information in agent interactions, mitigating distraction impact.
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w/o Sparse

w/o Select

w/o Attention

Figure A4: Module ablation on different datasets. The normalized average score of the downstream
policy with INS ablation variants.

G.4 SYNTHESIZE FROM SMALL DATASETS

We evaluate the scalability of our method across 8 datasets from 4 different scenarios. The results
show that, when using only 10% of the original dataset, our method often achieves performance
comparable to that of the original dataset. With 50% of the dataset, the policy consistently outperforms
the original dataset. The quality of the original dataset also impacts scalability. On expert-level
datasets, where a higher proportion of high-quality samples remain even after downscaling, our
method demonstrates better scalability, particularly when using just 10% of the data.

Table A2: Synthesize transitions from a small dataset. We use four different scenarios for
exploration, each scenario includes two different quality datasets.

Dataset Original 10% 50% 100%

Spread Expert 102.8 101.9 106.8 107.0
Medium 26.8 24.5 28.4 30.2

Tag Expert 111.7 110.9 113.1 114.2
Medium 62.3 61.2 63.5 64.7

3m Good 18.1 18.0 19.3 19.9
Medium 16.9 15.6 17.8 18.5

5m_vs_6m Good 16.3 16.3 16.8 17.2
Medium 12.8 11.9 12.9 13.9
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G.5 COMPUTATIONAL EFFICIENCY OF DATASET SYNTHESIS

To evaluate the computational efficiency of INS, we measured the time taken by INS to generate 1M
transitions and compared it with the time required to collect 1M transitions through environment
interactions using trained policies. The results in Table A3 show that INS is significantly more
time-efficient than collecting data via direct environment interactions, while still maintaining high
dataset quality. We believe this demonstrates that dataset synthesis is a promising avenue for MARL,
where generative methods like INS can be employed to synthesize multi-agent datasets, reducing the
time and challenges associated with data collection in real-world environments.

Table A3: Computational efficiency of INS.

Scenario INS Collecting by agents
spread 1540s 2728s (MAPPO)

3m 2396s 9243s (QMIX)

H INFORMATION ON OFFLINE MARL DATASETS

(a) MPE (b) SMAC

Figure A5: MPE and SMAC environment examples.

H.1 MPE DATASETS

Multi-Agent Particle Environment (MPE) (Lowe et al., 2017) is a multi-agent particle environment
where particles can execute continuous observations and actions, as illustrated in Figure A5(a). Our
study employed three distinct MPE scenarios. The Spread environment consists of three agents
and three landmarks, where the agents’ objective is to learn collision avoidance while ensuring
complete landmark coverage. The Tag scenario involves one pre-trained prey, three predators, and
two obstacles, requiring the predators to collaborate in capturing the prey. The World environment,
similar to Tag, includes one pre-trained prey and three predators; however, the prey agent must locate
food within the map and can utilize forest areas for hiddening.

For our MPE experiments, we used dataset1 provided by OMAR (Pan et al., 2022). This compre-
hensive dataset comprises multiple subsets of varying quality. The random datasets are generated
using a randomly initialized policy for one million steps. The medium replay (md-replay) dataset is
obtained by recording all samples in the buffer when training achieves a medium performance level.
The medium dataset was derived from a partially trained policy with medium performance, while the
expert dataset was generated using a fully trained policy. It is worth noting that OMAR utilizes an
earlier version of MPE, which allows agents to potentially receive different rewards. However, we
find that the different rewards for agents only occur infrequently and do not significantly impact the
predominantly cooperative nature of the environments.

1https://github.com/ling-pan/OMAR
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H.2 SMAC DATASETS

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a widely recognized
benchmark in the MARL field, as shown in Figure A5(b). The SMAC environment simulates battle
scenarios between two competing teams. One team is controlled by built-in artificial intelligence,
while the other is managed by policies learned through MARL algorithms. Our experiments utilized
three distinct maps: the 3m map, where both sides command three marines; the 8m map, featuring
eight marines on each side; and the 5m_vs_6m map, where our team controls five marines against an
enemy force of six.

For our SMAC experiments, we employ the off-the-grid dataset1 (Formanek et al., 2023), which
provides good, medium, and poor quality datasets for each map. These datasets were generated using
three independently trained QMIX policies. To enhance behavioral diversity, a modest amount of
exploration noise was introduced to the policies during data collection.

I OFFLINE MARL ALGORITHM IMPLEMENTATION

This section details the implementation of various offline MARL algorithms.

• MA-ICQ2 (Yang et al., 2021) implicit constraint Q-learning to multi-agent settings, introducing a
decomposed multi-agent joint-policy under implicit constraints. By relying solely on state-action
pairs provided in the dataset, this approach effectively mitigates extrapolation errors.

• MA-CQL3 (Kumar et al., 2020) adapts the conservative Q-learning framework to multi-agent
environments. This algorithm addresses the overestimation problem by adjusting Q-values for
both policy samples and dataset state-action pairs, resulting in more conservative and reliable
policy updates.

• MA-BCQ4 (Wu et al., 2019), the multi-agent version of BCQ, implements decentralized multi-
agent reinforcement learning using value deviation and transition normalization to achieve
coordinated policies.

• OMAR5 (Pan et al., 2022) employs zeroth-order optimization in conjunction with multi-agent
CQL, enhancing coordination among agents’ policies. In implementing these offline MARL
algorithms, we adhere to the hyperparameters specified in their respective original papers to
ensure consistency and reproducibility of results.

J MA-SYNTHER IMPLEMENTATION

We implement MA-SynthER, a multi-agent implementation of SynthER (Lu et al., 2024), which
extends the synthetic data generation approach to multi-agent settings. MA-SynthER employs a
diffusion model based on the MLP-Mixer (Tolstikhin et al., 2021) architecture to generate transition-
level data (observation, action, reward, and next observation) for multiple agents. This model
synthesizes transitions for each agent independently, without considering interactions between
multiple agents. We built MA-SynthER upon the code6 provided by authors, adapting it to the multi-
agent context. Our implementation maintains consistency with the original SynthER by adopting the
same hyperparameters and training settings.

1https://huggingface.co/datasets/InstaDeepAI/og-marl
2https://github.com/YiqinYang/ICQ
3https://github.com/aviralkumar2907/CQL
4https://github.com/sfujim/BCQ
5https://github.com/ling-pan/OMAR
6https://github.com/conglu1997/SynthER
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K IMPLEMENTATION DETAILS OF INS

K.1 DETAILED NETWORK ARCHITECTURE

In this subsection, we detail the diffusion model architecture of INS, as shown in Figure A6. The
architecture begins with a shared embedding layer that processes each agent’s transition, denoted
as xi = (oi, ai, r, o

′
i). Subsequently, the embedded transition is projected into query, key, and

value vectors, which serve as inputs to a sparse attention mechanism. The output of the attention
mechanism is combined with the input through a residual connection and normalized, after which it is
transformed by a feedforward neural network with ReLU activation. The block’s final representation
is obtained by applying layer normalization to the feedforward network’s output. The transformer
encoder typically stacks this block N times to enhance model depth. Our implementation utilizes
a stack of 4 such blocks. To enhance the model’s expressive capacity, we implement multi-head
attention with 4 heads, extending the sparse attention mechanism. The diffusion model incorporates
temporal information by integrating a step embedding vector k. This embedding is concatenated with
the agent’s transition before being fed into the network.

Extending to Synthesize Global States. For certain MARL algorithms that require a global state s,
we can extend the input of the diffusion model to generate the global state s. Specifically, instead
of modeling joint local transitions with diffusion tuples of the form (o,a,o′, r), we could model
expanded tuples of the form (o,a,o′, s, r), and so on. This allows the method to be applied to value
decomposition models that require a global state.
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Figure A6: The detailed diffusion model architecture of INS.

K.2 SCORE NORMALIZATION

Following Pan et al. (2022) and Fu et al. (2020), the average scores of MPE datasets in Table 1 are
normalized by the expert and random scores on each task. Denote the original episodic return as S,
then the normalized score Snorm is computed as

Snorm = 100× S − Srandom

Sexpert − Srandom
, (A6)
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where Srandom and Sexpert are the average scores of the random and expert datasets, respectively.
Besides, the score 0 corresponds to a random policy performance and 100 corresponds to an expert
policy performance.

K.3 HYPERPARAMETERS

In this subsection, we first list the key hyperparameters of INS in Table A4. The noise level of the
diffusion model is encoded by a Random Fourier Feature (RFF) (Rahimi & Recht, 2007) embedding.

Table A4: INS Hyperparameters.

Hyperparameter Value
Selection proportion 0.8

Embedding dimension 64

Number of attention heads 4

Number of blocks 2

Dropout 0.1

Batch size 1024

Optimizer Adam
Learning rate 2× 10−4

Weight decay 10−4

Learning rate schedule Cosine annealing warmup
RFF dimension 16

Training steps 1e6

For the diffusion sampling process, we use the SDE sampler of Karras et al. (2022) with the default
hyperparameters used for SynthER (Lu et al., 2024), given in Table A5. In the implementation of
downstream offline MARL algorithms, we use the hyperparameters specified in their respective
original papers to ensure consistency and reproducibility of results.

Table A5: Diffusion Sampling Hyperparameters following EDM (Karras et al., 2022).

Hyperparameter Value
Diffusion steps 128

σmin 0.002
σmax 80
Schurn 80
Smin 0.05
Smax 50
Snoise 1.003

K.4 COMPUTATIONAL RESOURCES

Most experiments are conducted on a server equipped with an Intel(R) Xeon(R) Gold 6442Y and
two NVIDIA RTX A6000 GPUs. The training time of INS is about 7 ∼ 9 hours for each task, the
synthesizing time is about 1.5 ∼ 3 hours, and the training time of offline MARL policies varies
depending on the specific algorithm.

25


	Introduction
	Related Works
	Preliminaries
	Offline Multi-agent Reinforcement Learning
	Diffusion Models

	Method
	Phase A: Train Diffusion Model
	Phase B: Synthesize Datasets
	Phase C: Train Offline MARL

	Experiments
	Experimental Setup
	Comparative Evaluation
	Dataset Quality Analysis
	Ablation Study
	Visualization
	Synthesize from Small Datasets

	Conclusion
	Appendix
	 Appendix
	Motivating Example: Fireboy and Watergirl
	Details of the Preliminary Study
	Pseudocode of Interaction-aware Synthesis
	Main Differences between INS and Related Works
	Comparison of the Sparsemax in Related Works
	Dataset Quality Metrics
	Similarity
	Correlation
	Oracle Reward
	Dynamic MSE
	Novelty

	Additional Experimental Results
	Oracle Reward Distribution Visualization
	Actual Value Distribution Visualization
	Module Ablation
	Synthesize from Small Datasets
	Computational Efficiency of Dataset Synthesis

	Information on Offline MARL Datasets
	MPE Datasets
	SMAC Datasets

	Offline MARL Algorithm Implementation
	MA-SynthER Implementation
	Implementation Details of INS
	Detailed Network Architecture
	Score Normalization
	Hyperparameters
	Computational Resources



