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ABSTRACT

Generative Adversarial Networks (GAN) are popular generative models of images.
Although researchers proposed variants of GAN for different applications, evaluat-
ing and comparing GANs is still challenging as GANs may have many failure cases
such as low visual quality and model collapse. To alleviate this issue, we propose
a novel framework to evaluate the training stability (S), visual quality (Q), and
mode diversity (D) of GAN simultaneously. SQD requires only a moderate number
of samples, allowing real-time monitoring of the training dynamics of GAN. We
showcase the utility of the SQD framework on prevalent GANs and discovered that
the gradient penalty (Gulrajani et al., 2017) regularization significantly improves
the performance of GAN. We also compare the gradient penalty regularization with
other regularization methods and reveal that enforcing the 1-Lipschitz condition of
the discriminator network stabilizes GAN training.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a class of generative models
for creating new data samples that resemble the training data samples. GANs have raised great
interest due to their ability to learn the high-dimensional distribution of images. They have been
successful applied to high resolution images generation (Karras et al., 2018; Wang et al., 2018; Brock
et al., 2018; Donahue & Simonyan, 2019), style transfer (Zhu et al., 2017a;b; Isola et al., 2017), and
text to image synthesis (Reed et al., 2016; Zhang et al., 2017; 2018).

However, training GAN is notoriously elusive. One difficulty is that the loss functions of GAN
usually oscillate during training and do not indicate the convergence of the neural networks. Another
difficulty is that we lack quantitative assessment methods that measure the visual quality and the
mode diversity of the generated images in real time. Without effective and efficient evaluation metrics,
practitioners have to visually inspect many generated samples per a few training iterations to decide
subjectively when to stop and restart the training iterations. Hence, with an increasing number of
literature in GANs (Radford et al., 2015; Zhao et al., 2016; Srivastava et al., 2017; Odena et al., 2017;
Kodali et al., 2017; Mao et al., 2017; Arjovsky et al., 2017; Gulrajani et al., 2017; Berthelot et al.,
2017; Lim & Ye, 2017; Lin et al., 2018; Arora et al., 2018; Lin et al., 2018; Miyato et al., 2018; Wei
et al., 2018; Adler & Lunz, 2018; Bińkowski et al., 2018), the flourishing community calls for good,
comprehensive evaluation metrics.

Related Work. The popular Inception Score (IS) (Salimans et al., 2016) and Fréchet Inception
Distance (FID) score (Heusel et al., 2017) have adopted a pretrained Inception Network (Szegedy
et al., 2015) to extract 2048 embedding features of the generated images to quantitatively evaluate
GAN. However, as argued by Sajjadi et al. (2018), Inception Score, FID score and many other
evaluation metrics (Theis et al., 2015; Che et al., 2016; Salimans et al., 2016; Tolstikhin et al., 2017;
Li et al., 2017; Gurumurthy et al., 2017; Heusel et al., 2017; Arora et al., 2018; Khrulkov & Oseledets,
2018; Bińkowski et al., 2018) provide one-dimensional outputs. They cannot distinguish a GAN
between low mode diversity (mode collapse) and low visual quality. Later work (Lucic et al., 2018;
Shmelkov et al., 2018; Sajjadi et al., 2018) have proposed a two-dimensional measure “precision
and recall” to evaluate visual quality and mode diversity of GAN separately. However, due to the
computational complexity, the precision and recall measures cannot serve as real-time indicators for
the performance of GAN during training.
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Our Methods. We propose a new framework that evaluates the training stability (S), visual quality
(Q), and mode diversity (D) simultaneously. We call it the SQD framework. For the training stability,
we monitor the angular difference of the network parameters instead of the loss curves. As for the
visual quality and the mode diversity, we use two different evaluation metrics separately. We tested
the proposed SQD framework on popular variants of GAN (Goodfellow et al., 2014; Mao et al., 2017;
Lim & Ye, 2017; Tran et al., 2017; Arjovsky et al., 2017) that model the human faces in the CelebA
dataset (Liu et al., 2015). Our contributions are as follows.

• The visual quality and mode diversity metrics in the SQD framework require much fewer
samples than previous evaluation methods (Salimans et al., 2016; Heusel et al., 2017;
Shmelkov et al., 2018; Sajjadi et al., 2018), and thus allow use to monitor the performance
of GAN in real time.

• Our SQD framework reveals that a turning-point exists among all the tested GANs. That is,
after some stable training epochs, the visual quality, mode diversity and angular difference
start to deteriorate simultaneously and barely improve in future training.

• Using the SQD framework, we show that the gradient penalty (Gulrajani et al., 2017, GP)
regularization, which was originally proposed for WGAN (Arjovsky et al., 2017), addresses
the turning-points issue of GANs and improves the visual quality and the mode diversity of
GANs. Moreover, we find that GP plays the enhancer role even after the turning points of
GANs and that its effect is insensitive to different values of the regularization coefficient.

• We extend the assessment analysis to more regularization methods that share the spirit of GP
to enforce the Lipschitz condition of the discriminator network (Kodali et al., 2017; Miyato
et al., 2018) and observe similar improvement patterns of GANs.

2 BACKGROUND

GANs. A GAN typically consists of two neural networks. One is a generator network Gθ : z 7→ x
with parameter θ that translates a random noise vector z drawn from some distribution Pz to an
image x. The other is a discriminator network Dη(x) with parameter η that assigns each image x a
probability score of being real. Given a training set of real images x ∼ Pdata, this generator network
Gθ tries to create seemingly realistic image. The discriminator network Dη tries to distinguish real
images x ∼ Pdata from generated images Gθ(z) with z ∼ Pz .

Formally, the discriminator Dη minimizes a prescribed loss function LD : R× R→ R given by

min
η
LD(Dη(x), Dη(Gθ(z))). (1)

On the other hand, the generator Gθ is trained to fool the discriminator Dη by minimizing some loss
function LG : R× R 7→ R (which can be different from the opposite of the discriminator loss) given
by

min
θ
LG(Dη(x), Dη(Gθ(z))). (2)

Variants of GAN with different combinations of LD and LG have been proposed (Table 1).

Model Discriminator Loss LD Generator Loss LG

NSGAN E
x∼Pdata

[− log(σ(D(x)))] + E
z∼Pz

[− log(1− σ(D(G(z))))] − E
z∼Pz

[log(σ(D(G(z))))]

LSGAN E
x∼Pdata

[
(D(x)− 1)2

]
+ E
z∼Pz

[
(D(G(z)))2

]
− E
z∼Pz

[
−(D(G(z))− 1)2

]
Hinge E

x∼Pdata
[max(0, 1−D(x))] + E

z∼Pz
[max(0, 1 +D(G(z)))] − E

z∼Pz
[D(G(z))]

WGAN E
x∼Pdata

[−D(x)] + E
z∼Pz

[D(G(z))] − E
z∼Pz

[D(G(z))]

Table 1: Discriminator and generator loss functions of non-saturating GAN (Goodfellow et al., 2014, NSGAN),
least square GAN (Mao et al., 2017, LSGAN), Hinge Loss GAN (Lim & Ye, 2017; Tran et al., 2017), Wasserstein
GAN (Arjovsky et al., 2017, WGAN). For NSGAN, σ(t) = (1 + e−t)−1 ∈ (0, 1) is the sigmoid function. A
similar table can be found in Lucic et al. (2018).
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Gradient Penalty (GP). Proposed by Gulrajani et al. (2017), GP encourages ∇ηDη(x̂) to be of a
unit length by regularizing the discriminator loss LD of WGAN (Arjovsky et al., 2017, see the last
row of Table 1) with a penalty term

Ex̂∼Px̂

[
(‖∇ηDη(x̂)‖2 − 1)2

]
, (3)

where each x̂ is a convex combination of a real image x and a generated image G(z) with the
combination coefficient following a uniform distribution between [0, 1]

x̂ = αx+ (1− α)G(z), α ∼ Uniform[0, 1].

In this paper, we would showcase the utility of our SQD framework by investigating whether and to
what extent GP improves the performances of four variants of GANs listed in Table 1.

3 METHODS

We describe how the SQD framework evaluates the training stability, visual quality, and mode
diversity of GANs. We showcase our methodology on GANs that model human faces in the CelebA
dataset (Liu et al., 2015). The CelebA dataset contains 202 599 face images of 10 177 celebrities.

Training Stability. Instead of using the unstable loss curves, we track the angular difference of
the networks’ weight parameters. Let W (G)

t and W
(D)
t be the weight matrices of the generator and

discriminator networks at iteration t, respectively. Define the angle between two weight matrices Wt,
Wt+1 as

∠ (Wt,Wt+1) = arccos

(
vec(Wt)

> vec(Wt+1)

‖vec(Wt)‖2 ‖vec(Wt+1)‖2

)
. (4)

We monitor the angles

S :=
(
∠
(
W

(G)
t ,W

(G)
t+1

)
,∠
(
W

(D)
t ,W

(D)
t+1

))
(5)

at each iteration t and expect their convergences towards 0 as t → ∞, which indicates training
stability.

The reasons for examining the angular difference between weight parameters instead of the loss
curves are as follows. The loss curves of both Dη and Gθ oscillate dramatically and thus cannot
diagnose convergence during training. Recent progress on understanding the implicit bias of deep
neural networks (Soudry et al., 2018; Gunasekar et al., 2018; Moroshko et al., 2020) has suggested
that the directions of the network parameters converge with training iterations. Figure 1 plots the
losses and the angular difference between weight parameters of an NSGAN that is trained on the
CelebA dataset. The loss curves oscillate throughout the whole training process, but the angular
difference converges.

(a) Losses (b) Angular Differences

Figure 1: Loss curves (a) and angular difference curves (b) during 300 training epochs of a NSGAN
on the CelebA dataset. The clear jumps of the angular difference curves in (b) correspond to a
qualitative transition of the NSGAN network as we will discuss later.
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Visual Quality. We use the MTCNN face detection network (Zhang et al., 2016) to judge the visual
quality of generated images. The MTCNN network outputs a visual quality score Q(x) ∈ [0, 1] for
each image x, indicating the probability that this image is a human face. Suppose that a variant of
GAN generates a set of images X̂ . We define the average probability score assigned by MTCNN to
each generated image as the visual quality score of the GAN.

Q := |X̂ |−1
∑
x̂∈X̂

Q(x̂) (6)

The advantages of the visual quality score in Equation 6 over the popular Inception Score and FID
score are twofold. First, both Inception Score and FID scores use a feature embedding network
designed for general visual perception but our visual quality scores is given by a perception network
trained specifically for human face recognition. Second, both Inception Score and FID scores require
a large number of generated images to evaluate because they need to quantify the divergence between
two distributions in the 2048-dimensional embedding space of the Inception Network. The variance
of our visual quality score is at most 0.25× |X̂ |−1. A small sample of 1000 generated images leads
to an accurate estimate of the visual quality score with a standard deviation ≤ 0.016.

Mode Diversity. Mode collapse is a major challenge in GAN: only a few modes (subpopulations)
in the target distribution Pdata are learned by GAN and overrepresented in the generated images,
while other modes are underrepresented or even dropped. Effective evaluation metrics for mode
collapse had been missing in the literature since the birth of GAN. Recently, Sajjadi et al. (2018)
generalized the concept of “precision and recall” from the context of binary classification to that
of generative modeling, and measured the degree of mode dropping by the portion of the target
distribution not covered by the learned distribution. This metric considers whether various modes of
the target distribution are present or absent in the learned distribution.

We step further and evaluate whether various modes of the target distribution are underrepresented or
overrepresented in the learned distribution. Recall that the CelebA dataset consists of 202 599 face
images of 10 177 celebrities. We view the identity of each celebrity as a mode (subpopulation) in
the training data, and use the ArcFace face verification network (Deng et al., 2019) to find the most
similar identity for each generated face image. The ArcFace network is designed to verify whether
two face images belong to the same person. Let Xj be the subset of face images belonging to the
identity j ∈ {1, . . . ,m} with m = 10 177 being the number of modes, and let fj be the mean feature
vector of its images in the embedding space of the ArcFace network.

fj = |Xj |−1
∑
x∈Xj

f(x), j = 1, . . . ,m, (7)

where f : X → Rd is the ArcFace embedding network. For each generated image x̂, we assign it to
its most similar identity

j(x̂) = argmin
j
‖f(x̂)− fj‖2 . (8)

The entropy of j(x̂) reflects the degree of mode underrepresentation and overrepresentation. We
define it as the mode diversity of GAN

D := Entropy(j(x̂)). (9)

Moreover, since this mode diversity metric requires only n � m/ logm samples, it can indicate mode
diversity or mode collapse in real time during the GAN training. Indeed, theoretical results on the
entropy estimation for a discrete distribution suggest that the sample size n � m/ logm is necessary
and sufficient for consistently estimating the entropy at the optimal rate (Valiant & Valiant, 2011;
Jiao et al., 2015; Wu & Yang, 2016). For the CelebA dataset, m = 10 177 and m/ logm ≈ 1103.
In our experiments, we adopted the James-Stein entropy estimation method (Hausser & Strimmer,
2009) and found that a sample size n = 2000 worked well.

For n generated images {x̂i}ni=1, let J = {ji = j(x̂i)}ni=1 be the set of the indices of their most
similar identities. Algorithm 1 describes the James-Stein method.

4 EXPERIMENTS

We considered four variants of GAN — NSGAN, Hinge-loss GAN, LSGAN and WGAN (Table 1) —
with and without the GP regularization, respectively, on the discriminator. The loss function of the
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Algorithm 1 James-Stein Entropy Estimation

1: Input J = {j1, j2, . . . , jn}.
2: pn,j =

1
n

∑n
i=1 1{ji=j}, ∀j = 1, ...,m.

3: λ =
(
1−

∑m
j=1 p

2
n,j

) [
(n− 1)

∑m
j=1(m

−1 − pn,j)2
]
.

4: p̂n,j = λm−1 + (1− λ)pn,j .
5: Output −

∑m
j=1 p̂n,j log p̂n,j .

discriminator regularized by GP was

LD,λ = LD + λEx̂∼Px̂

[
(‖∇ηDη(x̂)‖2 − 1)2

]
. (10)

We set the regularization coefficient λ to 10 unless specified, and adopted the ADAM optimizer
(Kingma & Ba, 2014) to train all GANs in comparison.

Figure 2 visualizes 100 generated images for each of eight GANs in comparison after 300 training
epochs. Mode collapse arose in NSGAN, Hinge-loss GAN, and LSGAN. Images generated by
WGAN were of low visual quality. For each of these four GANs, adding the GP regularization to its
discriminator improved both visual quality and mode diversity.

(a) NSGAN (b) LSGAN (c) Hinge (d) WGAN

(e) NSGAN-GP (f) LSGAN-GP (g) Hinge-GP (h) WGAN-GP

Figure 2: Generated images of GANs after 300 training epochs.

Interestingly, with the SQD framework, we observed that the training dynamic of each GAN without
the GP regularization exhibited a turning point when the network became unstable and severe mode
collapse occurred (Figures 3-5). In contrast, each GAN with the GP regularization did not suffer
from such issue.

Training Stability. As we have discussed in Section 3, the angular difference of both the generator
network G and the discriminator network D should converge to 0 smoothly if GAN improves
incrementally and stably. Figure 3 shows that GANs without the GP regularization were highly
unstable during training. Adding the GP regularization to the discriminator of GAN stablized training.

• The weight parameter of the NSGAN’s generator network dramatically changed direction
at epoch 78. Similar changes happened at epoch 40 for LSGAN, epoch 110 for Hinge-
loss GAN, and epoch 62 for WGAN. The weight parameters of both the generator and
discriminator networks smoothly converged.
• The training dynamic of WGAN was overall less stable than the other three GANs. Without

GP, the weight parameter of its generator frequently changed directions even after the turning
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point and did not converge. With GP, the weight parameters suddenly changed directions
only occasionally.

• The training instability of GANs with no GP caused dramatic changes of visual quality
(Figure 4) and severe mode collapses (Figure 5) at turning points.

(a) NSGAN (b) LSGAN (c) Hinge (d) WGAN

(e) NSGAN-GP (f) LSGAN-GP (g) Hinge-GP (h) WGAN-GP

Figure 3: Angular differences of different GANs

(a) NSGAN (b) LSGAN (c) Hinge (d) WGAN

Figure 4: Visual quality of different GANs w/ and w/o GP regularization.

(a) NSGAN (b) LSGAN (c) Hinge (d) WGAN

Figure 5: Mode diversity of different GANs w/ and w/o GP regularization.

Visual Quality. Figure 4 shows that with no GP regularization, the visual quality scores of GANs
increased stably in the early training stage but suddenly started to oscillate at epoch 78 of NSGAN,
epoch 40 of LSGAN, epoch 110 of Hinge-loss GAN, and epoch 62 of WGAN. This signifies the
low or poor visual quality of the generated images. In contrast, GANs with GP evolved smoothly
throughout all the 300 training epochs and gave high visual quality scores consistently. The visual
quality scores of WGAN frequently hit zero after the turning point, indicating that WGAN created
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images of extremely low quality. This aligns well with the human visual judgement on generated
images of WGAN (Figure 2(d)).

Mode Diversity. Figure 5 shows that with no GP regularization, the mode diversity scores of
NSGAN, LSGAN and Hinge-loss GAN jumped at their turning points, indicating severe mode
collapse (Figure 6). The large swings of the mode diversity score of WGAN between 0 and 7 after the
turning point epoch 62 reconfirms the training instability of WGAN. GANs with GP regularization
enjoyed relatively good mode diversity. Their mode diversity scores higher than 7.50 are reasonably
close to its theoretically maximum value ln(10 177) = 9.23 for the CelebA dataset.

Figure 6 shows sample generated images of each GAN at its turning point. The appendix shows more
generated images at different epochs to illustrate the evolution of GANs.

(a) NSGAN at epoch 74 (b) LSGAN at epoch 40 (c) Hinge at epoch 110 (d) WGAN at epoch 62

Figure 6: Generated images of GANs at their turning points

Our evaluation shows that the SQD framework is an effective diagnostic toolbox to monitor the
training process of GAN in real time.

5 ANALYSIS OF THE GRADIENT PENALTY REGULARIZATION

We average the visual quality and mode diversity scores of GANs during epochs 250–300 and
conclude that GP regularization significantly improves the performance of GANs.

Model Q w/o GP Q w/ GP D w/o GP D w/ GP

NSGAN 0.893 0.949 4.289 7.848
LSGAN 0.899 0.946 4.583 7.794
Hinge 0.787 0.964 3.963 8.221
WGAN 0.243 0.937 1.885 7.556

Table 2: The average visual quality (Q) and mode diversity (D) of the last 50 epochs.

We conduct more experiments to investigate how GP improves the training stability of GAN. We first
increased the regularization coefficient λ from 10 to 100 and found that, despite the minor fluctuation
in the earlier training stage, GP with a larger weight (λ = 100) still stabilized NSGAN training
(Figure 7(a)). This finding confirms the claim of Petzka et al. (2018) that the advantages of GP holds
for a wide range of λ.

Next, we monitored more training iterations of NSGAN up to 1000 epochs (Figure 7 (b–c)), and
found that GP kept stabilizing the training dynamic of NSGAN.

Finally, we extended the assessment analysis to three other regularization methods that have similar
forms to GP, namely, Dragan, Lipschitz and 0-GP (Table 3). Interestingly, we found that Dragan
and Lipschitz methods stabilized GAN training in ways similar to GP, but 0-GP destabilized the
training (Figure 7(d–f)). A possible explanation is that they share the same spirit to regularize the
Lipschitz condition of networks. Miyato et al. (2018) justified the effect of the Lipschitz condition on
the training stability of GAN.
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Regularization Expression Px̂
GP λ E

x̂∼Px̂

[
(‖∇ηDη(x̂)‖2 − 1)2

]
x̂ = αx+ (1− α)G(z), α ∈ [0, 1]

Dragan λ E
x̂∼Px̂

[
(‖∇ηDη(x̂)‖2 − 1)2

]
x̂ = x+ δ, δ ∼ N(0, cI)

0-GP λ E
x̂∼Px̂

[
‖∇ηDη(x̂)‖22

]
x̂ = αx+ (1− α)G(z), α ∈ [0, 1]

Lipschitz λ E
x̂∼Px̂

[
(max{0, ‖∇ηDη(x̂)‖2 − 1})2

]
x̂ = αx+ (1− α)G(z), α ∈ [0, 1]

Table 3: Different Regularizations of GAN: GP (Gulrajani et al., 2017), Dragan (Kodali et al., 2017), 0-GP
(Thanh-Tung et al., 2019), Lipschitz (Petzka et al., 2018). x ∼ Px is the real image, G(z) is the generated
image.

(a) GP (λ = 100) (b) NSGAN 1000 epochs (c) GP 1000 epochs

(d) Dragan (e) 0-GP (f) Lipschitz

Figure 7: Angular difference of NSGAN with different regularizations: Dragan (Kodali et al., 2017),
0-centered gradient penalty (0-GP) (Thanh-Tung et al., 2019), Lipschitz constraint and gradient
penalty (Gulrajani et al., 2017). The weight of penalty terms are set to λ = 10 unless specified.

6 CONCLUSION AND FUTURE WORK

We propose the SQD framework to monitor the training stability, visual quality, and mode diversity of
GAN training in real time. Our framework uses the angular difference of the network weight matrices
to signify training stability. We used a detection network and a recognition network to evaluate the
visual quality and mode diversity of the generated images separately. We tested the SQD framework
on various GANs for modeling human faces.

In addition, our experiments show that GP (Gulrajani et al., 2017) regularization improves the
performance of GANs in training stability, visual quality, and mode diversity. We further investigated
regularization methods that have similar forms and found that Dragan and Lipschitz methods stabilize
GAN training as well.

As we only conducted experiments on the CelebA dataset, we would like to extent our methods
to evaluate GANs trained on other datasets. Besides the discriminator regularizations mentioned
in Table 3, many other regularization techniques (Che et al., 2016; Brock et al., 2016; Roth et al.,
2017; Miyato et al., 2018; Odena et al., 2018; Chu et al., 2020) have demonstrated the potential in
improving GAN training. We would also like to investigate the theoretical justification for these
regularizations.
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A EVOLUTION OF DIFFERENT GAN MODELS DURING TRAINING

(a) Epoch 74 (b) Epoch 76 (c) Epoch 78 (d) Epoch 80

(e) Epoch 82 (f) Epoch 84 (g) Epoch 86 (h) Epoch 300

Figure 8: Generated samples of NSGAN in different epochs

(a) Epoch 35 (b) Epoch 70 (c) Epoch 105 (d) Epoch 140

(e) Epoch 175 (f) Epoch 210 (g) Epoch 245 (h) Epoch 280

Figure 9: Generated samples of NSGAN-GP in different epochs
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(a) Epoch 36 (b) Epoch 38 (c) Epoch 40 (d) Epoch 42

(e) Epoch 44 (f) Epoch 46 (g) Epoch 48 (h) Epoch 300

Figure 10: Generated samples of LSGAN in different epochs

(a) Epoch 35 (b) Epoch 70 (c) Epoch 105 (d) Epoch 140

(e) Epoch 175 (f) Epoch 210 (g) Epoch 245 (h) Epoch 280

Figure 11: Generated samples of LSGAN-GP in different epochs
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(a) Epoch 104 (b) Epoch 106 (c) Epoch 108 (d) Epoch 110

(e) Epoch 112 (f) Epoch 114 (g) Epoch 116 (h) Epoch 300

Figure 12: Generated samples of Hinge Loss in different epochs

(a) Epoch 35 (b) Epoch 70 (c) Epoch 105 (d) Epoch 140

(e) Epoch 175 (f) Epoch 210 (g) Epoch 245 (h) Epoch 280

Figure 13: Generated samples of Hinge-GP in different epochs
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(a) Epoch 60 (b) Epoch 62 (c) Epoch 64 (d) Epoch 66

(e) Epoch 68 (f) Epoch 70 (g) Epoch 72 (h) Epoch 300

Figure 14: Generated samples of WGAN in different epochs

(a) Epoch 35 (b) Epoch 70 (c) Epoch 105 (d) Epoch 140

(e) Epoch 175 (f) Epoch 210 (g) Epoch 245 (h) Epoch 280

Figure 15: Generated samples of WGAN-GP in different epochs
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B FIRST ORDER NECESSITY CONDITION OF LD,λ

Here we provide the first order condition of the critical point of the GAN objective function LD,λ
with the gradient penalty term λEx∼Px̂

(
‖∇ηDη(x̃)‖2 − 1

)2
. We abuse the sampling issue of

Gθ, Dη,∇ηDη and write the GAN-GP discriminator loss as

min
η
LD,λ = LD + λ

(
‖∇ηDη‖2 − 1

)2
. (11)

With the gradient penalty, the first order critical points of generator Gθ remains the same:

∂

∂η
LD,λ = 0. (12)

The first order critical points of the discriminator Dη satisfy:

∂

∂η

[
LD(Dη, Dη(Gθ)) + λ

(
‖∇ηDη‖2 − 1

)2]
= 0

=⇒ dLD
dD
∇ηDη + 2λ∇2

ηDη∇ηDη

(
1− 1

‖∇ηDη‖2

)
= 0

=⇒
[
dLD,λ
dD

I + 2λ

(
1− 1

‖∇ηDη‖2

)
∇2
ηDη

]
∇ηDη = 0

(13)

where∇2
ηDη is the Hessian matrix of Dη . This critical condition equation 13 suggests∇ηDη should

be in the null space of matrix

dLD,λ
dD

I + 2λ

(
1− 1

‖∇ηDη‖2

)
∇2
ηDη. (14)
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