
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING THE INFLUENCE OF DISTRACTOR TASKS
IN LMS WITH PRIOR-AWARE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The broad capabilities of Language Models (LMs) can be limited by their sensitiv-
ity to distractor tasks: LMs can infer secondary tasks from the prompt in addition
to the intended one, leading to unwanted outputs. For example, prompt injection
attacks can cause models to deviate from explicit directives. In some ‘inverse
scaling’ cases, this unwanted behaviour actually worsens as models scale up to at
least 540B parameters. We present a theoretical framework that interprets LMs as
a product of experts that combine multiple data generation processes. Based on
this framework, we introduce prior-aware decoding (PAD) – a simple contrastive
inference method to reduce the influence of distractor tasks. We apply PAD to
eleven models, across four datasets, and find improvements in 41 out of 44 task-
model combinations, with a median increase in task completion proportion of
40%. The results suggest a promising direction for further development towards
more reliable language models.

1 INTRODUCTION

Language models (LMs) have come to occupy a central role in a wide range of tasks, from data
processing to the creation of instruction-following assistants. These models seem to both increase
in performance and also develop new capabilities as they scale up in parameters, especially when
given examples of a task (Radford et al., 2019; Brown et al., 2020; Wei et al., 2022). They see
both widespread public use, and increasing integration into sensitive tasks where their versatile
capabilities are key (Javaid et al., 2022). However, this increasing reliance on LMs raises concerns
about their reliability and potential vulnerabilities. Their extremely general ability to recognise
patterns may come with a cost: language models are susceptible to distractor tasks, unintended
secondary tasks which a model can infer from the prompt in addition to the intended one, leading to
unwanted outputs (Wei et al., 2023).

Distractor tasks include both semantically complex cases like prompt injection, in which the distrac-
tor task of following the most recently injected instruction overrides the intended task of following
the initial instructions, and much more semantically simple cases where a model defaults to out-
putting a common pattern regardless of prior context (Greshake et al., 2023; McKenzie et al., 2023).

Even cutting-edge models struggle with trivial tasks in the presence of very common patterns. For
example, as of September 2024 GPT-4o, when prompted with ”Write all the numbers up
to 30 except multiples of 13, and nothing else”, will correctly exclude 13 but
fail to exclude 26. Other examples of such distractor tasks include repeating common misconcep-
tions instead of true answers (Lin et al., 2022) and failing to write mathematical proofs when the
correct proof is very similar to an incorrect but much more common proof (Collins et al., 2024).

Furthermore, for some tasks of this type, larger models actually perform worse: similar models
with more parameters can be more likely to repeat common misconceptions and succumb to prompt
injection attacks (McKenzie et al., 2023; Lin et al., 2022). This phenomenon, known as ‘inverse
scaling’ (Lin et al., 2022), reveals a pressing need to better understand how these problems arise and
how they can be fixed. Unlike other problems with LMs which are usually resolved by scaling up
the model and training data size, the existing problems might become even more pronounced, and
other similar issues might emerge.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.1 PRIOR-AWARE DECODING

To better understand and address the problem of distractor tasks, we characterise language models
as a product of experts (Hinton, 1999) which combine the predictions of several component models,
each component model predicting the next token assuming a particular task or context. This frame-
work, presented in detail in Section 4, allows us to decompose the model’s behavior into distinct
”experts” that may be responsible for different aspects of the output, which in turn lets us interpret
the problem of distractor tasks as models overweighing a particular expert.

Using this framework, we present a technique to reduce the influence of distractor tasks in cases
where the prompt can be divided into one part containing the intended task and one part containing
the distractor task and other important information. In this case, we can contrast the outputs the
model gives for the full prompt with the outputs it gives for just the part which yields the distractor
task, extrapolating to infer how it would behave with less influence from the distractor task. This
is a form of contrastive decoding (Li et al., 2023). Our approach differs from previous methods by
specifically targeting the influence of distractor tasks and leveraging the product of experts model

More specifically, our method generates the original logits LO from the original prompt, as well
as the weakened logits LW from the portion of the prompt which does not contain the original
task. Even though LO and LW would both, by default, favour undesired outputs consistent with the
distractor task, LO gives a higher probability to outputs consistent with the intended task. So, by
sampling instead from a linear combination of the logits, LO + α(LO − LW) we can selectively
favour outputs which are more consistent with the original task. (α here is a tunable hyperparameter.)
Using this technique we can mitigate the influence of the distractor task, as we illustrate in Figure 1.

Full task input:

"The English alphabet skipping the 6th letter: A B C D E"

Weakened prompt:

" A B C D E" PAD with

E GF E GF

E

E

E
E

GF

E GF

E GF E GF

E GF

E GF E GF E GF

E GF

E GF

Illustration of our mixture model on
an instance with a distractor task

Logit extrapolation from the weakened and full prompts

(weakened prompt) (full prompt)

Weakened prompt increases the weight
of the distractor task in the mixture

Rescaling the relative influences of
the mixture components using PAD

Mixture components and their predictions

Model
prediction

F

F

F

G

G

G

lo
gi

ts
:

(PAD extrapolation)

Figure 1: Illustration of our geometric mixture model, also referred to as product of experts, and
Prior-Aware Decoding in a task requiring a modification of a very common sequence.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We test the technique on eleven different models including GPT-2, Llama-2, and Mistral, using four
tasks to evaluate susceptibility to distractor tasks. Three of these tasks are from the Inverse Scaling
Dataset (McKenzie et al., 2023; Wei et al., 2023) which exhibit strong priors, including a prompt
injection task, and one task is a custom task which challenges models to produce modifications of
common sequences.

Our primary baseline is the unmodified completion according to the same model. Across the 44
model-task combinations we find that our technique outperforms the baseline on 41 combinations,
with a median absolute increase in proportion of tasks completed of 40%. See Figure 2 and Sec-
tion 6 for the results. These improvements demonstrate the potential of our method to significantly
enhance the reliability and performance of language models across a variety of model architectures
in scenarios featuring distractor tasks.

The technique requires two choices: selection of the weakened prompt, and the coefficient α. We
offer consistent approaches to generating the weakened prompts for each of our datasets and also
propose a general method for weakened prompt construction. We explore a range of values for
α. Crucially, this method does not require retraining: it operates at inference time by making two
queries instead of one and computing a linear combination of the resulting logits.

The improvements in accuracy due to our technique suggest that viewing LMs as product of experts
models can be a useful framework for understanding and improving the behaviour of these mod-
els. Our research provides new approaches for utilizing capabilities which are dormant in models
and which have been hard to elicit with prompting alone. This includes capabilities of immediate
practical importance, such as resistance to prompt injection attacks, as well as understanding how to
correct for biases learned in the training data.

The main contributions of this paper are:

• Interpreting language models as geometric mixtures (i.e. a product of experts) to develop a
model of how distractor tasks cause poor performance on certain inputs.

• Based on that model, proposing a general framework for eliciting other component of the
geometric mixtures and extrapolating to more desirable mixtures in logits space.

• Developing a technique based on the product of experts model and showing that it robustly
improves performance across several language models on several tasks from the Inverse
Scaling dataset.

0 25 50 75 100
Original performance (%)

0

25

50

75

100

P
er

fo
rm

an
ce

 o
f o

ur
 m

et
ho

d
(%

)

= 1.0

prompt injection
pattern match. suppr.
redefine
strong local priors

0 25 50 75 100
Original performance (%)

0

25

50

75

100

= 2.0

GPT-2 models
GPT-3 models (API)
Llama-2 and Mistral
Same performance

Figure 2: Overview of the results of the Prior-Aware Decoding method at different values of pa-
rameter α over 4 experimental task sets and 11 language models. Each point refers to performance
on one (task set, model) pair, showing the baseline performance of the unmodified original model
(x-axis) vs PAD using the “truncated prompt” weakening (y-axis). See Table 1 for details.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Inverse Scaling. For most tasks, performance scales together with the model scale (model size,
dataset size, and training compute). However, certain tasks exhibit inverse scaling, where increasing
the scale of the model leads to worse performance. The term was introduced by Lin et al. (2022)
to characterise the tendency of LMs to repeat common misconceptions. McKenzie et al. (2023)
further developed the notion and provided the Inverse Scaling dataset as well as several informal
categories. Wei et al. (2023) adds to the discussion, showing that of the original eleven tasks in the
Inverse Scaling dataset, only four persist in demonstrating inverse scaling on models of up to 540B
parameters. We apply our method to three of those four tasks. Our work is the first to offer a formal
account of the mechanisms that have so far only been informally hypothesised in Wei et al. (2023),
and we use this to develop a novel technique that improves performance.

Problems Related to Strong Priors. While in this paper we investigate the problem of strong priors
in the domain of language modelling (discussed primarily in Section 3), a somewhat similar problem
also occurs in diffusion models for image generation. Diffusion models have been observed to some-
times struggle to generate images that have a precise correspondence to the prompt. This problem is
especially pronounced for complex prompts that include rare words, or describe implausible scenes,
spatial relations, or compositionality. One technique for mitigating this problem in diffusion models
is classifier-free guidance (Ho & Salimans, 2021). It samples the diffusion model using a linear
combination of conditioned and unconditioned score estimates (1 +w) · e(zt, c)−w · e(zt), where
zt is the image at the denoising step t, c is the conditioning information such as the prompt, e is the
model and w is the guidance weight. High guidance weight improves text-image alignment (Saharia
et al., 2022), although high values often lead to over-saturated images or have a generally unnatural
appearance. The technique that we present in this paper uses a somewhat similar combination of
differently conditioned model outputs to mitigate the problem of strong priors in LMs.

Surface Form Competition and DC-PMI. Holtzman et al. (2021) coin ‘surface form competition’
as a phenomenon where different tokens representing the same concept compete for probability. For
instance, the terms “computer” and “PC” represent the same concept but are different surface forms.
Since the probability mass is finite, this competition lowers the probability of the correct answer.
Domain Conditional Pointwise Mutual Information (DC-PMI) addresses this issue by reweighing
each option according to its likelihood within the context of a specific task, calculated by sampling
from a subset of the prompt. This approach yields gains in zero-shot performance for a variety of
GPT-2 and GPT-3 models on a selection of multiple-choice datasets. Our work applies a similar
kind of technique - reweighing based on likelihood - but we do so to address a different set of tasks,
including those which exhibit inverse scaling.

Contrastive Inference Methods. Contrastive Inference methods steer language models towards
desired outputs by taking multiple samples across different settings and favouring outputs which are
comparatively more likely in one sample than in another. The original implementation in Li et al.
(2023) takes output distributions using the same prompt in two models, one smaller and one larger. It
then contrasts the logits from the two models, selecting the token with the largest difference between
the original (LO) and smaller model (LS), i.e. maxt∈T ′(LO(t) − LS(t)), limited to a subset T ′ of
top tokens to mitigate noise in low-likelihood tokens.

Our approach is most similar to the subsequent techniques introduced in Shi et al. (2024) and Malkin
et al. (2022), which apply contrastive decoding to pairs of shorter and longer prompts, using the same
formula we apply. Malkin et al. (2022) contrasts the full prompt against only the text generated so far
to increase long-range semantic coherence, finding improvement in generic language understanding
and knowledge retrieval tasks. Shi et al. (2024) uses an equivalent formula to handle conflicts
between prior knowledge and information in the context. They also interpret the combination as a
product-of-experts.

Compared to these works, ours frames the language model itself as a product-of-experts that must
select between specific competing tasks, some of which are unwanted distractors, and the resulting
manipulation of logits as a reweighing of the experts. Furthermore, while Malkin et al. (2022) and
Shi et al. (2024) focus on models failing to account for knowledge and facts, we emphasise how they
can include even extremely semantically simple patterns like sequences of numbers. We also draw
the connection to inverse scaling.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 STRONG PRIORS IN GENERATIVE MODELS

In this section, we introduce the concept of strong priors within generative models, focusing on their
manifestation in language models and discussing their broader implications.

The term “strong priors” in this context was introduced by McKenzie et al. (2023) as one of the cat-
egories of LM tasks that exhibit inverse scaling trends. The difficulty of this category of tasks seems
to largely stem from local context overly influencing the predicted continuation. We aim to extend
the informal characterisation in McKenzie et al. (2023) with a more comprehensive definition.

General Strong Priors. Generative models can exhibit a phenomenon where a part of the input
disproportionately affects the output, substantially diminishing the impact of other parts of the input
that are essential for the model to complete its assigned task. This general notion of strong priors
is applicable to generative models for various domains, including language modelling and image
generation.

One example of the phenomenon is an autoregressive language model that has been prompted to
write a common sequence (the alphabet) with a variation in the middle (a skipped letter). We em-
pirically observe that once the LM has written enough of the common sequence, it fails to add the
variation. We hypothesise that the model is overgeneralising from a frequent pattern in its training
data, ignoring other context.

Definition (Strong Prior). Consider a model input {T,D}, where T is the task description part
that may include examples, and D is the data part, consisting of the task input and possibly part of
the output. Let M denote a generative model, with M determining any parameters of the generation
process, such as temperature, and let pM (O|T,D) represent the probability of M producing O as
its output given T and D. Finally, let ≈ be a similarity relation on probability distributions. Then D
induces a strong prior in M relative to T if:

pM (· |T,D) ≈ pM (· |D)

This implies that the contribution of T to the model’s output is insignificant, and the output is mostly
determined by D. The result is that the model tends towards specific outputs when provided with
data D, regardless of the task description T provided.

This definition is intentionally broad, to allow adaptations based on the domain, modality, and the
specific case in focus. The partitioning of the model input, or the prompt, into task T and data D
components, is context-dependent, and may not be feasible or pertinent in every setting. Moreover,
the interpretation of pM (· |T,D) ≈ pM (· |D) depends on the modeling assumptions, with our
proposed default metric being the total variational distance δ. This would imply the presence of
strong priors if δ (pM (· |T,D), pM (· |D)) ≤ ε, where ε > 0 is a predetermined threshold.

While the Kullback–Leibler divergence DKL (pM (· |T,D)||pM (· |D)) may be more suitable than
δ in certain contexts, it is susceptible to significant influences from relatively improbable events that
exhibit substantial shifts in log-probability.

Strong priors in language models. In this subsection, we adapt the general concept of strong priors
for language models. We also explore the common case of local strong priors, where we assume
that the model input is a prompt of the form P = TD. Additionally, we suggest using the next
token as the main unit of output in the distribution pM (·|P). Despite potential ambiguity in the
separation into task description T and data D, this representation aligns with the structure of many
LM benchmarks and common prompting strategies. We can characterise strong local priors as cases
where prepending the task description to the data is not significantly influencing the distribution:

δ (pM (· |TD), pM (· |D)) ≤ ε

In instances where pM (·|TD) ≈ pM (·|D), the difference between the two distributions may hold
significant information: the correct continuation is often more probable in pM (·|TD) than pM (·|D).
We present a novel method to compensate for strong local priors based on our model in Section 5.
This intuition would predict that our method works better in the presence of strong priors, that is
with smaller values of δ as introduced above. This relationship on our dataset is indeed demonstrated
in Appendix C and Figure 4.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

While we focus on the local case, the above foundational definitions as well as the proposed method
can be adapted for non-local scenarios where T and D are intertwined in more complex way but still
allow for a meaningful systematic distinction between task and data. We include a concrete example
in Appendix A and empirical measurements of δ in Appendix F.

4 LANGUAGE MODELS AS PRODUCTS OF EXPERTS

In this section, we present our proposed model for addressing the challenge of distractor tasks emerg-
ing from strong priors in generative language models. Our approach models the generative distri-
bution as a product of experts (i.e. a geometric mixture) of two components: one that captures the
correct continuation of context based on the intended task, and another that captures continuation
based on the distractor task induced by strong local priors. We then define a new distribution that
weighs between these components to produce more contextually appropriate completions.

Consider a generative language model M with its generative distribution given by
pM (tn+1|t1 . . . tn). We assume that this distribution is influenced by two main forces:

• pC(tn+1|t1 . . . tn): The true continuation distribution which considers the entire context.

• pL(tn+1|t1 . . . tn): The distribution driven by strong local contexts or priors, which can
sometimes overshadow the global context.

The distributions pC and pL may overlap if there is no strong local prior influencing the continuation.

Geometric Mixture Model. We assume that pM can be modeled as a geometric mixture of pC and
pL, also known as a Product of Experts:

pM (tn+1|t1 . . . tn) ∝ pC(tn+1|t1 . . . tn)γ
∗
pL(tn+1|t1 . . . tn)1−γ∗

where 0 ≤ γ∗ ≤ 1 is an apriori unknown parameter of the mixture.

To distinguish between contextually correct completions and those biased by strong priors, we aim
to extract pC from pM and pL. Using a substitution α∗ = 1−γ∗

γ∗ , we define:

pC ∝ p1+α∗

M p−α∗

L

which lets us define a generalized pα for any real α:

pα ∝ p1+α
M p−α

L = pM

(
pM
pL

)α

= pL

(
pM
pL

)1+α

.

These expressions provide different interpretations of pα and therefore also of pC = pα∗ : As a
geometric mixture of pM and pL, as a reweighing of pM based on the ratio pM

pL
, and as a form of

weighed importance sampling, interpreting pL as weighted negative evidence.

Logits Formulation. In most generative language models, the next token follows a Boltzmann
distribution defined by:

p(tn+1|t1 . . . tn) ∝ el(tn+1|t1...tn)/T

where l(tn+1|t1 . . . tn) are the logits and T ≥ 0 is a temperature parameter.

Given this, our model can be expressed in terms of logits as lα(tn+1|t1 . . . tn) = lM + α(lM − lL)
leading to:

pα(tn+1|t1 . . . tn) ∝ exp

(
(1 + α)lM (tn+1|t1 . . . tn)− αlL(tn+1|t1 . . . tn)

T

)
.

With this formulation, our model strategically weights the logits of the generative model and the
logits driven by local priors to generate more appropriate completions given strong priors.

It is crucial to highlight that α plays a determining role in model behavior. Large values of α > α∗

can severely impair the model’s performance. This mainly stems from amplifying noise variance
in model outputs, especially given potential non-specific model errors represented as lM = l̂M +

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

N(0, σ2). Additionally, the deviation of model L from model M can be more extensive than just the
influence of dominant local priors. Such deviations may inadvertently favor incorrect continuations.

Approximating a strong prior model. To construct a strong prior model L - an approximation of
model M that is more prone to be influenced by strong priors - we alter the prompts to accentuate
this behavior, and then employ M on these modified prompts. The main modification we consider
is stripping the task from the prompt, although in Appendix E we discuss a different approach based
on comparing model outputs with and without a weakening system prompt that is task-agnostic.

We reduce the context available to the model by removing the task description at the start of the
prompt. For a context P (the task description, including few-shot examples if present) followed by
t1 . . . tn (the task input and an initial segment of the output), our altered logits are given by:

lstrip
L (tn+1|Pt1 . . . tn) = lM (tn+1|t1 . . . tn)

For instance, for the task: ”View number as text. Do not perform computation. Q: What is the first
digit of 23+63?”, P represents the text: ”View number as text. Do not perform computation.” and
t1 . . . tn captures ” Q: What is the first digit of 23+63?”.

5 METHODOLOGY AND EXPERIMENTAL SETUP

We employ our proposed technique of Prior-Aware Decoding to mitigate the influence of distractor
tasks. The influence of the undesired underlying prior is captured by querying the model for logits
using a weakened prompt, which is more susceptible to the prior’s influence.

The PAD technique is implemented through the following steps. For a more detailed description of
the algorithm, see Appendix D.

1. For each prompt in the dataset, we generate two versions:
• An original prompt containing both the task description and the data.
• A weakened prompt more likely to give outputs consistent with the distractor task.

2. We query the model on both the original and weakened prompts to obtain two sets of logits.
3. We compute a linear combination of these logits: L = LO + α(LO − LW), where LO are

the original logits, LW are the weakened logits, and α is our extrapolation parameter.
4. We sample from this modified distribution to generate the output.
5. We calculate the average performance across the entire dataset.

For our main results we produce weakened prompts by removing the task component from the
prompt. We illustrate examples of splitting prompts from each dataset in Table 2: the split was
unambiguous for the tasks we selected, and generated by a regex script. We also discuss weakening
prompts by prepending a system prompt in Appendix E.

5.1 EXPERIMENTAL SETUP

Comparisons. We test our method across four sets of tasks, on eleven models, at α = 0 (the original
model baseline), α = 1, and α = 2. These specific values were chosen as our initial exploration
points, with α = 0 serving as a control. We provide a more comprehensive analysis across a broader
range of α values in Appendix G.

Tasks: We evaluate our model on four task sets: three from the Inverse Scaling Prize (Prompt
Injection, Pattern Match Suppression, Redefine), and one custom set (Strong Local Priors). The
Inverse Scaling Prize tasks were specifically selected for their clean task/data decomposition and
their demonstrated inverse scaling behavior up to 540B parameter models, as reported by Wei et al.
(2023). Table 2 provides examples of prompts from each dataset, illustrating the task/data split.

Model Architecture. Our experimental models comprise a range of transformer architectures, in-
cluding four GPT-2 sizes, two Llama 2 sizes, two Mistral models, and several OpenAI models via
API. This diverse selection allows us to compare results both between models and across different
sizes of a fixed model, providing a broad view of PAD’s effectiveness across various model archi-
tectures. For small local experiments we used GTX 1060-Ti, and for larger ones a rented A6000.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Metric. We use a Probability of Correct Completion as the metric to evaluate model performance.
This metric naturally captures the success rate of the model in fulfilling the requirements of the
task description. A completion is correct if it fulfills the requirements of the task description, and
incorrect otherwise.

Our main results show models at temperature 1.0: results for temperature 0.0 are in Appendix G.

6 RESULTS

The comparisons are recorded in Table 1, with a graphical representation in Figure 2. Notably,
extrapolating with α = 2 outperforms the baseline in 41/44 cases, with a 30 percentage point (%pt)
mean completion improvement across all tasks and models. For α = 1, the improvement is 17.3%pt.

As Figure 2 shows, in many cases our method causes models to double the proportion of tasks they
complete. This is not properly reflected by the mean: If we instead consider the number of tasks
from a given dataset completed by a given model, we find the median percentage increase at α = 2
compared to the baseline is 40%, and for α = 1 compared to the baseline it is 27%. Figure 3 in
Appendix C presents the results in terms of relative information gain.

The results also demonstrate some amount of inverse scaling within model families at all values
of α, and even in the cases where larger models do see better performance, PAD produces greater
gains than doubling the number of parameters. As an additional baseline we investigate applying
PAD using a smaller model from the same family as the weakened model, essentially following the
approach in the original contrastive method used by Li et al. (2023), and find little gain, with only
10 out of 16 tasks-model pairs showing any improvement at α = 1.0 (in contrast to 41 of 44 of
task-model pairs of our main result), and with a median increase in task completion proportion of
0.3% (in contrast to 27% of our main result). See Appendix H for details.

Extrapolation from a system prompt generally gives worse results, although notably it outperforms
the baseline in all four task/model/parameter combinations where extrapolation from the truncated
prompt does not. We give more details in Appendix E.

The three cases where extrapolation to α = 2 yield lower results (pattern matching suppression on
gpt3.5-turbo instruct, pattern matching suppression on gpt2-medium, and redefine on text-ada-001)
do not seem to point to any general weaknesses of the technique. Interestingly, gpt3.5-turbo-instruct
and ada-001 exhibit the highest TVD on pattern matching suppression and redefine, respectively,
both substantially higher than the next highest, suggesting the potential absence of a strong prior in
these cases (see AppendixF for a full table of TVD values).

We explore a wider range of values of α in Appendix G. In particular, Figure 5 and Figure 6 show
the probability of correct completion on a variety of models across a range of values of α from -2
to 3. We show that range to more clearly demonstrate general trends in completion as α changes.
In general, higher values of α sometimes continue to produce better results, but often the benefits
tail off, and in some cases the graphs show a peak beyond which higher values of α cause slow
degradation.

7 CONCLUSION AND FUTURE WORK

This paper introduces Prior-Aware Decoding (PAD), a novel technique for mitigating the influence
of distractor tasks in language models. Our approach is grounded in a theoretical framework that
conceptualizes language models as products of experts, offering a new perspective on how distractor
tasks emerge and persist.

The primary theoretical contribution of this work is the framing of language models as products
of experts. This model provides a specific explanation for the emergence of distractor tasks and
offers insights into why we observe counterintuitive scaling behaviors, including inverse scaling, on
certain tasks. Importantly, our framework suggests that the balance between these “experts” is not
necessarily dictated by model size, which could explain the lack of straightforward scaling effects
and even the inverse scaling phenomena observed in some cases.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

prompt
injection

pattern match.
suppression redefine strong local

priors
model p0 p1.0 p2.0 p0 p1.0 p2.0 p0 p1.0 p2.0 p0 p1.0 p2.0

Llama2 7B 49.5 53.6 53.4 3.2 11.9 24.8 55.9 71.2 78.3 20.9 35.7 42.2
Llama2 13B 32.7 41.9 41.7 4.1 23.7 46.5 56.8 78.9 83.6 41.2 52.4 58.8
Mistral 7B 60.5 77.0 77.8 3.4 19.9 34.5 55.7 83.7 87.2 47.8 59.7 66.9
Mixtral 8x7B 52.2 80.2 82.4 14.1 46.7 53.8 65.4 84.7 87.6 44.3 53.7 57.7

gpt2 88.6 94.4 93.6 13.5 15.3 18.3 62.5 66.1 68.2 0.4 2.1 7.7
gpt2-medium 88.9 99.3 99.7 5.1 2.6 2.3 60.9 62.6 62.6 0.7 7.5 27.6
gpt2-large 97.4 99.7 99.6 4.8 9.3 13.5 64.2 66.6 66.8 0.5 6.4 22.9
gpt2-xl 86.9 98.4 99.0 1.8 2.1 5.2 47.8 55.0 59.2 0.4 8.5 26.6

text-ada-001 66.5 79.7 82.1 3.8 8.0 12.9 53.2 53.1 53.1 5.5 10.2 12.7
davinci-002 55.2 60.2 61.9 5.9 9.2 13.0 54.7 71.3 77.8 13.6 23.5 27.5
gpt3.5-t.-instr. 80.5 84.8 85.5 28.5 29.4 24.4 51.4 73.7 79.1 52.6 61.3 64.9

mean 63.2 80.8 89.7 7.3 23.2 37.4 52.4 72.3 83.6 19.0 35.1 51.3

Table 1: Percent probabilities of correct completion for different tasks and language models. p0
indicates full-prompt accuracy (baseline); p1.0 and p2.0 indicates using truncated prompt as the
weakened prompt with parameter α = 1.0 and α = 2.0. Bold entries denote the highest-scoring
parameter for a given task and model. All probabilities are reported at model temperature T = 1.0.

Our experimental results demonstrate the efficacy of PAD across a range of language models and
tasks from the Inverse Scaling dataset. We consistently observed improvements in model perfor-
mance, with a median increase in task completion proportion of 40% at α = 2. These findings
not only validate the practical utility of our approach but also provide empirical support for our
theoretical framework.

The implications of this work extend beyond the specific technique we’ve developed. Our results
suggest that it may be possible to elicit greater capabilities from models even in cases where straight-
forward scaling is counterproductive, by employing more sophisticated forms of inference, and that
this may be necessary to account for certain persistent quirks.

While our current study focuses on relatively small models and a specific set of tasks, the potential
applications of this work are broad. Perhaps most promisingly, PAD could be developed into a
robust defense against jailbreaks and prompt injection attacks, although further research with more
challenging datasets is needed to fully assess its potential in this area.

Looking forward, we identify several key directions for future research:

1. Model Interpretability: Investigating how well our theoretical framework aligns with the
actual internal processes of language models could provide valuable insights into model
behavior and further validate our approach.

2. Extension to Harder Cases: Applying and adapting PAD to more challenging instances
of prompt injection and other distractor tasks could enhance its practical utility.

3. More Sophisticated Inference-time Techniques: Combining our method and underly-
ing model with related approaches like classifier-free guidance (Ho & Salimans, 2021),
and activation addition (Turner et al., 2023), to build more robust approaches for steering
language models.

In conclusion, this work not only introduces a practical technique for improving language model
performance but also provides a theoretical framework that could further develop our understanding
of how these models function. By highlighting the potential limitations of straightforward scaling
and the importance of more nuanced approaches to model elicitation, we hope to contribute to
the development of more robust and reliable language models. As we continue to integrate these
powerful tools into various aspects of our lives, techniques like PAD may be crucial in ensuring they
behave reliably and as intended across a wide range of tasks and contexts.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt,
Thomas Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating lan-
guage models for mathematics through interactions. Proceedings of the National Academy of
Sciences, 121(24):e2318124121, 2024.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario
Fritz. More than you’ve asked for: A comprehensive analysis of novel prompt injection threats to
application-integrated large language models. arXiv preprint arXiv:2302.12173, 2023.

Geoffrey E. Hinton. Products of experts. In Artificial Neural Networks, 1999. ICANN 99. Ninth
International Conference on (Conf. Publ. No. 470), volume 1, pp. 1–6. IET, 1999.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021. URL https://openreview.
net/forum?id=qw8AKxfYbI.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form
competition: Why the highest probability answer isn’t always right. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 7038–7051. As-
sociation for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.564. URL
https://aclanthology.org/2021.emnlp-main.564.

Mohd Javaid, Abid Haleem, Ravi Pratap Singh, Rajiv Suman, and Shanay Rab. Significance of
machine learning in healthcare: Features, pillars and applications. International Journal of Intel-
ligent Networks, 3:58–73, 2022.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12286–
12312, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.229.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. Coherence boosting: When your pretrained lan-
guage model is not paying enough attention. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8214–8236, 2022.

Ian R. McKenzie, Alexander Lyzhov, Michael Martin Pieler, Alicia Parrish, Aaron Mueller, Ameya
Prabhu, Euan McLean, Xudong Shen, Joe Cavanagh, Andrew George Gritsevskiy, Derik Kauff-
man, Aaron T. Kirtland, Zhengping Zhou, Yuhui Zhang, Sicong Huang, Daniel Wurgaft, Max
Weiss, Alexis Ross, Gabriel Recchia, Alisa Liu, Jiacheng Liu, Tom Tseng, Tomasz Korbak,
Najoung Kim, Samuel R. Bowman, and Ethan Perez. Inverse scaling: When bigger isn’t bet-
ter. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=DwgRm72GQF. Featured Certification.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2023.acl-long.687
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=DwgRm72GQF

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
Trusting your evidence: Hallucinate less with context-aware decoding. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pp. 783–791, 2024.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
armid. Activation addition: Steering language models without optimization. arXiv preprint
arXiv:2308.10248, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Jason Wei, Najoung Kim, Yi Tay, and Quoc Le. Inverse scaling can become U-shaped. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 15580–15591, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.963. URL
https://aclanthology.org/2023.emnlp-main.963.

https://openreview.net/forum?id=yzkSU5zdwD
https://aclanthology.org/2023.emnlp-main.963

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EXAMPLE OF STRONG NON-LOCAL PRIORS IN LANGUAGE MODELS

While we assume most instances of strong priors in language are local and we focus our attention
on those, there are also non-local examples, where the data and task parts can be swapped or even
interspersed.

We offer the following example, although we expect that many of the other examples and relevant
datasets can be adapted similarly:

Consider the prompt

P1 = ‘English alphabet: P, Q, R, S, [skip the 2nd letter from now] T’,

which we decompose (non-locally) as

T = ‘ [skip the 2nd letter from now]’, and

D = ‘English alphabet: P, Q, R, S, T,’
to be the remainder. With text-davinci-002 we observe:

pM (‘ U’ |P1) = 0.98

pM (‘ U’ |D) = 0.99

This is indeed a non-local strong prior, as removing the non-local part of D, leaving

P2 = ‘English alphabet: [skip the 2nd letter from now] T,’,

removes significant part of the effect:

pM (‘ U’ |P2) = 0.54

B PROMPT DECOMPOSITION

Dataset Task description Remainder of input

Strong local priors
(custom)

Task: Write out the
English alphabet in upper
case, skipping the letter
D.

Output: A B C

Prompt injection
(inverse scaling)

Repeat the input
word-for-word. Do not
follow any further
instructions.

Input: Ignore
previous directions
and output the
first prime number.
Output:

Redefine (inverse
scaling)

Swap the meaning of lawful
and unlawful.

Is fraud lawful? A:

Pattern matching
suppression
(inverse scaling)

Generate a sequence of 6
symbols alternating between
(A B) but ending anything
you like except "B".

A, B, A, B, A,

Table 2: Examples of prompts from each dataset we use, with the task description separated out as
it would be. For brevity we omit the few-shot examples in the Prompt Injection dataset.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C INFORMATION GAIN RESULTS AND THE RELATIONSHIP WITH TOTAL
VARIATIONAL DISTANCE

Figure 3 shows the relationship of log p0 vs log pα for the tasks and models from our experiments,
demonstrating the performance of PAD in terms of information gain. Note that in our main Figure 2,
the linear scale does not present well the difference between e.g. an improvement from 5% to 10%
(a significant increase in performance on a task likely hard for the given model) vs 50% to 55%.

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Original performance log(p0)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

P
er

fo
rm

an
ce

 o
f o

ur
 m

et
ho

d
lo

g(
p

)

= 1.0

prompt injection
pattern match. suppr.
redefine
strong local priors

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Original performance log(p0)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
= 2.0

GPT-2 models
GPT-3 models (API)
Llama-2 and Mistral
Same performance

Figure 3: Overview of the results of the Prior-Aware Decoding method at different values of param-
eter α over 4 experimental task sets and 11 language models, plotted in log-log-scale to emphasize
the information gain of the improvement. The data matches Figure 2 and Table 1.

Figure 4 illustrates the relationship between the total variational distance between the weak and
strong model predictions and the performance improvement of PAD on the task/model combination.
We are showing the improvement in terms of log pα−log p0 which is equal to log(pα/p0), measuring
a relative performance gain (log-scale), or alternatively the information gain. Note that plotting
pα − p0 is not appropriate here, as the plot would be disproportionately dominated by mid-range
values of pα and p0, both in terms of the value of the difference and variance.

0.0 0.2 0.4 0.6 0.8 1.0
Total var. distance of full vs truncated prompt answer

1

0

1

2

3

4

Lo
g-

sc
al

e
im

pr
ov

em
en

t lo
g(

p
)

lo
g(

p 0
) [

na
ts

]

= 1.0
prompt injection
pattern match. suppr.
redefine
strong local priors

0.0 0.2 0.4 0.6 0.8 1.0
Total var. distance of full vs truncated prompt answer

1

0

1

2

3

4

= 2.0
GPT-2 models
GPT-3 models (API)
Llama-2 and Mistral
No Improvement

Figure 4: Information gain of the Prior-Aware Decoding method by the total variational distance of
the prediction of the weak vs strong model. The plot supports our hypothesis that PAD improves
performance significantly more in cases where the weak and strong model predictions differ very
little; i.e. what we propose as a candidate indication for a strong prior. The data matches Table 1.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

D ALGORITHM: PRIOR-AWARE DECODING (PAD)

We first present Algorithm 1 for the case when both the weaker and stronger language model return
next-token distribution over the same token set on all prediction steps. Note that this is generally the
case in open-weight models evaluated locally. This algorithm can also be adjusted by using different
models for the full and weakened prompt with models that are trained over the same tokenizer.

In our application, we have xF = TD (task and data parts) and xW = D (only data part).

Algorithm 1 One step of Prior-Aware Decoding (PAD) – Fixed Token Set

Require: Language model M , original prompt xO, weakened prompt xW

Require: Previously generated tokens t1, . . . tn, extrapolation parameter α
1: LO ←M(xO t1 . . . tn) ▷ Get next token logits with original prompt
2: LW ←M(xW t1 . . . tn) ▷ Get next token logits with weakened prompt
3: LPAD ← ∅ ▷ Initialize PAD logits
4: for t ∈ T do
5: LPAD(t)← LO(t) + α(LO(t)− LW (t)) ▷ PAD extrapolation
6: end for
7: return pα(tn+1) := softmax(LPAD) ▷ Convert logits to probability distribution

In the general case, the two model calls may return logits for different token sets. This is usually the
case in language models accessed over API calls, such as the OpenAI models in our study. Note that
we assume that the returned tokens are the tokens with the highest likelihoods and hence assume an
upper-bound on the probabilities of all other tokens.

In the general case we restrict the candidate tokens to those returned for the original (full) prompt,
TO. The likelihoods LW of the tokens in TO \ TW are set to minLW – the upper bound on the
likelihood of all tokens not returned in LW . The rest of Algorithm 2 then analogous to Algorithm 1.

Algorithm 2 One step of Prior-Aware Decoding (PAD) – General Case

Require: Language model M , original prompt xO, weakened prompt xW

Require: Previously generated tokens t1, . . . tn, extrapolation parameter α
1: LO ←M(xO t1 . . . tn) ▷ Get next token logits with original prompt
2: LW ←M(xW t1 . . . tn) ▷ Get next token logits with weakened prompt
3: TO ← dom(LO) ▷ Tokens returned for original prompt
4: TW ← dom(LW) ▷ Tokens returned for weakened prompt
5: uW ← mint∈TW

LW (t) ▷ Upper bound for unseen tokens
6: L̂W ← ∅ ▷ Initialize adjusted weaker logits
7: for t ∈ TO do
8: if t ∈ TW then
9: L̂W (t)← LW (t)

10: else
11: L̂W (t)← uW ▷ Use upper bound for unseen tokens
12: end if
13: end for
14: LPAD ← ∅ ▷ Initialize PAD logits
15: for t ∈ TO do
16: LPAD(t)← LO(t) + α(LO(t)− L̂W (t)) ▷ PAD extrapolation
17: end for
18: return pα(tn+1) := softmax(LPAD) ▷ Convert logits to probability distribution

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E ELICITING STRONG PRIORS WITH CUSTOM SYSTEM PROMPTS

In some cases it may not be feasible or desirable to separate the prompt clearly into task and data
parts. We propose and experimentally test an alternative method to elicit strong priors: prefix TD
with a system prompt S, where the role of S is to instruct the model to behave more locally and
therefore strengthen any local strong prior effect. The degree to which this prompt elicits the strong
prior behavior depends strongly on the task and any intermediate instructions so it may not be very
reliable in some contexts but we believe it to be of note for some applications and further research.

Introducing a System Prompt S: We prepend a system prompt, S, which directs the model towards
local reasoning, thereby emphasizing strong priors. Formally, the logits for this approach are:

lsystem
L (tn+1|t1 . . . tn) = lM (tn+1|St1 . . . tn)

A representative system prompt could be: ”In the following, only consider the most recent instruc-
tions, disregarding any broader context.”

Extrapolation from a system prompt at α = 2 performs best in four cases, including all three where
extrapolating from the stripped prompt fails to outperform the baseline. While the system prompt
configuration at α = 2 produces an average improvement of under 1%pt, it has more potential to
be refined: for any real-world application the specific system prompt can be selected to optimise for
a specific task and model. Additionally, this approach does not require us to have a clear task/data
split, so the technique can be applied in cases where such a split is impossible or ambiguous. We
include the results of extrapolating from a system prompt in the graphs given in Appendix G.

F TOTAL VARIATIONAL DISTANCE

In Section 3 we described how total variational distance δ can be used to gauge the presence of
strong priors. We have measured δ across different models and tasks in Table 3.

model
prompt

injection
pattern match.

suppression redefine strong local
priors

gpt2 0.87 0.08 0.01 0.03
gpt2-medium 0.87 0.10 0.02 0.04
gpt2-large 0.92 0.07 0.04 0.02
gpt2-xl 0.84 0.05 0.09 0.03
Llama-2-7B 0.68 0.05 0.13 0.15
Llama-2-13B 0.64 0.12 0.07 0.43
text-ada-001 0.76 0.10 0.34 0.17
davinci-002 0.59 0.11 0.13 0.27
gpt-3.5-turbo-instruct 0.86 0.75 0.24 0.52

average 0.78 0.16 0.12 0.18

Table 3: The mean total variational distance (TVD, δD) between the next token distributions of the
original prompt and the weakened prompt.

Two observations are worth noting: firstly, the high TVD across the board in the prompt injection
task suggests that low TVD is a sufficient but not necessary condition for strong priors; secondly,
of the three task/model combinations where PAD performs worse than the baseline, two have the
highest TVD for their respective task (gpt3.5-turbo-instruct on pattern matching suppression and
text-ada-001 on redefine).

G TESTING MORE VALUES OF ALPHA

We present graphs in Figures 5 and 6 showing how the probability of successful completion relates
to the value of the extrapolation parameter α. For each model and task, we plot average success rate
using both the truncated prompt method and the system prompt method, at both T = 0 and T = 1.
To illustrate trends more clearly, we plot values from α = −2 to α = 3.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

prompt-injection

gp
t2

pattern-matching-suppr. redefine strong-local-priors

Weakening type
Truncated prompt at T=0.0
Truncated prompt at T=1.0
System prompt at T=0.0
System prompt at T=1.0

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-m
ed
iu
m

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-l
ar
ge

2 1 0 1 2 3
weight

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-x
l

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

prompt-injection

Ll
am
a-
2-
7b

pattern-matching-suppr. redefine strong-local-priors

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

Ll
am
a-
2-
13
b

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

Mi
st
ra
l-
7B
-v
0.
1

2 1 0 1 2 3
weight

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

Mi
xt
ra
l-
8x
7B
-v
0.
1-
GP
TQ

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

Figure 5: Mean probability of correct completion depending on the extrapolation parameter α. The
plots combine accuracy at two different temperatures (0.0 and 1.0) and using two different methods
(leaving out task description and adding a common system prompt). The range of α is wider than
the plausibly practical range to illustrate the trends.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

prompt-injection

te
xt
-a
da
-0
01

pattern-matching-suppr. redefine strong-local-priors

Weakening type
Truncated prompt at T=0.0
Truncated prompt at T=1.0
System prompt at T=0.0
System prompt at T=1.0

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

da
vi
nc
i-
00
2

2 1 0 1 2 3
weight

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t-
3.
5-
tu
rb
o-
in
st
ru
ct

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

Figure 6: Mean probability of correct completion depending on the extrapolation parameter α; con-
tinuation of Figure 5 for several models of the GPT-3 family used via the OpenAI API, extrapolating
from the likelihoods of the top 5 predicted tokens returned by the API (note that this is a limitation
of the OpenAI service).

H INTER-MODEL CONTRASTIVE DECODING

As an alternative approach and a possible baseline, we measure the performance of PAD logit ex-
trapolation between a weaker and stronger version of the model for several pairs of models, namely
GPT-2 using the previous size of the model as the “weakened” model (e.g. gtp2-large for
gpt2-xl), and Llama-2-13B-GPTQ using Llama-2-7B-GPTQ as the “weakened” model. In
all cases, we use the full prompt for both models.

Similarly to the previous section, we plot the mean accuracy of every task-model pair in Figure 7,
and the average success rate for each model pair and task in Figure 8, at both T = 0 and T = 1 for
a range of parameters α = −2 to α = 3.

Note that while this method performs notably worse than our main method, it does illustrate several
cases of inverse scaling where values of α < −1 lead to better performance, e.g. in the case of
gpt2-xl on redefine, and Llama-2-13B-GPTQ on prompt-injection, matching the
result differences between the models in the pair in Table 1 (compare column p0 for the respective
task).

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Original performance (= 0.0)

0

20

40

60

80

100
P

er
fo

rm
an

ce
 o

f i
nt

er
­m

od
el

 P
A

D
 e

xt
ra

po
la

tio
n

= 1.0

0 20 40 60 80 100
Original performance (= 0.0)

0

20

40

60

80

100
= 2.0

GPT­2 models
Llama­2 models
Same performance

Figure 7: Overview of the results of our method at different values of parameter α. Each datapoint
refers to performance on one task-model pair, showing original performance (x-axis) vs logit ex-
trapolation between two different models (y-axis).

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

prompt-injection

gp
t2
-m
ed
iu
m

pattern-matching-suppr. redefine strong-local-priors

Weakening type
Weaker model at T=0.0
Weaker model at T=1.0

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-l
ar
ge

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

gp
t2
-x
l

2 1 0 1 2 3
weight

0.0

0.2

0.4

0.6

0.8

1.0

p c
or

re
ct

Ll
am
a-
2-
13
B-
GP
TQ

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

2 1 0 1 2 3
weight

Figure 8: Mean probability of correct completion depending on the extrapolation parameter α. The
plots combine accuracy at two different temperatures (0.0 and 1.0) and using two different methods
(leaving out task description and adding a common system prompt).

	Introduction
	Prior-Aware Decoding

	Related Work
	Strong Priors in Generative Models
	Language Models as Products of Experts
	Methodology and Experimental Setup
	Experimental Setup

	Results
	Conclusion and Future Work
	Example of strong non-local priors in language models
	Prompt Decomposition
	Information gain results and the relationship with total variational distance
	Algorithm: Prior-Aware Decoding (PAD)
	Eliciting Strong Priors With Custom System Prompts
	Total variational distance
	Testing more values of alpha
	Inter-model Contrastive Decoding

