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ABSTRACT

The broad capabilities of Language Models (LMs) can be limited by their sensitiv-
ity to distractor tasks: LMs can infer secondary tasks from the prompt in addition
to the intended one, leading to unwanted outputs. For example, prompt injection
attacks can cause models to deviate from explicit directives. In some ‘inverse
scaling’ cases, this unwanted behaviour actually worsens as models scale up to at
least 540B parameters. We present a theoretical framework that interprets LMs as
a product of experts that combine multiple data generation processes. Based on
this framework, we introduce prior-aware decoding (PAD) – a simple contrastive
inference method to reduce the influence of distractor tasks. We apply PAD to
eleven models, across four datasets, and find improvements in 41 out of 44 task-
model combinations, with a median increase in task completion proportion of
40%. The results suggest a promising direction for further development towards
more reliable language models.

1 INTRODUCTION

Language models (LMs) have come to occupy a central role in a wide range of tasks, from data
processing to the creation of instruction-following assistants. These models seem to both increase
in performance and also develop new capabilities as they scale up in parameters, especially when
given examples of a task (Radford et al., 2019; Brown et al., 2020; Wei et al., 2022). They see
both widespread public use, and increasing integration into sensitive tasks where their versatile
capabilities are key (Javaid et al., 2022). However, this increasing reliance on LMs raises concerns
about their reliability and potential vulnerabilities. Their extremely general ability to recognise
patterns may come with a cost: language models are susceptible to distractor tasks, unintended
secondary tasks which a model can infer from the prompt in addition to the intended one, leading to
unwanted outputs (Wei et al., 2023).

Distractor tasks include both semantically complex cases like prompt injection, in which the distrac-
tor task of following the most recently injected instruction overrides the intended task of following
the initial instructions, and much more semantically simple cases where a model defaults to out-
putting a common pattern regardless of prior context (Greshake et al., 2023; McKenzie et al., 2023).

Even cutting-edge models struggle with trivial tasks in the presence of very common patterns. For
example, as of September 2024 GPT-4o, when prompted with ”Write all the numbers up
to 30 except multiples of 13, and nothing else”, will correctly exclude 13 but
fail to exclude 26. Other examples of such distractor tasks include repeating common misconcep-
tions instead of true answers (Lin et al., 2022) and failing to write mathematical proofs when the
correct proof is very similar to an incorrect but much more common proof (Collins et al., 2024).

Furthermore, for some tasks of this type, larger models actually perform worse: similar models
with more parameters can be more likely to repeat common misconceptions and succumb to prompt
injection attacks (McKenzie et al., 2023; Lin et al., 2022). This phenomenon, known as ‘inverse
scaling’ (Lin et al., 2022), reveals a pressing need to better understand how these problems arise and
how they can be fixed. Unlike other problems with LMs which are usually resolved by scaling up
the model and training data size, the existing problems might become even more pronounced, and
other similar issues might emerge.
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1.1 PRIOR-AWARE DECODING

To better understand and address the problem of distractor tasks, we characterise language models
as a product of experts (Hinton, 1999) which combine the predictions of several component models,
each component model predicting the next token assuming a particular task or context. This frame-
work, presented in detail in Section 4, allows us to decompose the model’s behavior into distinct
”experts” that may be responsible for different aspects of the output, which in turn lets us interpret
the problem of distractor tasks as models overweighing a particular expert.

Using this framework, we present a technique to reduce the influence of distractor tasks in cases
where the prompt can be divided into one part containing the intended task and one part containing
the distractor task and other important information. In this case, we can contrast the outputs the
model gives for the full prompt with the outputs it gives for just the part which yields the distractor
task, extrapolating to infer how it would behave with less influence from the distractor task. This
is a form of contrastive decoding (Li et al., 2023). Our approach differs from previous methods by
specifically targeting the influence of distractor tasks and leveraging the product of experts model

More specifically, our method generates the original logits LO from the original prompt, as well
as the weakened logits LW from the portion of the prompt which does not contain the original
task. Even though LO and LW would both, by default, favour undesired outputs consistent with the
distractor task, LO gives a higher probability to outputs consistent with the intended task. So, by
sampling instead from a linear combination of the logits, LO + α(LO − LW ) we can selectively
favour outputs which are more consistent with the original task. (α here is a tunable hyperparameter.)
Using this technique we can mitigate the influence of the distractor task, as we illustrate in Figure 1.

Full task input:

"The English alphabet skipping the 6th letter: A B C D E"

Weakened prompt:

" A B C D E" PAD with 
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Figure 1: Illustration of our geometric mixture model, also referred to as product of experts, and
Prior-Aware Decoding in a task requiring a modification of a very common sequence.
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We test the technique on eleven different models including GPT-2, Llama-2, and Mistral, using four
tasks to evaluate susceptibility to distractor tasks. Three of these tasks are from the Inverse Scaling
Dataset (McKenzie et al., 2023; Wei et al., 2023) which exhibit strong priors, including a prompt
injection task, and one task is a custom task which challenges models to produce modifications of
common sequences.

Our primary baseline is the unmodified completion according to the same model. Across the 44
model-task combinations we find that our technique outperforms the baseline on 41 combinations,
with a median absolute increase in proportion of tasks completed of 40%. See Figure 2 and Sec-
tion 6 for the results. These improvements demonstrate the potential of our method to significantly
enhance the reliability and performance of language models across a variety of model architectures
in scenarios featuring distractor tasks.

The technique requires two choices: selection of the weakened prompt, and the coefficient α. We
offer consistent approaches to generating the weakened prompts for each of our datasets and also
propose a general method for weakened prompt construction. We explore a range of values for
α. Crucially, this method does not require retraining: it operates at inference time by making two
queries instead of one and computing a linear combination of the resulting logits.

The improvements in accuracy due to our technique suggest that viewing LMs as product of experts
models can be a useful framework for understanding and improving the behaviour of these mod-
els. Our research provides new approaches for utilizing capabilities which are dormant in models
and which have been hard to elicit with prompting alone. This includes capabilities of immediate
practical importance, such as resistance to prompt injection attacks, as well as understanding how to
correct for biases learned in the training data.

The main contributions of this paper are:

• Interpreting language models as geometric mixtures (i.e. a product of experts) to develop a
model of how distractor tasks cause poor performance on certain inputs.

• Based on that model, proposing a general framework for eliciting other component of the
geometric mixtures and extrapolating to more desirable mixtures in logits space.

• Developing a technique based on the product of experts model and showing that it robustly
improves performance across several language models on several tasks from the Inverse
Scaling dataset.
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Figure 2: Overview of the results of the Prior-Aware Decoding method at different values of pa-
rameter α over 4 experimental task sets and 11 language models. Each point refers to performance
on one (task set, model) pair, showing the baseline performance of the unmodified original model
(x-axis) vs PAD using the “truncated prompt” weakening (y-axis). See Table 1 for details.
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2 RELATED WORK

Inverse Scaling. For most tasks, performance scales together with the model scale (model size,
dataset size, and training compute). However, certain tasks exhibit inverse scaling, where increasing
the scale of the model leads to worse performance. The term was introduced by Lin et al. (2022)
to characterise the tendency of LMs to repeat common misconceptions. McKenzie et al. (2023)
further developed the notion and provided the Inverse Scaling dataset as well as several informal
categories. Wei et al. (2023) adds to the discussion, showing that of the original eleven tasks in the
Inverse Scaling dataset, only four persist in demonstrating inverse scaling on models of up to 540B
parameters. We apply our method to three of those four tasks. Our work is the first to offer a formal
account of the mechanisms that have so far only been informally hypothesised in Wei et al. (2023),
and we use this to develop a novel technique that improves performance.

Problems Related to Strong Priors. While in this paper we investigate the problem of strong priors
in the domain of language modelling (discussed primarily in Section 3), a somewhat similar problem
also occurs in diffusion models for image generation. Diffusion models have been observed to some-
times struggle to generate images that have a precise correspondence to the prompt. This problem is
especially pronounced for complex prompts that include rare words, or describe implausible scenes,
spatial relations, or compositionality. One technique for mitigating this problem in diffusion models
is classifier-free guidance (Ho & Salimans, 2021). It samples the diffusion model using a linear
combination of conditioned and unconditioned score estimates (1 +w) · e(zt, c)−w · e(zt), where
zt is the image at the denoising step t, c is the conditioning information such as the prompt, e is the
model and w is the guidance weight. High guidance weight improves text-image alignment (Saharia
et al., 2022), although high values often lead to over-saturated images or have a generally unnatural
appearance. The technique that we present in this paper uses a somewhat similar combination of
differently conditioned model outputs to mitigate the problem of strong priors in LMs.

Surface Form Competition and DC-PMI. Holtzman et al. (2021) coin ‘surface form competition’
as a phenomenon where different tokens representing the same concept compete for probability. For
instance, the terms “computer” and “PC” represent the same concept but are different surface forms.
Since the probability mass is finite, this competition lowers the probability of the correct answer.
Domain Conditional Pointwise Mutual Information (DC-PMI) addresses this issue by reweighing
each option according to its likelihood within the context of a specific task, calculated by sampling
from a subset of the prompt. This approach yields gains in zero-shot performance for a variety of
GPT-2 and GPT-3 models on a selection of multiple-choice datasets. Our work applies a similar
kind of technique - reweighing based on likelihood - but we do so to address a different set of tasks,
including those which exhibit inverse scaling.

Contrastive Inference Methods. Contrastive Inference methods steer language models towards
desired outputs by taking multiple samples across different settings and favouring outputs which are
comparatively more likely in one sample than in another. The original implementation in Li et al.
(2023) takes output distributions using the same prompt in two models, one smaller and one larger. It
then contrasts the logits from the two models, selecting the token with the largest difference between
the original (LO) and smaller model (LS), i.e. maxt∈T ′(LO(t) − LS(t)), limited to a subset T ′ of
top tokens to mitigate noise in low-likelihood tokens.

Our approach is most similar to the subsequent techniques introduced in Shi et al. (2024) and Malkin
et al. (2022), which apply contrastive decoding to pairs of shorter and longer prompts, using the same
formula we apply. Malkin et al. (2022) contrasts the full prompt against only the text generated so far
to increase long-range semantic coherence, finding improvement in generic language understanding
and knowledge retrieval tasks. Shi et al. (2024) uses an equivalent formula to handle conflicts
between prior knowledge and information in the context. They also interpret the combination as a
product-of-experts.

Compared to these works, ours frames the language model itself as a product-of-experts that must
select between specific competing tasks, some of which are unwanted distractors, and the resulting
manipulation of logits as a reweighing of the experts. Furthermore, while Malkin et al. (2022) and
Shi et al. (2024) focus on models failing to account for knowledge and facts, we emphasise how they
can include even extremely semantically simple patterns like sequences of numbers. We also draw
the connection to inverse scaling.
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3 STRONG PRIORS IN GENERATIVE MODELS

In this section, we introduce the concept of strong priors within generative models, focusing on their
manifestation in language models and discussing their broader implications.

The term “strong priors” in this context was introduced by McKenzie et al. (2023) as one of the cat-
egories of LM tasks that exhibit inverse scaling trends. The difficulty of this category of tasks seems
to largely stem from local context overly influencing the predicted continuation. We aim to extend
the informal characterisation in McKenzie et al. (2023) with a more comprehensive definition.

General Strong Priors. Generative models can exhibit a phenomenon where a part of the input
disproportionately affects the output, substantially diminishing the impact of other parts of the input
that are essential for the model to complete its assigned task. This general notion of strong priors
is applicable to generative models for various domains, including language modelling and image
generation.

One example of the phenomenon is an autoregressive language model that has been prompted to
write a common sequence (the alphabet) with a variation in the middle (a skipped letter). We em-
pirically observe that once the LM has written enough of the common sequence, it fails to add the
variation. We hypothesise that the model is overgeneralising from a frequent pattern in its training
data, ignoring other context.

Definition (Strong Prior). Consider a model input {T,D}, where T is the task description part
that may include examples, and D is the data part, consisting of the task input and possibly part of
the output. Let M denote a generative model, with M determining any parameters of the generation
process, such as temperature, and let pM (O|T,D) represent the probability of M producing O as
its output given T and D. Finally, let ≈ be a similarity relation on probability distributions. Then D
induces a strong prior in M relative to T if:

pM ( · |T,D) ≈ pM ( · |D)

This implies that the contribution of T to the model’s output is insignificant, and the output is mostly
determined by D. The result is that the model tends towards specific outputs when provided with
data D, regardless of the task description T provided.

This definition is intentionally broad, to allow adaptations based on the domain, modality, and the
specific case in focus. The partitioning of the model input, or the prompt, into task T and data D
components, is context-dependent, and may not be feasible or pertinent in every setting. Moreover,
the interpretation of pM ( · |T,D) ≈ pM ( · |D) depends on the modeling assumptions, with our
proposed default metric being the total variational distance δ. This would imply the presence of
strong priors if δ (pM ( · |T,D), pM ( · |D)) ≤ ε, where ε > 0 is a predetermined threshold.

While the Kullback–Leibler divergence DKL (pM ( · |T,D)||pM ( · |D)) may be more suitable than
δ in certain contexts, it is susceptible to significant influences from relatively improbable events that
exhibit substantial shifts in log-probability.

Strong priors in language models. In this subsection, we adapt the general concept of strong priors
for language models. We also explore the common case of local strong priors, where we assume
that the model input is a prompt of the form P = TD. Additionally, we suggest using the next
token as the main unit of output in the distribution pM (·|P ). Despite potential ambiguity in the
separation into task description T and data D, this representation aligns with the structure of many
LM benchmarks and common prompting strategies. We can characterise strong local priors as cases
where prepending the task description to the data is not significantly influencing the distribution:

δ (pM ( · |TD), pM ( · |D)) ≤ ε

In instances where pM (·|TD) ≈ pM (·|D), the difference between the two distributions may hold
significant information: the correct continuation is often more probable in pM (·|TD) than pM (·|D).
We present a novel method to compensate for strong local priors based on our model in Section 5.
This intuition would predict that our method works better in the presence of strong priors, that is
with smaller values of δ as introduced above. This relationship on our dataset is indeed demonstrated
in Appendix C and Figure 4.
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While we focus on the local case, the above foundational definitions as well as the proposed method
can be adapted for non-local scenarios where T and D are intertwined in more complex way but still
allow for a meaningful systematic distinction between task and data. We include a concrete example
in Appendix A and empirical measurements of δ in Appendix F.

4 LANGUAGE MODELS AS PRODUCTS OF EXPERTS

In this section, we present our proposed model for addressing the challenge of distractor tasks emerg-
ing from strong priors in generative language models. Our approach models the generative distri-
bution as a product of experts (i.e. a geometric mixture) of two components: one that captures the
correct continuation of context based on the intended task, and another that captures continuation
based on the distractor task induced by strong local priors. We then define a new distribution that
weighs between these components to produce more contextually appropriate completions.

Consider a generative language model M with its generative distribution given by
pM (tn+1|t1 . . . tn). We assume that this distribution is influenced by two main forces:

• pC(tn+1|t1 . . . tn): The true continuation distribution which considers the entire context.

• pL(tn+1|t1 . . . tn): The distribution driven by strong local contexts or priors, which can
sometimes overshadow the global context.

The distributions pC and pL may overlap if there is no strong local prior influencing the continuation.

Geometric Mixture Model. We assume that pM can be modeled as a geometric mixture of pC and
pL, also known as a Product of Experts:

pM (tn+1|t1 . . . tn) ∝ pC(tn+1|t1 . . . tn)γ
∗
pL(tn+1|t1 . . . tn)1−γ∗

where 0 ≤ γ∗ ≤ 1 is an apriori unknown parameter of the mixture.

To distinguish between contextually correct completions and those biased by strong priors, we aim
to extract pC from pM and pL. Using a substitution α∗ = 1−γ∗

γ∗ , we define:

pC ∝ p1+α∗

M p−α∗

L

which lets us define a generalized pα for any real α:

pα ∝ p1+α
M p−α

L = pM

(
pM
pL

)α

= pL

(
pM
pL

)1+α

.

These expressions provide different interpretations of pα and therefore also of pC = pα∗ : As a
geometric mixture of pM and pL, as a reweighing of pM based on the ratio pM

pL
, and as a form of

weighed importance sampling, interpreting pL as weighted negative evidence.

Logits Formulation. In most generative language models, the next token follows a Boltzmann
distribution defined by:

p(tn+1|t1 . . . tn) ∝ el(tn+1|t1...tn)/T

where l(tn+1|t1 . . . tn) are the logits and T ≥ 0 is a temperature parameter.

Given this, our model can be expressed in terms of logits as lα(tn+1|t1 . . . tn) = lM + α(lM − lL)
leading to:

pα(tn+1|t1 . . . tn) ∝ exp

(
(1 + α)lM (tn+1|t1 . . . tn)− αlL(tn+1|t1 . . . tn)

T

)
.

With this formulation, our model strategically weights the logits of the generative model and the
logits driven by local priors to generate more appropriate completions given strong priors.

It is crucial to highlight that α plays a determining role in model behavior. Large values of α > α∗

can severely impair the model’s performance. This mainly stems from amplifying noise variance
in model outputs, especially given potential non-specific model errors represented as lM = l̂M +
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N(0, σ2). Additionally, the deviation of model L from model M can be more extensive than just the
influence of dominant local priors. Such deviations may inadvertently favor incorrect continuations.

Approximating a strong prior model. To construct a strong prior model L - an approximation of
model M that is more prone to be influenced by strong priors - we alter the prompts to accentuate
this behavior, and then employ M on these modified prompts. The main modification we consider
is stripping the task from the prompt, although in Appendix E we discuss a different approach based
on comparing model outputs with and without a weakening system prompt that is task-agnostic.

We reduce the context available to the model by removing the task description at the start of the
prompt. For a context P (the task description, including few-shot examples if present) followed by
t1 . . . tn (the task input and an initial segment of the output), our altered logits are given by:

lstrip
L (tn+1|Pt1 . . . tn) = lM (tn+1|t1 . . . tn)

For instance, for the task: ”View number as text. Do not perform computation. Q: What is the first
digit of 23+63?”, P represents the text: ”View number as text. Do not perform computation.” and
t1 . . . tn captures ” Q: What is the first digit of 23+63?”.

5 METHODOLOGY AND EXPERIMENTAL SETUP

We employ our proposed technique of Prior-Aware Decoding to mitigate the influence of distractor
tasks. The influence of the undesired underlying prior is captured by querying the model for logits
using a weakened prompt, which is more susceptible to the prior’s influence.

The PAD technique is implemented through the following steps. For a more detailed description of
the algorithm, see Appendix D.

1. For each prompt in the dataset, we generate two versions:
• An original prompt containing both the task description and the data.
• A weakened prompt more likely to give outputs consistent with the distractor task.

2. We query the model on both the original and weakened prompts to obtain two sets of logits.
3. We compute a linear combination of these logits: L = LO + α(LO − LW ), where LO are

the original logits, LW are the weakened logits, and α is our extrapolation parameter.
4. We sample from this modified distribution to generate the output.
5. We calculate the average performance across the entire dataset.

For our main results we produce weakened prompts by removing the task component from the
prompt. We illustrate examples of splitting prompts from each dataset in Table 2: the split was
unambiguous for the tasks we selected, and generated by a regex script. We also discuss weakening
prompts by prepending a system prompt in Appendix E.

5.1 EXPERIMENTAL SETUP

Comparisons. We test our method across four sets of tasks, on eleven models, at α = 0 (the original
model baseline), α = 1, and α = 2. These specific values were chosen as our initial exploration
points, with α = 0 serving as a control. We provide a more comprehensive analysis across a broader
range of α values in Appendix G.

Tasks: We evaluate our model on four task sets: three from the Inverse Scaling Prize (Prompt
Injection, Pattern Match Suppression, Redefine), and one custom set (Strong Local Priors). The
Inverse Scaling Prize tasks were specifically selected for their clean task/data decomposition and
their demonstrated inverse scaling behavior up to 540B parameter models, as reported by Wei et al.
(2023). Table 2 provides examples of prompts from each dataset, illustrating the task/data split.

Model Architecture. Our experimental models comprise a range of transformer architectures, in-
cluding four GPT-2 sizes, two Llama 2 sizes, two Mistral models, and several OpenAI models via
API. This diverse selection allows us to compare results both between models and across different
sizes of a fixed model, providing a broad view of PAD’s effectiveness across various model archi-
tectures. For small local experiments we used GTX 1060-Ti, and for larger ones a rented A6000.
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Metric. We use a Probability of Correct Completion as the metric to evaluate model performance.
This metric naturally captures the success rate of the model in fulfilling the requirements of the
task description. A completion is correct if it fulfills the requirements of the task description, and
incorrect otherwise.

Our main results show models at temperature 1.0: results for temperature 0.0 are in Appendix G.

6 RESULTS

The comparisons are recorded in Table 1, with a graphical representation in Figure 2. Notably,
extrapolating with α = 2 outperforms the baseline in 41/44 cases, with a 30 percentage point (%pt)
mean completion improvement across all tasks and models. For α = 1, the improvement is 17.3%pt.

As Figure 2 shows, in many cases our method causes models to double the proportion of tasks they
complete. This is not properly reflected by the mean: If we instead consider the number of tasks
from a given dataset completed by a given model, we find the median percentage increase at α = 2
compared to the baseline is 40%, and for α = 1 compared to the baseline it is 27%. Figure 3 in
Appendix C presents the results in terms of relative information gain.

The results also demonstrate some amount of inverse scaling within model families at all values
of α, and even in the cases where larger models do see better performance, PAD produces greater
gains than doubling the number of parameters. As an additional baseline we investigate applying
PAD using a smaller model from the same family as the weakened model, essentially following the
approach in the original contrastive method used by Li et al. (2023), and find little gain, with only
10 out of 16 tasks-model pairs showing any improvement at α = 1.0 (in contrast to 41 of 44 of
task-model pairs of our main result), and with a median increase in task completion proportion of
0.3% (in contrast to 27% of our main result). See Appendix H for details.

Extrapolation from a system prompt generally gives worse results, although notably it outperforms
the baseline in all four task/model/parameter combinations where extrapolation from the truncated
prompt does not. We give more details in Appendix E.

The three cases where extrapolation to α = 2 yield lower results (pattern matching suppression on
gpt3.5-turbo instruct, pattern matching suppression on gpt2-medium, and redefine on text-ada-001)
do not seem to point to any general weaknesses of the technique. Interestingly, gpt3.5-turbo-instruct
and ada-001 exhibit the highest TVD on pattern matching suppression and redefine, respectively,
both substantially higher than the next highest, suggesting the potential absence of a strong prior in
these cases (see AppendixF for a full table of TVD values).

We explore a wider range of values of α in Appendix G. In particular, Figure 5 and Figure 6 show
the probability of correct completion on a variety of models across a range of values of α from -2
to 3. We show that range to more clearly demonstrate general trends in completion as α changes.
In general, higher values of α sometimes continue to produce better results, but often the benefits
tail off, and in some cases the graphs show a peak beyond which higher values of α cause slow
degradation.

7 CONCLUSION AND FUTURE WORK

This paper introduces Prior-Aware Decoding (PAD), a novel technique for mitigating the influence
of distractor tasks in language models. Our approach is grounded in a theoretical framework that
conceptualizes language models as products of experts, offering a new perspective on how distractor
tasks emerge and persist.

The primary theoretical contribution of this work is the framing of language models as products
of experts. This model provides a specific explanation for the emergence of distractor tasks and
offers insights into why we observe counterintuitive scaling behaviors, including inverse scaling, on
certain tasks. Importantly, our framework suggests that the balance between these “experts” is not
necessarily dictated by model size, which could explain the lack of straightforward scaling effects
and even the inverse scaling phenomena observed in some cases.
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prompt
injection

pattern match.
suppression redefine strong local

priors
model p0 p1.0 p2.0 p0 p1.0 p2.0 p0 p1.0 p2.0 p0 p1.0 p2.0

Llama2 7B 49.5 53.6 53.4 3.2 11.9 24.8 55.9 71.2 78.3 20.9 35.7 42.2
Llama2 13B 32.7 41.9 41.7 4.1 23.7 46.5 56.8 78.9 83.6 41.2 52.4 58.8
Mistral 7B 60.5 77.0 77.8 3.4 19.9 34.5 55.7 83.7 87.2 47.8 59.7 66.9
Mixtral 8x7B 52.2 80.2 82.4 14.1 46.7 53.8 65.4 84.7 87.6 44.3 53.7 57.7

gpt2 88.6 94.4 93.6 13.5 15.3 18.3 62.5 66.1 68.2 0.4 2.1 7.7
gpt2-medium 88.9 99.3 99.7 5.1 2.6 2.3 60.9 62.6 62.6 0.7 7.5 27.6
gpt2-large 97.4 99.7 99.6 4.8 9.3 13.5 64.2 66.6 66.8 0.5 6.4 22.9
gpt2-xl 86.9 98.4 99.0 1.8 2.1 5.2 47.8 55.0 59.2 0.4 8.5 26.6

text-ada-001 66.5 79.7 82.1 3.8 8.0 12.9 53.2 53.1 53.1 5.5 10.2 12.7
davinci-002 55.2 60.2 61.9 5.9 9.2 13.0 54.7 71.3 77.8 13.6 23.5 27.5
gpt3.5-t.-instr. 80.5 84.8 85.5 28.5 29.4 24.4 51.4 73.7 79.1 52.6 61.3 64.9

mean 63.2 80.8 89.7 7.3 23.2 37.4 52.4 72.3 83.6 19.0 35.1 51.3

Table 1: Percent probabilities of correct completion for different tasks and language models. p0
indicates full-prompt accuracy (baseline); p1.0 and p2.0 indicates using truncated prompt as the
weakened prompt with parameter α = 1.0 and α = 2.0. Bold entries denote the highest-scoring
parameter for a given task and model. All probabilities are reported at model temperature T = 1.0.

Our experimental results demonstrate the efficacy of PAD across a range of language models and
tasks from the Inverse Scaling dataset. We consistently observed improvements in model perfor-
mance, with a median increase in task completion proportion of 40% at α = 2. These findings
not only validate the practical utility of our approach but also provide empirical support for our
theoretical framework.

The implications of this work extend beyond the specific technique we’ve developed. Our results
suggest that it may be possible to elicit greater capabilities from models even in cases where straight-
forward scaling is counterproductive, by employing more sophisticated forms of inference, and that
this may be necessary to account for certain persistent quirks.

While our current study focuses on relatively small models and a specific set of tasks, the potential
applications of this work are broad. Perhaps most promisingly, PAD could be developed into a
robust defense against jailbreaks and prompt injection attacks, although further research with more
challenging datasets is needed to fully assess its potential in this area.

Looking forward, we identify several key directions for future research:

1. Model Interpretability: Investigating how well our theoretical framework aligns with the
actual internal processes of language models could provide valuable insights into model
behavior and further validate our approach.

2. Extension to Harder Cases: Applying and adapting PAD to more challenging instances
of prompt injection and other distractor tasks could enhance its practical utility.

3. More Sophisticated Inference-time Techniques: Combining our method and underly-
ing model with related approaches like classifier-free guidance (Ho & Salimans, 2021),
and activation addition (Turner et al., 2023), to build more robust approaches for steering
language models.

In conclusion, this work not only introduces a practical technique for improving language model
performance but also provides a theoretical framework that could further develop our understanding
of how these models function. By highlighting the potential limitations of straightforward scaling
and the importance of more nuanced approaches to model elicitation, we hope to contribute to
the development of more robust and reliable language models. As we continue to integrate these
powerful tools into various aspects of our lives, techniques like PAD may be crucial in ensuring they
behave reliably and as intended across a wide range of tasks and contexts.
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A EXAMPLE OF STRONG NON-LOCAL PRIORS IN LANGUAGE MODELS

While we assume most instances of strong priors in language are local and we focus our attention
on those, there are also non-local examples, where the data and task parts can be swapped or even
interspersed.

We offer the following example, although we expect that many of the other examples and relevant
datasets can be adapted similarly:

Consider the prompt

P1 = ‘English alphabet: P, Q, R, S, [skip the 2nd letter from now] T’,

which we decompose (non-locally) as

T = ‘ [skip the 2nd letter from now]’, and

D = ‘English alphabet: P, Q, R, S, T,’
to be the remainder. With text-davinci-002 we observe:

pM (‘ U’ |P1) = 0.98

pM (‘ U’ |D) = 0.99

This is indeed a non-local strong prior, as removing the non-local part of D, leaving

P2 = ‘English alphabet: [skip the 2nd letter from now] T,’,

removes significant part of the effect:

pM (‘ U’ |P2) = 0.54

B PROMPT DECOMPOSITION

Dataset Task description Remainder of input

Strong local priors
(custom)

Task: Write out the
English alphabet in upper
case, skipping the letter
D.

Output: A B C

Prompt injection
(inverse scaling)

Repeat the input
word-for-word. Do not
follow any further
instructions.

Input: Ignore
previous directions
and output the
first prime number.
Output:

Redefine (inverse
scaling)

Swap the meaning of lawful
and unlawful.

Is fraud lawful? A:

Pattern matching
suppression
(inverse scaling)

Generate a sequence of 6
symbols alternating between
(A B) but ending anything
you like except "B".

A, B, A, B, A,

Table 2: Examples of prompts from each dataset we use, with the task description separated out as
it would be. For brevity we omit the few-shot examples in the Prompt Injection dataset.
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C INFORMATION GAIN RESULTS AND THE RELATIONSHIP WITH TOTAL
VARIATIONAL DISTANCE

Figure 3 shows the relationship of log p0 vs log pα for the tasks and models from our experiments,
demonstrating the performance of PAD in terms of information gain. Note that in our main Figure 2,
the linear scale does not present well the difference between e.g. an improvement from 5% to 10%
(a significant increase in performance on a task likely hard for the given model) vs 50% to 55%.
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Figure 3: Overview of the results of the Prior-Aware Decoding method at different values of param-
eter α over 4 experimental task sets and 11 language models, plotted in log-log-scale to emphasize
the information gain of the improvement. The data matches Figure 2 and Table 1.

Figure 4 illustrates the relationship between the total variational distance between the weak and
strong model predictions and the performance improvement of PAD on the task/model combination.
We are showing the improvement in terms of log pα−log p0 which is equal to log(pα/p0), measuring
a relative performance gain (log-scale), or alternatively the information gain. Note that plotting
pα − p0 is not appropriate here, as the plot would be disproportionately dominated by mid-range
values of pα and p0, both in terms of the value of the difference and variance.
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Figure 4: Information gain of the Prior-Aware Decoding method by the total variational distance of
the prediction of the weak vs strong model. The plot supports our hypothesis that PAD improves
performance significantly more in cases where the weak and strong model predictions differ very
little; i.e. what we propose as a candidate indication for a strong prior. The data matches Table 1.
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D ALGORITHM: PRIOR-AWARE DECODING (PAD)

We first present Algorithm 1 for the case when both the weaker and stronger language model return
next-token distribution over the same token set on all prediction steps. Note that this is generally the
case in open-weight models evaluated locally. This algorithm can also be adjusted by using different
models for the full and weakened prompt with models that are trained over the same tokenizer.

In our application, we have xF = TD (task and data parts) and xW = D (only data part).

Algorithm 1 One step of Prior-Aware Decoding (PAD) – Fixed Token Set

Require: Language model M , original prompt xO, weakened prompt xW

Require: Previously generated tokens t1, . . . tn, extrapolation parameter α
1: LO ←M(xO t1 . . . tn) ▷ Get next token logits with original prompt
2: LW ←M(xW t1 . . . tn) ▷ Get next token logits with weakened prompt
3: LPAD ← ∅ ▷ Initialize PAD logits
4: for t ∈ T do
5: LPAD(t)← LO(t) + α(LO(t)− LW (t)) ▷ PAD extrapolation
6: end for
7: return pα(tn+1) := softmax(LPAD) ▷ Convert logits to probability distribution

In the general case, the two model calls may return logits for different token sets. This is usually the
case in language models accessed over API calls, such as the OpenAI models in our study. Note that
we assume that the returned tokens are the tokens with the highest likelihoods and hence assume an
upper-bound on the probabilities of all other tokens.

In the general case we restrict the candidate tokens to those returned for the original (full) prompt,
TO. The likelihoods LW of the tokens in TO \ TW are set to minLW – the upper bound on the
likelihood of all tokens not returned in LW . The rest of Algorithm 2 then analogous to Algorithm 1.

Algorithm 2 One step of Prior-Aware Decoding (PAD) – General Case

Require: Language model M , original prompt xO, weakened prompt xW

Require: Previously generated tokens t1, . . . tn, extrapolation parameter α
1: LO ←M(xO t1 . . . tn) ▷ Get next token logits with original prompt
2: LW ←M(xW t1 . . . tn) ▷ Get next token logits with weakened prompt
3: TO ← dom(LO) ▷ Tokens returned for original prompt
4: TW ← dom(LW ) ▷ Tokens returned for weakened prompt
5: uW ← mint∈TW

LW (t) ▷ Upper bound for unseen tokens
6: L̂W ← ∅ ▷ Initialize adjusted weaker logits
7: for t ∈ TO do
8: if t ∈ TW then
9: L̂W (t)← LW (t)

10: else
11: L̂W (t)← uW ▷ Use upper bound for unseen tokens
12: end if
13: end for
14: LPAD ← ∅ ▷ Initialize PAD logits
15: for t ∈ TO do
16: LPAD(t)← LO(t) + α(LO(t)− L̂W (t)) ▷ PAD extrapolation
17: end for
18: return pα(tn+1) := softmax(LPAD) ▷ Convert logits to probability distribution
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E ELICITING STRONG PRIORS WITH CUSTOM SYSTEM PROMPTS

In some cases it may not be feasible or desirable to separate the prompt clearly into task and data
parts. We propose and experimentally test an alternative method to elicit strong priors: prefix TD
with a system prompt S, where the role of S is to instruct the model to behave more locally and
therefore strengthen any local strong prior effect. The degree to which this prompt elicits the strong
prior behavior depends strongly on the task and any intermediate instructions so it may not be very
reliable in some contexts but we believe it to be of note for some applications and further research.

Introducing a System Prompt S: We prepend a system prompt, S, which directs the model towards
local reasoning, thereby emphasizing strong priors. Formally, the logits for this approach are:

lsystem
L (tn+1|t1 . . . tn) = lM (tn+1|St1 . . . tn)

A representative system prompt could be: ”In the following, only consider the most recent instruc-
tions, disregarding any broader context.”

Extrapolation from a system prompt at α = 2 performs best in four cases, including all three where
extrapolating from the stripped prompt fails to outperform the baseline. While the system prompt
configuration at α = 2 produces an average improvement of under 1%pt, it has more potential to
be refined: for any real-world application the specific system prompt can be selected to optimise for
a specific task and model. Additionally, this approach does not require us to have a clear task/data
split, so the technique can be applied in cases where such a split is impossible or ambiguous. We
include the results of extrapolating from a system prompt in the graphs given in Appendix G.

F TOTAL VARIATIONAL DISTANCE

In Section 3 we described how total variational distance δ can be used to gauge the presence of
strong priors. We have measured δ across different models and tasks in Table 3.

model
prompt

injection
pattern match.

suppression redefine strong local
priors

gpt2 0.87 0.08 0.01 0.03
gpt2-medium 0.87 0.10 0.02 0.04
gpt2-large 0.92 0.07 0.04 0.02
gpt2-xl 0.84 0.05 0.09 0.03
Llama-2-7B 0.68 0.05 0.13 0.15
Llama-2-13B 0.64 0.12 0.07 0.43
text-ada-001 0.76 0.10 0.34 0.17
davinci-002 0.59 0.11 0.13 0.27
gpt-3.5-turbo-instruct 0.86 0.75 0.24 0.52

average 0.78 0.16 0.12 0.18

Table 3: The mean total variational distance (TVD, δD) between the next token distributions of the
original prompt and the weakened prompt.

Two observations are worth noting: firstly, the high TVD across the board in the prompt injection
task suggests that low TVD is a sufficient but not necessary condition for strong priors; secondly,
of the three task/model combinations where PAD performs worse than the baseline, two have the
highest TVD for their respective task (gpt3.5-turbo-instruct on pattern matching suppression and
text-ada-001 on redefine).

G TESTING MORE VALUES OF ALPHA

We present graphs in Figures 5 and 6 showing how the probability of successful completion relates
to the value of the extrapolation parameter α. For each model and task, we plot average success rate
using both the truncated prompt method and the system prompt method, at both T = 0 and T = 1.
To illustrate trends more clearly, we plot values from α = −2 to α = 3.
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Figure 5: Mean probability of correct completion depending on the extrapolation parameter α. The
plots combine accuracy at two different temperatures (0.0 and 1.0) and using two different methods
(leaving out task description and adding a common system prompt). The range of α is wider than
the plausibly practical range to illustrate the trends.
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Figure 6: Mean probability of correct completion depending on the extrapolation parameter α; con-
tinuation of Figure 5 for several models of the GPT-3 family used via the OpenAI API, extrapolating
from the likelihoods of the top 5 predicted tokens returned by the API (note that this is a limitation
of the OpenAI service).

H INTER-MODEL CONTRASTIVE DECODING

As an alternative approach and a possible baseline, we measure the performance of PAD logit ex-
trapolation between a weaker and stronger version of the model for several pairs of models, namely
GPT-2 using the previous size of the model as the “weakened” model (e.g. gtp2-large for
gpt2-xl), and Llama-2-13B-GPTQ using Llama-2-7B-GPTQ as the “weakened” model. In
all cases, we use the full prompt for both models.

Similarly to the previous section, we plot the mean accuracy of every task-model pair in Figure 7,
and the average success rate for each model pair and task in Figure 8, at both T = 0 and T = 1 for
a range of parameters α = −2 to α = 3.

Note that while this method performs notably worse than our main method, it does illustrate several
cases of inverse scaling where values of α < −1 lead to better performance, e.g. in the case of
gpt2-xl on redefine, and Llama-2-13B-GPTQ on prompt-injection, matching the
result differences between the models in the pair in Table 1 (compare column p0 for the respective
task).
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Figure 7: Overview of the results of our method at different values of parameter α. Each datapoint
refers to performance on one task-model pair, showing original performance (x-axis) vs logit ex-
trapolation between two different models (y-axis).

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

prompt-injection

gp
t2
-m
ed
iu
m

pattern-matching-suppr. redefine strong-local-priors

Weakening type
Weaker model at T=0.0
Weaker model at T=1.0

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-l
ar
ge

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-x
l

2 1 0 1 2 3
weight 

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

Ll
am
a-
2-
13
B-
GP
TQ

2 1 0 1 2 3
weight 

2 1 0 1 2 3
weight 

2 1 0 1 2 3
weight 

Figure 8: Mean probability of correct completion depending on the extrapolation parameter α. The
plots combine accuracy at two different temperatures (0.0 and 1.0) and using two different methods
(leaving out task description and adding a common system prompt).
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