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ABSTRACT

Prospective thinking (PT) is the inherent ability of human beings, which guides
the ahead-planning for decision making, becoming the key to efficient actions.
However, current reinforcement learning methods lack PT in decision learning,
leading to state traps caused by the lack of planning ahead, further reducing the
data efficiency. This paper proposes a novel ProSpec RL method, which is the
first to incorporate prospective decision learning to model-free RL for efficient and
safe exploration. Specifically, to incorporate PT into model-free RL, we propose a
flow-based reversible dynamics model, which predicts future n-stream trajectories
based on the current state and policy. Meanwhile, to prevent the entrapment in
state traps, we propose a prospective mechanism using model predictive control
with value consistency constraint, enabling the learning to plan ahead then execute,
to avoid “dead ends” caused by high-risk actions. Additionally, to improve data
efficiency, we present a cyclical consistency constraint, which generates a large
number of accurate and reversible virtual trajectories to further enhance state
feature representations. Comprehensive evaluations of ProSpec on DMControl and
Atari benchmarks demonstrate the significant accelerations in the model decision
learning and the state-of-the-art performance in 4 of 6 DMControl and 7 of 26 Atari
games. The code can be seen in the https://anonymous.4open.science/r/ProSpec-
35B8/.

1 INTRODUCTION
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Figure 1: ProSpec vs. other methods. Model-based meth-
ods learn a world model to directly determine actions.
Model-free methods, including ProSpec, aim to learn a
policy. ProSpec simultaneously imagines K potential tra-
jectories, evaluates their discounted returns CQi, and se-
lects the initial action with the highest return, reducing
risk and avoiding dangerous state traps from trial-and-
error learning.

Reinforcement learning (RL) has been
proven to be indispensable for contin-
uous decision-making problems (Mnih
et al., 2015; Silver et al., 2017; Liu
et al., 2024). The achievement of human-
expert performance demonstrates the suc-
cess of RL in critical scenarios such
as autonomous driving and medical-
assisted surgery (Vinyals et al., 2019;
Kiran et al., 2021). Model-free meth-
ods are one dominant stream in RL,
which optimize policy functions through
trial-and-error, performing remarkable
adaptability and delivering superiority in
continuous control tasks (Hansen et al.,
2022). However, the trial-and-error ex-
ploration in decision learning presents
the model-free methods with severe chal-
lenges, such as data inefficiency and en-
trapment in state traps.

To address these challenges, current works proposed various effective methods. For instance, leverag-
ing data augmentation techniques to increase the diversity of image appearances (Yarats et al., 2020;
Laskin et al., 2020b), introducing auxiliary tasks to assist state representation learning (Schrittwieser
et al., 2020; Schwarzer et al., 2021; Yu et al., 2021; Yue et al., 2023), using world models to assist
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policy learning (Yuan et al., 2024; Zhu et al., 2024) to improve data efficiency, and exploring safer
decision-making through contrasting unsafe states to build safe learning frameworks (Marchesini
et al., 2022; Hu et al., 2023). These methods mainly focus on reducing mistakes and surviving traps
in trial-and-error explorations by enhancing the characterization of data, features and policy optimiza-
tion, achieving certain improvements, but struggle to avoid it by experience-based precautions due to
some limitations in the simulation of human learning.

The inefficiency and state traps of trial-and-error processes rarely occur in human decision learning
because humans have the ability of PT, which induces ahead planning before execution of each
decision based on their experience. Compared with learning policies, ahead planning is considered
more critical (Janner et al., 2019; Hansen et al., 2022). In the field of cognitive neuroscience and
psychology, planning is a part of PT (Schacter et al., 2012), which aids in predicting and adapting
to future changes, envisioning potential dangers, and setting achievable goals to motivate actions
(Aspinwall, 2005). In real cases, PT is pivotal for continuous decision-making, which enables humans
to envision future trajectories, makes more strategic decisions through planning, and chooses wisely
when balancing short-term versus long-term benefits (Schacter et al., 2012). Evidently, the PT
induced ahead planning is the key to avoiding trial-and-error learning for model-free RL methods but
such mechanisms have been rarely proposed.

In this paper, we propose a novel ProSpec method, illustrated in Figure 1, which is the first to incor-
porate prospective decision learning to model-free RL for efficient and safe exploration. Specifically,
to incorporate PT into model-free RL, we propose a flow-based reversible dynamics model (FDM),
which predicts future n-stream trajectories based on the current state and policy, thereby expanding
the model’s foresight. Meanwhile, to prevent the entrapment in state traps, we present a prospective
mechanism using a model predictive control (MPC) with a value-consistency constraint. With this
mechanism, the ProSpec executes decisions after the ahead plan, avoiding high-risk actions of falling
into “dead ends”. Additionally, to enhance data efficiency, we present a cyclical consistency con-
straint that generates a large number of accurate and reversible virtual trajectories to further enhance
state feature representations. The proposed ProSpec is comprehensively evaluated on two openly
public benchmarks: DMControl and Atari. The results show that the ProSpec not only significantly
accelerates the model decision learning with higher data efficiency and lower stuck actions, but also
outperforms state-of-the-art methods in 4 of 6 DMControl and 7 of 26 Atari games.

The contributions of this paper are summarized as follows:

• We propose a novel ProSpec RL method, which is the first to incorporate PT into model-free
RL, simulating the prediction of future n-stream trajectories based on the current state and policy
through the FDM.

• We propose a prospective mechanism, whose ahead plans before execution effectively prevents the
entrapment in state traps and avoids high-risk actions of falling into “dead ends” by an MPC with
a value-consistency constraint.

• We present a cyclical consistency constraint for enhancing data efficiency by improving state
feature representations from generated accurate and reversible virtual trajectories.

2 RELATED WORK

2.1 DATA EFFICIENCY IMPROVEMENT

Data efficiency has consistently been a major challenge hindering the advancement of RL. The early
methods primarily focused on the trade-off between “exploration vs. exploitation” and “long-term
vs. short-term reward” to improve data efficiency. For example, some more efficient strategies
and enhanced policy update functions have been proposed, including ϵ-greedy (Tokic, 2010), UCB
(Slivkins et al., 2019), Temporal Difference Learning (Tesauro, 1991), Monte Carlo methods (Lazaric
et al., 2007), and the Advantage Function (Baird, 1994).

With the advancement of deep learning, high-dimensional state and action spaces have progressively
become the primary bottleneck hindering data efficiency. For example, SiMPLe (Kaiser et al.,
2020) learns a world model from collected data and generates imagined trajectories to enhance data
efficiency. DrQ (Yarats et al., 2021) and RAD (Laskin et al., 2020b) show that moderate image
augmentations can significantly boost data efficiency in RL, even surpassing model-based methods.
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Meanwhile, SPR (Hansen et al., 2022), PBL (Guo et al., 2020), and SLAC (Lee et al., 2020) have
improved feature representation learning by incorporating dynamics models. In addition, recent
research also shows that cyclical consistency effectively enhances the representation learning of
dynamics models, thereby improving the data efficiency (Yu et al., 2021; Yue et al., 2023).

All these studies effectively improve the data efficiency of model-free methods, but overlook the
modeling of human’s PT. When confronted with data inefficiency, humans possess the ability of PT to
plan ahead for dynamic adjustments before making decisions. This strategy minimizes unnecessary
trial-and-error, thereby improving data efficiency. Building on this insight, the proposed method
incorporates PT-guided ahead planning into model-free methods for improving data efficiency in
decision-making learning.

2.2 STATE TRAP ESCAPEMENT

Due to the incomplete understanding of the environment, model-free methods are susceptible to
state traps resulting from high-risk actions. For instance, in sparse reward settings, a positive reward
may only be obtained at the last moment, which challenges the decision-learning of the model-free
methods. One straightforward solution is to adjust the discount factor or optimize the reward function
(Marvi & Kiumarsi, 2021; Yang et al., 2023) but struggle to balance performance and safety. The
insufficiency of the decision penalty may fail to avoid risks, whereas the excess of the decision
penalty will result in the cowardice of the agent’s decision. Furthermore, to avoid high-risk trial-and-
error decision learning, various strategies have been proposed to enhance decision safety, such as
Lagrangian relaxation (Jayant & Bhatnagar, 2022), quadratic constraint optimization (Kim et al.,
2024), and state-specific safety constraints (Zhang et al., 2023).

All these strategies mitigate the trouble of state traps but do not effectively alleviate the reliance on
historical experience during policy updating of the model-free methods. In addition, from a human
cognitive prospective, the absence of PT may also lead to state traps. Inspired by human cognition,
we propose a prospective mechanism of “plan ahead, then execute” to avoid state traps.

3 PRELIMINARIES: REINFORCEMENT LEARNING

RL typically uses Markov decision processes (MDPs) to solve continuous decision problems, denoted
as < S,A, T ,R, γ >. Here S represents a finite set of states;A is the action space; T (st, at, st+1) =
P (st+1|st, at) is the dynamic function, which defines the probability of transition from state st to
st+1 after taking action at;R(st, at) is the reward function, and γ ∈ (0, 1] is the discount factor. The
goal of RL is to enable the agent to learn how to maximize the expected cumulative discounted return
Gt =

∑∞
τ=0 γ

τR(st+τ , at+τ ) by choosing actions at each time t. The agent’s decision process is
guided by the policy π(at|st), which maps the current state to the action selection. The action-value
function Qπ(st, at) = Eπ[Gt|st, at] evaluates the expected return of taking action at in state st
and following policy π. This paper focuses on value-based RL methods, specifically Q-learning,
which approximates the optimal policy π∗ using the Bellman equation (Sutton & Barto, 2018). SAC
is employed as the policy algorithm, as it is a widely used gradient-based method for continuous
control that incorporates policy entropy as an additional reward to encourage exploration. The overall
training objective of SAC is as follows:

Jθ = Lcritic + Lactor + Lα (1)
where, Lcritic, Lactor and Lα represent the critic loss, actor loss, and temperature loss, respectively.
For further details, please refer to Appendix B.2.

4 METHODS

The proposed ProSpec method primarily consists of an FDM for incorporating PT into model-free RL,
a prospective mechanism to prevent the entrapment in state traps, and cyclical consistency to improve
data efficiency (see Figure 2 for schematic diagram). This section provides a detailed description of
the ProSpec framework. For convenience, we provide a list of all the symbols used throughout the
paper in the Appendix A.

3
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Figure 2: Training Procedure of ProSpec. Here, Jθ represents the RL loss; Lpred denotes the
prediction loss of the FDM; Lc stands for the cyclical consistency loss.

4.1 INCORPORATING PROSPECTIVE THINKING BY FDM

Currently, model-free methods lack prospective prediction capabilities and typically rely on blind trial
and error, which significantly impacts decision-making. To address this, we introduce a dynamics
model to incorporate PT into model-free RL, which predicts future states and enhance feature
representation learning by generating a large number of virtual trajectories. Unlike the PlayVirtual
(Yu et al., 2021), which uses forward and backward models for curiosity exploration. ProSpec
achieves bidirectional inference through a single model, which predicts future states in the forward
and backward to past states through action interventions. Specifically, we adopt a flow-based neural
network architecture, Real-valued Non-Volume Preserving (RealNVP) (Dinh et al., 2022). RealNVP
operates through bijective coupling layers, where each layer processes different parts of the input:
at ∈ R(1:d)×D and zt ∈ R(d+1:D)×D(for ease of reading, we will simplify it to at ∈ R1:d and
zt ∈ Rd+1:D). RealNVP performs state transformations through scaling transformations exp(sci(·))
, translation transformations ti(·) (implemented via MLP), and element-wise multiplication ‘⊙’ and
addition ‘+’. As shown in Figure 2, the encoder f(·) first converts image-based observations/states
st into latent representations zt = f(st). Then, predict the future latent state ẑt+1 based on the action
at. Formally:

ẑt+1 =

{
z0 = f(s0) , t = 0

h(ẑt, ât) , t > 0, ât ∼ π
(2)

where, the prospective prediction h(·, ·) is expressed as (more details can be seen in the Appendix
C.3):

h(ẑt, ât) =

{
ẑ1:dt+1 = ât ⊙ exp(sc2(ẑt)) + t2(ẑt)

ẑd+1:D
t+1 = ẑt ⊙ exp(sc1(ẑ

1:d
t+1)) + t1(ẑ

1:d
t+1)

(3)

Given a period of time U , the optimization objective of h(·, ·) is to minimize the difference (error)
between the predicted latent state ẑt and the latent state zt directly extracted from the raw obser-
vation/state. Following the SPR, we use cosine similarity to compute the prediction error in the
DMControl environment (with specific details of the Atari benchmark provided in Appendix C.2).
The optimization objective can be formalized as follows:

Lpred = −
U∑

u=1

(
ẑt+u

∥ẑt+u∥2

)⊤ (
zt+u

∥zt+u∥2

)
(4)

4.2 PROSPECTIVE MECHANISM TO PREVENT THE ENTRAPMENT IN STATE TRAPS

Model-free methods optimize the policy function through trial-and-error, demonstrating significant
adaptability and advantages in continuous control tasks (Hansen et al., 2022). However, blindly
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exploring the action space through trial-and-error to maximize cumulative rewards can lead the agent
into dangerous state traps. To address this, we introduce PT into model-free methods for the first
time, facilitating safe decision-making prior to execution and avoiding high-risk actions that could
lead to “dead ends”. Specifically, we implement the prospective mechanism using model prediction
control (MPC) and value-consistency constraints. It is similar to MPC in classical control tasks,
where the policy π typically involves trajectory optimization to find the locally optimal solution at
each time step (Hansen et al., 2022). The implementation of MPC involves predicting the optimal
action sequence {at, at+1, . . . , at+N−1} over the next N steps, and executing the first action at:

πMPC
θ = E[

N−1∑
j=0

γt+jR(st+j , at+j)] (5)

Therefore, after the introduction of MPC, the agent selects the first action at from a limited range N
to maximize the long-term reward over j ∈ [0, N − 1]:

at = arg max
at:t+N−1

N−1∑
j=0

γt+jR(st+j , at+j) (6)

However, due to its deep understanding of the environment, MPC could autonomously compute
the reward through virtual trajectories. This distinguishes it from the reward function in model-free
methods, which is provided by the environment. Additionally, this differs from iterative Q-value
estimation methods in RL, where MPC prioritizes short-term gains over long-term cumulative rewards.
To achieve this, we propose imposing a value-consistency constraint on the “ahead plan” of the
prospective mechanism. Specifically, the evaluation of actions in the prospective mechanism should
align with the Q-values of the RL policy π, ensuring that at any given moment, the agent can
select the action that provides the maximum long-term reward, even if the model has not yet fully
converged. Formally, as shown in Figure 1, based on the imagined k-step action sequence â0:k−1

0 =

{â00, · · · , âk−1
0 } ∼ π(·|z0), we compute the cumulative discounted return for each trajectory CQi =∑t

j=0 γ
jQ(ẑji , â

j
i ) to determine the locally optimal action a∗0 = argmaxa0

{CQ0, . . . , CQk−1}.

Through the value-consistency constraint, we ensure that the action a∗t selected at each time step
in the prospective mechanism is the optimal choice under the current policy, thereby enabling
effective guiding future scenarios. Even in the worst case—where both the sampled actions are
not optimal—this quasi-residual trial-and-error learning method allows the model-free methods
to improve with each update, even if its worst learning outcome is merely an improvement based
on its own trial-and-error policy. Appendix D further derives the intrinsic connection between
value consistency constraints and policy learning consistency in model-free reinforcement learning,
providing theoretical justification for our method.

In summary, employing a human-like prospective mechanism to “plan ahead, then execute” enhances
safety by avoiding state trap risks and significantly improves data efficiency through more effective
decision-making.

4.3 CYCLICAL CONSISTENCY FOR ENHANCING DATA EFFICIENCY

Previous studies have shown that applying cyclical consistency constraints in both forward and
backward prediction can facilitate feature representation learning, thereby improving data efficiency
(Yu et al., 2021). However, these methods typically require maintaining two separate dynamics
models, which may be affected by bias, potentially leading the environment to fall into state traps.
Additionally, training both models is challenging and costly. To address this issue, we propose the
use of FDM to enable bidirectional computation. By employing appropriate action interventions,
FDM can efficiently backtrack to previous states. Formally, given a subsequent state ẑt+M−1, we
iteratively compute the previous state sequence z̆t+M−2:t = {z̆t+M−2, · · · , z̆t} using the backward
function h−1(·, ·):

z̆t+M−2, ât+M−2 = h−1(ẑt+M−1) (7)

where, h−1(·, ·) can be calculated as follows:

z̆t =
(
z̆d+1:D
t+1 − t1

(
z̆1:dt+1

))
⊙ exp

(
−s1

(
z̆1:dt+1

))
ât = (z̆1:dt+1 − t2(z̆t))⊙ exp(−s2(z̆t))

(8)
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Note that there is a dimensional inconsistency between z̆t ∈ RD and zt ∈ Rd+1:D. Typically, the
linear transformation in a feed-forward neural network can be expressed as z̆′t = W × z̆t +B, where
z̆′t ∈ Rd+1:D, W ∈ Rd+1:D, and B ∈ Rd+1:D represent the weights and biases. However, due to the
typical non-invertibility of W , backward inference (i.e., directly computing z̆t = W−1 × (z̆′t −B))
presents challenges. To ensure reversibility, we employ Orthogonal Weight Normalization (OWN)
(Huang et al., 2018), which enables bidirectional inference by enforcing orthogonality in the weights.
As a result, the backward inference of z̆t can be re-expressed as:

z̆t = WT × (z̆′t −B) (9)
By combining RealNVP and OWN, we can effectively achieve bidirectional transformation between
z̆t and z̆t+1 (for more details, see Appendix C.3).

As illustrated in Figure 2, we introduce cyclical consistency constraints to facilitate feature represen-
tation learning. Ideally, if we have an encoder that can transform the observed state into appropriate
features, the initial latent state z0 of the cyclical trajectory composed of forward and backward
trajectories should match the final latent state z̆0. Formally, given the latent state ẑt at time t, the
cyclical consistency loss is computed by calculating the distance error between M pairs of virtual
cyclical states ẑt+m and z̆t+m:

Lc =
1

M

M−1∑
m=0

d(ẑt+m, z̆t+m) (10)

The cyclical consistency constraint serves multiple purposes: 1) generate or sample a large number of
virtual actions in an unsupervised manner to create diverse virtual trajectories, thus improving data
efficiency and reducing reliance on real trajectories; 2) improving state reversibility and preventing
the agent from falling into state traps; and 3) improving the training efficiency of the weight matrix
W in OWN.

4.4 OVERALL OBJECTIVE

As shown in Figure 2, the overall training objective of our approach can be summarized as follows:

Ltotal = Jθ + λpredLpred + λcLc (11)

where Jθ is the loss function for RL (see section 3), and λpred and λc are hyperparameters that
weight different losses (Appendix B shows more detail).

5 EXPERIMENTS

In this section, we provide a detailed description of the evaluation methods, including environment
settings, experimental details, and evaluation metrics. Subsequently, we conduct a series of ablation
experiments to analyze the effectiveness of the key components of our proposal.

5.1 SETUP FOR EVALUATION

Environments. We conducted benchmark tests on ProSpec in environments with limited interaction,
using DMControl for continuous control testing (Tassa et al., 2018) and selecting Atari (Bellemare
et al., 2013) for discrete control evaluation. Consistent with the practices of most researchers (Wang
et al., 2016; Edwards et al., 2018; Van Hasselt et al., 2019; Vinyals et al., 2019; Yarats et al., 2020;
2021; Yu et al., 2021; Yue et al., 2023), we evaluated performance after training for 100k and 500k
interaction steps in DMControl and after 100k interaction steps in Atari. In total, we selected 32
games from both environments for performance evaluation.

Baseline. Some recent excellent decision methods are selected as baselines, including Dreamer
(Hafner et al., 2019), SLAC (Guo et al., 2020), CURL (Laskin et al., 2020a), DrQ (Yarats et al., 2020),
SAC+AE (Yarats et al., 2021), and SPR (Schwarzer et al., 2021) in the DMControl benchmark. For
Atari, we selected DER (Van Hasselt et al., 2019), OTR (Kielak, 2019), SimPLe (Kaiser et al., 2020),
CURL (Laskin et al., 2020a), DrQ (Yarats et al., 2020) as baselines, as these are state-of-the-art
methods in Atari according to their publications. Notably, the most recent methods, VCR (Yue et al.,
2023) and PLASTIC (Lee et al., 2024) are evaluated on both DMControl and Atari, whereas RLTSC

6
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Table 1: Scores obtained by different methods on DMControl-100k and DMControl-500k (mean and
standard deviation). ProSpec was run with 10 random seeds, and the overall median and mean scores
were recorded for evaluation comparison.

100k Step Scores

TASK SLAC CURL SAC+AE DrQ-V2 SPR† PlayVirtual Dreamer-V3 VCR PLASTIC ProSpec
(2020) (2020) (2020) (2021) (2021) (2021) (2022) (2023) (2024) (Ours)

Finger, spin 859±132 767±56 740±64 325±292 835±154 866±103 309.3±106 795±157 676±131 875±104
Cartpole, swingup 305±66 582±146 311±11 677±214 806±45 806±45 345.3±38 815±47 781±26 833±34
Reacher, easy 305±134 538±233 274±14 256±145 667±173 685±217 640.8±164 763±112 836±153 782±137
Cheetah, run 344±69 299±48 267±24 273±130 434±48 476±67 536.8±43 422±54 464±50 477±24
Walker, walk 541±98 403±24 394±22 171±160 398±145 596±184 614.6±146 650±143 710±120 507±60
Ball in cup, catch 756±314 769±43 391±82 359±228 814±263 921±31 368±64 858±85 921±36 927±17

Median Score 422.5 560 351 299 736.5 745.5 713.4 779 791 807.5
Mean Score 518.3 559.7 396.2 348 659 725 698.5 717.2 731.3 733.5

500k Step Scores

Finger, spin 673±92 926±45 884±128 789±124 924±132 963±40 818.5±135 972±25 969±21 973±14
Cartpole, swingup 764±43 841±45 735±63 845±18 870±12 865±11 819.1±12 854±26 864±15 871±13
Reacher, easy 628±94 929±44 627±58 748±229 925±79 942±66 898.9±48 938±37 947±24 965±14
Cheetah, run 640±19 518±28 550±34 607±32 734±45 719±51 728.7±69 661±32 746±55 714±57
Walker, walk 842±51 902±43 847±48 696±370 916±75 928±30 955.8±14 930±18 961±26 954±19
Ball in cup, catch 852±71 959±27 794±58 844±174 963±8 967±5 957.1±7 958±4 936±8 972±5

Median Score 718.5 914 764.5 768.5 920 935 858.7 934 941.1 959.5
Mean Score 733.6 779.2 739.5 754.8 885.7 897.3 863 885.5 903.8 908.2

(Zheng & Song, 2024) is evaluated only on Atari. Additionally, we selected PlayVirtual (Yu et al.,
2021) as a strong baseline. It is important to note that since SPR was originally designed for offline
tasks, we adapted it for continuous tasks using a SAC-based approach (SPR†).

Implementation Details. In DMControl, we adopted the encoder and policy network architecture
from CURL (Laskin et al., 2020a), removing the contrastive loss component and introducing BYOL
(Grill et al., 2020) to establish a baseline similar to SPR. Following PlayVirtual, the number of
cyclical consistency steps is set to 6, with actions sampled randomly from a uniform distribution over
the continuous action space. According to the ablation experiment (Appendix F.3), the prospective
count k was set to 3, and the prediction horizon t was set to 6. In Atari, our ProSpec solution was
based on the official SPR and PlayVirtual code, with the cyclical consistency steps also set to 9 for
generating imaginary trajectories. The prospective count k is set to 9, and the prediction horizon t is
set to 3. For DMControl-100k, we reran the official SPR, PlayVirtual, and PLASTIC code with 10
seeds. To reduce variance, we performed evaluations with 10 random seeds for each games. Given
the limitations in computational resources, we conduct the ablation experiments using 5 random
seeds. We did not rerun VCR because the official code was not available. Due to computational
resource limitations, follow other work in the community(Schwarzer et al., 2021; Yu et al., 2021; Yue
et al., 2023), we report the DMControl-500k and Atari results directly from the respective papers.
All implementations were carried out using PyTorch (Paszke et al., 2019), with network training
performed on an NVIDIA RTX 3090 GPU. Further details can be found in Appendix E.

Evaluation Metrics. In DMControl, the maximum achievable score for each environment is capped
at 1000 (Tassa et al., 2018). We evaluated model performance across six common environments,
using the median score as the overall performance metric (Laskin et al., 2020a; Guo et al., 2020;
Yarats et al., 2021). For Atari discrete action tasks, we used the interquartile mean (IQM) Human
Normalized Score (HNS) as the primary metric, following VCR.

5.2 PERFORMANCE COMPARISON WITH SOTA

Comparison on DMControl. As shown in Table 1, our method outperformed most other approaches,
achieving four top scores across six environments, even with limited interactions (100k or 500k).
Specifically, when considering the median scores, our method excelled in two key aspects: (i) In the
DMControl-100k with limited interaction data, our method achieved the highest median score of
807.5, surpassing PLASTIC by 2.1%, PlayVirtual by 8.32%, VCR by 3.66%, SPR by 9.64%, DrQ by
17.80%, and CURL by 44.20%. (ii) In the DMControl-500k, our method achieved a median score
of 959.5 across five environments, which is very close to the maximum achievable score of 1000.
These results suggest that tasks in the DMControl often involve dynamic goals (such as maintaining
balance or reaching a specific speed), where PT plays a crucial role. For example, in the Cheetah, run
task, PT helps the agent predict the long-term impact of the next action on its running speed and gait,
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Table 2: Scores obtained by different methods on Atari with 100k interaction steps. ProSpec was run
with 10 random seeds, and the overall IQM HNS scores were recorded for evaluation comparison.
Due to space limitations, only the results with the highest performance are presented here, and the
complete results can be found in the Appendix Table 5.

Game Human Random DER OTR SimPLe CURL DrQ-V2 SPR PlayVirtual VCR PLASTIC RLTSC ProSpec
(-) (-) (2019) (2019) (2020) (2020) (2021) (2021) (2022) (2023) (2024) (2024) (Ours)

Bank Heist 753.1 14.2 51 182.1 34.2 131.6 168.9 380.9 245.9 303.7 161.2 473.6 481.1
Battle Zone 37,187.5 2,360 10,124.6 4,060.6 5,184.4 1,4870 12,954 16,651 13,260 13,261 2,099 11,700 15,934.4
Chopper Command 7,387.8 811 861.8 1,033.3 1,246.9 1,058.5 780.3 974.8 974.8 1,024.2 891.2 1,120.6 1,351.0
Gopher 2,412.5 257.6 349.5 778 771 669.3 636.3 715.2 684.3 539.7 839.4 682.4 866
Kung Fu Master 22,736.3 258.5 14,346.1 5,722.2 17,257.2 14,307.8 9,111 13,192.7 14,259 19,679.7 16,105 12,680.4 20,711
Private Eye 69,571.3 24.9 72.8 59.6 34.9 81.9 3.5 86 93.9 98.9 100 100 100
Seaquest 42,054.7 68.4 354.1 286.9 683.3 384.5 301.2 583.1 521.2 635.9 527.7 396.8 800.4
IQM HNS (%) - - 14.2 18.6 23.9 18.9 24.5 45.0 43.4 46.4 42.1 43.3 47.2

Table 3: Effectiveness of (a) Prospevtive Mechanism &(b) Cyclical Consistency &(c) FDM on
ProSpec.

(a) Prospevtive Mechanism (b) Cyclical Consistency (c) Dynamic Model
DMControl Atari DMControl Atari DMControl Atari

SPR† 736.5 45.0 SPR† 736.5 45.0 SPR† 736.5 45.0
PlayVirtual 745.5 43.4 PlayVirtual 745.5 43.4 PlayVirtual 745.5 43.4
ProSpec-NP 752.0 43.5 ProSpec-NC 752.8 45.4 ProSpec-MLP 773.1 44.8

ProSpec 807.5 47.2 ProSpec 807.5 47.2 ProSpec 807.5 47.2

thereby avoiding premature or delayed adjustments. Overall, our method demonstrates exceptional
performance, even with limited data, and also excels in terms of asymptotic performance.

Comparison on Atari. Table 2 presents a comparison with state-of-the-art methods, along with
results for expert human and random play, as reproduced from (Yarats et al., 2020). ProSpec achieves
an IQM HNS of 47.2%, outperforming various methods: 97.4% higher than SimPLe, 232.4% higher
than DER, 153.7% higher than OTR and CURL, 92.6% higher than DrQ, 4.8% higher than SPR,
1.7% higher than VCR, 8.7% higher than PlayVirtual, 12.1% higher than PLASTIC, and 9.0% higher
than RLTSC. In terms of individual games, ProSpec achieved the highest score in 7 out of 26 game
scenarios. Notably, it demonstrated performance comparable to that of expert humans in certain
environments, particularly in the Bank Heist scenario. In this scenario, ProSpec’s score of 481.1
significantly outperforms other state-of-the-art models and approaches the expert human score of
753.1. The objective in Bank Heist is to evade the police and rob as many banks as possible, requiring
the agent to predict the police’s potential locations and actions to optimize the robbery route and
avoid capture. Our method’s emphasis on PT enables preemptive action planning, contributing to its
superior performance over other models that lack this capability. The complete set of results, refer to
Appendix Table 5.

Analysis of ProSpec. Through extensive experiments, we identify three domains in which ProSpec
consistently outperforms baseline methods: Deep prospective planning: In games like Bank Heist,
Battle Zone, and Chopper Command, success relies on forecasting patrols, optimizing multi-step
attacks, and avoiding collisions. ProSpec’s FDM generates candidate trajectories and picks the locally
optimal, highest-reward action—outperforming pure trial-and-error on long-horizon tasks. High-risk
trap avoidance: Titles such as Chopper Command and Private Eye end upon any mistake. By
simulating ahead, ProSpec detects and avoids dangerous states, reducing resets and improving safety
under risk. Sparse-reward, goal-driven tasks: In Amidar and Kung Fu Master, infrequent rewards
make naive exploration slow. ProSpec’s forecasting supplements sparse feedback identifies promising
strategies, and speeds convergence to near-optimal performance. In contrast, in dense-reward, simple
environments (e.g., Freeway), trial-and-error already performs well, and ProSpec’s lookahead adds
only modest gains (see Appendix F.2 for more analysis)

5.3 ABLATIONS

In this section, we present ablation studies on the DMControl-100k and Atari environments to
investigate the key components of ProSpec. Due to space constraints, some of the ablation results
are provided in the Appendix F.3. Given the limitations in computational resources, we conduct the
experiments using 5 random seeds.
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Effectiveness of Prospective Mechanism. To explore the effect of prospective mechanism on RL
tasks, we evaluated ProSpec without the prospective mechanism (ProSpec-NP, i.e., the model-free
baseline policy) and compared it with SPR† and PlayVirtual. As can be seen in Table 3 (a): (i) In
DMControl, ProSpec improved its median score by 55.5 points compared to ProSpec-NP, and in Atari,
it improved the IQM HNS score by 8.5%; (ii) ProSpec-NP outperformed PlayVirtual by 6.5 median
points and 0.1% IQM HNS score across both benchmarks; (iii) ProSpec increased PlayVirtual’s
median score from 745.5 to 807.5, and its IQM HNS score from 43.4% to 47.2%.

These results can be attributed to several factors. First, the FDM incorporates PT into model-free
RL, enabling it to predict future n-stream trajectories and select higher-value, lower-risk decisions.
This leads to performance improvements of 55.5 and 62 points, along with IQM HNS gains of
8.5% and 8.7%, compared to ProSpec-NP and PlayVirtual, respectively. Second, the proposed
prospective mechanism enables ProSpec to execute decisions only after ahead planning, thereby
avoiding high-risk actions that may lead to “dead ends,” which allows ProSpec to outperform SPR†.

The Impact of Cyclical Consistency on ProSpec. As described in Section 4.3, cyclical consistency
addresses a fundamental challenges in RL: generating a large number of virtual trajectories to improve
data efficiency through augmented state feature representations. We evaluated the performance of
ProSpec without the cyclical consistency constraints (referred to as ProSpec-NC) and compared it
to SPR† and PlayVirtual. As shown in Table 3(b), regularizing the encoder with Lc in ProSpec-NC
resulted in a gain of 7.3 and 4.0%. In contrast, regularizing both the encoder and the FDM resulted in
a gain of 62 and 8.8%. It is clear that cyclical consistency can benefit the training of the FDM, but the
greater benefit comes from the learning of the feature representations in the encoder (Yu et al., 2021).

The Effectiveness of Flow-Based Dynamic Model. We also investigated the impact of different
dynamical models on the performance of ProSpec. As shown in Table 3(c), flow-based dynamic
model significantly enhanced performance, achieving scores of 807.5 and 47.2 on the DMControl and
Atari benchmarks, respectively. Compared to SPR†, this resulted in improvements of 71 and 4.8%,
while compared to PlayVirtual, it improved by 62 and 9.4%. Compared to ProSpec-MLP, which
employs an MLP as the dynamical model, performance improved by 34.4 and 5.4%, respectively.
This result can be explained as follows: (i) FDM provides more accurate backward predictions,
and cyclical consistency enhances state reversibility and guides low-risk decision-making, enabling
ProSpec to outperform ProSpec-MLP on both benchmarks. (ii) Leveraging prospective mechanism,
ProSpec-MLP and ProSpec analyze situations from multiple prospectives to make better decisions,
thereby avoiding state traps and outperforming PlayVirtual. (iii) Self-supervised methods enhance
data efficiency by generating multiple state-action trajectories, allowing ProSpec to outperform SPR†.

The Impact of Prospective Decision Learning on Data Efficiency. We also evaluated the impact
of prospective decision-making on data efficiency using DMControl and Atari, comparing ProSpec
against ProSpec-NP. As illustrated in Fig. 5-8 (Appendix F.4), ProSpec consistently achieves higher
rewards with fewer training steps, demonstrating markedly superior efficiency. These findings show
that prospective decision-making promotes safer, reward-oriented action selection, yielding smoother
learning curves and more stable performance across environments. Comprehensive results on data
efficiency and time complexity are reported in Appendix F.4 and Appendix F.5.

6 CONCLUSION

This paper proposes a novel ProSpec RL method, the first to incorporate prospective decision learning
to model-free RL for efficient and safe exploration. Firstly, we propose a flow-based reversible
dynamics model to incorporate PT into model-free RL by predicting future n-stream trajectories
based on the current state and policy. Meanwhile, we propose a prospective mechanism to prevent
the entrapment in state traps, which uses model predictive control with value consistency constraint
to enable the learning to plan ahead then execute, avoiding “dead ends” caused by high-risk actions.
Additionally, we present a cyclical consistency constraint to improve data efficiency by generating
accurate and reversible virtual trajectories to further enhance state feature representations. Compre-
hensive evaluations of ProSpec on DMControl and Atari benchmarks demonstrate the significant
accelerations in the model decision learning and the state-of-the-art performance in 4 of 6 DMControl
and 7 of 26 Atari games.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
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A SYMBOLS DEFINITION

For clarity, we have listed all the symbols used throughout the paper and their meanings in Table 4.

Table 4: Definitions of the symbols used in this document.

Symbol Definition

S the set of states
A action space
T (·, ·) dynamic function
R(·, ·) reward function
γ discount factor
Gt(·) cumulative discounted return
Qπ(·) action-value function
π∗ optimal policy
a action
s state
z̃ latent state
ẑ dynamic model forward predicts latent state
z̆ dynamic model backward predicts latent state
sc(·) scaling function
t(·) translation function
CQ cumulative discounted value
O matrix family
k the count of prospective
t prediction horizon (time)
N the range of time (MPC)
U total time in forward prediction loss
W weight
I identity matrix
B bias
M number of sampled actions in cyclical consistency loss
h(·, ·) FDM forward calculation function
h−1(·, ·) FDM backward calculation function
q(·) prediction head
g(·) online projection heads
gm(·) target projection heads
d(·, ·) distance metrics

B ALGORITHM

B.1 SOFT ACTOR CRITIC

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is a widely used gradient-based algorithm for
continuous control that incorporates policy entropy as an additional reward to encourage exploration.
Let θ denote the parameters of the stochastic policy π and ϕ denote the parameters of Q(st, at). SAC
tries to learn a probabilistic policy πθ, two Q functions Qϕ1 and Qϕ2 , and a temperature parameter α
to adjust the balance between exploration and exploitation.

Critic. To mitigate the risk of overestimation, SAC adopts a twin Q-network structure and chooses
the minimum estimate from the two Q-functions. SAC constructs the target loss function for Critic
updates using transitions sampled from the experience replay buffer (st, at, st+1, rt, done):

Lcritic
ϕ =

∑
i=1,2

(Qϕi
(st, at)− y(rt, st+1, done))

2 (12)

where rt denotes the reward, st+1 represents the next state, and done is the termination flag, with a
value of 1 indicating that st+1 is a terminal state and 0 otherwise. The target is the clipped gradient,
defined as:

y(rt, st+1, done) = rt + γ(1− done)(min
i=1,2

Qϕtarget,i

(st+1, at+1 − α logϕθ
(at+1|st+1)))

(13)

where γ is the discount factor and Qϕtarget,i is the target Q-network updated using the exponential
moving average (EMA) of Qϕi .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Actor. The objective of the actor πθ is to select actions that maximize the action value and policy
entropy. Therefore, the update loss function for the actor can be defined as:

Lactor
θ = −

(
min
i=1,2

Qϕi (st, aθ(st))− α log πθ (aθ(st) | st)
)

(14)

where aθ(st) is sampled from a stochastic policy πθ(st).

The overall objective. The overall training objective of SAC is as follows:

J SAC
θ = Lcritic

ϕ + Lactor
θ + Lα (15)

where, Lcritic
ϕ , Lactor

θ and Lα represent the critic loss, actor loss and temperature loss, respectively.

B.2 DQN

The Deep Q-Network (DQN) (Mnih et al., 2015) encodes the state through a neural network and
outputs the corresponding Q-values for the actions, thereby enabling Q-learning to scale to large state
spaces. Additionally, DQN incorporates techniques such as experience replay and target network
separation to stabilize the training process. The overall objective of DQN is represented by the
following loss function:

JDQN
θ = E(s,a,s′,r)∼D[(r + γmax

a′
Qθ̄)(s

′, a′)−Qθ(s, a))
2] (16)

Where, Qθ denotes the Q network controlled by parameters θ, and Qθ̄ denotes the target Q network.
Meanwhile, D denotes the replay buffer storing the experience tuples.

B.3 PSEUDO CODE

Here we present the pseudo-code for ProSpec, which can be seamlessly integrated into value-based
algorithms. Specifically, Algorithm 1 outlines the prospective prediction process of ProSpec, while
Algorithm 2 describes the training process. For simplicity, the pseudo-code omits many details.

Algorithm 1: The prospective prediction process of ProSpec.
Denote parameters of encoder f , flow-based dynamic model h, value head Q as θ;
Denote the number of prediction horizon as t, the count of prospectives as k;
Input: current state st;
if prospective then

Encoded into latent state representations as zt = f(st) by the encoder
for int i=0 to k do

âit ∼ π(zt) ▷ prospectives counts k
for int j = 0 to t do

if j > 0 then
ât+j ∼ π(ẑt+j)

else
ât+j = âit

end
ẑt+j ← h(zt, ât+j) ▷ prediction horizon t
calculate Q(ẑt+j , ât+j)

end
CQi =

∑t
j=0 γ

jQ(ẑj , ât+j) ▷ cumulative discounted return
end
a∗t = arg max

a0

{CQ1, · · · , CQk}

end
Output :a∗t ;
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C MORE IMPLEMENTATION DETAIL

C.1 NETWORK ARCHITECTURE FOR DMCONTROL

Considering that the original SPR was designed for discrete control tasks, we have developed an
SPR-like scheme, called SPR†, for continuous control tasks, following previous research (Yu et al.,
2021; Yue et al., 2023). Specifically, we use the encoder and policy networks of CURL (Laskin et al.,
2020a) as our base networks. Building on SPR (Schwarzer et al., 2021), we remove the contrast
loss from CURL and introduce a BYOL (Grill et al., 2020) head to construct our SPR-like baseline
scheme. For the dynamics model (DM) within SPR†, we adopt a network structure similar to that
used in DBC (Zhang et al., 2021). The DM consists of two fully connected layers, with a linear
normalization (LN) layer and a ReLU activation following the first fully connected layer. The encoder
consists of four convolutional layers (each followed by a ReLU), followed by a fully connected layer,
an LN layer, and a hyperbolic tangent (tanh) activation. Similar to the design in SPR, we use a
projection head g(·), a prediction head q(·) for the online encoder, an impulse encoder fm(·), and an
impulse projection head gm(·). Both the projection head and the prediction head consist of two fully
connected layers (preceded by a ReLU layer), each containing 512 hidden units.

Algorithm 2: The training process of ProSpec.
Denote parameters of encoder f , flow-based dynamic model h, value head Q as θ;
Denote the number of prediction step as t, the number of viewing angles as k;
Denote the number of virtual trajectories as M ;
Denote the prediction and cycle consistency loss weight as λpred and λc;
Denote the replay buffer as D;
Randomly initialize all network parameters and make the reply buffer empty.
while train do

interact with the environment using the optimal action a∗

record/collect experience D ← D ∪ (s, a∗, snext, r)
sample a aequence of (s, a∗, snext, r) ∼ D
initialize Jθ, Lpred and Lc with 0
z0 ← f(s0)
for u = 1 to M do
{â(j)0 , â

(j)
1 , · · · , â(j)t−1, } ∼ A ▷ randomly sample a sequence of actions

ẑ
(j)
0 ← z0

for i=0 to t do
ẑ
(j)
i+1 ← h(ẑ

(j)
i , â

(j)
i ) ▷ forward prediction

end
z̆
(j)
t ← ẑ

(j)
t

for i=t-1 to 0 do
ẑ
(j)
i ← h−1(ẑ

(j)
i+1, â

(j)
i ) ▷ backward return

end
Lc ← Lc/M ▷ cyclical consistency loss

end
using eq. 4 calculated Lpred

using eq. 1 calculated Jθ
Ltotal ← Jθ + λpredLpred + λcLc

θ ← Optimize(θ,Ltotal)
end

C.2 PROSPECTIVE PREDICTION IN ATARI

In the MDP framework, a one-step transition (st, at, st+1) describes the process of transitioning from
the current state st ∈ S to the next state st+1 by taking action at ∈ A. Considering the crucial aspect
of PT, i.e., the ability to predict future scenarios, is very important for RL tasks. Many studies focus
on training dynamic models to predict future states to learn good feature representations (Schwarzer
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et al., 2021; Guo et al., 2020; Lee et al., 2020). In this study, the FDM h(·, ·) is used to simulate the
dynamics function T in the latent embedding space, allowing us to explore the future from multiple
prospectives. As shown in Figure 2, the encoder f(·) first converts the image-based observation/state
s0 into a latent representation z0 = f(s0). Then, based on the predicted action a0, the FDM predicts
the latent state ẑ1 for the future step. Formally:

ẑt =

{
z0 = f(s0) , t = 0

h(ẑt−1, ât−1) , t > 0, â ∼ π
(17)

The optimization objective of the FDM h(·, ·) is to minimize the difference (error) between the
predicted latent state ẑt and the latent state zt directly extracted from the original observation/state.
Following PlayVirtual, we use “projection” to predict the error on Atari to achieve the following
objectives:

Lpred = −
U∑

u=1

d (ẑt+u, z̃t+u) (18)

where d(ẑt+u, z̆t+u) is distance metric for the latent state.

C.3 THE FLOW-BASED DYNAMICS MODEL (FDM)

The FDM predicts the future and retroactively infers previous latent states, crucial in ProSpec.
Unlike PlayVirtual (Yu et al., 2021), which employs separate models for these tasks, our approach
employs a single model for both, avoiding training instability. We utilize Real-valued Non-Volume
Preserving (RealNVP) (Dinh et al., 2022), a flow-based neural network that performs bijective
coupling transformations, which can be seen in the figure 3a. RealNVP operates via bijective
coupling layers, with each layer handling parts of the input at ∈ R1:d and zt ∈ Rd+1:D separately.
It applies transformations using affine functions for scaling exp(sci(·)) and translation ti(·), along
with element-wise multiplication ‘⊙’ and addition ‘+’ operations. This enables the computation of
the forward process as:

ẑ1:dt+1 = ât ⊙ exp(sc2(ẑt)) + t2(ẑt)
ẑd+1:D
t+1 = ẑt ⊙ exp(sc1(ẑ

1:d
t+1)) + t1(ẑ

1:d
t+1)

(19)

and the backward processes can be calculated as:

z̆t =
(
z̆d+1:D
t+1 − t1

(
z̆1:dt+1

))
⊙ exp

(
−s1

(
z̆1:dt+1

))
ât = (z̆1:dt+1 − t2(z̆t))⊙ exp(−s2(z̆t))

(20)

As shown in the figure 3a, there is a dimensional mismatch between the quantities ẑt ∈ RD

and ẑ′t ∈ Rd+1:D, z̆′t+1 ∈ Rd+1:D and z̆t+1 ∈ RD, computed by RealNVP. Typically, a linear
transformation of a feed-forward neural network can be expressed as:

ẑ′t = W × ẑt +B
z̆′t+1 = W × z̆t+1 +B

(21)

However, due to the typical non-invertibility of W , backward inference (i.e., directly computing
z̆t+1 = W−1 × (z̆′t+1 − B)) presents challenges. To ensure reversibility, we employ Orthogonal
Weight Normalization (OWN) (Huang et al., 2018), which enables bidirectional inference by enforcing
orthogonality in the weights. As a result, the backward inference of z̆t can be re-expressed as:

ẑt = WT × (ẑ′t −B)
z̆t+1 = WT × (z̆′t+1 −B),WWT ∈ OD×D (22)

where the matrix family OD×D = {W ∈ R(d+1:D)×D | WWT = W−1W = I} (see (Huang
et al., 2018) for more details). For clarity, we have summarized the reasoning process of OWN in
Figure 3b. By using the combination of RealNVP and OWN, we can effectively achieve bidirectional
transformation between z̆t and z̆t+1.
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(a) The forward and reverse propagation process of RealNVP.

+=

(a) Forward

= -（ ）

=

(b) Backward

= +

(b) The reasoning process of OWN.

Figure 3: Flow-based Reversible Dynamics Model of ProSpec.
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D DERIVATION OF VALUE CONSISTENCY CONSTRAINT VIA CUMULATIVE
Q-VALUE SCORING

D.1 CUMULATIVE Q-VALUE TRAJECTORY SCORING

In traditional MPC frameworks, the trajectory score is defined by the discounted return over a finite
horizon:

J(τ) =

H∑
t=0

γtrt or J(τ) =

H∑
t=0

γtrt + γHV (sH), (23)

where H is the planning horizon, γ ∈ (0, 1) is the discount factor, and V (sH) denotes the terminal
value function. However, this mechanism faces three critical challenges in practice:

• Short-horizon bias: Planning focuses only on immediate rewards within a limited horizon,
neglecting long-term potential.

• Sparse reward failure: In sparse reward settings, different trajectories tend to yield similar
cumulative returns, making it difficult to distinguish their quality.

• Insufficient state resolution: In high-frequency control tasks (e.g., robotic control with a sampling
interval of 0.5 ms), consecutive states exhibit only minor differences, leading to negligible reward
variation and thus impairing effective decision-making.

To address these issues, we define the cumulative Q-value trajectory score as:

CQH(τ) =

H∑
t=0

γtQπ(st, at), (24)

where Qπ(st, at) = E
[∑∞

k=0 γ
krt+k | st, at

]
is the infinite-horizon action-value function.

D.2 LEMMA AND PROOF

Lemma D.1 (Weighting form of cumulative Q-value scoring). Assume rewards are bounded, i.e.,
|rt| ≤ Rmax. Then the expectation of the cumulative Q-value score satisfies:

E[CQH(τ)] = E

 H∑
j=0

(j + 1)γjrj +

∞∑
j=H+1

(H + 1)γjrj

 . (25)

Proof. By definition,

E[CQH(τ)] = E

[
H∑
t=0

γtQπ(st, at)

]
(26)

= E

[
H∑
t=0

γtE

[ ∞∑
k=0

γkrt+k

∣∣∣∣∣ st, at
]]

(27)

= E

[
H∑
t=0

∞∑
k=0

γt+krt+k

]
. (28)

Since γ ∈ (0, 1) and rewards are bounded, the infinite series is absolutely convergent, so we can
safely exchange the order of summations:

E[CQH(τ)] = E

 ∞∑
j=0

(min(H,j)∑
t=0

1
)
γjrj

 . (29)

The inner summation counts how many times each rj appears, which equals min(H, j)+1. Therefore:

E[CQH(τ)] = E

 H∑
j=0

(j + 1)γjrj +

∞∑
j=H+1

(H + 1)γjrj

 . (30)
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D.3 INTERPRETATION

Equation equation 25 reveals the following properties:

• For j ≤ H , each reward rj is upweighted by (j + 1)γj , progressively emphasizing short-term
rewards within the horizon.

• For j > H , each future reward is uniformly weighted by (H + 1)γj , ensuring that long-term
contributions are preserved rather than truncated.

Thus, the cumulative Q-value criterion serves as a structured approximation to the infinite-horizon
RL objective:

R(τ) =

∞∑
t=0

γtrt, (31)

while mitigating short-horizon bias. Compared to the conventional finite-horizon score
∑H

t=0 γ
trt, it

maintains global sensitivity to future rewards, better discriminates high-potential trajectories,
and enhances both prospective decision learning and safe exploration.

E TWO PROSPEC IMPLEMENTATION DETAILS

Implementation Details of DMControl. For continuous action spaces, we employ the SAC algo-
rithm. The policy network in the SAC algorithm generates a probability distribution from which the
actions are subsequently sampled. This policy network produces a probability density function that
assigns probabilities to all potential actions based on a given state st. Using this distribution, we
randomly draw j actions to predict and execute prospective tasks.

â0:j−1
t = {a0t , a1t , · · · , a

j−1
t } ∼ πθ(|st) (32)

Implementation Details for Atari. For discrete action spaces, we adopt the DQN framework as the
policy method. In the DQN framework, the agent computes Q-values for all possible actions at the
current state and selects the action with the highest Q-value. Thus, for ProSpec with discrete action
spaces, we rank the Q-values of all actions in descending order and choose the top j ∈ [1, n] actions
to predict future states. This can be formalized as follows:

â0:j−1
t = {a0t , a1t , · · · , a

j−1
t } = arg top j

a∈A
Q(st, a) (33)

The term “arg top” denotes the process of selecting the top j actions that maximize the Q-values.

E.1 HYPERPARAMETER SETTINGS

We list the hyperparameters used for the DMControl and Atari benchmarks in the Table 14 and Table
15, mainly following the CURL settings (Laskin et al., 2020a). The entire process is implemented
using PyTorch, and network training is performed on an NVIDIA RTX 3090 GPU.

F MORE EXPERIMENTAL RESULTS AND ANALYSIS

F.1 MORE EXPERIMENTAL RESULTS

As shown in Table 5, we present all the results for the Atari benchmark. We also report the results for
expert human and random play, as reproduced from (Yarats et al., 2020). Overall, ProSpec achieves
an IQM HNS of 47.2%, outperforming various methods: 97.4% higher than SimPLe, 232.4% higher
than DER, 153.7% higher than OTR and CURL, 92.6% higher than DrQ, 4.8% higher than SPR,
1.7% higher than VCR, 8.7% higher than PlayVirtual, 12.1% higher than PLASTIC, and 9.0% higher
than RLTSC. In terms of individual games, ProSpec achieved the highest score in 7 out of 26 game
scenarios. Notably, it demonstrated performance comparable to that of expert humans in certain
environments, particularly in the Bank Heist scenario. In this scenario, ProSpec’s score of 481.1
significantly outperforms other state-of-the-art models and approaches the expert human score of
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753.1. The objective in Bank Heist is to evade the police and rob as many banks as possible, requiring
the agent to predict the police’s potential locations and actions to optimize the robbery route and
avoid capture. Our method’s emphasis on PT enables preemptive action planning, contributing to its
superior performance over other models that lack this capability.

Table 5: Scores obtained by different methods on Atari with 100k interaction steps. ProSpec was run
with 10 random seeds, and the overall IQM HNS scores were recorded for evaluation comparison.

Game Huam Random SimPLe DER OTR CURL DrQ SPR VCR PlayVirtual RLASTIC RLTSC ProSpec
Alien 7,127.7 227.8 616.9 739.9 824.7 558.2 102.8 801.5 822.4 947.8 1032 1,129.8 862.8
Amidar 1,719.5 5.8 88 188.6 82.8 142.1 102.8 176.3 170.6 165.3 201.6 169 170.6
Assault 742 222.4 527.2 431.2 351.9 600.6 452.4 571 571.6 702.3 888.5 473.6 703.6
Asterix 8,503.3 210 1,128.3 470.8 628.5 734.5 603.5 977.8 1,071.5 933.3 1,066 734 957.4
Bank Heist 753.1 14.2 34.2 51 182.1 131.6 168.9 380.9 303.7 245.9 161.2 67.6 481.1
Battle Zone 37,187.5 2360 5,184.4 10,124.6 4,060.6 14,870 12,954 16,651 13,261 13,260 2,099 11,700 15,934.4
Boxing 12.1 0.1 9.1 0.2 2.5 1.2 6 35.8 42.5 38.3 44.5 11.9 41.5
Breakout 30.5 1.7 16.4 1.9 9.8 4.9 16.1 17.1 18.4 20.6 21 5.7 20.4
Chopper Command 7,387.8 811 1,246.9 861.8 1,033.3 1,058.5 780.3 974.8 1,024.2 974.8 891.2 1,120.6 1,351.0
Crazy Climber 35,829.4 10,780.5 62,583.6 16,185.3 21,327.8 12,146.5 20,516.5 42,923.6 40,048.4 23,176.7 31,223.8 12,810.1 38,803.0
Demon Attack 1,971 152.1 208.1 508 711.8 817.6 1,113.4 545.2 560.4 1,131.7 2,117.8 834.2 963.5
Freeway 29.6 0 20.3 27.9 25 26.7 9.8 24.4 18.7 16.1 27.1 28.1 25.1
Frostbite 4,334.7 65.2 254.7 866.8 231.6 1,181.3 331.1 1,821.5 2294.7 1,984.7 1,802.3 1,731.6 1,864.6
Gopher 2,412.5 257.6 771 349.5 778 669.3 636.3 715.2 539.7 684.3 839.4 682.4 866
Hero 30,826.4 1,027 2,656.6 6,857 6,458.8 6,279.3 3,736.3 7,019.2 5,838.8 7,007.2 7,394.4 8,597.5 8,140.5
Jamesbond 302.8 29 125.3 301.6 112.3 471 236 365.4 382.5 394.7 461.1 329 384.0
Kangaroo 3,035 52 323.1 779.3 605.4 872.5 940.6 3,276.4 3,393.1 2,384.7 1,636.1 1,402.8 2,494
Krull 2,665.5 1,598 4,539.9 2,851.5 3,277.9 4,229.6 4,018.1 3,688.9 4,199.2 3,880.7 5,019.5 3,665.7 4,542.2
Kung Fu Master 22,736.3 258.5 17,257.2 14,346.1 5,722.2 14,307.8 9,111 13,192.7 19,679.7 14,259 16,105 12,680.4 20,711
Ms Pacman 6,951.6 307.3 1,480 1,204.1 941.9 1,465.5 960.5 1,313.2 1,477 1,335.4 1,245.6 1,392.2 1,139.7
Pong 14.6 -20.7 12.8 -19.3 1.3 -16.5 -8.5 -5.9 0.9 -3 -17.7 -14.8 -1.1
Private Eye 69,571.3 24.9 34.9 72.8 59.6 81.9 3.5 86 98.9 93.9 100 100 100
Qbert 13,455 163.9 1,288.8 1,152.9 509.3 1,042.4 854.4 669.1 791.1 3,620.1 3,986.3 2,170.8 3,950
Road Runner 7,845 11.5 5,640.6 9,600 2,696.7 5,661 8,895.1 14,220.5 10,746.1 13,534 15,073.8 15,040.5 13,744
Seaquest 42,054.7 68.4 683.3 354.1 286.9 384.5 301.2 583.1 521.2 527.7 635.9 396.8 800.4
Up N Down 11,693.2 533.4 3,350.3 2,877.4 2,847.6 2,955.2 3,180.8 28,138.5 14,674.1 10,225.2 66,473 4,072 16,640.3

IQM HNS (%) - - 23.9 14.2 18.6 18.9 24.5 45.0 46.4 43.4 42.1 43.3 47.2

F.2 ANALYSIS OF PROSPEC’S APPLICABILITY

To underscore ProSpec’s advantages, we conducted a rigorous head-to-head evaluation against the
robust PlayVirtual baseline across several Atari titles. Both models were trained for 100,000 iterations
under identical random seeds and hyperparameter configurations, with checkpoints preserved for
downstream analysis. We then examined their behavior in controlled scenarios—namely, Bank
Heist, Chopper Command, and Amidar—by initializing each environment to a fixed, predefined
state. ProSpec and PlayVirtual were loaded separately to generate action selections, and for each
agent we logged the chosen action alongside the resultant next state (see Figure 9). We note that
these experiments were not performed in the DMControl suite, as the tasks in DMControl are less
straightforward to interpret.

Across extensive experiments, we find that ProSpec consistently outperforms pure trial-and-error in
three key domains:

Deep Prospective Planning. In Bank Heist, PlayVirtual greedily chases the immediate re-
ward—moving directly toward the money—without accounting for the approaching guards, and is
quickly captured. In contrast, ProSpec’s FDM simulates multiple future trajectories and chooses
to veer right around the guards, successfully avoiding capture. By generating several candidate
paths and selecting the locally optimal, highest-reward action, ProSpec demonstrates far superior
long-horizon planning compared to pure trial-and-error.

High-Risk Trap Avoidance. In Chopper Command—where a single mistake ends the
episode—ProSpec looks several steps ahead to identify potentially lethal states. As shown in
Figure 9b, when the helicopter nears ground targets, PlayVirtual blindly ascends and crashes, whereas
ProSpec’s lookahead evaluation triggers a timely shot and evasive turn, dramatically reducing resets
and enhancing safety.

Sparse-Reward, Goal-Driven Tasks. In Amidar, rewards are exceptionally sparse and naive
exploration converges slowly. Figure 9c illustrates how PlayVirtual, following a greedy single-step
policy, blunders into densely packed enemies and is surrounded; ProSpec, however, leverages multi-
step forecasting to veer right and avoid danger, sustaining survival longer and obtaining sparse
rewards more quickly—thereby accelerating convergence to near-optimal performance.

By contrast, in dense-reward, reactive environments such as Freeway, pure trial-and-error already
performs well, and ProSpec’s extra lookahead yields only modest gains.
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Figure 4: ProSpec vs. PlayVirtual Decision-Making Examples in Atari Games (Bank Heist, Chopper
Command, Amidar).

F.3 MORE ABLATION STUDIES

We conducted additional experiments to demonstrate the effectiveness of the proposed method. To
account for the variance across different environments and mitigate the impact of computational
limitations, we performed evaluations on the DMControl and Atari benchmarks using 5 random
seeds.
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Effectiveness of Prospective Thinking. Additional experiments were conducted to demonstrate the
effectiveness of PT. Table 6 and Table 7 illustrate improvements in ProSpec across all environments.
ProSpec-NP is the version without PT. PT resembles residual structures in neural networks from a
behavioral standpoint, allowing the model to approach local optima with each decision. This suggests
a consistent improvement in performance with each decision, akin to scenarios without PT. Hence,
this capability significantly improves overall performance.

Table 6: Impact of PT on ProSpec in DMControl benchmark.

ProSpec-NP ProSpec
Finger, spin 843±48 875±104
Cartpole, swingup 816±41 833±34
Reacher, easy 688±28 782±137
Cheetah, run 459±22 477±24
Walker, walk 455±56 507±60
Ball in cup, catch 884±68 927±17

Median Score 752 807.5

Table 7: Impact of PT on ProSpec in Atari benchmark.

Game ProSpec-NP ProSpec

Alien 794.9 862.8
Amidar 151.2 170.6
Assault 648.6 703.6
Asterix 958.3 957.4

Bank Heist 317.7 481.1
Battle Zone 12,334 15,934.4

Boxing 43.7 41.5
Breakout 18.8 20.4

Chopper Command 709 1,351
Crazy Climber 28,505.8 38,803
Demon Attack 898.9 963.5

Freeway 26.9 25.1
Frostbite 537.3 1864.6
Gopher 747.9 866

Hero 6,698.4 8,140.5
Jamesbond 351.5 384
Kangaroo 3,281 2,494

Krull 3,842.7 4,542.2
Kung Fu Master 17,756.2 20,711

Ms Pacman 1,202.7 1,139.7
Pong -4.6 -1.1

Private Eye 100 100
Qbert 2,920.1 3,950

Road Runner 8,172.3 13744
Seaquest 607.3 800

Up N Down 8,977.3 16,640

IQM HNS (%) 43.5 47.2

Impact of Prospective Count k. We investigated the influence of the number of prospectives (k) on
the performance of ProSpec. Experiments were conducted for k ∈ [1, 9], recording median results
across prediction horizons t ∈ [1, 15]. The findings, summarized in Table 8, include: (i) When k = 3,
performance is lower compared to other k values, highlighting the benefits of PT; (ii) In DMControl,
the optimal performance is achieved at k = 3, with a 6.9% improvement over k = 1 and a 1.9%
improvement over k = 9; (iii) In Atari, the highest performance occurs at k = 9, showing an 11%
improvement over k = 1 and k = 6; (iv) Performance improvements do not scale linearly with
the number of prospectives. In DMControl, when k ≥ 3, performance improvements plateau, with
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minimal further gains. This saturation may arise because, as k increases, the sampled actions yield
similar long-term rewards, resulting in negligible performance differences.

Table 8: Impact of prospective count k.

Benchmark k=1 k=3 k=6 k=9

DMControl 745.9 797.0 795.1 781.8
Atari 37.3 39.7 37.3 41.4

Impact of Prediction horizon t. We investigated the impact of the prediction horizon (t) on
ProSpec’s performance, as presented in Table 9. Similar to the previous experiment, we assessed
median performance across various values of k. The results can be summarized as follows: (i) In
DMControl, ProSpec achieves optimal performance at t = 6, with a 6.3% improvement over t = 1
and a 6.2% improvement over t = 15; (ii) In Atari, ProSpec achieves the best performance at t = 3,
with a 4.3% improvement over t = 1 and a 34.9% improvement over t = 15; (iii) Notably, ProSpec’s
performance does not increase linearly with the prediction horizon t. Instead, once a certain threshold
is exceeded, the performance improvement begins to plateau or even decline. This phenomenon may
arise because, as the prediction horizon increases, the complexity of future states that the model must
capture also grows, leading to greater prediction errors and reduced accuracy.

Overall. Tables 10 to 13 illustrate the effects of the prediction horizon t and prospective count k
on ProSpec performance across various environments. All results are summarized in Tables 8 and
9 for reference. Upon analysis, we determined that the optimal values for the prediction horizon
and prospective count in the DMControl benchmark are k = 3 and t = 6, respectively. In the Atari
benchmark, the optimal values are t = 3 for the prediction horizon and k = 9 for the prospective
count.

Table 9: Impact of prediction horizon t.

Benchmark t=1 t=3 t=6 t=9 t=12 t=15

DMControl 754.4 726.6 809.0 731.4 771.3 774.9
Atari 42.4 44.1 38.1 36.3 36.4 34.2
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Table 10: Impact of prospective count k in Atari-100k. Note that since Gopher has only 8 operable
actions, the result for k = 9 is recorded as the result for k = 8.

Game k=1 k=3 k=6 k=9

Alien 868.4 764.1 792.9 849.3
Amidar 149.5 115.8 132.5 208.7
Assault 629.8 610.8 650.1 653.0
Asterix 960.5 897.8 853.8 890.4
Bank Heist 273.8 225.0 258.0 585.1
Battle Zone 13,350.0 11,810.9 13,818.3 16,213.3
Boxing 35.6 28.1 35.4 41.1
Breakout 20.3 14.9 15.6 14.5
Chopper Command 597.0 860.9 1002.5 1064.3
Crazy Climber 25,691.0 22,536.2 19,337.3 15,873.0
Demon Attack 922.1 779.7 692.4 833.1
Freeway 29.4 26.9 27.7 23.6
Frostbite 267.8 1,805.0 1,990.9 1,632.7
Gopher 646.4 643.7 698.8 684.8
Hero 6,094.8 7,499.4 9,843.3 8,960.0
Jamesbond 373.5 307.4 336.9 348.6
Kangaroo 4,364.0 4,131.3 1,634.0 4,775.0
Krull 3,830.4 3,579.0 3,645.4 4,320.2
Kung Fu Master 14,497.0 16,651.1 16,439.8 12,952.8
Ms Pacman 1,154.5 964.6 980.6 1,041.3
Pong -8.4 3.9 -12.7 -13.0
Private Eye 100.0 100.0 105.5 100.0
Qbert 2,155.3 1,975.6 1,714.1 3,519.9
Road Runner 6,343.0 10,000.8 10,941.9 7,727.5
Seaquest 640.8 582.5 664.8 693.6
Up N Down 5,118.9 6,345.5 9,454.4 10,418.4

IQM HNS (%) 37.3 39.7 37.3 41.4

F.4 THE IMPACT OF PROSPEC ON DATA EFFICIENCY.

We investigated the impact of PT on model convergence speed using the DMControl and Atari
benchmarks, comparing the convergence performance of ProSpec and ProSpec-NP on a per-episode
basis. For each environment in both benchmarks, we recorded the average rewards on the test set and
the average game scores per episode. As shown in Figures 4-7, ProSpec demonstrated a significant
improvement in data efficiency during the early stages of training, achieving much higher scores than
ProSpec-NP. In terms of convergence, ProSpec reached near-optimal performance in a shorter time
compared to ProSpec-NP. For instance, in the Amidar environment, ProSpec surpassed ProSpec-NP
in score after fewer than 10,000 training steps, whereas ProSpec-NP took considerably longer to
reach similar performance. PT enables ProSpec to prioritize actions that are safer and more likely
to yield higher long-term rewards, allowing the model to rapidly acquire key strategies and show
smooth performance improvement. In contrast, ProSpec-NP, which lacks PT, relies more on passive
decision-making. This leads to slower learning and greater score fluctuations, especially in more
complex environments. In terms of final model performance, ProSpec outperforms ProSpec-NP
in nearly all environments, highlighting that PT significantly enhances the trial-and-error learning
process of model-free methods, resulting in improved model performance. Overall, the ProSpec
method, which incorporates PT, demonstrates superior convergence speed and final performance
compared to ProSpec-NP, making it especially suitable for scenarios requiring fast learning and stable
performance. This approach, which mimics human cognitive processes, has been shown to be both
theoretically and practically effective.
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Table 11: Impact of prediction horizon t on ProSpec in Atari-100k.

Game t=1 t=3 t=6 t=9 t=12 t=15
Alien 931.2 831.4 791.9 753.5 727.1 681.0

Amidar 168.5 152.2 160.1 132.1 125.6 155.1
Assault 686.3 663.6 660.9 678.3 642.2 460.4
Asterix 911.5 856.6 853.5 819.1 816.2 881.3

Bank Heist 272.8 372.4 493.4 180.3 181.5 303.0
Battle Zone 10,808.0 15,218.3 13,303.3 13,377.5 12,910.0 9,203.3

Boxing 35.1 32.7 43.7 35.4 39.2 19.9
Breakout 17.4 22.2 13.5 13.5 12.9 10.0

Chopper Command 729.0 1161.7 912.0 795.4 932.3 863.3
Crazy Climber 23,838.6 20,409.4 20,094.8 15,210.6 19,538.8 14,857.7
Demon Attack 793.3 902.0 852.8 737.3 638.9 463.2

Freeway 28.8 27.4 25.2 27.0 27.1 23.1
Frostbite 1,446.1 1,937.2 1,498.8 1,354.1 1,532.2 1,002.1
Gopher 710.1 836.5 721.0 669.8 517.5 422.3

Hero 7,962.0 5,874.2 8,426.9 8,408.5 9,537.9 6,335.0
Jamesbond 363.4 370.7 338.7 309.2 315.8 280.3
Kangaroo 2,337.8 2,461.3 3,058.0 3,993.3 2,896.7 4,454.0

Krull 4,136.2 4,296.7 3,450.2 3,690.2 3,322.8 3,966.3
Kung Fu Master 16,073.1 18,646.5 13,194.3 17,548.7 20,366.7 11,413.0

Ms Pacman 1,134.1 1,192.6 921.5 869.1 804.8 932.4
Pong -5.4 -5.8 -10.3 -8.7 -8.2 -3.7

Private Eye 100.0 100.0 100.0 100.0 111.0 100.0
Qbert 3,307.4 3,019.5 1,833.8 2,189.2 760.0 1,070.6

Road Runner 9,833.1 7,431.2 9,314.3 11,405.6 11,167.7 7,705.7
Seaquest 605.3 711.3 604.5 614.5 682.1 677.3

Up N Down 17,462.2 7,222.8 2,907.5 4,238.3 9,431.6 4,767.2

IQM HNS (%) 42.4 44.1 38.1 36.3 36.4 34.2

Table 12: Impact of prospective count k in DMControl-100k.

Game k=1 k=3 k=6 k=9
Finger, spin 880.0 867.9 871.2 811.7
Cartpole, swingup 816.0 831.5 820.0 800.0
Reacher, easy 675.8 762.6 770.3 763.6
Cheetah, run 349.8 388.2 384.5 419.7
Walker, walk 424.6 561.4 517.6 516.5
Ball in cup, catch 845.1 905.5 905.8 934.4

Median Score 745.9 797.0 795.1 781.8

Table 13: Impact of prediction horizon t on ProSpec in DMControl-100k.

Game t=1 t=3 t=6 t=9 t=12 t=15
Finger, spin 877.6 813.0 820.6 785.3 772.3 810.4
Cartpole, swingup 813.0 793.0 818.0 817.0 829.0 836.0
Reacher, easy 695.8 670.4 785.2 675.3 766.7 699.5
Cheetah, run 361.7 375.3 466.5 415.3 368.6 382.9
Walker, walk 522.8 573.7 581.4 555.4 522.4 539.0
Ball in cup, catch 868.7 908.1 927.2 926.5 921.8 918.0

Median Score 754.4 726.6 809.0 731.4 771.3 774.9
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Figure 5: The impact of ProSpec on data efficiency (DMControl: Ball in cup to Walker).
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Figure 6: The impact of ProSpec on data efficiency (Atari: Alien to Freeway).
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Figure 7: The impact of ProSpec on data efficiency (Atari: Frostbite to Road Runner).
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Figure 8: The impact of ProSpec on data efficiency (Atari: Seaquest and Up N Down).
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F.5 TIME COMPLEXITY

ProSpec augments a model-free learner with a FDM to enable multi-step prospective prediction.
The additional computational overhead scales with the number of candidate trajectories k and the
prediction horizon t. By parallelizing the generation of the k trajectories, we reduce the incremental
cost to depend almost exclusively on t. To benchmark performance and time trade-offs, we ran all
experiments in parallel on identical NVIDIA H100 GPUs using a fixed seed (1234). Figure 9 plots
each method’s evaluation-average reward (solid squares = ProSpec, dashed circles = PlayVirtual)
against environment steps (bottom axis), with wall-clock training time to 100 K steps shown as
vertical bars on the right axis.

Figure 9: Time-performance comparison between ProSpec and PlayVirtual on six DMControl tasks.
Curves show eval-average reward vs. environment steps; bars indicate cumulative training time to
100 K steps.

Task-Dependent Gains vs. Overhead Across six diverse DMControl benchmarks—from reflexive
challenges to sparse-reward, high-dimensional tasks—ProSpec consistently unlocks significant
performance improvements exactly where Prospective thinking is critical, at the cost of a modest
10 ∼ 20% increase in wall-clock training time:

• Long-horizon locomotion (Walker, walk): ProSpec secures the largest uplift—+79%
(+432.4 pts)—for only a 14% time penalty (17.9h→ 20.3h). This dramatic gain underscores
its ability to anticipate complex gait dynamics over extended horizons.

• Medium-horizon balancing (Cartpole, swingup): A 15% compute overhead (1.9h→ 2.2h)
produces a +4% reward gain (+29.5 pts), validating ProSpec’s Prospective thinking in
refining multi-step control with minimal latency.

• Sparse-reward, goal-driven tasks (Reacher, easy): In an environment where rewards
are exceedingly rare, ProSpec’s multi-step Prospective thinking yields a +24% improve-
ment (+188.6 pts) despite a 20% time increase (11.5h → 13.9h), markedly accelerating
convergence to high-quality policies.

• Reactive, dense-reward tasks (Ball in Cup, catch and Cheetah, run): These tasks already
converge rapidly under pure trial-and-error. ProSpec adds only 0.5–0.8 h of extra compute
and matches peak performance within ±1%, demonstrating negligible overhead when
Prospective thinking is unnecessary.

• High-dimensional dexterity (Finger, spin): Despite a 20% slower training curve (18.9h→
22.6h), ProSpec achieves near-identical scores to PlayVirtual, highlighting a domain where
future work on dynamics-model accuracy could unlock further planning benefits.
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Practical Trade-Off Although ProSpec can extend training time by up to 20% on H100 hardware,
its double- and triple-digit reward gains in sparse-reward and long-horizon tasks make this overhead
a highly favorable exchange. For real-world applications that demand Prospective thinking or robust
risk avoidance, ProSpec’s modest computational cost is readily justified by its substantial performance
dividends.

Extrapolating to Atari Although we have not directly profiled wall-clock overhead on the Atari
benchmarks, the core extra cost of ProSpec—the multi-step FDM rollouts—depends only on the
prediction horizon t and is agnostic to whether the environment is continuous (DMControl) or
discrete (Atari). In DMControl we observed a consistent 10–20% training-time overhead for horizons
that yield the best performance gains. Since Atari agents operate at a similar per-step inference
budget (frame-skip, network forward passes, etc.), we expect ProSpec to incur a comparable 10–20%
overhead there as well. Crucially, in both domains that overhead is fully amortized by double-
and triple-digit score improvements in sparse, long-horizon, or high-risk settings—suggesting that
ProSpec’s modest computational cost remains a sound trade-off across both continuous and discrete
control benchmarks.

G POTENTIAL SOCIETAL IMPACT

Deep Reinforcement Learning (RL) has shown extensive potential across various domains like
gaming, robotics, healthcare, and conversational systems. However, Model-free RL methods lack
planning capabilities due to design differences from Model-based RL methods. To imbue Model-free
methods with human-like PT abilities, we introduce ProSpec. This innovative approach makes
optimal decisions by envisioning future n-stream trajectories, prioritizing higher value and lower
risk outcomes. ProSpec also utilizes cycle consistency to address key RL challenges: augmenting
state reversibility to avoid irreversible events (lower risk) and augmenting actions for improved data
efficiency. Our validation in DMControl benchmark tests demonstrates superior performance. We
anticipate ProSpec’s impact on RL application development and hope it encourages further research
into PT in RL. Responsible AI policies should guide image-based RL research and applications to
ensure fairness and safety.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were only used to assist in language polishing, such as grammar
refinement and correction of typographical errors. They were not employed for idea generation, data
analysis, or interpretation of results. All substantive contributions, including the conception, design,
experiments, and writing of the manuscript, were carried out by the authors.

I REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Implementation details of
the model, training procedures, and hyperparameter settings are provided in Appendix. All datasets
used in our experiments are publicly available, with preprocessing steps consistent with PlayVirtual
(Yu et al., 2021). To further facilitate reproduction, we provide our code and scripts as anonymous
supplementary material at https://anonymous.4open.science/r/ProSpec-35B8/
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Table 14: Hyperparameters for DMControl.

Hyperarameter Setting
Frame stack 3
Observation downsampling (84, 84)
Augmentation Random crop & intensity
Replay buffer size 100K
Initial exploration steps 1K

Action repeat
2 finger, spin and walker, walk;
8 cartpole, swingup;
4 otherwise

Training steps 100K
Evaluation trajectories 10
SAC Batch size 512
Q-function EMA τ 0.01
Critic target update freq 2
Discount factor 0.99
Initial temperature 0.1
Target network update period 1
Target network EMA τ 0.05

Actor & Critic & Encoder opt
Optimizer Adam
(β1, β2) (0.9, 0.999)
Learning rate 0.0001

Temperature (α) opt Optimizer Adam
(β1, β2) (0.5, 0.999)
Learning rate 0.0001

cycle consistency batch size 128
k (number of view angles) 3
t (number of prediction horizon) 6
M (number of virtual trajectories) 10
λpred 1.0
λc 1.0
warmup Gaussian ramp-up (iend = 50K)
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Table 15: Hyperparameters for Atari.

Hyperarameter Setting
Gray-scaling True
Frame stack 4
Observation downsampling (84, 84)
Augmentation Random crop & intensity
Action repeat 4
Training steps 100K
Max frames per episode 108K
Reply buffer size 100K
Minimum replay size for sampling 2000
Mini-batch size 32
Optimizer Adam
Optimizer:learning rate 0.0001
Opimizer:β1 0.9
Opimizer:β2 0.999
Opimizer:ϵ 0.00015
Max gradient norm 10
Update Distributional Q
Dueling True
Support of Q-distribution 51 bins
Discount factor 0.99
Reward clipping Frame stack [-1, 1]
Priority exponent 0.5
Priority correction 0.4 → 1
Exploration Noisy nets
Noisy nets parameter 0.5
Evaluation trajectories 100
Replay period every 1
step Updates per step 2
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8 × 8, 4 × 4, 3 × 3
Q network: stride 4, 2, 1
Q network: hidden units 256
Target network update period 1
τ (EMA coefficient) 0

Additional Hyperparameters in ProSpec
M (number of virtual trajectories) 2|A| (two times of action space size)
λpred (weight for prediction loss) 1
λmax
c (a weight related to cyclical consistency loss) 1

k (number of view angles) 9
t (number of prediction horizon) 3
λpred 1.0
λc 1.0
warmup Gaussian ramp-up (iend = 50K)
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