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Abstract

Bayesian Simulation-Based Inference (SBI) yields posterior approximations for simulator
models with intractable likelihood. Recent methods employ normalizing flows for SBI, based
on invertible neural networks parametrizing a flexible and tractable density approximation,
typically trained via maximum likelihood on simulated parameter-observation pairs. In con-
trast, GATSBI (Ramesh et al., 2022) approximated the posterior with generative networks,
which pose no constraints on the neural network, thus scaling better to high-dimensional
and structured data but losing access to the density. GATSBI relies on adversarial training,
which is unstable and can lead to a learned distribution underestimating the uncertainty.
Here, we introduce Scoring Rule training for SBI (ScoRuTSBI), applying for the first time
an overlooked adversarial-free training approach for generative networks to SBI. On our two
high-dimensional examples, we found ScoRuTSBI performs better with shorter training time
than GATSBI; moreover, ScoRuTSBI outperforms methods based on normalizing flows on
one of the high-dimensional examples, while performing equally on the other. Conversely,
ScoRuTSBI and GATSBI are considerably outperformed by normalizing-flow methods in
low-dimensional examples.

1 Introduction

Simulator models are statistical models for which it is impossible to evaluate the likelihood p(y|θ) for an
observation y, but from which it is easy to simulate for any parameter value θ. Given y and a prior π(θ),
the Bayesian posterior is π(θ|y) ∝ π(θ)p(y|θ). However, obtaining that explicitly or sampling from it with
Markov Chain Monte Carlo (MCMC) is impossible without having access to the likelihood.

Bayesian Simulation-Based Inference (SBI) techniques exploit model simulations to approximate the exact
posterior distribution when the likelihood is unavailable. A prototypical method is Approximate Bayesian
Computation (ABC) (Lintusaari et al., 2017; Bernton et al., 2019), which builds an implicit approximation
of the posterior by drawing parameter values from the prior and weighting them according to the distance
between observations and simulations obtained from those parameter values. Variants of ABC relying on
MCMC (Marjoram et al., 2003) and sequential Monte Carlo (Beaumont et al., 2009) also exist.

A recent strand of literature has performed SBI using neural networks representing probability densities,
such as generative networks trained adversarially (Goodfellow et al., 2014), normalizing flows (Papamakarios
et al., 2021) and score-based diffusion models (Song & Ermon, 2019; Song et al., 2020). Normalizing flows
represent a distribution with an invertible neural network transforming samples from a simple base measure,
thus allowing evaluation of the density of the distribution via the change-of-variables formula enabled by
invertibility. Using the latter, normalizing flows can be trained via maximum likelihood estimation on
parameter-simulation pairs. In SBI, they have been used to represent either the likelihood (Papamakarios
et al., 2019; Lueckmann et al., 2019) or the posterior (Papamakarios & Murray, 2016; Lueckmann et al.,
2017; Greenberg et al., 2019; Radev et al., 2020; Wildberger et al., 2023) or both (Wiqvist et al., 2021).

Despite being present on the deep learning scene for longer than normalizing flows or diffusion models,
generative networks have only been used for SBI in GATSBI (Ramesh et al., 2022), which adapted the
Generative Adversarial Network, or GAN, framework of Goodfellow et al. (2014) to learn the posterior.
Generative networks are more expressive and better to scale to larger sizes than normalizing flows but
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forgo density evaluation Empirically, Ramesh et al. (2022) showed how generative networks outperform
normalizing flows on high-dimensional and structured data, but lead to generally poor calibration of the
learnt distribution, which is a well-known consequence of unstable adversarial training (Arora et al., 2017;
Bellemare et al., 2017; Arora et al., 2018; Richardson & Weiss, 2018).

To leverage the power of generative networks while overcoming their poor calibration when trained adver-
sarially, we turn to Scoring Rule minimization (Bouchacourt et al., 2016; Gritsenko et al., 2020; Harakeh &
Waslander, 2021; Pacchiardi et al., 2022), which has been sparsely used before but never applied to SBI1. We
term our method Scoring Rule Training for Simulation-Based Inference (ScoRuTSBI). Being adversarial-free,
ScoRuTSBI leads to and faster convergence and training time, while empirically achieving better calibra-
tion than GATSBI. This allows ScoRuTSBI to outperform methods based on normalizing-flows on a high-
dimensional examples, while performing equally on another. Conversely, we find ScoRuTSBI and GATSBI
are considerably outperformed by normalizing-flow methods in low dimensional examples.

The rest of the paper is organized as follows. Section 2 discusses how to use a generative network to represent
an approximate posterior. Section 3 introduces Scoring Rule Training for SBI (ScoRuTSBI) and discusses
related approaches, including GATSBI (Ramesh et al., 2022) and normalizing flow methods. Section 4
reports simulation results and Section 5 gives concluding remarks.

Notation We will denote respectively by Y ⊆ Rd and Θ ⊆ Rp the data and parameter space. We will
use P (·|θ) and p(·|θ) to denote the distribution and likelihood (with respect to Lebesgue measure) of the
considered simulation-based model. Π and π will denote prior distribution and prior density on Θ, and Π(·|y)
and π(·|y) will denote corresponding posterior quantities for observation y. In general, we will use P or Q to
denote distributions, while S will denote a generic Scoring Rule. Other upper-case letters (X,Y and Z) will
denote random variables while lower-case ones will denote observed (fixed) values. We will denote by Y or
y the observations (correspondingly random variables and realizations). Bold symbols denote vectors, and
subscripts to bold symbols denote sample index (for instance, yi). Instead, subscripts to normal symbols
denote component indices (for instance, yj is the j-th component of y, and yi,j is the j-th component of yi).
Finally, ⊥⊥ will denote independence between random variables, while Y ∼ P indicates a random variable
distributed according to P and y ∼ P a sample from such random variable.

2 Approximate posterior via generative network

We use a generative network to represent an approximate posterior distribution Qϕ(·|y) on the parameter
space Θ given an observation y ∈ Y. The generative network is defined via a neural network gϕ : Z×Y → Θ
transforming samples from a probability distribution Pz over the space Z conditionally on an observation
y ∈ Y; ϕ represents neural network weights. Samples from Qϕ(·|y) are therefore obtained by sampling
z ∼ Pz and computing θ̃ = gϕ(z,y) ∼ Qϕ(·|y)2

In the following, as it is standard in the SBI setup, we assume to have access to parameter-simulations
pairs (θi,yi)ni=1 generated from the prior θi ∼ Π and the model yi ∼ P (·|θi); critically, these can also be
considered as samples from the data marginal yi ∼ P and the posterior θi ∼ Π(·|yi). Using these samples,
we want to tune ϕ such that Qϕ(·|y) ≈ Π(·|y) for all values of y; this is therefore an amortized setting
(Radev et al., 2020), namely the resulting posterior approximation is valid for multiple observations.

In the amortized setting, a single neural network has to map the observation into a posterior for all possible
observations; intuitively, we expect this to work well for those cases where such inversion process is in some
sense “generic”. In contrast, the amortized approach will perform poorly when the posterior distribution
depends on the data in a non-linear way. Additionally, the amortized approach may be wasteful in terms of
model simulations when inference for a single observation is needed, as the simulations from the simulation-
based model are drawn independently from it, so that many will be uninformative. In Appendix A, we
discuss strategies for tailoring simulations to a specific observation.

1Despite the name similarity, this is different from score-based diffusion networks (Song & Ermon, 2019; Song et al., 2020).
2Formally, Qϕ(·|y) is the push-forward of Pz through the map gϕ(·, y): Qϕ(·|y) = gϕ(·, y)♯Pz, which means that, for any

set A belonging to the Borel σ-algebra σ(Θ), Qϕ(A|y) = Pz
(

{z ∈ Z : gϕ(z, y) ∈ A}
)

.
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3 Posterior inference via Scoring Rule training

We first review Scoring Rules and give examples of Scoring Rules that we’ll use in our framework (Sec. 3.1).
We then discuss in detail our proposed training method (Sec. 3.2) and related approaches (Sec. 3.2).

3.1 Scoring Rules

We first introduce Scoring Rules for a distribution P related to a generic random variable X. A Scoring Rule
(SR, Gneiting & Raftery, 2007) S(P,x) is a function of P and of an observation x of the random variable
X. If X is distributed according to Q, the expected Scoring Rule is defined as:

S(P,Q) := EX∼QS(P,X),

The Scoring Rule S is proper relative to a set of distributions P over X if

S(Q,Q) ≤ S(P,Q) ∀ P,Q ∈ P,

i.e., if the expected Scoring Rule is minimized in P when P = Q. Moreover, S is strictly proper relative to
P if P = Q is the unique minimum:

S(Q,Q) < S(P,Q) ∀ P,Q ∈ P s.t. P ̸= Q.

3.1.1 Examples of Scoring Rules

The following are strictly proper Scoring Rules that we will use in our experiments.

Energy score The energy score3 is given by:

S
(β)
E (P,x) = 2 · E

[
∥X̃− x∥β2

]
− E

[
∥X̃− X̃′∥β2

]
, X̃ ⊥⊥ X̃′ ∼ P, (1)

where β ∈ (0, 2). This is a strictly proper SR for the class of probability measures P such that EX̃∼P ∥X̃∥β <
∞ (Gneiting & Raftery, 2007). An unbiased estimate can be obtained by replacing the expectations in S(β)

E
with empirical means over draws from P (see Appendix D.1) We will fix β = 1 in the rest of this work.

Kernel score When k(·, ·) is a positive definite kernel, the kernel score for k can be defined as (Gneiting
& Raftery, 2007):

Sk(P,x) = E[k(X̃, X̃′)]− 2 · E[k(X̃,x)], X̃ ⊥⊥ X̃′ ∼ P. (2)

The kernel score is proper for the class of probability distributions P for which EX̃,X̃′∼P [k(X̃, X̃′)] is finite
(by Theorem 4 in Gneiting & Raftery (2007)). It is closely related to the kernel Maximum Mean Discrepancy
(MMD, Gretton et al., 2012) and is strictly proper under conditions ensuring the MMD is a metric (Gretton
et al., 2012). These conditions are satisfied, among others, by the Gaussian kernel (which we will use in this
work):

k(x̃,x) = exp
(
−∥x̃− x∥2

2
2γ2

)
,

in which γ is a scalar bandwidth. As for the Energy Score, an unbiased estimate can be obtained by replacing
the expectations in Sk with empirical means over draws from P (see Appendix D.1).

3The probabilistic forecasting literature (Gneiting & Raftery, 2007) use a different convention for the energy score and the
subsequent kernel score, which amounts to multiplying our definitions by 1/2. We follow here the convention used in the
statistical inference literature (Rizzo & Székely, 2016; Chérief-Abdellatif & Alquier, 2020; Nguyen et al., 2020)
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Patched SR We now discuss a way to build a composite SR which preserves the structural information
in X. In fact, if X represent values of a variable on a spatial grid, computing the SRs introduced above
discards this information as the components of X can be permuted without changing the resulting score.

The patched SR (Pacchiardi et al., 2022) is defined by sliding a window over the components of X to obtain
patches and summing the scores obtained for each patch. In practice, for a patch size δ and a patch step s,
for x ∈ Rd, the patched SR is defined as:

S̃p =
⌈ d−s

δ+1 ⌉∑
j=1

S(P |j·s:j·s+δ−1,xj·s:j·s+δ−1), (3)

where xj·s:j·s+δ−1 = [xj·s, xj·s+1, xj·s+2, . . . , xj·s+δ−1] and P |j·s:j·s+δ−1 is the marginal distribution induced
by P on the components j · s to j · s + δ − 1 of X. In this way, the dependence between components of
the same patch is given importance, while those of different patches is not (except as mediated by other
components).

Note however that Sp is not strictly proper; to make this strictly proper, we add the SR computed over the
full x, which makes the overall SR strictly proper (see Lemma 3.4 in Pacchiardi et al. (2022)), thus obtaining:

Sp(P,x) = w1S(P,x) + w2S̃p(P,x),

where w1, w2 > 0.The formulation of patched SR can be generalised to X ∈ Rdn ; see Appendix C for more
details.

3.2 ScoRuTSBI: Scoring Rule Training for Simulation-Based Inference

Let us now go back to the Bayesian SBI setting introduced at the start of the paper and let us denote by
Qϕ(·|y) the approximate posterior parametrized by the generative network.

For a strictly proper SR S, solving the following problem:

arg min
ϕ

EY∼PEθ∼Π(·|Y)S(Qϕ(·|Y),θ) = arg min
ϕ

Eθ∼ΠEY∼P (·|θ)S(Qϕ(·|Y),θ) (4)

leads to Qϕ(·|y) = Π(·|y) for all values of y for which p(y) > 0.

An empirical analogue of the objective in Eq. (4) is obtained by replacing the expectations with empirical
means over the training dataset, leading to the following empirical minimization problem:

arg min
ϕ

1
n

n∑
i=1

S(Qϕ(·|yi),θi); (5)

computing the objective directly is intractable as, in general, we do not have access to S(Qϕ(·|y),θ). Notice,
however, that in order to solve Eq. (5) via Stochastic Gradient Descent (SGD) it is enough to obtain unbiased
estimates of ∇ϕS(Qϕ(·|yi),θi), which can be easily done via automatic differentiation whenever S admits
an unbiased empirical estimator Ŝ such that:

E
[
Ŝ({θ̃(y)

j }
m
j=1,θ)

]
= S(Qϕ(·|y),θ),

where the expectation is over θ̃
(y)
j ∼ Qϕ(·|y). More details can be found in Appendix D.2. If S admits such

an estimator, each step of SGD involves generating m simulations from the generative network Qϕ(·|yi) for
each yi in the training batch. We term this approach ScoRuTSBI (Scoring Rule Training for Simulation-
Based Inference). Algorithm 1 shows a single epoch of the resulting training algorithm, with batch size
equal to 1 for simplicity. For the Energy and Kernel Scores introduced in Sec. 3.1.1, unbiased estimators are
available; as such, we will use these scoring rules in the following.
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Algorithm 1 ScoRuTSBI, single epoch (with batch size equal to 1).
Require: Generative network gϕ : Z × Y → Θ, SR S, learning rate ϵ.

for each training pair (θi,yi) do
Sample multiple z1, . . . , zm
Obtain θ̃ϕi,j = gϕ(zj ,yi)
Obtain unbiased estimate Ŝ({θ̃(yi)

i,j }mj=1,θi) of S(Qϕ(·|yi),θi)
Set ϕ← ϕ− ϵ · ∇ϕŜ({θ̃(yi)

i,j }mj=1,θi)
end for

3.3 Related approaches

3.3.1 Generative Adversarial Training for Simulation-Based Inference

In Ramesh et al. (2022), the posterior approximation Qϕ was trained in an adversarial framework in a
method termed GATSBI (Generative Adversarial Training for Simulation-Based Inference). This requires
introducing a discriminator or critic neural network cψ : Θ × Y → R with weights ψ whose task is to
distinguish draws from the approximate and true posteriors. The loss employed in Ramesh et al. (2022) is
the conditional version of the original Generative Adversarial Network (GAN) loss from Goodfellow et al.
(2014), which was originally discussed in Mirza & Osindero (2014):

L(ϕ, ψ) = Eθ∼ΠEY∼P (·|θ)EZ∼Pz [log cψ(θ,Y) + log (1− cψ (gϕ(Z,Y),Y))]

= EY∼P

[
Eθ∼Π(·|Y) (log cψ(θ,Y)) + Eθ̃∼Qϕ(·|Y)

(
log

(
1− cψ(θ̃,Y)

))]
,

(6)

whose saddle point solution
min
ϕ

max
ψ

L(ϕ, ψ) (7)

leads to Qϕ(·|y) being the exact posterior for all choices of y for which p(y) > 0 (provided gϕ and cψ
have infinite expressive power; that in fact corresponds to minimizing the Jensen-Shannon divergence, see
Appendix B for more details).

As typically done in GANs, GATSBI trains Qϕ alternating maximization steps over ψ with minimization
steps over ϕ. At each step, the gradient is estimated by replacing the expectations in Eq. (6) with empirical
means over (a mini-batch of) the training dataset and draws from the generative network. This alternating
optimization is unstable and requires careful hyperparameters tuning and specialized training routines (Sali-
mans et al., 2016). Despite those, adversarial training often leads to underestimating the distribution width,
and even to collapse of the distribution on a single mode (Arora et al., 2018; Isola et al., 2017; Richardson
& Weiss, 2018). Arora et al. (2017) showed how this mode collapse can happen due to the finite capacity of
the discriminator, while Bellemare et al. (2017) theoretically linked it to the use of biased gradient estimates
for ϕ in optimizing Eq. (7) (in fact, estimates of gradients with respect to ϕ rely on a value of ψ obtained
by few optimization steps, rather than the value maximizing eq. 6).

This uncertainty underestimation may not be an issue in some applications of generative networks where
uncertainty quantification is not important, but it can be detrimental for approximate posterior inference.
In contrast, our Scoring Rule minimization formulation for SBI does not suffer from these theoretical issues
introduced by the use of alternating minimization. Indeed, we show in Sec. 4 how the approximate posterior
obtained with Scoring Rule minimization has better calibration than GATSBI (Section 4).

On the other hand, the unbiased empirical estimators of the Energy and Kernel Scores require multiple
draws from the generative network per observation value (Eq. 3.2). To train GATSBI, instead, a single draw
from the generative network is enough. In our experiments, however, 10 or fewer draws lead to satisfactory
results with SR training. Additionally, as mentioned above, the SR approach does not require a discriminator
network and has a more stable training process, which implies convergence is generally reached with fewer
training epochs. These two factors lead to lower computational and memory cost with respect to adversarial
training (see Section 4 for details).
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3.3.2 Normalizing flows for SBI

Normalizing flows are generative networks which impose invertibility of the map gϕ(z,y) with respect to z.
As such, the density qϕ with respect to the Lebesgue measure exists and can be evaluated via the change-
of-variables formula, so that ϕ is usually trained via maximum likelihood (Papamakarios et al., 2021). For
instance, in Radev et al. (2020), the following problem was considered, where DKL denotes the Kullback-
Leibler divergence:

argmin
ϕ

EY∼P [DKL (Π(· | Y)∥Qϕ(· | Y))]

= argmin
ϕ

EY∼PEθ∼Π(·|Y) [− log qϕ(θ | Y)]

= argmin
ϕ

Eθ∼ΠEY∼P (·|θ) [− log qϕ(θ | Y)] ,

(8)

which corresponds to our SR-based approach in Eq. (4) by identifying S(Qϕ(·|y),θ) = − log qϕ(θ|y), which
is the strictly-proper logarithmic scoring rule (Gneiting & Raftery, 2007).

The Neural Posterior Estimation (NPE) methods presented in Papamakarios & Murray (2016); Lueckmann
et al. (2017); Greenberg et al. (2019) are closely related to the objective in Eq. 8, but they focus on inferring
a posterior distribution valid for a single observation and design sequential approaches to exploit simulations
more efficiently. A single turn of those methods correspond exactly to Eq. (8).

Differently, Neural Likelihood Estimation (NLE) Papamakarios et al. (2019); Lueckmann et al. (2019) targets
the likelihood instead of the posterior. Similarly, it is a sequential approach tailoring simulations to a single
observation, but it can also be used in a single-turn fashion. Sequential versions of our SR minimization
approach can also be designed, see Appendix A.

Finally, while all of the above methods relied discrete normalizing flows, Wildberger et al. (2023) exploited
instead continuous normalizing flows (Papamakarios et al., 2021) to parametrize the posterior distribution,
with a method termed “Flow Matching”.

3.3.3 Diffusion models for SBI

Score-based diffusion networks (Song & Ermon, 2019; Song et al., 2020) use a neural network to approximate
the gradient of the logarithm of a target density (termed score, but unrelated to the scoring rules focus of
our method) and generate samples by simulating a diffusion process starting from a base measure and
converging to the target distribution. A few works applied this approach to SBI: Sharrock et al. (2022)
focused on a sequential approach while and Geffner et al. (2023) shows how to leverage the approximate
score to produce posterior samples for any number of observations. Unfortunately, the unavailability of code
bases accompanying the works mentioned above at the time of the preparation of our manuscript prevented
our comparison with those methods.

3.4 Other uses of SR training

SR training has been used before for training generative networks: Bouchacourt et al. (2016), Gritsenko
et al. (2020) and Harakeh & Waslander (2021) all used the Energy Score, focusing respectively on the
tasks of hand pose estimation, speech synthesis and object estimation. With the exception of the latter,
these works only exploited SR training as it lead to better generated samples, but not for its probabilistic
performance. Pacchiardi et al. (2022) used SR training for the task of probabilistic forecasting, deriving
theoretical guarantees for a predictive-sequential (Dawid, 1984) training objective. Finally, subsequently
to the first version of this work, Bon et al. (2022) uses an objective similar to our Eq. (4) to calibrate an
approximate posterior obtained with other approaches.

4 Simulation studies

We present here results on two low-dimensional benchmark problems and two high-dimensional models, one of
which has an implicitly defined prior, which were studied in Ramesh et al. (2022). Results on three additional

6



Under review as submission to TMLR

low-dimensional benchmarks are reported in Appendix H. For all examples, we evaluate the performance of
the different methods as in Ramesh et al. (2022). Besides that, we assess the calibration of the approximate
posteriors by the discrepancy between credible intervals in the approximate posteriors and the frequency with
which the true parameter belongs to the credible interval itself (we call this metric calibration error). We
also evaluate the match between the approximate posterior and the true parameter value via the Continuous
Ranked Probability Score (CRPS) averaged over multiple values for (θi,yi). The CRPS is a strictly proper
scoring rule and, as such, is minimized in expectation when the approximate posterior matches the true
posterior for the different observed values. As both metrics are for scalar variables, we compute their values
independently for each component of θ and report their average. We provide more detail in Appendix E.

For the two low-dimensional benchmarks, besides the results for ScoRuTSBI, we report the results from
Ramesh et al. (2022), which compared GATSBI with NPE (Papamakarios & Murray, 2016; Lueckmann
et al., 2017; Greenberg et al., 2019), NLE (Papamakarios et al., 2019; Lueckmann et al., 2019) , Neural Ra-
tio Estimation (Hermans et al., 2020) and two versions of Approximate Bayesian Computation (REJ-ABC,
Tavaré et al., 1997, and SMC-ABC, Beaumont et al., 2009). We also report the results obtained by Wild-
berger et al. (2023) with the “Flow Matching” method to train continuous normalizing flows (Papamakarios
et al., 2021). Overall, we find that ScoRuTSBI performs comparably to GATSBI, with both of them being
overperformed by methods based on normalizing flows.

Generative neural networks have a competitive advantage in high-dimensional settings; indeed, Ramesh
et al. (2022) found that GATSBI was competitive with normalizing-flow methods on one of the two high-
dimensional cases (ABC methods, not being amortized, could not be run over the large number of ob-
servations in a reasonable amount of time). As such, we here report results of NPE, NLE, GATSBI and
ScoRuTSBI for that example (Sec. 4.2). Finally, GATSBI, ScoRuTSBI and NPE are the only methods that
can handle the implicit prior of the other high-dimensional example (Sec. 4.3).

Additional training details of our approach for all examples are reported in Appendix F. We refer to Ramesh
et al. (2022) for details of the other methods.

4.1 Benchmark models

We consider here the “Simple Likelihood Complex Posterior” (SLCP) and the “Two Moons” benchmarks; in
the former, a 5-dimensional θ defines the distribution of an 8-dimensional Gaussian y in a nonlinear manner.
In the Two Moons model, both y and θ are 2-dimensional. We refer to Ramesh et al. (2022) and references
therein for more details4 For both models, we train all methods on ntrain = 1000, 10000 and 100000 posterior
samples. We consider ScoRuTSBI with the Energy and Kernel Score trained with m = 3, 5, 10 or 20 samples
from the generative network for each yi in a training batch. ScoRuTSBI is trained on a single CPU, while
GATSBI is trained on an NVIDIA Tesla-V100 GPU. For the Two Moons model, we do not use early stopping
for ScoRuTSBI; additionally, we employ the optimal configuration found in Ramesh et al. (2022) for GATSBI.

For these two models, samples from reference posteriors are available (Lueckmann et al., 2021); therefore, as
done in Ramesh et al. (2022), we assess the performance of the different methods via the discrimination ability
of a classifier trained to distinguish samples from the reference and approximate posteriors (classification-
based two-sample test, C2ST). If the classification accuracy is 0.5, the classifier is unable to distinguish
between the two sets of samples, implying perfect posterior approximation.

For ScoRuTSBI, we report here results with m = 20, as we found that to perform best. In Figure 1, we
report C2ST values for all considered methods for the different number of training simulations (Fig. 6 in
Appendix reports all values of m for ScoRuTSBI). On these examples, NPE, NLE and Flow Matching
perform better than both GATSBI and ScoRuTSBI, with each of the latter slightly overperforming the
other on one of the two models. To better understand the difference between GATSBI and ScoRuTSBI,
in Tables 1 and 2, we report other performance metrics, together with the runtime and the epoch at which
training was early stopped, with ntrain = 100000 and m = 20. Notice how ScoRuTSBI was trained in much
shorter time (and on a single CPU). Additional results are reported in Appendices G.1 and G.2.

4These models are implemented in the sbibm Python package, whose accompanying paper (Lueckmann et al., 2021) provides
additional details.
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Figure 1: C2ST for the SLCP and Two Moons benchmarks for all considered methods (ScoRuTSBI with the
Energy and Kernel Score is reported with ntrain = 100000 and m = 20); larger values are worse. For both
SLCP and Two Moons, NPE and NLE methods perform better. Moreover, for SLCP, GATSBI performs
better than ScoRuTSBI, but both perform poorly on an absolute scale. For Two Moons, ScoRuTSBI with
the Energy Score perform better than GATSBI.

Table 1: SLCP: performance metrics, runtime and early stopping epoch for GATSBI and ScoRuTSBI (with
Energy and Kernel Score), with ntrain = 100000 and m = 20. Notice how ScoRuTSBI was trained on a
single CPU, while GATSBI was trained on a GPU. The maximum number of training epochs was 20000.

C2ST ↓ Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
GATSBI 0.92 ± 0.03 0.05 ± 0.03 1.37 ± 0.30 30963 20000
Energy 0.95 ± 0.02 0.05 ± 0.02 1.35 ± 0.36 1645 2100
Kernel 0.98 ± 0.01 0.08 ± 0.05 1.46 ± 0.40 1210 1200

4.2 Shallow water model

The shallow water model is obtained as the discretization of a PDE describing the propagation of an initial
disturbance across the surface of a 1D shallow basin; the parameter θ ∈ R100 represents the depth of
the basin at equidistant points; the simulator outputs the evolution over 100 time-steps (producing a raw
observation of size 100 × 100 = 10000); then, a Fourier transform is computed and the real and imaginary
parts are concatenated and summed to Gaussian noise, leading to y ∈ R20k. More details are given in
Ramesh et al. (2022). We test here ScoRuTSBI with the Energy and Kernel score with m = 10 computed in
three different configurations: 1) on the full parameter space, 2) with patch size 10 and step 5, and 3) with
patch size 20 and step 10. Training is done on 100k samples on a NVIDIA Tesla-V100 GPU; additional
details are discussed in Appendix F.1. Among the different instances of ScoRuTSBI, the Energy Score with
patch size 20 and step 10 performed better; therefore, we report only results for that method in the main
body of the paper; results for the other configurations are given in Appendix G.3. We compare with the
results obtained by GATSBI, NPE and NLE.

Table 2: Two Moons: performance metrics, runtime and early stopping epoch for GATSBI and ScoRuTSBI
(with Energy and Kernel Score), with ntrain = 100000 and m = 20. Notice how ScoRuTSBI was trained
on a single CPU, while GATSBI was trained on a GPU. Here, no early stopping was used (the maximum
number of training epochs was 20000).

C2ST ↓ Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
GATSBI 0.82 ± 0.07 0.05 ± 0.01 0.36 ± 0.00 30232 20000
Energy 0.73 ± 0.04 0.03 ± 0.00 0.35 ± 0.00 10805 20000
Kernel 0.92 ± 0.02 0.04 ± 0.00 0.36 ± 0.00 10902 20000
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Figure 2: Shallow water model: inference results with GATSBI, NPE, NLE and ScoRuTSBI with Energy
Score with patch size 20 and step 10. The figure structure closely follows that in Ramesh et al. (2022).
Row A: Ground truth, observation and prior samples. Left: ground-truth depth profile and prior samples.
Middle: surface wave simulated from ground-truth profile as a function of position and time. Right: wave
amplitudes at three different fixed times for ground-truth depth profile (black), and waves simulated from
multiple prior samples (gray). The remaining rows refer to ScoRuTSBI with the Energy Score (with patch
size 20 and step 10), GATSBI, NPE AND NLE. For all methods, left represents posterior samples versus
ground-truth (black) depth profiles, from which it can be seen how posterior samples for ScoRuTSBI better
follow the truth with respect to GATSBI; middle represents surface wave simulated from a single posterior
sample; right represents wave amplitudes simulated from multiple posterior samples, at three different fixed
times, with black line denoting the actual observation; again, ScoRuTSBI better follows the observation,
except for t = 94.

In Figure 2, we report posterior and posterior predictive samples for all methods, together with prior samples
and the ground-truth depth profile. For ScoRuTSBI and NPE, posterior samples better follow the ground
truth profile and, similarly, posterior predictive samples better match the true observation.

In Table 3, we report the performance metrics, runtime and epoch of early stopping of the GATSBI and
ScoRuTSBI; notice how the calibration error is much smaller for the latter, whose training run faster. We
also assess calibration via Simulation Based Calibration (Talts et al., 2018, details in Appendix E.1.2) in
Figure 3. That as well highlights how the calibration of ScoRuTSBI is better than the one achieved by
GATSBI and comparable with that achieved by NPE.
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Table 3: Shallow Water model: performance metrics, runtime and early stopping epoch for GATSBI and
ScoRuTSBI with the Energy Score with patch size 20 and step 10. The latter method achieved better results
with shorter training time. We do not train GATSBI from scratch but rather relied on the trained network
obtained in Ramesh et al. (2022). The training time we report here corresponds to what is mentioned in
Ramesh et al. (2022), which used two GPUs for training (with respect to a single one for ScoRuTSBI). For
the same reason, we do not report the epoch at which GATSBI training was early stopped.

Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
Energy 0.03 ± 0.02 0.99 ± 0.53 60017 12400
GATSBI 0.12 ± 0.09 1.43 ± 0.91 ≈345600 -
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Figure 3: Shallow Water model: Simulation Based Calibration for ScoRuTSBI with Energy Score (patch
size 20 and step 10), GATSBI and NPE. Each line corresponds to a single dimension of θ and represents
the CDF of the rank of the true parameter value with respect to a set of posterior samples. A calibrated
posterior implies uniform CDF (diagonal black line, with associated 99% confidence region for that number
of samples in gray).

4.3 Noisy Camera model

Here, we consider θ ∈ R28×28 to be the images of the EMNIST dataset (Cohen et al., 2017), from which the
data y ∈ R28×28 are generated by applying some blurring (see Ramesh et al., 2022 for details). Posterior
inference corresponds therefore to Bayesian denoising. In this model, the dimension of parameter space is
larger than in typical SBI applications; additionally, the prior is defined implicitly as we can only generate
samples from it. This prevents the application of many standard SBI methods such as NLE and ABC.
The only applicable methods are here GATSBI, NPE and ScoRuTSBI; we test the former two in their
default configuration and ScoRuTSBI with the Energy and Kernel score with m = 10 in three different
configurations: 1) on the full parameter space, 2) with patch size 14 and step 7, and 3) with patch size 8 and
step 5. Training is done on 800 thousands samples on a NVIDIA Tesla-V100 GPU; additional details are
discussed in Appendix F.2. Among the different instances of ScoRuTSBI, those with patch size 8 and step 5
performed better; therefore, we report only results for ScoRuTSBI with the Kernel and Energy Score in that
configuration in the main body of the paper; results for the other configurations are given in Appendix G.4.

In Figure 4, we report posterior mean and standard deviation for a set of observations for the different
methods. The two ScoRuTSBI variations lead to cleaner image reconstruction and more meaningful
uncertainty quantification. NPE performs particularly poorly on this example; this shows how generative
networks have an advantage over normalizing flows for structured data such as images.

In Table 4, we report the performance metrics, runtime and epoch of early stopping of GATSBI and
ScoRuTSBI with the two choices of Scoring Rule; the latter leads to smaller calibration error, although
that is still quite poor in absolute terms. The R2 values here are also poor. We believe these low metric
values are due to each pixel only taking a discrete set of values between 0 and 1, with white spaces assigned
0 and darkest pixels being assigned 1. The generative network outputs is bounded in (0, 1) as it is obtained
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Figure 4: Noisy Camera model: ground truth and posterior inference with different methods, for a set
of observations (each observation corresponds to a column). The first two rows represent the ground-
truth values of θ and the corresponding observation yo. The remaining rows represent mean and Standard
Deviation (SD) for GATSBI, ScoRuTSBI with Energy and Kernel Score with patch size 8 and step 5, and
NPE. Notice how NPE performs poorly and how the posterior mean for ScoRuTSBI are neater than those
obtained with GATSBI; additionally, the SD is larger close to the boundary of the reconstructed digit (notice
the different color scale in the SD for the various methods).

via a continuous transformation from R. For the calibration error (see Appendix E.1.1), that means that a
credible interval obtained from the generative network cannot contain the extreme values 0 or 1.

Table 4: Noisy Camera model: performance metrics, runtime and early stopping epoch for GATSBI and
ScoRuTSBI with Energy and Kernel Score (patch size 8 and step 5). ScoRuTSBI achieved better performance
with shorter training time. All methods are trained on a single GPU.

Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
GATSBI 0.50 ± 0.01 0.28 ± 0.26 45398 3600
Energy 0.37 ± 0.12 0.04 ± 0.03 22633 4000
Kernel 0.36 ± 0.12 0.06 ± 0.04 22545 3200

5 Conclusions

We considered using a generative network to represent posterior distributions for Bayesian Simulation-
Based Inference and investigated training it via Scoring Rule minimization rather than in the adversarial
setup of Ramesh et al. (2022). Our approach, termed Scoring Rule Training for Simulation-Based Inference
(ScoRuTSBI) is theoretically grounded and does not suffer from training instability and biased gradients, as
does the adversarial approach.

In low-dimensional benchmarks, ScoRuTSBI has comparable performance to the adversarial approach of
Ramesh et al. (2022) (termed GATSBI), but both fall short when compared to their counterparts based on
normalizing flows. The poor performance on low-dimensional benchmarks likely stems from the specifics
of the generative networks rather than from the training algorithms, as both ScoRuTSBI and GATSBI
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have good performance on the high-dimensional examples. Therefore, we recommend the utilization of
normalizing-flow-based techniques in such scenarios.

Furthermore, we are mainly interested in the performance of our method in high-dimensional settings,
a challenging terrain for traditional simulation-based inference methods and normalizing-flow-based
approaches alike. Here, we found that ScoRuTSBI improves upon GATSBI while requiring a lower
computational cost. Moreover, ScoRuTSBI is shown to be superior to methods based on normalizing
flows (such as Neural Posterior Estimation, Greenberg et al., 2019, and Neural Likelihood Estimation,
Papamakarios et al., 2019) on one high-dimensional example (noisy camera model) while comparable on the
other (shallow water model). Additionally, traditional sampling-based SBI methods are too expensive to
tackle these examples. Consequently, we believe that ScoRuTSBI holds substantial promise for addressing
Bayesian simulation-based inference for high-dimensional models.

For ScoRuTSBI, employing patched scores (Sec. 3.1.1) leads to a small performance improvement over the
vanilla ones on the high-dimensional examples (see Appendix G.3 and G.4). While we designed the patches
to capture the data structure, the improvement we observe could simply be due to computing the Energy
and Kernel scores on lower-dimensional objects. To disentangle these two effects, we could define scoring
rules using a random subset of components of θ of the same size as the patches used above. We leave this
for future work.

Analogously to the patched scores, it may be that employing a patched discriminator (Isola et al., 2017)
improves results with GAN; however, we believe this would not completely close the performance gap,
which is mostly due to the harder optimization objective in GAN. To this point, more advanced adversarial
training algorithms than the original GAN objective (Goodfellow et al., 2014) may lead to better results;
however, for probabilistic forecasting, the results in Pacchiardi et al. (2022) show Scoring Rule minimization
to outperform state-of-the-art adversarial approach, while being cheaper and easier to train. We expect the
same to hold for simulation-based inference.

In the present work, we did not provide any theoretical guarantees for ScoRuTSBI; it could be of interest to
prove a generalization bound between the empirical (Eq. 5) and population (Eq. 4) objectives, or a consistency
result for the minimizer of Eq. (5), similarly to what done for probabilistic forecasting in Pacchiardi et al.
(2022) and for GATSBI in Wang & Ročková (2022). We leave these extensions for future work.

Finally, using a learned kernel to train a generative network via Kernel Score minimization could make the
method more flexible. This could be done by learning the kernel adversarially (as in MMD GAN, Bińkowski
et al., 2018), which however would break the ease of optimization which is the main advantage of the Scoring
Rule approach. We hope that future research will address achieving both these goals together.
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A Sequential training

In the main text, we have considered the training data from the simulator model (θi,yi)ni=1 to be generated
independently from the observation on which inference is performed; under this assumption, we have dis-
cussed ways to learn posterior approximations valid for all values of y such that p(y) > 0. Once the neural
network is trained, therefore, inference can be performed for as many observations as we wish. This is a
so-called amortized setup (Radev et al., 2020).

However, practitioners may require posterior inference for a single observation yo. What they are interested
in, therefore, is the quality of the approximation for values of θ with large posterior density for the observed
yo. In this case, generating training samples independently from yo may be wasteful: a more efficient method

15

https://openreview.net/forum?id=kR1hC6j48Tp
https://openreview.net/forum?id=kR1hC6j48Tp
https://openreview.net/forum?id=D2cS6SoYlP


Under review as submission to TMLR

(in terms of simulations from the model p(·|θ)) would generate more training samples θi’s close to the modes
of the true posterior, as those convey more information on the precise posterior shape. This can be done in a
sequential fashion: given a small amount of training data, a first approximation Qϕ1 is obtained; from that,
additional training samples (θi,yi) are generated by θi ∼ Qϕ1(·|yo),yi ∼ P (·|θi) and used to (re-)train an
approximation Qϕ2 . This procedure is iterated several times, allowing the training samples to progressively
focus around the posterior modes and thus refining the approximation (Lueckmann et al., 2017; Greenberg
et al., 2019).

However, naively following that strategy is incorrect. To see this, assume that, at the second round, we
just train on samples drawn from the approximate posterior Π̃ = Qϕ1(·|yo) obtained at the first round.
Such a sampled pair (θi,yi) was drawn from a joint density π̃(θi)p(yi|θi) = p̃(yi)π̃(θi|yi), where π̃ on the
left-hand side of the equality is the density of the proposal Π̃ and the quantities on the right-hand side are
univocally defined by the left-hand side. The optimal ϕ⋆ obtained via SR-minimization thus corresponds to
qϕ⋆(·|y) = π̃(·|y), which is not the correct target.

The traditional way to fix this entails introducing importance weights in the training objective (Eq. 4):

Eθ∼ΠEY∼P (·|θ)S(Qϕ(·|Y),θ) = Eθ∼Π̃
π(θ)
π̃(θ)EY∼P (·|θ)S(Qϕ(·|Y),θ).

As π̃(θ) cannot be evaluated, a solution is to fit a probabilistic classifier (at each round of the sequential
procedure) to samples from π(θ) and π̃(θ) and use it to estimate the ratio π(θ)

π̃(θ) . This classifier is not required
for the normalizing flows approaches, where the ratio can be evaluated explicitly (Lueckmann et al., 2017;
Greenberg et al., 2019) (unless the prior π is also defined implicitly, as in the camera model example in
Section 4). For GATSBI, a similar importance weights approach requires additionally to estimate the ratio
p̃(y)
p(y) (Ramesh et al., 2022).

An alternative approach, which was applied to GATSBI approach in Ramesh et al. (2022), involves correcting
the distribution of the variable Z which is transformed by the generative network. Specifically, Ramesh et al.
(2022) showed that π(θ|y) = π̃(θ|y)w(θ,y) ⇐⇒ π̃(θ|y) = π(θ|y)(w(θ,y))−1, where w(θ,y) = π(θ)

π̃(θ)
p̃(y)
p(y) .

Therefore you can consider a modified approximation Q̃ϕ(·|Y) and a new training objective:

EY∼P̃Eθ∼Π̃(·|Y)S(Q̃ϕ(·|Y),θ) = Eθ∼Π̃EY∼P (·|θ)S(Q̃ϕ(·|Y),θ) (9)

whose minimization leads to Q̃ϕ(·|Y) = Π̃(·|Y). By setting

Q̃ϕ(·|Y) = Qϕ(·|Y)(w(θ,y))−1,

you ensure Qϕ(·|Y) = Π(·|Y). To train ϕ using the objective in Eq. (9), draws from Q̃ϕ(·|Y) are required;
those can be obtained by sampling z ∼ P̃z, whose density is p̃z(z) = pz(z)(w(gϕ(z,y),y))−1, and computing
θ = gϕ(z,y), which is thus a sample from Q̃ϕ(·|Y). Compared to using importance weights, the variance of
the training objective is here smaller. However, rejection sampling or MCMC are needed to sample from P̃z,
and two ratios have to be estimated via probabilistic classifiers ( p̃(y)

p(y) and π(θ)
π̃(θ) ), making this strategy more

expensive than using importance weights

On the examples considered in Ramesh et al. (2022), the sequential approaches did not perform better than
the amortized one, mainly due to the additional computational cost associated to estimating the ratios. For
that reason, we did not investigate these methods for our approach.

B f -GAN

The problem in Eq. (7) can be obtained as a relaxation of the following one:

arg min
ϕ

EY∼P [DJS(Π(·|Y)∥Qϕ(·|Y))] ,

where DJS is the Jensen-Shannon divergence. The objective in the above problem is 0 if and only if
Π(·|y) = Qϕ(·|y) for each y : p(y) > 0. We report here a more general result by considering a class of
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divergences known as f -divergences, to which the Jensen-Shannon one belongs. We follow Nowozin et al.
(2016) in doing so5.

By temporarily discarding the dependence on Y and considering a reference distribution µ with resepct to
which P and Qϕ are absolutely continuous, an f -divergence is defined as:

Df (P ||Qϕ) =
∫
qϕ(θ)f

(
p(θ)
qϕ(θ)

)
dµ(θ),

where f : R+ → R is a convex, lower-semicontinuous function for which f(1) = 0, and where qϕ and p are
densities of Qϕ and P with respect to µ. We want now to fix ϕ by:

arg min
ϕ

Df (P ||Qϕ). (10)

Let now domf denote the domain of f . By exploiting the Fenchel conjugate f∗(t) = supu∈domf
{ut− f(u)},

Nowozin et al., 2016 obtain the following variational lower bound:

Df (P ||Qϕ) ≥ sup
c∈C

(
Eθ∼P c(θ)− Eθ̃∼Qϕ

f∗(c(θ̃))
)
,

which holds for any set of functions C from Y to domf∗ . By considering a parametric set of functions
C = {cψ : Y → domf∗ , ψ ∈ Ψ}, a surrogate to the problem in Eq. (10) becomes:

min
ϕ

max
ψ

(
Eθ∼P cψ(θ)− Eθ̃∼Qϕ

f∗(cψ(θ̃))
)
.

By reintroducing the dependence on Y, the above generalizes to:

min
ϕ

max
ψ

EY∼P

(
Eθ∼P (·|Y)cψ(θ,Y)− Eθ̃∼Qϕ(·|Y)f

∗(cψ(θ̃,Y))
)
, (12)

where now the function cψ also depends on the value of Y.

In practice, cψ is parametrized by a Neural Network. To solve the problem in Eq. (12), people usually employ
alternating optimization over ϕ and ψ by following stochastic gradients; this technique is called f -GAN. With
a finite number of steps over ψ, this leads to biased gradient estimates for ϕ. In Algorithm 2, we show a single
epoch (i.e. a loop on the full training dataset) of conditional f -GAN training; for simplicity, we consider
here using a single pair (θi,yi) to estimate the expectations in Eq. (12) (i.e., the batch size is 1), but using
a larger number of samples is possible. Notice how in Algorithm 2 we update the critic once every generator
update; however, multiple critic updates can be performed at each generator update.

Algorithm 2 Single epoch conditional f -GAN training.
Require: Parametric map gϕ, critic network cψ, learning rates ϵ, γ.

for each training pair (θi,yi) do
Sample z ∼ Pz
Obtain θ̃ϕi = gϕ(z,yi)
Set ψ ← ψ + γ · ∇ψ

[
cψ(θi,yi)− f∗(cψ(θ̃ϕi ,yi))

]
Set ϕ← ϕ− ϵ · ∇ϕ

[
− f∗(cψ(θ̃ϕi ,yi))

]
end for

C Patched Scoring Rules

As mentioned in Section 3.1.1, the definition of patched SR given in Eq. (3) for X representing values on a
1D spatial grid can be generalised to n-dimensional spatial grids, with n > 1, by considering sliding windows

5An analogous procedure allows to obtain a tractable training objective for the 1-Wasserstein distance as well (Arjovsky
et al., 2017)
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Stot = S1 + S2 + S3

Figure 5: Patched SR: a SR for multivariate data is computed on localized patches, and the resulting values
are summed. From Pacchiardi et al. (2022).

of dimension n. For instance, for X ∈ Rd1 × Rd2 , the definition can be generalised to:

S̃p =
⌈ d1−s1

δ1+1 ⌉∑
j=1

⌈ d2−s2
δ2+1 ⌉∑
k=1

S(P |j·s1:j·s1+δ1−1,k·s2:k·s2+δ2−1,xj·s1:j·s1+δ1−1,k·s2:k·s2+δ2−1),

where s1 and s2 are the patch step for dimensions 1 and 2 respectively, and δ1 and δ2 are the patch sizes for
dimensions 1 and 2. A graphical representatio can be seen in Fig. 5

D Unbiased gradient estimates

We discuss here how we can obtain unbiased gradient estimates for the Scoring Rule training objective in
Eq. (5) with respect to the parameters of the generative network ϕ.

In order to do that, we first discuss how to obtain unbiased estimates of the SRs we use across this work.
Then, we show how those allow one to obtain unbiased gradient estimates. The steps we follow are the same
as in Pacchiardi et al. (2022) for the setting of probabilistic forecasting.

D.1 Unbiased scoring rule estimates

Assume we have draws x̃j ∼ P, j = 1, . . . ,m.

Energy Score An unbiased estimate of the energy score can be obtained by unbiasedly estimating the
expectations in S

(β)
E (P,x) in Eq. (1):

Ŝ
(β)
E (P,x) = 2

m

m∑
j=1
∥x̃j − x∥β2 −

1
m(m− 1)

m∑
j,k=1
k ̸=j

∥x̃j − x̃k∥β2 .
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Kernel Score Similarly to the energy score, we obtain an unbiased estimate of Sk(P,x) in Eq. (2) by:

Ŝk(P,x) = 1
m(m− 1)

m∑
j,k=1
k ̸=j

k(x̃j , x̃k)− 2
m

m∑
j=1

k(x̃j ,x).

Sum of SRs When adding multiple SRs, an unbiased gradient of the sum can be obtained by adding
unbiased estimates of the two addends.

D.2 Unbiased estimate of the training objective

Recall now that we want to solve:

ϕ̂ := arg min
ϕ

J(ϕ), J(ϕ) = 1
n

n∑
i=1

S(Qϕ(·|yi),θi). (13)

To do this, we exploit Stochastic Gradient Descent (SGD), which requires unbiased estimates of J(ϕ). Notice
how, for all the Scoring Rules used across this work, as well as any weighted sum of those, we can write:
S(P,x) = EX̃,X̃′∼P

[
h(X̃, X̃′,x)

]
for some function h; namely, the SR is defined through an expectation over

(possibly multiple) samples from P . That is the form exploited in Appendix D.1 to obtain unbiased SR
estimates.

Now, we will use this fact to obtain unbiased estimates for the objective in Eq. (13).

J(ϕ) = 1
n

n∑
i=1

Eθ̃,θ̃′∼Qϕ(·|yi)
[
h(θ̃, θ̃′,θi)

]
= 1
n

n∑
i=1

EZ,Z′∼Pz [h(gϕ(Z,yi), gϕ(Z′,yi),θi)] ,

where we used the fact that Qϕ is the distribution induced by a generative network with transformation gϕ;
this is called the reparametrization trick (Kingma & Welling, 2014). Now:

∇ϕJ(ϕ) = ∇ϕ
1
n

n∑
i=1

EZ,Z′∼Pz [h(gϕ(Z,yi), gϕ(Z′,yi),θi)]

= 1
n

n∑
i=1

EZ,Z′∼Pz [∇ϕh(gϕ(Z,yi), gϕ(Z′,yi),θi)] .

In the latter equality, the exchange between expectation and gradient is not a trivial step, due to the non-
differentiability of functions (such as ReLU) used in gϕ. Fortunately, Theorem 5 in Bińkowski et al. (2018)
proved that to be valid almost surely with respect to a measure on the space Φ to which the weights of the
neural network ϕ belong, under mild conditions on the NN architecture.

We can now easily obtain an unbiased estimate of the above using samples zi,j ∼ Pz, j = 1, . . . ,m, for each
i ∈ {1, . . . , n}. Additionally, Stochastic Gradient Descent usually considers a small batch of training samples
at each step, obtained by taking a random subset (or batch) B ⊆ {1, 2, . . . , n}. Therefore, the following
unbiased estimate of ∇ϕJ(ϕ) can be obtained:

∇̂ϕJ(ϕ) = 1
|B|

∑
i∈B

1
m(m− 1)

m∑
j,k=1
j ̸=k

∇ϕh(gϕ(zi,j ; yi), gϕ(zi,k; yi),θi).

In practice, the above is obtained by computing the gradient of the following unbiased estimate of J(ϕ) via
autodifferentiation libraries (see for instance Paszke et al., 2019):

Ĵ(ϕ) = 1
|B|

∑
i∈B

1
m(m− 1)

m∑
j,k=1
j ̸=k

h(gϕ(zi,j ; yi), gϕ(zi,k; yi),θi).
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In Algorithm 1, we train a generative network for a single epoch using a scoring rule S for which unbiased
estimators can be obtained by using m > 1 samples from Qϕ. Compare it with the adversarial approach
reported in Algorithm 2; in the SR approach, multiple samples from the generative networks are required at
each step (m > 1), while a unique one is enough for the adversarial approach. Conversely, the SR approach
does not require an additional critic network and learning rate γ and is simpler and faster to train (see the
results in Sec. 4 and Pacchiardi et al., 2022 for more details). As in Algorithm 2 , we use a single pair (θi,yi)
to estimate the gradient.

E Details on performance measures

Here, we review the measures of performance used in the empirical studies. All these metrics are for univariate
θ; when handling multivariate θ, we therefore compute them on each dimension separately and report the
average.

E.1 Calibration measures

Here, we review two measures of calibration of a probabilistic forecast. Both measures consider the univariate
marginals of the approximate posterior distribution Qϕ(·|yi); for the component l, let us denote it by
Qϕ,l(·|yi). We follow Radev et al. (2020) in defining these measures and report them here for ease of
reference.

E.1.1 Calibration error

The calibration error (Radev et al., 2020) quantifies how well the credible intervals of the approximate
posteriors Qϕ,l(·|yi) for different yi match the empirical distribution of θi,l. Specifically, let α(l) be the
proportion of times the verification θi,l falls into an α-credible interval of Qϕ,l(·|yi), computed over all values
of i. If the marginal forecast distribution is perfectly calibrated for component l, α(l) = α for all values of
α ∈ (0, 1).

Therefore, we define the calibration error as the median of |α(l) − α| over 100 equally spaced values of
α ∈ (0, 1). Therefore, the calibration error is a value between 0 and 1, where 0 denotes perfect calibration.

In practice, the credible intervals of the predictive are estimated using a set of samples from Qϕ(·|yi).

The calibration error can be related to the strong calibration of Cockayne et al. (2022), which implies correct
coverage for credible sets (see their Remark 2.9).

E.1.2 Simulation-Based Calibration (SBC)

SBC (Talts et al., 2018) tests a self-consistency property of the Bayesian posterior in a posterior approxi-
mation. In fact, by assuming for simplicity that densities with respect to the Lebesgue measure exist, the
Bayesian posterior satisfies the following equality:

π(θ) =
∫
p(θ, θ̃, ỹ)dỹdθ̃ =

∫
p(θ, ỹ | θ̃)π(θ̃)dỹdθ̃ =

∫
π(θ | ỹ)p(ỹ | θ̃)π(θ̃)dỹdθ̃ (14)

in practice, this means that, if you sample from the prior θ̃ ∼ π, use that to generate a sample from the
likelihood ỹ ∼ p(·|θ) and use the latter in turn to generate a posterior sample θ ∼ π(·|ỹ), θ is distributed
according to the prior π(θ). If you repeat the same procedure by sampling θ from an approximate posterior,
say θ ∼ Qϕ(·|ỹ), then θ ∼ π is a necessary condition for qϕ(·|y) = π(·|y), i.e. for the approximate posterior
to be exact. Notice, however, how this is not a sufficient condition: the equality can be satisfied even if
qϕ(·|y) is different from the posterior (it is in fact trivially satisfied qϕ(·|y) = π, i.e., when the approximate
posterior corresponds to the prior).

A way to empirically test the above property involves, for a given prior sample θ̃, drawing from the likelihood
multiple times yi ∼ p(·|θ̃), i = 1, . . . , N and, for each of these, obtaining a single approximate posterior
sample θi ∼ qϕ(·|yi). Given these, you compute the rank of θ̃: r =

∑N
i=1 1[θi<θ̃] (this only makes sense
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if θ is univariate; otherwise, you compute the rank independently for each dimension of θ). If θi’s were
effectively distributed from the prior, r is a uniform random variable on {1, 2, . . . , N}. Therefore, repeating
this procedure for different prior samples θ̃ and visualizing the distribution of the resulting r’ s (for instance,
through a histogram or by plotting the CDF) gives an indication of whether an equivalence such as Eq. (14)
is satisfied for qϕ. See Algorithm 2 in Radev et al. (2020) for a precise description of this procedure, which
goes under the name of Simulation-Based Calibration (SBC). SBC tests the weak calibration of Cockayne
et al. (2022); additionally, it is closely related to the concept of probabilistic calibration and rank histogram
in the framework of probabilistic forecasting (Gneiting et al., 2007).

E.2 Continuous Ranked Probability Score (CRPS)

For a continuous scalar variable θ and a distribution Qϕ, the CRPS (Gneiting & Raftery, 2007) is a strictly
proper Scoring Rule defined by considering the cumulative distribution function FQϕ

of Qϕ and by computing:

SCRPS(Qϕ, θ) =
∫ ∞

−∞
(FQϕ

(θ̃)− 1{θ̃ ≥ θ})2dθ̃. (15)

In general, analytically computing the integral in Eq. (15) is undoable, except in simple cases such as
Gaussian distributions. However, the following alternative formulation (Eq. 17 in Székely & Rizzo, 2005)
can be estimated using samples from Qϕ:

SCRPS(Qϕ, θ) = 2 · E
[
|θ̃ − θ|2

]
− E

[
|θ̃ − θ̃′|2

]
, θ̃ ⊥⊥ θ̃′ ∼ Qϕ. (16)

From Eq. (16), it is clear how the CRPS is a specific case of the Energy Score (Section 3.1.1) for scalar
variables.

In evaluating the approximate posterior distribution Qϕ(·|yi) obtained from one of the various SBI methods,
we draw a set of samples from Qϕ(·|yi) and estimate the CRPS for each dimension of the parameter space
using Eq. (16); we then compute the average and standard deviation over the various dimensions and then
average over various observations yi. Recall how the pairs (θi,yi)ni=1 are generated from the prior θi ∼ Π
and the model yi ∼ P (·|θi), which can also be considered as samples from the data marginal yi ∼ P and
the posterior θi ∼ Π(·|yi). Hence, the marginal of the exact posterior minimizes the expected CRPS in
each dimension, of which the empirical average over various dimensions is a good estimate. This metric is
therefore smaller for methods which approximate better the marginals of the true posterior.

F Experimental details

Precise configuration details can be found in the code accompanying the paper <link removed for
anonymity>.

F.1 Shallow Water Model

We train all methods for at most 40k epochs on 100k training samples. For ScoRuTSBI, we tried both m = 3
and m = 10, with the latter resulting in improved performance; all the results reported in the paper refer to
m = 10.

GATSBI used a batch size of 125 (as in Ramesh et al., 2022), while ScoRuTSBI used a batch size of 60
(otherwise, GPU memory overflow occurs).

Recall that the parameters θ ∈ R100 represent the depth of a 1-dimensional water basin at equidistant points.
When using the patched SR configuration, we consider patches of size patch_size disposed at a distance
patch_step from each other. Therefore, the number of patches is

n_patches = (100− patch_size)/patch_step + 1.

We used therefore the following patched SR configurations on the 1D grid:
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1. patch_size = 10 and patch_step= 5, resulting in n_patches = 19.

2. patch_size = 20 and patch_step= 10, resulting in n_patches = 9.

The patched SR is added to the overall score over the full parameter space.

The training time (per epoch) is roughly constant in the un-patched and the two different patched configu-
rations.

F.2 Camera Model

We train all methods for at most 10k epochs on 800k training samples. For ScoRuTSBI, we tried both m = 3
and m = 10, with the latter resulting in better performance.

Both ScoRuTSBI and GATSBI methods used a batch size of 800 as in Ramesh et al. (2022).

Here, the parameters θ are on a 28× 28 square grid. When using the patched SR configuration, we consider
patches of size patch_size×patch_size disposed at a distance patch_step from each other in both spatial
dimensions. The number of patches is obtained as

n_patches = [(28− patch_size)/patch_step + 1]2.

We used therefore the following patched SR configurations on the 2D grid:

1. patch_size = 14 and patch_step = 7, resulting in n_patches = 9.

2. patch_size= 8 and patch_step = 5, resulting in n_patches = 25.

The patched SR is added to the overall score over the full parameter space.

The training time (per epoch) is roughly constant in the un-patched and the two different patched configu-
rations.

G Additional experimental results on models considered in the main body
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Figure 6: C2ST for the SLCP and Two Moons benchmarks for ScoRuTSBI with the Energy and Kernel
Score and GATSBI; larger values are worse. For ScoRuTSBI, we report results for different choices of the
number of generative network samples m used in training. SLCP: GATSBI performs better, but poorly on
an absolute scale. Two Moons: ScoRuTSBI with the Energy Score perform better. See Fig 1 for results on
all considered methods.

G.1 SLCP

The left panel of Fig. 6 reports the C2ST for multiple values of m and ntrain for ScoRuTSBI with the Energy
and the Kernel Score, together with values obtained with GATSBI.

In Figure 7, we report the posterior samples obtained with the ScoRuTSBI with the Energy Score withm = 20
and compare them with the samples from the reference posterior. The corresponding plot for GATSBI is
shown in Fig. 8. In Figure 9, we report Simulation-Based Calibration results (see Appendix E.1.2): for each
dimension of θ, the corresponding histogram represents the distribution of the rank of the true parameter
value in a set of samples from the approximate posterior. We show that for GATSBI and ScoRuTSBI with
the Energy Score with m = 20.

Tables 5, 6, 7, 8 and 9 report the different performance metrics, the runtime, and the early stopping epoch for
all methods (columns) and all number of training samples (rows); for Energy and Kernel Score, the number
in the column header denotes the number of draws from the generative network during training for each yi
in the training batch.

Table 5: SLCP: classification-based two-sample test (C2ST); lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

10000 0.94 ± 0.03 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
100000 0.92 ± 0.03 0.97 ± 0.01 0.97 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

Table 6: SLCP: calibration error; lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.10 ± 0.06 0.11 ± 0.07 0.13 ± 0.05 0.04 ± 0.01 0.18 ± 0.06 0.17 ± 0.10 0.17 ± 0.09 0.08 ± 0.06 0.07 ± 0.05

10000 0.07 ± 0.06 0.05 ± 0.04 0.05 ± 0.04 0.07 ± 0.05 0.06 ± 0.04 0.09 ± 0.07 0.08 ± 0.06 0.09 ± 0.07 0.09 ± 0.07
100000 0.05 ± 0.03 0.06 ± 0.04 0.06 ± 0.03 0.05 ± 0.03 0.05 ± 0.02 0.09 ± 0.07 0.08 ± 0.05 0.07 ± 0.03 0.08 ± 0.05
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Figure 7: SLCP: posterior samples for ScoRuTSBI with the Energy Score trained with m = 20 and refer-
ence posterior samples. Diagonal panels represent univariate marginals, while off-diagonals panels represent
bivariate marginals.
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Figure 8: SLCP: posterior samples for GATSBI and reference posterior samples. Diagonal panels represent
univariate marginals, while off-diagonals panels represent bivariate marginals.

25



Under review as submission to TMLR

0 250 500 750 1000
Rank statistic

1

0 250 500 750 1000
Rank statistic

2

0 250 500 750 1000
Rank statistic

3

0 250 500 750 1000
Rank statistic

4

0 250 500 750 1000
Rank statistic

5

(a) GATSBI

0 250 500 750 1000
Rank statistic

1

0 250 500 750 1000
Rank statistic

2

0 250 500 750 1000
Rank statistic

3

0 250 500 750 1000
Rank statistic

4

0 250 500 750 1000
Rank statistic

5

(b) ScoRuTSBI WITH Energy Score, m = 20

Figure 9: SLCP: Simulation-Based Calibration results represented as rank histograms; for each dimension
of θ, the corresponding histogram represents the distribution of the rank of the true parameter value in a
set of samples from the approximate posterior. If the approximate posterior is calibrated, histogram bars
should be in the grey region with 99% probability.

Table 7: SLCP: CRPS; smaller is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 1.57 ± 0.27 1.80 ± 0.41 1.86 ± 0.42 1.25 ± 0.25 1.92 ± 0.49 1.91 ± 0.48 1.92 ± 0.46 1.32 ± 0.31 1.29 ± 0.27

10000 1.37 ± 0.31 1.50 ± 0.35 1.48 ± 0.35 1.51 ± 0.36 1.49 ± 0.36 1.55 ± 0.39 1.55 ± 0.39 1.56 ± 0.39 1.57 ± 0.40
100000 1.37 ± 0.30 1.45 ± 0.36 1.41 ± 0.36 1.38 ± 0.36 1.35 ± 0.36 1.47 ± 0.42 1.49 ± 0.40 1.47 ± 0.38 1.46 ± 0.40

Table 8: SLCP: runtime in seconds; recall that GATSBI was trained on GPU while ScoRuTSBI were trained
on a single CPU.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 4796 654 692 620 885 515 531 682 1330

10000 9671 651 658 639 720 636 658 655 697
100000 30963 1060 1160 1305 1645 1245 1044 1057 1210
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Table 9: SLCP: epoch at which early stopping occurred; the max number of training epochs was 20000.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 20000 1000 1000 1000 1100 1100 1000 1000 1000

10000 20000 1100 1000 1100 1100 1100 1100 1000 1000
100000 20000 1000 1200 1500 2100 1600 1100 1000 1200
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G.2 Two Moons

The right panel of Fig. 6 reports the C2ST for multiple values of m and ntrain for ScoRuTSBI with the
Energy and the Kernel Score, together with values obtained with GATSBI.

In Figure 10, we report posterior samples obtained with ScoRuTSBI with the Energy Score with m = 20
and compare them with samples from the reference posterior. The corresponding plot for GATSBI is shown
in Fig. 11. In Figure 12, we report Simulation-Based Calibration results (see Appendix E.1.2): for each
dimension of θ, the corresponding histogram represents the distribution of the rank of the true parameter
value in a set of samples from the approximate posterior. We show that for GATSBI and for ScoRuTSBI
with the Energy Score with m = 20.

Tables 10, 11, 12, 13 and 14 report the different performance metrics, the runtime and the early stopping
epoch for all methods (columns) and all number of training samples (rows); for Energy and Kernel Score,
the number in the column header denotes the number of draws from the generative network during training
for each yi in the training batch.

Table 10: Two Moons: classification-based two-sample test (C2ST); lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.85 ± 0.05 0.85 ± 0.06 0.87 ± 0.05 0.85 ± 0.03 0.85 ± 0.04 0.94 ± 0.03 0.94 ± 0.02 0.93 ± 0.03 0.96 ± 0.02

10000 0.81 ± 0.03 0.79 ± 0.04 0.76 ± 0.05 0.76 ± 0.04 0.74 ± 0.07 0.92 ± 0.03 0.93 ± 0.01 0.91 ± 0.03 0.93 ± 0.01
100000 0.82 ± 0.07 0.79 ± 0.03 0.74 ± 0.06 0.73 ± 0.05 0.73 ± 0.04 0.90 ± 0.04 0.92 ± 0.03 0.90 ± 0.02 0.92 ± 0.02

Table 11: Two Moons: calibration error; lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.06 ± 0.01 0.04 ± 0.01 0.08 ± 0.02 0.06 ± 0.01 0.05 ± 0.00 0.04 ± 0.00 0.05 ± 0.01 0.07 ± 0.01 0.04 ± 0.01

10000 0.05 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.03 0.03 ± 0.01 0.05 ± 0.02 0.06 ± 0.00 0.02 ± 0.01 0.05 ± 0.00
100000 0.05 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.03 ± 0.02 0.03 ± 0.00 0.08 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 0.04 ± 0.00

Table 12: Two Moons: CRPS; smaller is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.39 ± 0.00 0.39 ± 0.00 0.40 ± 0.01 0.40 ± 0.01

10000 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.35 ± 0.00 0.35 ± 0.00 0.36 ± 0.00 0.37 ± 0.00 0.36 ± 0.00 0.36 ± 0.00
100000 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.35 ± 0.00 0.35 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00
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Figure 10: Two Moons: posterior samples for ScoRuTSBI with the Energy Score trained with m = 20
and reference posterior samples. Diagonal panels represent univariate marginals, while off-diagonal panels
represent bivariate marginals.

Figure 11: Two Moons: posterior samples for GATSBI and reference posterior samples. Diagonal panels
represent univariate marginals, while off-diagonal panels represent bivariate marginals.
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Figure 12: Two Moons: Simulation-Based Calibration results represented as rank histograms; for each
dimension of θ, the corresponding histogram represents the distribution of the rank of the true parameter
value in a set of samples from the approximate posterior. If the approximate posterior is calibrated, histogram
bars should be in the grey region with 99% probability.

Table 13: Tow Moons: runtime in seconds; recall that GATSBI was trained on GPU while ScoRuTSBI were
trained on a single CPU.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 4799 578 690 759 896 585 613 651 852

10000 8163 1775 1917 2415 3228 1708 1883 2329 3267
100000 30232 9266 9388 9903 10805 9283 9479 9859 10902

Table 14: Two Moons: epoch at which early stopping occurred; the max number of training epochs was
20000.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 20000 20000 20000 20000 20000 20000 20000 20000 20000

10000 20000 20000 20000 20000 20000 20000 20000 20000 20000
100000 20000 20000 20000 20000 20000 20000 20000 20000 20000
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G.3 Shallow Water Model

In Figure 13, we show results, analogously to what done in Figure 2, for all methods. Table 15 reports the
different performance metrics, the runtime and the early stopping epoch for all methods. Finally, Figure 14
reports Simulation-Based Calibration results for all tested configurations of ScoRuTSBI.

Table 15: Shallow Water model: performance metrics, runtime and early stopping epoch for all methods.
We do not train GATSBI from scratch but rather relied on the trained network obtained in Ramesh et al.
(2022). The training time we report here is what is mentioned in Ramesh et al. (2022), which used two GPUs
for training (in contrast, we used a single GPU for ScoRuTSBI). For the same reason, we do not report the
epoch at which GATSBI training was early stopped.

Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
Energy 0.03 ± 0.02 1.46 ± 0.34 51328 10400
Energy patched 10 20 0.03 ± 0.02 0.99 ± 0.53 60017 12400
Energy patched 5 10 0.03 ± 0.02 1.54 ± 0.37 49626 9600
Kernel 0.11 ± 0.05 1.24 ± 0.90 39608 7800
Kernel patched 10 20 0.09 ± 0.04 1.40 ± 0.86 47642 9000
Kernel patched 5 10 0.09 ± 0.04 1.29 ± 0.65 44590 9200
GATSBI 0.12 ± 0.09 1.43 ± 0.91 ≈345600 -
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Figure 13: Shallow water model: inference results with all methods. See Figure 2 for a description of the
different panels.
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Figure 14: Shallow Water model: Simulation Based Calibration for ScoRuTSBI using different scoring rules.
Each line corresponds to a single dimension of θ and represents the CDF of the rank of the true parameter
value with respect to a set of posterior samples. A calibrated posterior implies uniform CDF (diagonal black
line, with associated 99% confidence region for the considered number of samples in gray).

G.4 Camera model

In Figure 15, we show results, analogously to what is done in Figure 4, for all methods. Table 16 reports
the different performance metrics, runtime, and early stopping epoch for all methods.
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Figure 15: Noisy Camera model: ground truth and posterior inference with all methods, for a set of obser-
vations (each observation corresponds to a column). The first two rows represent the ground truth values of
θ and the corresponding observation yo. The remaining rows represent the mean and Standard Deviation
(SD) for all methods.
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Table 16: Noisy Camera model: performance metrics, runtime and early stopping epoch for all methods.

Cal. Err. ↓ CRPS ↓ Runtime (sec) Early stopping epoch
GATSBI 0.50 ± 0.01 0.28 ± 0.26 45398 3600
Energy 0.36 ± 0.12 0.05 ± 0.04 24555 4200
Energy patched 5 8 0.37 ± 0.12 0.04 ± 0.03 22633 4000
Energy patched 7 14 0.37 ± 0.12 0.05 ± 0.03 24033 3600
Kernel 0.33 ± 0.15 0.05 ± 0.03 21862 3200
Kernel patched 5 8 0.36 ± 0.12 0.06 ± 0.04 22545 3200
Kernel patched 7 14 0.38 ± 0.11 0.07 ± 0.04 20605 3600

H Experiments on additional low-dimensional benchmarks

Here, we report results on three additional low-dimensional benchmark models from Lueckmann et al. (2021):
the Gaussian Mixture, Gaussian Linear and Bernoulli GLM models. The setup is the same as considered
in Section 4.1 in the main body. We obtained here results with ScoRuTSBI with the Energy and Kernel
Score and with GATSBI; we also report the C2ST performance results for the Flow Matching method of
Wildberger et al. (2023). All methods are tested with 1000, 10000 and 100000 samples from the simulator
model. Moreover, we evaluate ScoRuTSBI wth the Energy and Kernel score with m = 3, 5, 10 and 20.
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(a) Results with ScoRuTSBI with the Energy and Kernel Score and GATSBI.
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(b) Results with ScoRuTSBI with the Energy and Kernel Score, GATSBI and Flow Matching.

Figure 16: C2ST for the Gaussian Mixture, Gaussian Linear and Bernoulli GLM benchmarks for ScoRuTSBI
with the Energy and Kernel Score, GATSBI and Flow Matching; larger values are worse. For ScoRuTSBI,
we report results for different choices of the number of generative network samples m used in training.

H.1 Gaussian Mixture

The left panel of Fig. 16 reports the C2ST for multiple values of m and ntrain for ScoRuTSBI with the
Energy and the Kernel Score, together with values obtained with GATSBI and Flow Matching.

In Figure 17, we report the posterior samples obtained with the ScoRuTSBI with the Energy Score with
m = 20 and compare them with the samples from the reference posterior. The corresponding plot for
GATSBI is shown in Fig. 18.
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Figure 17: Gaussian Mixture: posterior samples for ScoRuTSBI with the Energy Score trained with m = 20
and reference posterior samples. Diagonal panels represent univariate marginals, while off-diagonals panels
represent bivariate marginals.

Figure 18: Gaussian Mixture: posterior samples for GATSBI and reference posterior samples. Diagonal
panels represent univariate marginals, while off-diagonals panels represent bivariate marginals.
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Tables 17, 18, 19, 20 and 21 report the different performance metrics, the runtime, and the early stopping
epoch for all methods (columns) and all number of training samples (rows); for Energy and Kernel Score,
the number in the column header denotes the number of draws from the generative network during training
for each yi in the training batch.

Table 17: Gaussian Mixture: classification-based two-sample test (C2ST); lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.88 ± 0.04 0.84 ± 0.03 0.85 ± 0.03 0.84 ± 0.03 0.84 ± 0.04 0.85 ± 0.03 0.87 ± 0.05 0.87 ± 0.03 0.85 ± 0.03

10000 0.86 ± 0.03 0.83 ± 0.02 0.83 ± 0.03 0.83 ± 0.03 0.82 ± 0.03 0.85 ± 0.04 0.86 ± 0.04 0.86 ± 0.04 0.85 ± 0.04
100000 0.91 ± 0.05 0.83 ± 0.03 0.83 ± 0.03 0.83 ± 0.03 0.81 ± 0.03 0.87 ± 0.04 0.86 ± 0.05 0.86 ± 0.03 0.84 ± 0.05

Table 18: Gaussian Mixture: calibration error; lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.05 ± 0.00 0.29 ± 0.02 0.28 ± 0.03 0.30 ± 0.00 0.31 ± 0.03 0.25 ± 0.04 0.22 ± 0.02 0.22 ± 0.03 0.19 ± 0.01

10000 0.32 ± 0.03 0.30 ± 0.00 0.32 ± 0.00 0.31 ± 0.03 0.32 ± 0.01 0.25 ± 0.01 0.19 ± 0.01 0.20 ± 0.01 0.21 ± 0.01
100000 0.07 ± 0.03 0.31 ± 0.03 0.33 ± 0.00 0.32 ± 0.03 0.35 ± 0.00 0.18 ± 0.02 0.22 ± 0.04 0.19 ± 0.02 0.19 ± 0.02

Table 19: Gaussian Mixture: CRPS; smaller is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.73 ± 0.10 0.48 ± 0.01 0.53 ± 0.03 0.47 ± 0.04 0.48 ± 0.01 0.57 ± 0.06 0.51 ± 0.02 0.51 ± 0.00 0.51 ± 0.00

10000 0.53 ± 0.05 0.48 ± 0.02 0.49 ± 0.00 0.46 ± 0.01 0.49 ± 0.01 0.48 ± 0.02 0.47 ± 0.01 0.46 ± 0.01 0.42 ± 0.01
100000 0.94 ± 0.04 0.49 ± 0.01 0.47 ± 0.01 0.47 ± 0.00 0.50 ± 0.00 0.49 ± 0.00 0.47 ± 0.06 0.43 ± 0.00 0.42 ± 0.00
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Table 20: Gaussian Mixture: runtime in seconds; recall that GATSBI was trained on GPU while ScoRuTSBI
were trained on a single CPU.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 4501.3 948.97 750.26 992.35 542.07 871.12 907.99 931.11 802.14

10000 10443.7 680.72 944.3 1323.25 1533.87 1136.34 800.03 846.62 1042.59
100000 33809.3 1435.79 1925.08 1616.09 2659.08 1416.08 1442.19 2235.21 1948.88

Table 21: Gaussian Mixture: epoch at which early stopping occurred; the max number of training epochs
was 20000.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 20000 1100 1000 1200 1000 1000 1000 1100 1100

10000 20000 1100 1100 1000 1200 1200 1000 1100 1200
100000 20000 1200 1100 1200 2000 1000 1100 1500 1000

H.2 Gaussian Linear

The middle panel of Fig. 16 reports the C2ST for multiple values of m and ntrain for ScoRuTSBI with the
Energy and the Kernel Score, together with values obtained with GATSBI and Flow Matching.

In Figure 19, we report the posterior samples obtained with the ScoRuTSBI with the Energy Score with
m = 20 and compare them with the samples from the reference posterior. The corresponding plot for
GATSBI is shown in Fig. 20.

Tables 22, 23, 24, 25 and 26 report the different performance metrics, the runtime, and the early stopping
epoch for all methods (columns) and all number of training samples (rows); for Energy and Kernel Score,
the number in the column header denotes the number of draws from the generative network during training
for each yi in the training batch.

Table 22: Gaussian Linear: classification-based two-sample test (C2ST); lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.91 ± 0.02 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

10000 0.88 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.97 ± 0.01 0.97 ± 0.00 0.96 ± 0.01
100000 0.89 ± 0.02 0.97 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
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Figure 19: Gaussian Linear: posterior samples for ScoRuTSBI with the Energy Score trained with m = 20
and reference posterior samples. Diagonal panels represent univariate marginals, while off-diagonals panels
represent bivariate marginals.
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Figure 20: Gaussian Linear: posterior samples for GATSBI and reference posterior samples. Diagonal panels
represent univariate marginals, while off-diagonals panels represent bivariate marginals.
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Table 23: Gaussian Linear: calibration error; lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.05 ± 0.03 0.17 ± 0.03 0.14 ± 0.03 0.15 ± 0.03 0.14 ± 0.03 0.22 ± 0.02 0.20 ± 0.04 0.18 ± 0.03 0.17 ± 0.03

10000 0.04 ± 0.02 0.11 ± 0.01 0.10 ± 0.02 0.07 ± 0.03 0.07 ± 0.02 0.13 ± 0.02 0.11 ± 0.02 0.11 ± 0.03 0.10 ± 0.03
100000 0.04 ± 0.02 0.08 ± 0.01 0.06 ± 0.02 0.06 ± 0.01 0.06 ± 0.03 0.11 ± 0.01 0.11 ± 0.02 0.10 ± 0.03 0.09 ± 0.02

Table 24: Gaussian Linear: CRPS; smaller is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.28 ± 0.01 0.32 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.31 ± 0.01 0.31 ± 0.01

10000 0.27 ± 0.01 0.30 ± 0.01 0.29 ± 0.01 0.27 ± 0.01 0.27 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.28 ± 0.01 0.28 ± 0.01
100000 0.26 ± 0.00 0.29 ± 0.01 0.27 ± 0.00 0.27 ± 0.01 0.27 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.27 ± 0.01

Table 25: Gaussian Linear: runtime in seconds; recall that GATSBI was trained on GPU while ScoRuTSBI
were trained on a single CPU.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 13782.9 379.55 738.16 836.55 820.39 521.75 497.16 574.23 663.2

10000 21944.3 1537.55 1604 2294.72 1811.87 1408.64 1266.38 1194.58 2173.2
100000 48610.9 2380.17 4734.9 4801.3 5421.97 2484.7 2805.37 2858.23 3566.49

Table 26: Gaussian Linear: epoch at which early stopping occurred; the max number of training epochs was
20000.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 20000 1000 1400 1000 1000 1000 1000 1200 1100

10000 20000 1100 1100 1800 1700 1200 1300 1400 2000
100000 20000 1500 2600 1900 2500 1800 1700 2000 2100
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H.3 Bernoulli GLM

The right panel of Fig. 16 reports the C2ST for multiple values of m and ntrain for ScoRuTSBI with the
Energy and the Kernel Score, together with values obtained with GATSBI and Flow Matching.

In Figure 21, we report the posterior samples obtained with the ScoRuTSBI with the Energy Score with
m = 20 and compare them with the samples from the reference posterior. The corresponding plot for
GATSBI is shown in Fig. 22.

Tables 27, 28, 29, 30 and 31 report the different performance metrics, the runtime, and the early stopping
epoch for all methods (columns) and all number of training samples (rows); for Energy and Kernel Score,
the number in the column header denotes the number of draws from the generative network during training
for each yi in the training batch.

Table 27: Bernoulli GLM: classification-based two-sample test (C2ST); lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.01

10000 0.93 ± 0.01 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.02 0.95 ± 0.03 0.98 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
100000 0.94 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.02

Table 28: Bernoulli GLM: calibration error; lower is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.22 ± 0.02 0.03 ± 0.03 0.04 ± 0.04 0.03 ± 0.04 0.02 ± 0.01 0.05 ± 0.03 0.04 ± 0.04 0.04 ± 0.03 0.03 ± 0.01

10000 0.11 ± 0.02 0.03 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.01 0.03 ± 0.01
100000 0.09 ± 0.03 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.03 ± 0.01

Table 29: Bernoulli GLM: CRPS; smaller is better.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 0.54 ± 0.08 0.67 ± 0.21 0.67 ± 0.20 0.62 ± 0.18 0.57 ± 0.10 0.69 ± 0.20 0.68 ± 0.20 0.64 ± 0.19 0.64 ± 0.17

10000 0.45 ± 0.05 0.52 ± 0.07 0.52 ± 0.07 0.50 ± 0.06 0.48 ± 0.06 0.55 ± 0.09 0.56 ± 0.11 0.52 ± 0.06 0.51 ± 0.06
100000 0.45 ± 0.05 0.49 ± 0.06 0.51 ± 0.07 0.49 ± 0.06 0.47 ± 0.05 0.50 ± 0.06 0.52 ± 0.07 0.49 ± 0.06 0.49 ± 0.06
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Figure 21: Bernoulli GLM: posterior samples for ScoRuTSBI with the Energy Score trained with m = 20
and reference posterior samples. Diagonal panels represent univariate marginals, while off-diagonals panels
represent bivariate marginals.
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Figure 22: Bernoulli GLM: posterior samples for GATSBI and reference posterior samples. Diagonal panels
represent univariate marginals, while off-diagonals panels represent bivariate marginals.
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Table 30: Bernoulli GLM: runtime in seconds; recall that GATSBI was trained on GPU while ScoRuTSBI
were trained on a single CPU.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 8737.34 891.35 649.68 1114.62 1456.01 640.54 660.62 739.97 722.27

10000 18790.1 1826.52 1390.01 1136.15 1396.37 746.6 692.29 910.15 1109.49
100000 42929.7 2323.19 1675.25 2043.82 2850.84 2280.55 1704.85 2576.69 2446.52

Table 31: Bernoulli GLM: epoch at which early stopping occurred; the max number of training epochs was
20000.

GATSBI Energy 3 Energy 5 Energy 10 Energy 20 Kernel3 Kernel5 Kernel10 Kernel20
1000 10900 1100 1000 1200 1800 1200 1000 1200 1100

10000 20000 1900 1900 2100 2700 1900 1500 2100 2100
100000 20000 3600 2000 2700 3700 3700 2300 3900 3200
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