
OATS: Online Data Augmentation for Time Series
Foundation Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Data augmentation is a key approach for enhancing the training of Time Series1

Foundation Models (TSFM). However, existing augmentation methods typically2

rely on heuristic synthetic data generation and follow a static paradigm, where3

synthetic data is generated once prior to training. To overcome these limitations,4

we propose Online Data Augmentation for Time Series Foundation Models (OATS),5

an algorithm to generate high-quality synthetic time series data through principled6

and dynamically adaptive augmentation strategies. OATS introduces methods to7

identify high-quality samples, guide the generation process with these samples,8

and scale augmentation efficiently. Experiments on TSFM demonstrate that OATS9

significantly improves the generalization performance of TSFM pretraining.10

1 Introduction11

Time series modeling plays a critical role across a wide range of domains, including finance [Kim12

et al., 2019, Li et al., 2024], healthcare [Guo et al., 2023], climate science [Liang et al., 2023], and13

industrial monitoring [Zamanzadeh Darban et al., 2024]. Traditionally, time series models have been14

trained on relatively small and single-domain datasets which are often carefully curated [Wen et al.,15

2022]. However, recent developments such as time series foundation models (TSFM) [Yao et al.,16

2024, Ansari et al., 2024] lead to a transition toward large-scale datasets across different domains.17

These training datasets are often curated through multiple third-party time series data sources [Yao18

et al., 2024]. Typical issues in time series datasets include missing values [Junninen et al., 2004],19

heterogeneous sampling rates [Woo et al., 2024], imbalanced domain distributions [Yao et al., 2024],20

data duplication [Lin et al., 2023], and so on. Nevertheless, the success of time series foundation21

models relies on the availability of high-quality and diverse data. As the time series community22

shifts toward large-scale and foundation models, optimizing training data has become one of the most23

pressing challenges in time series modeling.24

Data augmentation with synthetic data has emerged as a key alternative for optimizing time25

series training data in current TSFM studies. Many TSFMs [Woo et al., 2024, Das et al., 2024, Liu26

et al., 2024] construct large-scale and diverse pretraining datasets by manually collecting data from27

multiple sources across different domains. Beyond collecting real-world data, data augmentation with28

synthetic data is also widely applied to further improve the training data [Das et al., 2024, Ansari et al.,29

2024]. However, the role and usefulness of data augmentation remain debatable, with conflicting30

findings reported across different studies [Fu et al., 2024, Kuvshinova et al., 2024, Ansari et al.,31

2024, Deng et al., 2025]. We identify two fundamental limitations in current data augmentation32

techniques for TSFMs that may undermine their effectiveness. First, most existing methods33

rely on heuristic strategies for generating synthetic data. These approaches are typically rule-based34

or guided by human intuition about quality constraints such as smoothness, periodicity, or trend35

structure that synthetic time series are expected to resemble plausible real-world data. Despite some36

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S).
Do not distribute.

efforts [Shi et al., 2024, Ansari et al., 2024, Das et al., 2024] in proposing different synthetic data37

generation methods, there remains a pressing need for more principled criteria to assess the quality38

of synthetic time series. Second, the generation mostly follows a static paradigm, which means39

the quality constraints are set and fixed for the whole training process. This fails to account for40

the evolving learning dynamics of the model and may miss opportunities to adaptively refine the41

augmented dataset based on the model’s training progression. Recent studies suggest that data quality42

is closely tied to training dynamics, highlighting the potential benefits of more adaptive, model-aware43

augmentation strategies [Wang et al., 2024b,a].44

To address these two limitations, we propose OATS (Online Data Augmentation for Time Series45

Foundation Models), an algorithm designed to enable dynamic data augmentation for TSFMs. OATS46

consists of three core components: Time-series influence scores (TSIS) integrate training data47

attribution with time series–specific knowledge to dynamically assess the quality of each data sample48

in a principled manner. High-quality guided data augmentation leverages top-ranked samples in49

TSIS as prompts to condition a diffusion model for synthetic data generation. To reduce computational50

overhead and effectively balance between leveraging historical knowledge and exploring new samples,51

OATS adopts an explore–exploit paradigm. Specifically, the influence scores are periodically re-52

evaluated to incorporate model training dynamics while preserving previously identified high-quality53

data. Finally, we conduct experiments of the dataset augmentation carried out by OATS, demonstrating54

the effectiveness and practical benefits of our approach.55

2 Method56

In this section, we introduce the modules of Online Data Augmentation for Time Series Foundation57

Models (OATS). The proposed method acts as a systematical approach to incorporating synthetic data58

in the training process. OATS involves three modules, i.e., Time-series Influence Scores (TSIS) to59

quantitatively estimate the quality of time series samples, High-quality guided Data Augmentation to60

generate synthetic samples with high-quality samples as prompts, and the explore-exploit paradigm61

to balance the efficiency and effectiveness. We will introduce the modules in separate paragraphs.62

A diagram of the whole algorithm is presented in Figure 1 and the algorithm block is shown in63

Appendix A.64

Notations. Suppose we have a training dataset Dtr of size N which is partitioned into L disjoint65

subsets: Dtr =
⋃L

l=1 Dl = {zl,k|l = [L]; k = [Nl]}, where Nl = |Dl| is the size of subset Dl and66

zl,k ∈ Z , the data space of time series samples. A TSFM parameterized by w ∈ W is being trained67

on Dtr to minimize loss function ℓ via an iterative optimization algorithm, e.g., stochastic gradient68

descent [Ruder, 2016] for T steps. The intermediate checkpoints of each step are represented as69

{wt|t = [T]}. We also have a validation dataset Dval = {zv|v = [Nv]}, zv ∈ Z and Dval is not70

overlapped with Dtr.71

Time-series Influence Scores (TSIS). In OATS, we employ data attribution [Koh and Liang, 2017,72

Pruthi et al., 2020] as a principled method to estimate the influence of a data point on the model73

output, which has shown significant usefulness in dataset optimization in different areas [Wang et al.,74

2024b, Xia et al., 2024]. We design the TSIS function with respect to a validation dataset Dval as75

FDval
for each sample to be FDval

: Dtr ×W → R, which estimates the influence score of a data76

sample to be trained on wt with respect to the performance on Dval. A larger score indicates that77

training on z for the next training step (t+ 1) leads to better performance on Dval. We additionally78

consider TS-specific quality indicators, which we use signal-to-noise ratio (SNR). The TSIS function79

can be defined as:80

FDval
(zi, wt) = g(val);t · gzi;t︸ ︷︷ ︸

Influence Score

+ λ · SNR(zi)︸ ︷︷ ︸
TS-specific quality

, (1)

where λ is the hyperparameter controls the significance of the time series specific quality term,81

g(val);t = ∇w

∑
vi∈Dval

ℓ(vi, wt)/|Dval| and gzi;t = ∇wℓ(zi, wt).82

High-quality Guided Data Augmentation. We design a high-quality data guidance generation83

model G for online synthetic data generation. The quality of data samples is indicated by TSIS we84

introduced. We aim to model the conditional distribution p(ẑ|Dhigh), which defines the probability85

of generating a sample ẑ given the high-quality dataset Dhigh ⊆ Dtr. The conditional generation86

model G serves as a parameterized approximation of this distribution, enabling practical sampling via87

ẑ ∼ G(Dhigh).88

2

Average score of each subset

Selected
mini-batch

Data
Space

Per-sample
Influence

Scores

Step 1
Explore step

Data
Space

Step 1 Step 2
Exploit step

Mini-batch
sampled
according to
cached TSIS

Training
step

…

① Time-Series Influence Scores

Upd
ate

Sample

Explore

Augmented
high-quality
samples

…

(Initialized by subset proportion)

② High-quality guided TS Generation

③ Explore-Exploit Training Process

…

Decision
Algorithm

Average score of each subset

Step 2

Augmented
high-quality
samples

Figure 1: Architecture of OATS. Modules include ① Time-Series Influence Scores, ② High-Quality
Guided Time Series Augmentation and ③ Explore–Exploit Training Process.

We design the architecture of G to be a diffusion model utilizing a time series semantic prototype89

module and take Dhigh as a generation prompt, taking Huang et al. [2025] as our backbone model.90

The model extracts prototype weights M = {mi|zi ∈ Dhigh} from prompt samples. We leverage91

the same design of weight extractor and conditional noise predictor as in Huang et al. [2025].92

We additionally include a class conditional guidance based on the subset information, denoted as93

Chigh = {ci|zi ∈ Dhigh}, where each ci ∈ [L] indicates which disjoint subset Dl the sample zi94

belongs to. The generation (reverse diffusion) for each prompt can be expressed as95

p(z(t−1)|z(t),Dhigh) = N (z(t−1)|µ(z(t), t,mi, ci︸ ︷︷ ︸
High−quality data guidance

, σt), (2)

where z(t) is the intermediate sample at diffusion timestep t, N is Gaussian distribution, σt is the96

noise covariance at diffusion step t. The architecture of the parameterized conditional noise predictor97

handles the prototype weights mi and class condition ci.98

Explore & Exploit. The TSIS we proposed is updated online through the training process and99

depends on every training step wt. We are inspired by the multi-armed bandit problem and design100

an explore-exploit mechanism that could reuse the TSIS calculated for samples of previous training101

steps to reduce overhead.102

The mechanism divided training steps into explore steps and exploit steps. In explore steps, we103

calculate TSIS for a batch of data samples Bt sampled by strategy πr. We assume the locality104

of TSIS among z in the same subset. Based on this assumption, we maintain a dynamic cache105

ΦDl
∈ R, l ∈ [L] for each subset and update it through exponentially moving average. The partition106

of Dtr =
⋃L

l=1 Dl can naturally be the sub-datasets of a large collection or some clustering results.107

The update of ΦDl
on training step t can be represented as108

ΦDl
= (1− β)ΦDl

+ β
∑

zi∈Dl∩Bt

FDval
(zi, wt)/|Dl ∩ Bt| (3)

where Bt ∼ π
|Bt|
r , πr = U(Dtr), β ∈ [0, 1] is the hyperparameter controls the decay factor of the109

exponentially moving average. For fast evolution of TSIS along training process, β should be set110

3

larger and vice versa. The design of πr for explore steps reflects the spirit to visit new data points and111

update the TS data. It will randomly sample from the full training dataset Dtr112

For exploit step, we design a sample algorithm πo utilizing the ΦDl
cached in explore step. πo113

follows a two stage sampling strategy: 1) sample a subset Dl with probability |Dl|·max(0,ΦDl
)∑

k |Dk|·max(0,ΦDk
) 2)114

uniformly sample a data point from the subset Dl.115

The choice of explore or exploit step is handled by ϵ-greedy, a popular strategy for explore and exploit.116

We design a strategy ψ is defined to be “explore” with probability ϵ and “exploit” with probability117

1− ϵ, where ϵ is a hyperparameter controlling the balance between explore and exploit.118

3 Experiments119

We conduct experiments on Encoder-only TSFM, which is a modified version of Moirai [Woo et al.,120

2024], introduced by Yao et al. [2024]. We follow the same data processing and training settings as121

in Yao et al. [2024]. Detailed experiment settings can be found in Appendix B.122

We evaluate 6 out-of-distribution datasets in LSF [Wu et al., 2023], and take a very small number of123

samples (32 in all our experiments) from these evaluation datasets as validation samples used by TSIS.124

We compare the performance of OATS and regular pretraining. “OATS (Sel+Aug)” is the full algorithm125

proposed in Section 2 and Algorithm 1, and “Regular” is the regular pretraining process used by126

Yao et al. [2024]. We also include a variant of OATS, i.e., “OATS (Sel only)”, which only selects127

high-quality data points through TSIS while not carrying out data augmentation for the ablation study.128

Essentially, “OATS (Sel only)” is Algorithm 1 without “Step 2” in both explore and exploit steps.129

In Table 1, we present the test loss (negative log likelihood, NLL) and MAPE on the evaluation130

datasets. It shows that “OATS (Sel+Aug)” outperforms other algorithms on most of the datasets131

(Weather, ETTh1, ETTm2, Electricity, ETTh1), and “OATS (Sel only)” shows superiority occasionally132

on some datasets and prediction lengths (ETTm1). The experiment shows that OATS effectively helps133

identify high-quality data samples from the training set and incorporate synthetic data samples guided134

by high-quality data that improve the TSFM pretraining performance.135

Table 1: Performance of OATS (ϵ = 1) and regular training of TSFM [Yao et al., 2024] pretraining.

Dataset Pred. length OATS (Sel+Aug) OATS (Sel only) Regular Dataset Pred. length OATS (Sel+Aug) OATS (Sel only) Regular

NLL MAPE NLL MAPE NLL MAPE NLL MAPE NLL MAPE NLL MAPE

ETTh1

96 1.754 0.684 1.774 0.878 1.866 0.823

ETTh2

96 1.869 0.235 1.929 0.243 2.072 0.256
192 1.756 0.705 1.758 0.796 1.853 0.751 192 1.898 0.27 1.951 0.278 2.112 0.288
336 1.829 0.82 1.82 0.861 1.912 0.835 336 1.937 0.302 1.993 0.312 2.154 0.326
720 1.851 0.996 1.826 0.969 1.916 0.964 720 2.029 0.299 2.071 0.307 2.238 0.319

ETTm1

96 1.569 0.54 1.579 0.518 1.816 0.698

ETTm2

96 1.892 0.218 2.164 0.306 2.185 0.314
192 1.647 0.669 1.645 0.583 1.877 0.861 192 1.879 0.209 2.119 0.277 2.136 0.279
336 1.669 0.643 1.68 0.607 1.864 0.798 336 1.851 0.247 2.06 0.301 2.102 0.304
720 1.704 0.651 1.699 0.62 1.866 0.781 720 1.959 0.295 2.13 0.332 2.21 0.334

Weather

96 3.201 1.524 3.494 2.757 3.528 2.418

Electricity

96 5.887 0.403 6.134 0.676 6.18 0.742
192 3.217 2.105 3.484 3.239 3.493 2.414 192 5.965 0.473 6.183 0.659 6.233 0.751
336 3.318 1.987 3.587 3.157 3.600 2.289 336 5.984 0.536 6.263 0.71 6.276 0.817
720 3.723 2.190 3.968 3.049 4.029 2.171 720 6.078 0.544 6.377 0.721 6.398 0.829

Additional experiment results are included in Appendix C, where we show the test loss curve along136

the training process and the performance of OATS with ϵ ̸= 1.137

4 Conclusion138

In this paper, we introduce OATS, an algorithm to generate high-quality synthetic time series data139

through principled and dynamically adaptive augmentation strategies for TSFM. The key design140

choice behind OATS is to incorporate high-quality synthetic data into the training process. We leverage141

data attribution methods to calculate the influence score as the primary indicator of data quality and142

data-driven diffusion models to generate new synthetic data samples conditional on the high-quality143

data samples. Empirical evaluations show that OATS could improve TSFM performance. By showing144

the advantage of dynamic and adaptive augmentation, OATS opens new avenues for data augmentation145

of TSFM.146

4

References147

A. F. Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapu-148

ram, S. Pineda Arango, S. Kapoor, J. Zschiegner, D. C. Maddix, M. W. Mahoney, K. Torkkola,149

A. Gordon Wilson, M. Bohlke-Schneider, and Y. Wang. Chronos: Learning the language of150

time series. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL151

https://openreview.net/forum?id=gerNCVqqtR.152

A. Das, W. Kong, R. Sen, and Y. Zhou. A decoder-only foundation model for time-series forecasting.153

In Forty-first International Conference on Machine Learning, 2024.154

B. Deng, C. Xu, H. Li, Y. Huang, M. Hou, and J. Bian. Tardiff: Target-oriented diffusion guidance for155

synthetic electronic health record time series generation. arXiv preprint arXiv:2504.17613, 2025.156

F. Fu, J. Chen, J. Zhang, C. Yang, L. Ma, and Y. Yang. Are synthetic time-series data really not as157

good as real data? arXiv preprint arXiv:2402.00607, 2024.158

L. L. Guo, E. Steinberg, S. L. Fleming, J. Posada, J. Lemmon, S. R. Pfohl, N. Shah, J. Fries, and159

L. Sung. Ehr foundation models improve robustness in the presence of temporal distribution shift.160

Scientific Reports, 13(1):3767, 2023.161

Y.-H. Huang, C. Xu, Y. Wu, W.-J. Li, and J. Bian. Timedp: Learning to generate multi-domain time162

series with domain prompts. In Proceedings of the AAAI Conference on Artificial Intelligence,163

volume 39, pages 17520–17527, 2025.164

H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen. Methods for imputation165

of missing values in air quality data sets. Atmospheric environment, 38(18):2895–2907, 2004.166

R. Kim, C. H. So, M. Jeong, S. Lee, J. Kim, and J. Kang. Hats: A hierarchical graph attention167

network for stock movement prediction. arXiv preprint arXiv:1908.07999, 2019.168

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In International169

conference on machine learning, pages 1885–1894. PMLR, 2017.170

K. Kuvshinova, O. Tsymboi, A. Kostromina, D. Simakov, and E. Kovtun. Towards foundation time171

series model: To synthesize or not to synthesize? arXiv preprint arXiv:2403.02534, 2024.172

J. Li, Y. Liu, W. Liu, S. Fang, L. Wang, C. Xu, and J. Bian. Mars: a financial market simulation173

engine powered by generative foundation model. arXiv preprint arXiv:2409.07486, 2024.174

Y. Liang, Y. Xia, S. Ke, Y. Wang, Q. Wen, J. Zhang, Y. Zheng, and R. Zimmermann. Airformer:175

Predicting nationwide air quality in china with transformers. In Proceedings of the AAAI conference176

on artificial intelligence, volume 37, pages 14329–14337, 2023.177

S. Lin, B. Liu, J. Li, and X. Yang. Common diffusion noise schedules and sample steps are flawed.178

2024 ieee. In CVF Winter Conference on Applications of Computer Vision (WACV), pages 5392–179

5399, 2023.180

Y. Liu, H. Zhang, C. Li, X. Huang, J. Wang, and M. Long. Timer: Generative pre-trained transformers181

are large time series models. arXiv preprint arXiv:2402.02368, 2024.182

G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Estimating training data influence by tracing gradient183

descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.184

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,185

2016.186

X. Shi, S. Wang, Y. Nie, D. Li, Z. Ye, Q. Wen, and M. Jin. Time-moe: Billion-scale time series187

foundation models with mixture of experts. arXiv preprint arXiv:2409.16040, 2024.188

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. CoRR, abs/2010.02502, 2020.189

URL https://arxiv.org/abs/2010.02502.190

J. T. Wang, P. Mittal, D. Song, and R. Jia. Data shapley in one training run. arXiv preprint191

arXiv:2406.11011, 2024a.192

5

https://openreview.net/forum?id=gerNCVqqtR
https://arxiv.org/abs/2010.02502

J. T. Wang, T. Wu, D. Song, P. Mittal, and R. Jia. Greats: Online selection of high-quality data193

for llm training in every iteration. Advances in Neural Information Processing Systems, 37:194

131197–131223, 2024b.195

Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun. Transformers in time series: A196

survey. arXiv preprint arXiv:2202.07125, 2022.197

G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo. Unified training of universal time198

series forecasting transformers. 2024.199

H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long. Timesnet: Temporal 2d-variation modeling for200

general time series analysis. In The Eleventh International Conference on Learning Representations,201

2023. URL https://openreview.net/forum?id=ju_Uqw384Oq.202

M. Xia, S. Malladi, S. Gururangan, S. Arora, and D. Chen. Less: Selecting influential data for203

targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.204

Q. Yao, C.-H. H. Yang, R. Jiang, Y. Liang, M. Jin, and S. Pan. Towards neural scaling laws for time205

series foundation models. arXiv preprint arXiv:2410.12360, 2024.206

Z. Zamanzadeh Darban, G. I. Webb, S. Pan, C. Aggarwal, and M. Salehi. Deep learning for time207

series anomaly detection: A survey. ACM Computing Surveys, 57(1):1–42, 2024.208

6

https://openreview.net/forum?id=ju_Uqw384Oq

A Algorithm and Complexity Analysis209

Algorithm. We propose Online Data Augmentation for Time Series Foundation Models (OATS)210

and present in Algorithm 1.211

Algorithm 1 Online Data Augmentation for Time Series Foundation Models (OATS)

Require: Training dataset and its L disjoint subsets Dtr =
⋃L

l=1 Dl, validation dataset Dval, training
batch size b, conditional augmentation algorithm G, training loss ℓ, explore-exploit strategy ψ,
explore sampling algorithm πr, exploit sampling algorithm πo, TSIS function FDval

.
Initialize model w0

Initialize TSIS per subset ΦDl
, l ∈ [L] to be subset proportion.

for t = 1 to T do
if ψ(t) == “explore” then

Sample Bt ∼ πb
r ▷ Step 1

Calculate FDval
(zi, wt) for zi ∈ Bt

Update ΦDl
according to Equation 3.

Select a subset Ht ⊆ Bt of samples with top-b/2 of value FDval
(zi, wt).

Generate b/2 samples as St using G guided by Ht. ▷ Step 2
end if
if ψ(t) == “exploit” then

Sample Ht ∼ π
b/2
o ▷ Step 1

Generate b/2 samples as St using G guided by Ht. ▷ Step 2
end if
Update wt on mini-batch data Ht ∪ St and get wt+1, continue to next step t+ 1.

end for

Complexity Analysis. OATS involves computational overhead to the training process, which can be212

split into two sources: 1) calculation of TSIS and 2) synthetic data generation.213

For TSIS calculation, the overhead of Equation 1 mainly comes from the gradient calculation of214

validation data samples in “explore” steps. In our experiment, we use a small number of validation215

data samples (32) that matches the training batch size. This helps maintain the same computation216

complexity between TSIS and the regular gradient descent training step as O(b), where b is the217

training batch size. Furthermore, the overhead of “exploit” steps is small enough to be ignored since218

TSIS in Equation 1 is not used in those steps.219

For synthetic data generation through diffusion model sampling, it is hard to compare the complexity220

with the regular gradient descent training step. Empirically, we find that some accelerated sampling221

strategies like DDIM [Song et al., 2020] could perform well enough with very small sample steps.222

B Experiment Settings223

Models. We conduct the experiment on the TSFM models with the same configuration as the224

encoder-only model with a 10M parameter size in Yao et al. [2024]. The model is a modified version225

of Moirai [Woo et al., 2024], introduced by Yao et al. [2024], which incorporates patch embedding,226

rotary positional embedding, and a mixture of distributions to better adapt to time series forecasting227

while preserving extensibility.228

Training Process. We adopt a similar training setting as in Yao et al. [2024] for the experiment.229

We utilize the AdamW optimizer with a batch size of 32 and a maximum learning rate of 10−3 with a230

linear warm-up of 104 training steps, followed by cosine decay for the remaining 2× 104 steps.231

Datasets for TSFM. We pretrain the TSFM on the modified (balanced domain sample, quality232

filtering) LOTSA-100M dataset in the pretraining stage provided by Yao et al. [2024]. We take the233

native sub-dataset division as subsets in our experiment. These models are then evaluated on the234

out-of-distribution LSF dataset [Wu et al., 2023], using various prediction lengths (96, 192, 336, 720)235

and the same preprocessing pipeline as in Yao et al. [2024]. The detailed information of evaluation236

datasets is stated in Table 2.237

7

Table 2: Evaluation datasets and properties.
Dataset Domain Frequency # Prediction Length
ETTh1 Energy H 96/192/336/720

ETTh2 Energy H 96/192/336/720

ETTm1 Energy 15min 96/192/336/720

ETTm2 Energy 15min 96/192/336/720

Electricity Energy H 96/192/336/720

Weather Climate H 96/192/336/720

Datasets for Generation Model. We train the generation model for high-quality guided data238

augmentation described in Section 2 by a sampled dataset from the training dataset of TSFM. We239

sample 5% of the dataset in 20 selected subsets (Table 3) in LOTSA-100M as the training set of the240

diffusion model. The generation length of the diffusion model is set to 320, and the diffusion step is241

set to 200. We use DDIM for the sampling process with 40 steps.242

Table 3: Training datasets of generation model.
Dataset Domain Frequency
CMIP6 Climate 6H
ERA5 Climate H
CloudOpsTSF CloudOTS 5T
Azure VM Traces 2017 CloudOTS 5T
Loop Seattle Transport 5T
PEMS07 Transport 5T
PEMS Bay Transport 5T
Q-Traffic Transport 15T
Largest 2017 Transport 5T
Largest 2018 Transport 5T
Largest 2019 Transport 5T
Largest 2020 Transport 5T
Largest 2021 Transport 5T
Australian Electricity Energy 30T
Buildings900K Energy H
Solar Power Energy 4S
Favorita Sales Sales D
Wiki-Rolling Web D
LibCity Transport 5T
OthersLOTSA Energy H

Metrics. To be consistent with Yao et al. [2024], we primarily report the normalized mean absolute243

percentage error (MAPE) and negative log-likelihood (NLL), as these metrics avoid distortions caused244

by high-amplitude samples.245

C Additional Experiment Results246

In Figure 2, the test loss along the training process is shown for the evaluation datasets. The curve is247

smoothed using time-weighted EMA. As shown in the figure, both OATS (Sel+Aug) (in green) and248

OATS (Sel only) (in blue) with only data selection significantly outperform the regular pretraining (in249

grey).250

In Table 4, we present results of OATS with various ϵ on the ETTh1 dataset. The result shows that251

even if we set ϵ = 0.5, most of the metrics still outperform regular training, which shows a great252

potential to reduce the OATS overhead without hurting the performance too much.253

8

(a) ETTh1 (b) ETTh2 (c) ETTm1

(d) ETTm2 (e) Weather (f) Electricity

Figure 2: Comparison of different algorithms on test loss (NLL) during the training.

Table 4: Performance of various ϵ on ETTh1 dataset. bold represent the best result and underline
represent OATS (ϵ) outperforms regular training.

Pred. Length ϵ=1 ϵ=0.7 ϵ=0.5 Regular

NLL MAPE NLL MAPE NLL MAPE NLL MAPE

96 1.754 0.684 1.774 0.713 1.818 0.785 1.866 0.823
192 1.756 0.705 1.771 0.693 1.812 0.739 1.853 0.751
336 1.829 0.82 1.833 0.759 1.874 0.855 1.912 0.835
729 1.851 0.996 1.861 0.946 1.890 0.999 1.916 0.964

9

	Introduction
	Method
	Experiments
	Conclusion
	Algorithm and Complexity Analysis
	Experiment Settings
	Additional Experiment Results

