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Abstract

We present a novel simulation-free framework for
training continuous-time diffusion processes over
very general objective functions. Existing meth-
ods typically involve either prescribing the optimal
diffusion process—which only works for heavily
restricted problem formulations—or require ex-
pensive simulation to numerically obtain the time-
dependent densities and sample from the diffusion
process. In contrast, we propose a coupled parame-
terization which jointly models a time-dependent
density function, or probability path, and the dy-
namics of a diffusion process that generates this
probability path. To accomplish this, our approach
directly bakes in the Fokker-Planck equation and
density function requirements as hard constraints,
by extending and greatly simplifying the construc-
tion of Neural Conservation Laws. This enables
simulation-free training for a large variety of prob-
lem formulations, from data-driven objectives as in
generative modeling and dynamical optimal trans-
port, to optimality-based objectives as in stochastic
optimal control, with straightforward extensions to
mean-field objectives due to the ease of accessing
exact density functions. We validate our method in
a diverse range of application domains from mod-
eling spatio-temporal events to learning optimal
dynamics from population data.

1 INTRODUCTION

Diffusion models have been widely adopted due to their ease
of use and competitive performance in generative modeling
Ho et al. [2020], Ma et al. [2024], Chen and Lipman [2024],
by learning a diffusion process that interpolates between a
data distribution and a Gaussian noise distribution Song et al.
[2021], Albergo et al. [2023], Lipman et al. [2023]. However,

their construction is heavily restrictive and only results in
a simulation-free training algorithm for this simplest case.
Recent works have adapted these ideas to train diffusion
processes over more general objective functions, such as
solving optimal transport or generalized Schrödinger bridge
problems, but these methods all require simulating from the
learned diffusion process to some varying degrees, and are
generally more restrictive than simulation-based training
approaches Liu et al. [2024].

We consider training diffusion processes over general objec-
tive functions1

min
ρ,u

∫ 1

0

L(ρt, ut)dt+ F (ρ0, ρ1) (1)

s.t. ∂tρt = −∇ · (utρt) +
1
2g

2
t∆ρt (2)

ρt ≥ 0,

∫
RD

ρt(x)dx = 1 ∀t ∈ [0, 1] (3)

where ut(x) : R1+D → RD and ρt(x) : R1+D → R+

are the time-dependent velocity field and probability den-
sity function to be learned, and gt is a state-independent
volatility that is given as part of the problem. The function-
als L and F can be quite general, including cases such as
generative modeling from data observations, Schrödinger
bridge problems, and mean-field control—we provide con-
crete examples in Section 4. The constraints in eq. (3) ensure
the density function is properly normalized, while the con-
straint in eq. (2)—the Fokker-Planck equation—implies that
the diffusion process modeled by the stochastic differential
equation (SDE)

dXt = ut(Xt)dt+ gtdWt (4)

which transports particles in accordance with the marginal
densities, i.e. Xt ∼ ρt.

Typical approaches will only directly parameterize ut,
the time-evolution of the particles, whereas ρt, the time-

1We denote ∂tρt = ∂ρt
∂t

, ∇ · (utρt) =
∑D

d=1
∂(utρt)

∂xd
, and

∆ρt =
∑D

d=1
∂2ρt
∂x2

d
.



evolution of probability density function, is either unobtain-
able or only estimated through expensive numerical proce-
dures [Chen et al., 2019b, Kobyzev et al., 2021]. As such,
in order to sample from ρt, typically one transports parti-
cles starting from the initial time to time t, simulating the
diffusion process in eq. (4).

In this work, we propose a novel parameterization of diffu-
sion processes where we parameterize not only the dynamics
ut but also the density ρt in an explicit form, then we directly
impose the Fokker-Planck equation (2) as a hard constraint
on the model in order to couple these two quantities. To do
so, we build upon ideas from Neural Conservation Laws
(NCL; Richter-Powell et al. [2022]) for imposing the con-
tinuity equation. We propose a reformulation of the NCL
framework and significantly improve upon its prior con-
struction; unlike prior work, we additionally include the
density constraints (3) into the model, enabling maximum
likelihood training. We also find that the naïve construction
introduces what we call a spurious flux phenomenon which
renders the velocity field unusable. We propose removing
this phenomenon through the introduction of a carefully de-
signed divergence-free component into the dynamics model
that leaves the density invariant. In summary, our work in-
troduces the following main contributions:

• We give an improved analysis of the Neural Conservation
Laws construction, generalizing it to diffusion processes
and additionally imposing the density constraints (3).
Compared to the original formulation, we can now train
with the maximum likelihood objective.

• We discuss how the naïve construction leads to a spurious
flux phenomenon, where the flux and velocity field do not
vanish even as x diverges. We mitigate this problem by
introducing carefully chosen divergence-free components
to the flux that leaves the density invariant.

• We show that our method achieves state-of-the-art on a
variety of spatio-temporal generative modeling data sets
and on learning transport maps in cellular dynamics.

To the best of our knowledge, our method is the first to allow
the training of a diffusion process with general objective
functions—such as regularizing towards optimal transport,
or with additional state costs, including mean-field cost
functions—completely simulation-free, whereas existing
methods require varying degrees of simulation.

2 RELATED WORK

Markov processes described by ordinary and stochastic dif-
ferential equations have been used across many application
domains [Rubanova et al., 2019, Karniadakis et al., 2021,
Cuomo et al., 2022, Wang et al., 2023], with the most gen-
eral problem settings involving simulation-based methods.
This refers to training neural differential equations of vari-
ous kinds by simulating their trajectories and differentiating

through the objective function. While some works have
solved the memory issue with dfferentating through simula-
tions [Chen et al., 2020, Li et al., 2020, Chen et al., 2021],
it remains problematic to apply these at scale due to the
computational cost of simulation. Furthermore, many proba-
bilistic modeling applications [Grathwohl et al., 2018, Chen
et al., 2019a, Koshizuka and Sato, 2023] require the com-
putation of the likelihood for maximum likelihood training,
which can be more expensive than simulating trajectories.

This is where Neural Conservation Laws (NCL; Richter-
Powell et al. [2022]) come in, which is a modeling paradigm
where the law of conservation such as eq. (2) is directly
enforced as a hard constraint. This allows optimization prob-
lems like eq. (1) to be mapped on an unconstrained problem
in the parameter space of an NCL model. However, while
the original NCL model [Richter-Powell et al., 2022] was
able to bake in the constraint in eq. (2), they did not pro-
vide a scalable way to incorporate the density constraints
in eq. (3) which is key for enabling maximum likelihood
training.

An alternative framework is that of neural flows [Biloš
et al., 2021] which parameterize a flow model using a time-
dependent normalizing flow [Papamakarios et al., 2021]
instead of the velocity field. This approach avoids numeri-
cal simulation of ODEs but constraints such as invertibility
must be enforced on the neural architecture and therefore
limits its expressiveness.

There are highly-scalable frameworks of diffusion models
[Ho et al., 2020, Song et al., 2021], inlcuding Flow Matching
[Lipman et al., 2023], and stochastic interpolants [Albergo
and Vanden-Eijnden, 2022, Albergo et al., 2023]. However,
these methods can only solve a restricted set of problems,
where samples from the optimal ρ0 and ρ1 are provided for
training. They cannot handle the general problem setup of
eq. (1) but instead directly prescribe the optimal solution
which is then learned by a regression problem.

3 METHOD

We describe a novel framework which directly parameter-
izes both a velocity field ut and a density ρt that always
satisfies the Fokker-Planck constraint in eq. (2) and density
constraints in eq. (3). Our method is built on top of ideas
introduced in Neural Conservation Laws (NCL; Richter-
Powell et al. [2022]) through the use of differential forms,
but we take an alternative construction while providing step-
by-step derivations. We then discuss how likelihood-based
generative models can fit within our framework. The naïve
construction, however, leads to a problem we call the spu-
rious flux phenomenon (Section 3.4) which we resolve by
introducing a divergence-free component (Section 3.5).



3.1 NEURAL CONSERVATION LAWS

In order to satisfy the Fokker-Planck constraint in eq. (2), we
make use of a coupled parameterization of both a probability
path ρt, i.e. a time-dependent density function, and a flux
jt(x) : RD+1 → RD that is designed, by construction, to
always satisfy the continuity equation,

∂tρt +∇ · jt = 0. (5)

This equation imposes the condition that the total probabil-
ity in a system must be conserved, and that instantaneous
changes in the probability can only be attributed to the local
movement of particles following a continuous flow charac-
terized together by jt and ρt.

We directly impose the continuity equation into the model as
a hard constraint. This idea was previously explored in Neu-
ral Conservation Laws (NCL; Richter-Powell et al. [2022]);
however, its reliance on differential forms makes it diffi-
cult to extend, and they were not able to satisfy the density
constraints in eq. (3). Instead, we propose a simplified al-
ternative construction and derive the core building blocks
of NCL that are necessary for our approach following only
basic principles.

To model eq. (5), we introduce two vector fields aθt (x) :
R1+D → RD and bθt (x) : R1+D → RD with parameters θ,
and set

ρt = ∇ · aθt , (6)

jt = −∂ta
θ
t + bθt . (7)

With this choice we have:

Lemma 1. Let ρt and jt be given by eq. (6) and eq. (7),
respectively. Then the continuity eq. (5) holds iff bt is
divergence-free, i.e. ∇ · bθt = 0.

Proof. Plugging eq. (6) and eq. (7) into the left hand side
of eq. (5),

∂tρt+∇· jt = ∂t∇·aθt −∇· (∂taθt + bθt ) = −∇· bθt . (8)

Therefore eq. (5) holds iff ∇ · bθt = 0, which verifies the
claim.

Notice that ρt depends only on aθt , while jt is affected
by both aθt and bθt . The extra degrees of freedom coming
from bθt will be important in order to resolve what we call the
spurious flux phenomenon in Section 3.4, and furthermore,
it provides the needed flexibility in order to learn optimal
solutions of ut while leaving ρt invariant.

3.2 CONVERSION TO DIFFERENTIAL
DYNAMICS

In order to obtain the dynamics directly, we need to con-
vert the continuity equation into the Fokker-Planck equation.

Fortunately, the density and flux provide sufficient informa-
tion in order to perform this conversion. Any flux jt that
satisfies the continuity equation in eq. (5) can be converted
to a ut that satisfies eq. (2) using the following identity:

ut =
jt
ρt

+ 1
2g

2
t∇ log ρt. (9)

This can be verified by plugging eq. (9) into eq. (2).

∂tρt = −∇ ·
(
ρt

(
jt
ρt

+ 1
2g

2
t∇ log ρt

))
+ 1

2g
2
t∆ρt(x)

= −∇ ·
(
jt +

1
2g

2
t∇ρt

)
+ 1

2g
2
t∆ρt(x) = −∇ · jt

(10)

Thus, by parameterizing a single vector field aθt , we can
model both a density ρt and a velocity field ut that sat-
isfies the constraint in eq. (2). This allows us to turn the
constrained optimization problem in eq. (1) into an uncon-
strained optimization in the parameters θ. Furthermore, as
we are given direct access to ρt, we do not need to solve the
Fokker-Planck equation (eq. (2)) from ut, typically requir-
ing an extremely expensive procedure. This enables a new
paradigm of simulation-free methods for training diffusion
models over general objective functions.

3.3 DESIGNING aθt THROUGH
LIKELIHOOD-BASED MODELS

In order to model valid probability density functions, we
must also satisfy the density constraints in eq. (3). In ad-
dition, we wish to design our choice of aθt such that: (i)
ρt can be exactly sampled from at any time value t, (ii)
computation of ρt incurs minimal computational cost, and
(iii) the model is flexible enough for practical applications.
We will show that autoregressive likelihood-based models
nicely fit within our framework and satisfies all of the above
desirables.

Consider a time-dependent autoregressive probabilistic
model which decomposes the joint distribution over all D
variables given the natural ordering,

ρt(x) =
∏D

i=1 f
θ
t (xi|x1:i−1), (11)

and denote by F θ
t (xi|x1:i−1) =

∫ xi

−∞ fθ
t (y|x1:i−1)dy the

associated cumulative probability distributions (CDF). Let-
ting [aθt ]i denote the i-th coordinate of aθt , this model can
be constructed by setting

[aθt ]i(x) = 0, if i ̸= D

[aθt ]D(x) = F θ
t (xD|x1:D−1)

∏
j<D

fθ
t (xj |x1:j−1),

(12)

This gives ρt(x) = ∇ · aθt (x) =
∏D

i=1 f
θ
t (xi|x1:i−1), re-

covering eq. (11)



Alternatively, we can consider a factorized model, where f
is a parameterized probability density function (PDF) and
xi does not depend on other variables:

ρt(x) =

D∏
i=1

fθ
t (xi), (13)

which we will refer to as the factorized model.

Choice of F θ
t as mixture of logistics. While one may

directly parameterize the functions F θ
t using monotonic

neural networks [Sill, 1997, Daniels and Velikova, 2010],
resulting in a universal density approximator, we decide to
use a simpler construction using mixture of logistic distri-
butions. Mixture of logistics has been a common choice
among likelihood-based generative modeling frameworks,
from normalizing flows [Kingma et al., 2016, Ho et al.,
2019] to autoregressive models [Salimans et al., 2017]. Sim-
ilarly, mixture of logistics is sufficient flexible for our use
cases, as we only need to model per-coordinate conditional
distributions. For our autoregressive model, we use a mix-
ture of logistics to describes the CDF as

F θ
t (xi|x1:i−1) =

L∑
l=1

αθ
l (x1:i−1, t)σ

(
zθl (xi, x1:i−1, t)

)
,

(14)
where σ(x) = 1/(1 + exp(−x)) is the sigmoid function
and we defined

zθl (xi, x1:i−1, t) = sθl (x1:i−1, t)
(
xi − µθ

l (x1:i−1, t)
)
.

(15)
Here, µθ

l (x1:i−1, t) and sθl (x1:i−1, t) correspond to the
mean and inverse scale of a logistic distribution, respectively,
while αθ

l (x1:i−1, t) are mixture weights. All functions are
parameterized using autoregressive neural networks. These
correspond to probability density functions

fθ
t (xi|x1:i−1) =

L∑
l=1

αθ
l (x1:i−1, t)

[
sθl (x1:i−1, t)

× σ
(
zθl (xi, x1:i−1, t)

)
σ (−zl(xi, x1:i−1, t))

]
,

(16)

As for the factorized model, since we remove all the depen-
decies of the CDF on the prior coordiates, we can define
F θ
t (xi) via

F θ
t (xi) =

∑L
l=1 α

θ
l (t)

[
σ
(
sθl (t)

(
xi − µθ

l (t)
))]

, (17)

where the mean, inverse scale, and the mixture weights are
functions depend on t only.

While these constructions for the factorized model and the
autoregressive lead to a proper density, the keen reader may
notice that the flux constructed from eq. (7) using this aθt is
problematic as the flux will be exactly zero in all but one
coordinate. This is not the core of the problem but rather a
manifestation of the spurious flux phenonmenon, which we
will describe in Section 3.4. We will later go in depth on how
to construct a proper flux by making use of the extra degree
of freedom we have in designing bθt later in Section 3.5.

3.4 THE SPURIOUS FLUX PHENOMENON

The choice of aθt above guarantees that ρt is positive and
normalizes to exactly one. However, using only this aθt and
setting bθt = 0 in eq. (7) turns out to be problematic for the
flux jt. Indeed, given any box-shaped region X = [−L,L]D

with boundary denoted ∂X and normal vector n̂(x), we can
use the divergence theorem to obtain∫

X
ρt(x)dx =

∫
X
∇ · aθt (x)dx

=

∫
∂X

n̂(x) · aθt (x)dS(x) > 0.

(18)

where dS(x) is the surface measure on ∂X . This quantity
is nonzero no matter how large L is, and approaches one as
L → ∞ since

∫
RD ρt(x)dx = 1.

This implies that aθt is necessarily nonzero somewhere even
outside of the support of ρt. Therefore, if we set bθt = 0 so
that jt = −∂ta

θ
t by eq. (7), since aθt is not constant in t in

general, the flux does not decay to zero even outside the
support of ρt, even though ρt goes to zero. This is problem-
atic for two reasons: (i) we take jt/ρt in order to construct
ut, which will diverge, and (ii) because the divergence theo-
rem holds for any region, this introduces unwanted behavior
even at finite x, as can be seen in Figure 1.

This spurious flux phenomenon, where the flux is nonzero
even as x diverges, exists generally for any construction that
does not enforce limx→∞ ∂ta

θ
t = 0, and it can be easily

formalized in the case of the autoregressive construction of
aθt in eq. (12), as summarized by the following result:

Lemma 2. Let ρt(x) = ∇ · aθt (x) =
∏D

i=1 f
θ
t (xi) and

jt(x) = −∂ta
θ
t (x) with aθt (x) given by eq. (12). Then

limxD→+∞ |jt(x)|2 ̸= 0.

Proof. If jt(x) = −∂ta
θ
t (x) with aθt (x) given by eq. (12),

the D-th coordinate of the flux is

[jt]D(x) =− ∂tF
θ
t (xD|x1:D−1)

D−1∏
i=1

fθ
t (xi|x1:i−1)

− F θ
t (xD|x1:D−1)∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
.

Since limxD→∞ Ft(D) = 1 and therefore
limxD→∞ ∂tFt(D) = 0, we deduce

lim
xD→∞

[jt]D(x) = −∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
̸= 0 (19)

and the claim of the lemma follows.

Next we show that we can zero the spurious flux by using
the extra degree of freedom offered by the divergence-free
field bθt in the construction of eq. (7), as discussed next.



 ρt(x) = ∇ ⋅ aθ
t (x)

 jt(x) = − ∂taθ
t (x)

jt(x) = − ∂taθ
t (x) + bθ

t (x)

 t = 0  t = 0.25  t = 0.5  t = 0.75  t = 1

Figure 1: Illustration of the spurious flux phenomenon and its removal with a divergence-free vector field bθt . (top) The
trained marginal distributions in 2D. (middle) The flux field jt = −∂ta

θ
t without any flux cancellations, where we see there

are spurious fluxes. (bottom) The flux field jt = −∂ta
θ
t + bθt with bθt defined in Section 3.5, and we now see that the flux

field vanishes properly.

3.5 DESIGNING bθt TO COMBAT THE SPURIOUS
FLUX PHENOMENON

In order to remove the spurious flux in eq. (19), we
must cancel it out with a term that has the same limit-
ing behavior. To this end, we propose adding the quantity
σ(xD)∂t

(∏D−1
i=1 fθ

t (xi|x1:i−1)
)

to the D-th coordinate of
the flux, where σ is the sigmoid function, or more generally,
a function/neural network approaches 1 as its input goes to
infinity. By adding this cancellation term to the spurious
flux from eq. (19), we exactly remove the limiting behavior:

lim
xD→∞

− ∂t

(
F θ
t (xD|x1:D−1)

D−1∏
i=1

fθ
t (xi|x1:i−1)

)

+ σ(xD)∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
= 0.

(20)

However, we must construct bθt to be divergence-free in
order to leave ρt invariant. Notice that this cancellation term
has the form

[bθt ]D(x) = σ(xD)∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)

=
∂

∂xD−1

[
σ(xD)∂t

(
F θ
t (xD−1|x1:D−2)

×
D−2∏
i=1

fθ
t (xi|x1:i−1)

)]
.

(21)

To ensure bθt is divergence-free, we add a compensating
term to the D − 1-th coordinate,

[bθt ]D−1(x) = − ∂

∂xD

[
σ(xD)∂t

(
F θ
t (xD−1|x1:D−2)

×
D−2∏
i=1

fθ
t (xi|x1:i−1)

)]
.

(22)
This results in a bθt that is divergence-free since

∇ · bθt =
∂

∂xD
[bθt ]D +

∂

∂xD−1
[bθt ]D−1 = 0. (23)

However, the bθt in eq. (22) introduces a new spurious flux
in the D − 1 coordinate since [bθt ]D−1 ̸= 0 as xD−1 → ∞.
To completely remove spurious flux while keeping bθt
divergence-free, we must recursively add cancellation and
compensating terms to each coordinate, until every coor-
dinate has their spurious flux removed. This results in the
following vector field for the general case:



[bθt ]i(x) =



σ(xi)∂t
∏D−1

j=1 fθ
t (xj |x1:j−1), if i = D

−
(∏D

j=2 σ
′(xj)

)
∂tF

θ
t (x1), if i = 1(∏D

j=i+1 σ
′(xj)

) (
σ(xi)− F θ

t (xi|x1:i−1)
)

×∂t

(∏i−1
j=1 f

θ
t (xj |x1:j−1)

)
−
(∏D

j=i+1 σ
′(xj)

)
∂tF

θ
t (xi|x1:i−1)

×
(∏i−1

j=1 f
θ
t (xj |x1:j−1)

)
, otherwise

(24)

The following results show that the bθt in eq. (24) is
divergence-free and that it completely removes the spurious
flux problem.

Lemma 3. The vector field bθt in eq. (24) is divergence-free,
i.e. ∇ · bθt = 0. We provide proof in Appendix B.

Theorem 1. Let ρt and jt be given by eq. (6) and eq. (7),
respectively, with atθ given by eq. (12) and bθt by eq. (24).
Then the continuity eq. (5) holds, the density satisfies ρt > 0
and

∫
RD ρt(x)dx = 1, and in addition there are no spurious

flux, i.e. jt → 0 as x → ∞. We provide proof in Appendix B.

Note that in our implementation, we compute all quantities
in eq. (24) in parallel across all coordinates using autore-
gressive architectures, and in logarithm space for numerical
stability. The derivatives ∂t are computed using memory-
efficient forward-mode automatic differentiation, so the total
cost of computing eq. (24) has the same asymptotic compute
cost of a single evaluation of the autoregressive model.

3.6 THE FACTORIZED CASE: SIMPLIFICATIONS
AND GENERALIZATIONS

The vector field in eq. (24) can be drastically simplified for
the factorized case by setting σ(xi) = F θ

t (xi), which gives

[bθt ]i(x) =



F θ
t (xD)∂t

(∏D−1
j=1 fθ

t (xj)
)
, if i = D

−
(∏D

j=2 f
θ
t (xj)

)
∂tF

θ
t (x1), if i = 1

−
(∏D

j=i+1 f
θ
t (xj)

)
∂tF

θ
t (xi)

×
(∏i−1

j=1 f
θ
t (xj)

)
, otherwise.

(25)
Substituting this back into eq. (9) results in the simplified
velocity field (for gt = 0):

[uθ
t ]i(x) = jθt (x)/ρ

θ
t (x)

= (−∂ta
θ
t (x) + bθt (x))/ρ

θ
t (x)

= −∂tF
θ
t (xi)

fθ
t (xi)

(26)

for all i ∈ {1, . . . , D}, which is easy to implement and com-
pute in practice. Furthermore, we note that for the factorized

model, the velocity is always kinetic optimal as ut(x) in
eq. (26) is a gradient field. In particular, it means that it
is the velocity that results in the shortest paths out of all
velocities that generate this ρt.

To increase the flexibility of the factorized model, note that
we can combine multiple pairs of (ρkt , u

k
t ) into a mixture

model with coefficients γk:

ρt(x) =

K∑
k=1

γkρkt (x), ut(x) =

K∑
k=1

γkρkt (x)

ρt(x)
uk
t (x).

(27)

Proposition 1. If each pair of ρkt and uk
t satisfy the Fokker-

Planck equation as in eq. (2), then the ρt and ut as defined
in eq. (27) also satisfy the Fokker-Planck equation. Proof is
provided in Appendix C.

3.7 LEARNING AN INDEPENDENT
DIVERGENCE-FREE COMPONENT

While the choice of bθt in eq. (24) removes the spurious
nonzero flux values at infinity, this parameterization lacks
the flexibility in optimizing jt, e.g. it does not necessarily
correspond to kinetic optimal velocity fields ut, unless we
use the factorized model discussed in Section 3.6. In order to
handle a wider range of applications where we do optimize
over ut, we can include a flexible learnable component into
jt that leaves the continuity equation invariant.

Let the new flux field be parameterized as

jt = −∂ta
θ
t + bθt + vθt , where ∇ · vθt = 0, (28)

so fθ
t : RD+1 → RD is a divergence-free vector field. This

construction still satisfies eq. (5) because

∂tρt+∇·jt = ∂t(∇·aθt )−∇· (∂taθt +bθt +vθt ) = 0 (29)

To satisfy the divergence-free constraint, we adopt the con-
struction in Richter-Powell et al. [2022] and parameterize an
matrix-valued function Aθ

t : RD+1 → RD×D with neural
networks and we let

vθt = ∇ ·
(
Aθ

t − (Aθ
t )

T
)

(30)

where the divergence is taken over the rows of the anti-
symmetric matrix Aθ

t − (Aθ
t )

T . Let Aθ
t;i,j denote the (i, j)

entry of Aθ
t . We can easily verify that vθt is divergence-free

with the following:

∇ · vθt =

D∑
i=1

D∑
j=1

∂xi
∂xj

(
Aθ

t;i,j − (Aθ
t;i,j)

T
)

− ∂xj
∂xi

(
Aθ

t;i,j − (Aθ
t;i,j)

T
)
= 0

(31)



Model Pinwheel Earthquakes JP COVID-19 NJ CitiBike

Conditional KDE (Chen et al. [2020]) 2.958 ±0.000 2.259 ±0.001 2.583 ±0.000 2.856 ±0.000

Neural Flow (Biloš et al. [2021]) N/A 1.633 1.916 2.280
CNF (Chen et al. [2020]) 2.185 ±0.003 1.459 ±0.016 2.002 ±0.002 2.132 ±0.012

NCL++ (Factorized) 2.028 ±0.062 1.217 ±0.024 1.846 ±0.012 1.462 ±0.033

NCL++ (Autoregressive) 1.936 ±0.083 1.184 ±0.031 1.732 ±0.009 1.239 ±0.024

Table 1: Negative log-likelihood per event on held-out test
data (lower is better).

4 EXPERIMENTS

In each of the following sections, we consider broader and
broader problem statements, where each successive problem
setting roughly builds on top of the previous ones. Through-
out, we parameterize the density ρt and a flux jt following
Section 3.1 in order to satisfy the continuity equation, and
compute the velocity field ut using eq. (9). All models
are trained without simulating the differential equation in
eq. (4). While there exist simulation-free baselines for the
first few settings (Sections 4.1 & 4.2), to the best of our
knowledge, we are the first truly simulation-free approach
for the more complex problem setting involving mean-field
optimal control (Section 4.3). Experimental details are pro-
vided in Appendix D.

4.1 SPATIO-TEMPORAL GENERATIVE
MODELING

Our goal is to fit the model to data observations from an
unknown data distribution q(t, x). We consider the uncon-
ditional case of generative modeling where samples are ob-
tained from marginal distributions across time, while the in-
dividual trajectories are unavailable. As a canonical choice,
we use the cross entropy as the loss function for learning ρt.

LGM = Et,x∼q(t,x) [− log ρt(x)] (32)

We consider datasets of spatial-temporal events prepro-
cessed by Chen et al. [2020] and these datasets are sam-
pled randomly in continuous time. We take only the spatial
component of these datasets, as this is our core contribu-
tion. To evaluate the capability of our method on modeling
spatial-temporal processes, we test our proposed method
on these datasets and compare against state-of-the-art mod-
els on these datasets by Chen et al. [2020] and Biloš et al.
[2021].

We report the log-likelihoods per event on held-out test data
of our method and baseline methods in Table 1, highlighting
that our method outperforms the baselines with substantially
better spatial log-likelihoods across all datasets considered
here.

Model W2(qt1 , q̂t1) W2(qt2 , q̂t2) W2(qt3 , q̂t3) W2(qt4 , q̂t4)

OT-flow 0.75 0.93 0.93 0.88
Entropic Action Matching 0.58 ±0.015 0.77 ±0.016 0.72 ±0.007 0.74±0.017

Neural SDE 0.62 ±0.016 0.78 ±0.021 0.77 ±0.017 0.75 ±0.017

NCL++ (Factorized, Directly Sampled) 0.56 ±0.009 0.79 ±0.012 0.74 ±0.010 0.72 ±0.006

NCL++ (Autoregressive, Directly Sampled) 0.52 ±0.004 0.74 ±0.005 0.72 ±0.003 0.69 ±0.004

NCL++ (Factorized, Transported) 0.58 ±0.015 0.80 ±0.007 0.76 ±0.009 0.75 ±0.009

NCL++ (Autoregressive, Transported) 0.53 ±0.013 0.76 ±0.008 0.73 ±0.005 0.71 ±0.008

Table 2: The Wasserstein-2 distance between the test
marginals and marginal distributions from the model cal-
culated by the test samples and the samples obtained from
directly sampling from the model. For our own methods, we
report standard deviation estimated across 20 runs.

Model W2(qt1 , q̂t2) W2(qt2 , q̂t3) W2(qt3 , q̂t4)

NCL++ (Factorized) 3.45 ±0.125 3.67 ±0.103 4.09 ±0.147

NCL++ (Autoregressive) 2.85 ±0.075 3.14 ±0.082 3.62 ±0.097

Table 3: The Wasserstein-2 distance between the distribu-
tions transported from the test marginals at ti and the test
marginals at ti+1. We use this Wasserstein-2 distance to
measure how kinetically optimal our trained maps are. We
report the mean and standard deviation estimated across 20
runs.

4.2 LEARNING TO TRANSPORT WITH
OPTIMALITY CONDITIONS

We next consider settings where the data are only sparse
observed at select time values, and the goal is to learn a
transport between each consecutive observed time values,
subject to some optimality conditions. The simplest case is
dynamic optimal transport Villani [2021], where we intro-
duce a kinetic energy to the loss function in order to recover
short trajectories between consecutive time values.

LOT =
∑

t∈{ti}n
i=1

Ex∼qti (x)
[− log ρt(x)]

+

∫ tn

t0

Ex∼ρt(x)

[
∥ut(x)∥2

]
dt

(33)

As our benchmark problem, we investigate the dynamics of
cells based on limited observations, focusing on the single-
cell RNA sequencing data of embryoid bodies as analyzed
by Neklyudov et al. [2023]. This dataset offers sparse ob-
servations in a 5-dimensional PCA decomposition of the
original cell data introduced by Moon et al. [2019] at dis-
crete time points t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 = 4.
Our objective is twofold: first, to fit the time-continuous
distribution of the dataset with given sparse observations,
and second, to obtain optimal transport (OT) paths between
these marginal distributions.

Numerous methods exist for learning continuous system dy-
namics from snapshots of temporal marginals. For example,
the Neural SDE frameworkLi et al. [2020] —an extension of
Neural ODEsChen et al. [2019b]—offers a robust approach



to learning stochastic dynamics by employing scalable gradi-
ents computed via the adjoint sensitivity method. Similarly,
OT-FlowsOnken et al. [2021] build upon Neural ODEs by
integrating regularizations derived from optimal transport
theory. In contrast, action matchingNeklyudov et al. [2023]
avoids back-propagation through stochastic or deterministic
differential equations, thereby achieving significantly faster
training. We trust this expanded discussion clarifies the ra-
tionale behind our comparisons and highlights the strengths
of each approach.

To evaluate the performance of our model on this problem
setup as compared to the existing methods, we compute the
Wasserstein-2 distance between our fitted model ρt and the
data distribution qt at t = 0, 1, 2, 3, 4. The Wasserstein-2
distance is computed with the samples we directly sample
from the model marginal distribution ρt and the held-out
test data from the dataset. Additionally, we compute the
Wasserstein-2 distance between test marginals and model
marginals by transporting samples from the data marginal
qti to our estimated marginals at the next time value q̂ti+1

using the trained velocity field. We report the results in
Table 2 where our method surpass the existing methods
in terms of fitting the time-continuous distribution of the
dataset with given sparse observations.

Compared to prior works, we not only learn the transport
map and the marginal densities of the dataset, but also op-
timize the model for the kinetically optimal transport map.
Our model has the flexibility in terms of training for the
kinetic optimal transport map because of the additional
learnable component vθt that can be incorporated into the
flux term (Section 3.7), all the while capable to be learned
without sequential simulation of the underlying dynami-
cal system. Results of optimizing for kinetically optimal
transport map are reported in Table 3. As compared to the
factorized model, which is simpler and easier to train, the
autoregressive model achieves better performance in both
density fitting and optimizing for the optimal transport.

4.3 MEAN-FIELD STOCHASTIC OPTIMAL
CONTROL

Stochastic optimal control (SOC; Mortensen 1989, Fleming
and Rishel 2012, Kappen 2005) aims at finding the opti-
mal dynamics model given an objective function, instead
of data observations. SOC problems arise in wide variety
of applications in sciences and engineering [Pham, 2009,
Fleming and Stein, 2004, Zhang and Chen, 2022, Holdijk
et al., 2023, Hartmann et al., 2013, 2017] and we provide
numerical evidence to illustrate that our framework can be
extended to solving SOC problems, including mean-field
type of SOC problems [Bensoussan et al., 2013], which
have wide applications in finance [Fleming and Stein, 2004,
Pham, 2009] and robotics [Theodorou et al., 2011, Pavlov
et al., 2018]. Reducing the SOC problem into our setting in

Figure 2: Transport paths of a trained factorized model on
the motion planning task of different environments with
randomly initialized circular obstacles. We train the model
with a diffusion coefficient gt = 0.0 and we sample the
model via solving eq. (4) with gt = 0.0 (first row) and
gt = 0.5 (second row). Note that in the case of gt = 0.0,
eq. (4) reduces to a deterministic ODE.

eq. (1), we have the following objective function:

LSOC =

∫ 1

0

ϕt(ρt)dt+ Ex∼ρt

[
1

2σ2
t

∥ut(x)− vt(x)∥2
]
dt

+Φ(ρ1) + Ex0∼q0 [− log ρ0(x0)]
(34)

where q0 is a given initial distribution, vt is a given base
drift function, and we use Φ(ρ1) = Ex1∼q1 [− log ρ1(x1)]
as the terminal cost so that the model can also be fitted to
a given terminal distribution q1. For our task, we formulate
problems with circular obstacles that the model must navi-
gate around. In particular, for circular obstacles with radius
R and center coordinate c, the running cost is defined as:∫ 1

0

ϕt(ρt)dt =EXt∼ρt [softplus
(
R2 − (Xt − c)2

)
]

+ ηEXt∼ρt [log ρt(Xt)]

(35)

where EXt∼ρt
[log ρt(Xt)] is the entropy of the model—i.e.,

a mean-field cost—used to encourage the model to find all
the possible paths and η is a weighting.

We test our method on the motion planning tasks introduced
by Le et al. [2023]. The task is to navigate from the source
to the target distribution while avoiding randomly initialized
circular obstacles, where we use the entropy regularization
to encourage finding multiple paths and to ensure we find
robust solutions. We visualize the trained model in Figure 2,
where our framework trained with diffusion coefficient gt =
0 can handle different environments and can also be used
to produce reasonable samples when additional noise is
present, i.e., gt > 0.

5 CONCLUSION

We have proposed a simulation-free framework for training
continuous-time stochastic processes over a large range of



objectives, by combining Neural Conservation Laws with
likelihood-based models. We demonstrated the flexibility
and capacities of our method on various applications, in-
cluding spatio-temporal generative modeling, learning opti-
mal transport between arbritrary densities, and mean-field
stochastic optimal control. Especially at low dimensional
settings, our method easily outperforms existing methods.
However, the reliance on likelihood-based models make it
difficult to be scaled up to high dimensions. We acknowl-
edge these limitations and leave them for future works.
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A JACOBIAN SYMMETRIZATION LOSS

With the flexible learnable component fθ
t , we can learn the Hodge decomposition of the velocity field to remove the

extra divergence-free (i.e., rotational) components of the model. As a direct consequence of the the Benamou-Brenier
formula Villani [2021], Albergo and Vanden-Eijnden [2022], the velocity field that achieves the optimal transport has no
divergence-free component.

A necessary and sufficient condition for a velocity field of being a gradient field is having symmetric Jacobian matrix with
respect to all spatial dimensions. By the Hodge decomposition, any time-dependent velocity field vt : RD+1 → R can be
expressed as a sum of a divergence-free field and a gradient field:

vt = ∇ϕt + ηt (36)

where ηt is divergence-free. Let J t : RD+1 → RD×D be the Jacobian matrix of vt with respect to its spatial dimensions
and we denote its (i, j) entry by J t

i,j = ∂xj
vti . Then, the Jacobian matrix is symmetric if and only if ∂xj

vti = ∂xi
vtj for any

i, j. It follows that ∂xj
vti = ∂xi

vtj . Consequently,
∫
−∞ vtidxi =

∫
−∞ vtjdxj for any i, j. Then let ϕt =

∫
−∞ vt1dx1 and we

obtain vt = ∇ϕt is a gradient field. Conversely, if vt = ∇ϕt is a gradient field, then ∂xj
vti = ∂i∂jϕ

t = ∂xi
vtj and J t

i,j is
symmetric.

Motivated by this observation of the equivalence between the symmetry of the Jacobian and the OT plan, we train fθ
t with

the loss
LOT = Et,x∼ρt(x)||J

θ
t (x)− (Jθ

t )
T (x)||F (37)

where || · ||F denotes the Frobenius norm. We can compute this loss by using the Hutchinson trace estimator Hutchinson
[1989]. Let v ∼ N (0, I) be a random Gaussian vector and ut(x) = vTJθ

t (x) and wt(x) = Jθ
t (x)v. Computing u and w

requires one vector-Jacobian product (VJP) and one Jacobian-vector product (JVP), respectively. Therefore,

LOT = Et,x∼ρt(x)||J
θ
t (x)− (Jθ

t )
T (x)||F

= Ev∼N (0,I);t,x∼ρt(x)[v
T
(
Jθ
t (x)− (Jθ

t )
T (x)

) (
Jθ
t (x)− (Jθ

t )
T (x)

)
v]

= Ev∼N (0,I);t,x∼ρt(x)[u
T
t (x)wt(x)− 2wT

t (x)wt(x) + wT
t (x)ut(x)]

(38)

So, the stochastic estimation of the loss takes only one VJP and one JVP at each sample, which is computationally feasible
even in high dimensions.

While this could arguably be better than regularizing kinetic energy for finding kinetic optimal solutions, as it no longer
requires an explicit trade-off between kinetic energy and the other cost functions, we did not observe a meaningful
improvement over simply regularizing kinetic energy.



B PROOF OF LEMMA 3 AND THEOREM 1

Lemma 3

Proof. Given the definition of bθt provided in eq. (24), we directly compute ∂xi
bθt as follows:

∂xi
[bθt ]i(x) =



σ′(xi)∂t

(∏D−1
j=1 fθ

t (xj |x1:j−1)
)
, if i = D

−
(∏D

j=2 σ
′(xj)

)
∂tf

θ
t (x1), if i = 1(∏D

j=i+1 σ
′(xj)

) (
σ′(xi)− fθ

t (xi|x1:i−1)
)
∂t

(∏i−1
j=1 f

θ
t (xj |x1:j−1)

)
−
(∏D

j=i+1 σ
′(xj)

)
∂tf

θ
t (xi|x1:i−1)

(∏i−1
j=1 f

θ
t (xj |x1:j−1)

)
, otherwise

(39)

Note that for the cases in which i ∈ {2, · · · , D − 1}, we can further simplify ∂xi [b
θ
t ]i(x) as follows

∂xi
bθt =

 D∏
j=i

σ′(xj)

 ∂t

i−1∏
j=1

fθ
t (xj |x1:j−1)

−

 D∏
j=i+1

σ′(xj)

 ∂t

 i∏
j=1

fθ
t (xj |x1:j−1)

 (40)

Let

mi =

 D∏
j=i+1

σ′(xj)

 ∂t

 i∏
j=1

fθ
t (xj |x1:j−1)

 (41)

Then,

∂xi
[bθt ]i(x) = mi−1 −mi (42)

with ∂x1 [b
θ
t ]1(x) = −m1 and ∂xD

[bθt ]D(x) = mD−1. Therefore, it follows immediately that

∇ · bθt (x) =
D∑
i=1

∂xi
[bθt ]i(x) = −m1 +

D−1∑
i=2

mi−1 −mi +mD−1 = 0 (43)

Theorem 1

Proof. By Lemma 3 and Lemma 1, aθt constructed by eq. (12) and bθt constructed by eq. (24) satisfies the continuity eq. (5).
Now, we compute the normalization constant of the resulting density ρθt = ∇ · aθt as follows

∫
RD

ρθtdx =

∫
RD

∇ · aθtdx =

∫
RD

D∏
i=1

fθ
t (xi|x1:i−1)dx = 1 (44)

Therefore, the density ρθt is properly normalized. Now, we check for the spurious fluxes for all dimensions by investigating
the following limit:

lim
x→∞

∣∣jθt ∣∣ (x) = lim
x→∞

∣∣∂taθt − bθt
∣∣ ≤∑

i=1

lim
x→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ (45)

Hence, it suffices to prove

lim
x→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ = 0 (46)

for all i ∈ {1, · · · , D} to show that there is no spurious flux in our model.



For i = D, by eq. (19) and eq. (24), we have

lim
x→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ (x) = lim

x1:D−1→∞
lim

xD→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ (x)

= lim
x1:D−1→∞

lim
xD→∞

| − ∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
+ σ(xD)∂t

D−1∏
j=1

fθ
t (xj |x1:j−1)

 |

= lim
x1:D−1→∞

lim
xD→∞

|∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
(σ(xD)− 1) |

= lim
x1:D−1→∞

|∂t

(
D−1∏
i=1

fθ
t (xi|x1:i−1)

)
| lim
xD→∞

| (σ(xD)− 1) |

= 0

(47)

For i = 1, since limx→∞ F θ
t (x1) = 1 for all t ≥ 0, limx→∞ ∂tF

θ
t (x1) = 0. Therefore, for i = 1,

lim
x→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ = lim

x→∞
−

 D∏
j=2

σ′(xj)

 ∂tF
θ
t (x1) = 0 (48)

For i ∈ {2, · · · , D − 1},

lim
x→∞

∣∣∂t[aθt ]i − [bθt ]i
∣∣ =

 D∏
j=i+1

σ′(xj)

 ∂t

i−1∏
j=1

fθ
t (xj |x1:j−1)

(σ(xi)− ∂tF
θ
t (xi|x1:i−1)

)
= 0 (49)

Hence, we deduce that there is no spurious flux given our construction of aθt and bθt .

C PROOF OF PROPOSITION 1

Proof. We check that ρt and ut satisfy eq. (2):

∂tρt =

K∑
k=1

γk
(
∂tρ

k
t

)
=

K∑
k=1

γk
(
−∇ · (uk

t ρ
k
t ) +

1
2g

2
t∆ρkt

)
= −∇ ·

K∑
k=1

γk(uk
t ρ

k
t ) +

1
2g

2
t∆

K∑
k=1

γkρkt

= −∇ ·

(
K∑

k=1

γkρkt
ρt

uk
t

)
ρt +

1
2g

2
t∆

K∑
k=1

γkρkt = −∇ · utρt +
1
2g

2
t∆ρt

(50)

D EXPERIMENTAL SETUP

Neural Network Architecture For training the autoregressive model, we use the MADE architecture [Germain et al.,
2015] with sinusoidal time embeddings of width 128 [Tancik et al., 2020]. For the neural networks we use to parameterize
the mean and the scale of both the autoregressive model and the factorized model, we pass the input first into the sinusoidal
time embeddings before feeding into a four-layer MLP of hidden dimension 256 on each layer.

Training Details For all the numerical experiments we present, we use a learning rate of 3e− 4 with the Adam optimizer
[Kingma, 2014] and a cosine annealing learning rate scheduler.



Spatio-temporal Generative Modeling The total number of iterations we run for the experiments are generally 103

epochs with a batch size of 256. We found that the training is stable with a simple four-layer MLP parametrization for
the mean and the scale of the mixtures of factorized logistics. Also, the MLP parameterization along with the mixture
combinations in the factorzied model turned out to be expressive enough for the experiments we have explored.

Learning To Transport With Optimality Conditions For the single-cell RNA sequence dataset used in [Moon et al.,
2019], we find that both the factorized model and the autoregressive model will easily get overfitted if we use more than 64
modes in the mixture. For the numerical results we are reporting, we use mixtures of size L = 16 for each of the coordinates
in the autoregressive model (14), and we use a mixture of size K = 32 for the factorized model (27). Also, we find that
having the term

∫ tn
t0

Ex∼ρt(x)

[
∥ut(x)∥2

]
dt in the loss objective is extremely helpful for both finding the kinetic optimal

paths and preventing overfitting.

Mean-field Stochastic Optimal Control To achieve consistent results for this experiment, we train the ob-
jective function LSOC by gradually introducing different terms in it. We first train the log-likelihood term
Ex0∼q0 [− log ρ0(x0)] + Ex1∼q1 [− log ρ1(x1)] for 103 iterations with a batch size of 512. Then, we introduce the term

Ex∼ρt

[
1

2σ2
t
∥ut(x)− vt(x)∥2

]
dt for another 103 iterations. Finally, we introduce the running cost

∫ 1

0
ϕt(ρt)dt and train

for 2× 104 iterations. This training technique helps stabilize the training.
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