
Reproducibility Study of Spike-Train Level
Backpropagation for Training Deep Recurrent

Spiking Neural Networks
Julien Verecken, Alex Hoffman and Srikanth Amudala

Email: julien.verecken@mail.mcgill.ca, alexander.hoffman@mail.mcgill.ca, srikanth.amudala@mail.mcgill.ca

Abstract—In this paper, we examine the findings presented
in the novel spike-train level backpropagation algorithm ST-
RSBP, trained on different types of spiking neural networks
(SNN). The ST-RSBP method improves upon existing spike train
level propagation algorithms by improving the accuracy of the
differentiation of activation layers and by adding backprop-
agation to recurrent neural connections. We analyze the ST-
RSBP differentiation technique through an ablation study of the
algorithm, where we alter or remove parts of the released code
to examine their impact on the reported results. Through our
analysis we conclude that the paper does make improvements to
the performance of their previous algorithm.

I. INTRODUCTION

Deep neural networks (DNN) have been performing very
effectively in recent years in natural language processing,
speech recognition, visual object recognition, object detection,
and many other areas. An alternative to artificial neural net-
work architectures (ANN) like the DNN is the spiking neural
network, which emulates the processing of neurons in the
brain. Signals travel between neurons in the form of short
electrical pulses, not 32-bit floating point numbers. The pulses
are also known as action potentials or spikes [3].

A spiking neural network (SNN) attempts to model the
brain’s processing architecture by propagating data in the form
of spike trains, which are series of spikes in the time domain.
These spike trains build up voltage potentials at synapses,
which fire once reaching a voltage threshold. The main
advantage of SNN over classical machine learning methods
is their capacity to achieve trade off between computational
power costs and prediction accuracy [8]. In SNN where
the information is encoded in the firing rate, the inference
delay of the model, in a real time application, can be trade
with the uncertainty over the prediction, effectively reducing
power consumption in an embedded system. Platforms such as
TrueNorth [9] and ODIN [10] are developed to integrate neu-
romorphic networks in a low power, embedded environment.

A. SNN Architecture

SNNs depend on a time-domain model for the synapses
of the network. The ST-RSBP paper uses the popular leaky
integrate-and-fire model and a first order synaptic model [1].
Eq. 1 shows the model’s differential equations for membrane
potential ui(t) of neuron i and its input current αi(t). The
differential system of αi(t) is has as input an weighted sum
of spiking trains of neurons j.

The time constants τm and τs are parameters of the models
which affect voltage and current behavior in time. We vary
τm in this study to determine the system’s sensitivity to this
hyperparameter. When the membrane potential has reach a
voltage threshold, the neuron i fires and is inactive for a
determined refractory period.

τm
ui
dt

= −ui(t) +Rαi(t)

τ(s)
αi

dt
= −αi(t) +

∑
j

wij

∑
t
(f)
j

D(t− t(f)j) (1)

B. SNN Backpropagation

One method for applying backpropagation through RSNNs
is Backpropagation Through Time (BPTT), which unfolds
the recurrent network into a completely feedforward network
before applying traditional backpropagation [1], resulting in
a high computational cost and exploding/vanishing gradient
issues. Spike-Train level RSNN Backpropagation (ST-RSBP),
does not convert the RSNN into a feedforward network.
Instead, it tracks spikes over time during forward propagation
and performs backpropagation at the spike train level using
spike train level post synaptic potential to capture temporal
interactions between neurons.

C. Spike-train Level Post-synaptic Potential (S-PSP)

S-PSP (Eq. (2)), defined by the closed form solution of
the neuron differential equations, captures the spike-train level
interactions between a pair of pre/post-synaptic neurons.

ui(t) =
∑
j

wij

∑
t
(f)
j

ε(t− t̂(f)i , t− t(f)j)

eij =
∑
t
(f)
i

∑
t
(f)
j

ε(t
(f)
i − t̂(f)i , t

(f)
i − t(f)j)

(2)

The S-PSP eij therefore characterizes the aggregated effect of
the spike train of the neuron j on the membrane potential of the
neuron i and its firing activities. S-PSPs allow consideration
of the temporal dynamics and recurrent connections of an
RSNN across all firing events at the spike-train level without
expensive unfolding through time and backpropagation time
point by time point. We show the effect of pre-synaptic neuron
j on post-synaptic neuron i with eij (the S-PSP)

We can perform weighted sum of all S-PSP to a post neuron
i with the T-PSP (3): ai, the total accumulated membrane
potential, ν is the firing threshold, oi is the number of firings
(integrated potential over time/threshold), wij is the weight for
a connection in the network.

ai =
∑
j

wijeij

oi =g(ai) '
ai
ν

(3)

II. REPRODUCIBILITY GOALS

We aim to reproduce the results of the authors and verify
the explanation of those results through an ablation study. The
paper claims several key improvements to the spiking neural
network backpropagation technique of the [2].

A. Error Gradient Approximation

One main improvement is the more precise computation
of the output gradient with respect to weights. We aim to
test whether this change in the algorithm is beneficial to test
error. When computing ∂ak

i

∂wk
ij

, the previous algorithm ignored

the dependence of ekij on wk
ij . The ST-RSBP paper illustrates

their improved derivation of ∂ak
i

∂wk
ij

in the equation 4, using
the chain rule to expand the derivative into two terms rather
than just the left term. The algorithm also uses a polynomial
function to approximate ∂ekil

∂oki
in equation (3).

∂aki
∂wk

ij

= ekij +
1

vk
∂aki
∂wk

ij

∑
wk

il

∂ekij
∂oki

∂aki
∂wk

ij

=
ekij

1− 1
vk

∑
wk

il

∂ekij
∂oki

(4)

The previous paper’s algorithm, HM2-BP, approximates the
derivative of Eq. 4 as ∂ak

i

∂wk
ij

= ekij

B. S-PSP Time constant Hyperparameter Search

We also performed a simple hyperparameter search of the
S-PSP time constant τm to see how sensitive the algorithm is
to its value.

C. S-PSP Computation

The S-PSP computation is detailed in the additional materi-
als of the paper and is, in short, a component of the analytical
solution of the membrane potential. However, the interactions
between S-PSP and the input and output firing rates are not
derived analytically and must be approximated when used
in the backpropagation. While a linear dependence could be
assumed, the authors insisted on simulating those interactions
in MATLAB to come up with a better approximation of
the dependence. Their results are shown in Fig. 1. A linear
dependence is accurate for the dependence of eij with respect
to oi but this is not the case for oj and a 4th order polynomial
is fitted. The interaction simulation is therefore analysed and
the hypothesis of a polynomial fit is discussed.

Fig. 1: eij dependence on oi and oj

III. METHODOLOGY

A. Error Gradient Approximation

Removing the precise gradient calculation from the ST-
RSBP algorithm was straightforward. We changed the code
in the spiking.cu file to set ∂ak

i

∂wk
ij

= ekij without considering
∂ekil
∂oki

. We only made this change to the spiking layer file. We
then evaluated test error on the MNIST dataset, which was
the only dataset we could access and use without errors in the
code.

B. S-PSP Time constant Hyperparameter Search

Performing a hyperparameter search of the S-PSP time
constant τm involved generating new ∂ekil

∂oki
effect ratio files

for each value of τm using the MATLAB script given in the
ST-RSBP code repository. To train using the new settings, we
updated the τm parameter in the configuration file.

C. S-PSP Computation

A new MatLab simulation is performed to compare with
the original and generate the required fitting parameters for the
backpropagation. The influence of those changes are compared
on the MNIST model.

IV. RESULTS

A. Error Gradient Approximation

We display the results of using the precise ST-RSBP gradi-
ent expression and the less precise approximation of HM2-BP
in figure 2. The plot shows test error after each training epoch,
using a training set size of 10,000 MNIST images and a test
set size of 10,000 images. There is a clear improvement in
test error with the more precise ST-RSBP gradient calculation.
The best test error rates achieved on this small training set
are 8.24% for ST-RSBP and 9.20% for the old HM2-BP
method. Over 20 training epochs the story is similar, with both
methods clearly converging at different test errors in figure 3.

We conclude that the new gradient calculation in ST-RSBP
contributes to the algorithm’s test error improvements over
HM2-BP.

Fig. 2: Test Error over 10 training epochs using new ST-RSBP
method and old approximation method

Fig. 3: Test Error over 20 training epochs using new ST-RSBP
method and old approximation method

B. S-PSP Time Constant Hyperparameter Search

We evaluate the effect of the S-PSP time constant τm on
test error by plotting test error after each training epoch, using
a training set size of 10,000 MNIST images and a test set of
10,000 images. While a τm value of 32 caused divergence in
training, the other values of 50, 64, 96, and 128 all performed
adequately, as shown in figure 4. For our MNIST test, which
used a smaller number of training images and epochs than the
original paper, we found that a larger value for τm generally
performed best. Due to limited computing resources and time,
we did not do a more fine grain search of time constant values
and could not do training on the full 60,000 images for 200
epochs. The τm value is a parameter which directly affects the
forward and backpropagation of the SNN, and we conclude
that small changes to τm have visible effects on the test error
of the trained SNN. We are interested to learn how the authors
determined their default values for these parameters.

Fig. 4: Test Error over 10 training epochs using different values
for τm

C. S-PSP Computation

1) Update Equations: A careful analysis of the MATLAB
implementation revealed the parameters used were not in
accordance with the mathematical equations described in the
paper. The comparison is shown in Listings 1 and 2; param-
eters τm and τs are not correctly described in the recurrence
equations and the input current is offset in the membrane
potential update equation. The spike trains associated with the
corrected simulation are shown in Fig. 5 for the selected pa-
rameters and show in particular an input current and membrane
potential that are downscaled compared to the original results.
This is further confirmed by the computation of the eij 2D
interaction plot in Fig. 7a.

Fig. 5: Spike Level Simulation for computation eij

Since the eij values have changed, the partial derivatives in
the backpropagation algorithm are scaled as well and the hyper
parameter selected in the paper are no longer optimal. The
backpropagation equation indicates that a way to compensate
for this change is to lower the threshold voltage ν. The results
on the MNIST dataset for one thousand training points are

Listing 1: Original MatLab Implementation
f o r t = 1 : 1 : end t ime

p=p−p / TAU S ;
i f i n d e x i n<=input num && i n p u t t i m e (i n d e x i n) == t−1

p=p +1;
i n d e x i n = i n d e x i n +1;

end
q = q−q /TAU M+p / TAU S ;
i f t r e f ˜=0
q =0;
t r e f = t r e f −1;

end
i f o u t p u t t i m e (i n d e x o u t) == t

o u t p u t = o u t p u t +q ;
i n d e x o u t = i n d e x o u t +1 ;
t r e f =T REF ;
q =0;

end
i f i n d e x o u t>output num

b r e a k ;
end

end

Listing 2: Corrected MatLab Implementation
f o r t = 1 : d t : T−1

a l p h a (t +1) = a l p h a (t) + d t / t a u s * (−a l p h a (t) + d j (t)) ;

% r e f r a c t o r y p e r i o d
i f c o u n t > 0

c o u n t = c o u n t − d t ;
e p s i l o n (t +1) = 0 ;
c o n t i n u e

end

e p s i l o n (t +1) = e p s i l o n (t) + d t / tau m * (−e p s i l o n (t) + R * a l p h a (t)) ;

% i f t h e neuron has f i r e d
i f d i (t +1) ˜= 0

e i j (i d x j , i d x i) = e i j (i d x j , i d x i) + e p s i l o n (t +1) ;
c o u n t = t r e f ;

end
end

shown in Fig. 6. A direct replacement leaves inconsistent
results compared to the original ones, as predicted. A new
threshold ν is set to 8 mV for all layers and improves accuracy
but does not match the previous results. In order to further
augment the values of eij to match previous values, we can
reduce the spike train length. We set it to 200 ms and it
achieves better performance. Due to computational resources,
the comparison on the full dataset was not achievable.

Fig. 6: Results on MNIST for the new eij approximation

(a) Polynomial fit for a 50× 50 grid

(b) Polynomial fit for a 100× 100 grid

2) Polynomial fitting: The investigation of the polynomial
fitting revealed the approximation was giving decent results
on the eij value, the polynomial degree of 4 being a good
trade-off between fitting and regularization. However, while
it gives decent results for a maximum firing count of 50, it
worsens with a wavy behavior if the grid size is considered
longer, especially for low firing rates. Since it is mainly the
derivative of the approximation that is used in the backprop-
agation algorithm, higher deviations from the true function
are observed. The CUDA implementation in fact uses saved
files of polynomial fitted on a 100 by 100 grid which is less
adapted, as shown in the comparison of Fig. 7a and 7b. The
goal of the paper is to produce state of the art results with
in general high firing rates solutions and a polynomial fit on
high rates is a better choice over a polynomial extrapolation.
As shown in the Figures, an approximation for points outside
the simulated points are diverging because of the polynomial
nature of the fit.

V. CONCLUSION

Our ablation study succeeded in reproducing a subset of
the published results and identifying important aspects of
the algorithm by removing and altering parts of the released
code. We showed the sensitivity of the algorithm to the
hyperparameter τm. By removing the precise error gradient
calculation, we found support the authors’ claim that their
error propagation algorithm improves training performance for
non-recurrent networks.

We believe a mistake has been made on the computation
of the eij factor its influence can be balanced with a new set
of hyper parameters because it is mainly a scaling error. The
polynomial fulfills its role but is not ideal when fitting on high
rate grids. A more robust approximation could be considered,
by directly approximating the partial derivatives or using an
other differentiable fitting like a spline or log regression, at
the cost of a more complex backpropagation algorithm.

VI. STATEMENT OF CONTRIBUTIONS

Julien did reference research, investigated the influence of
the eij signal and its polynomial approximation and wrote
the corresponding sections in the report. Alex modified and
tested the code to examine the effects of the SNN synaptic
time constant and the precise error gradient calculation. He
also wrote corresponding sections of the report. Srikanth did
background research and wrote part of the report.

REFERENCES

[1] W. Zhang and P. Li, “Spike-train level backpropagation for training deep
recurrent spiking neural networks,” ArXiv, vol. abs/1908.06378, 2019.

[2] Y. Jin, P. Li, and W. Zhang, “Hybrid macro/micro level backpropagation
for training deep spiking neural networks,” CoRR, vol. abs/1805.07866,
2018. [Online]. Available: http://arxiv.org/abs/1805.07866

[3] Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, 1998

[5] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in International Joint Conference on Neural
Networks (IJCNN),. IEEE, 2015, pp. 1–8.

[6] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,” Neural
Computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[7] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, June 2014.
[Online]. Available: http://goo.gl/EsQCuC

[8] Rueckauer B, Lungu I-A, Hu Y, Pfeiffer M and Liu S-C (2017),
”Conversion of Continuous-Valued Deep Networks to Efficient Event-
Driven Networks for Image Classification”. Front. Neurosci. 11:682. doi:
10.3389/fnins.2017.00682

[9] Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., ”Akopyan, F., et al. (2014). A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science
345, 668–673”. doi: 10.1126/science.1254642

[10] Frenkel, C., Legat, J.-d., and Bol, D. (2018). ”A 0.086-mm2 12.7-pJ/SOP
64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28nm CMOS”. IEEE Trans. Biomed. Circuits Syst. doi:
10.1109/TBCAS.2018.2880425.

[11] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press, 2002

http://arxiv.org/abs/1805.07866

	Introduction
	SNN Architecture
	SNN Backpropagation
	Spike-train Level Post-synaptic Potential (S-PSP)

	Reproducibility Goals
	Error Gradient Approximation
	S-PSP Time constant Hyperparameter Search
	S-PSP Computation

	Methodology
	Error Gradient Approximation
	S-PSP Time constant Hyperparameter Search
	S-PSP Computation

	Results
	Error Gradient Approximation
	S-PSP Time Constant Hyperparameter Search
	S-PSP Computation
	Update Equations
	Polynomial fitting

	Conclusion
	Statement of Contributions
	References

