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ABSTRACT

Sharpness-aware minimization (SAM) reports improving domain generalization
by reducing the loss surface curvature in the parameter space. However, gen-
eralization during fine-tuning is often more dependent on the transferability of
representations in the function space. Trust-region methods (TR) target this goal
by regularizing representation curvature to reduce catastrophic forgetting of pre-
trained task-agnostic information while adopting task-specific skills. We consider
unifying these strategies for low curvature in both parameter space and function
space to improve out-of-domain (OOD) generalization. We propose Trust Region
Aware Minimization (TRAM), a SAM algorithm fine-tuning for low parameter
sharpness and smooth, informative representations preserving pre-trained structure.
TRAM uses a trust region bound to inform the SAM adversarial neighborhood,
introducing an awareness of function curvature within optimization for flatter min-
ima. We empirically validate TRAM in vision (cross-dataset adaptation) and text
(OOD language modeling, zero-shot cross-lingual transfer) tasks where robust
domain transfer and representation generality are critical. TRAM outperforms
SAM- and TR-based optimization across all tasks, notably surpassing competing
methods for hard transfer between anticorrelated domains. TRAM establishes
a novel standard in fine-tuning for domain-generalizable models with minimal
additional computation over previous sharpness-aware methods.

1 INTRODUCTION

Neural model training requires navigating over a complex, non-convex loss surface (Frankle, 2020)
towards a good local minimum. Studying loss surfaces and training dynamics has led to many
algorithmic advances (Izmailov et al., 2018; Foret et al., 2021; Chen et al., 2023) and regularization
schemes (Srivastava et al., 2014; Ioffe & Szegedy, 2015) to improve optimization. One such
strategy is to exploit an association between generalization and flat minima, defined by Hochreiter &
Schmidhuber (1994) as “region[s] in weight space with the property that each weight vector from that
region has [a] similar small error”. Intuitively, a flatter, or less sharp (Keskar et al., 2017), minimum
will generalize better, as the loss function will be non-increasing under distribution shift. Recent work
has developed a family of sharpness-aware minimization (SAM) algorithms targeting flat minima
by jointly minimizing a worst-case generalization bound and local parameter sharpness (Foret et al.,
2021; Kwon et al., 2021; Kim et al., 2022; Möllenhoff & Khan, 2023).

While flat minima methods report widespread improvement over conventional optimizers (Kaddour
et al., 2022), we argue that they are not fully connected to the modern fine-tuning paradigm, wherein a
task-specific model inherits parameters from a pre-trained model instead of being trained from scratch
(Wang et al., 2019; Liang et al., 2020). In these settings, focusing on local properties of the loss
landscape (e.g., sharpness) may fail by suboptimally exploiting useful generic task-agnostic structures
within pre-trained representations. In this work, we propose to combine sharpness-aware minimization
with the robust transfer of pre-trained information (in representation space) for fine-tuning scenarios
requiring out-of-distribution knowledge for successful adaptation.

∗ This work was done while Tom Sherborne and Hao Peng were at the Allen Institute for AI.
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Figure 1: TRAM introduces an awareness of func-
tion curvature (i.e., the trust region) into sharpness-
aware minimization. (left) TRAM estimates the
size of the trust region, d, around f (x) in green.
(right) the loss contour in parameter space follow-
ing Kwon et al. (2021) where blue is the typi-
cal loss; red is the maximized worst-case loss for
ASAM; and green is the maximized loss within the
subdomain constrained for function smoothness.

Existing methods to improve leveraging pre-
trained structure during fine-tuning include trust
region regularization (Schulman et al., 2015;
Jiang et al., 2020; Aghajanyan et al., 2021) or
adversarial perturbation (Zhu et al., 2020; He
et al., 2021). These methods focus on the cur-
vature of the function itself e.g., by encouraging
smooth local changes in representations. The
intuition is that lower representation curvature
during fine-tuning limits a function from catas-
trophically forgetting (French, 1999, inter alia)
useful information from pre-training. This rep-
resentation smoothing approach contrasts with
SAM-style optimization for parameter smooth-
ness. Both perspectives show empirical improve-
ment in downstream tasks (Aghajanyan et al.,
2021; Bahri et al., 2022), but a fusion of these
strategies is presently under-explored.

To this end, we propose TRAM: Trust Region Aware Minimization, a fine-tuning algorithm for
out-of-distribution generalization combining the success of both sharpness-aware and trust region opti-
mization. TRAM uses a trust region bound to inform the SAM adversarial neighborhood, introducing
an awareness of function curvature within optimization for flatter minima. The resulting algorithm
yields low-sharpness parameters and improved adaptation of pre-trained models to downstream tasks.
To illustrate TRAM’s advantage over strong baselines in retaining generic representations, we focus
on distribution transfer challenges within Transformer-based models. Our contributions are:

• We propose a new optimization algorithm: Trust Region Aware Minimization integrates
representation smoothing regularization into sharpness-aware minimization. We propose
and contrast multiple variants of TRAM based on differing perspectives on trust region
estimation and efficiency trade-offs (Section 3).1

• We highlight that TRAM empirically improves generalization for multiple out-of-distribution
adaptation tasks across vision and natural language: cross-dataset adaptation for image clas-
sification, cross-domain language modeling and zero-shot cross-lingual transfer (Section 4).

• We analyze how TRAM limits catastrophic forgetting and optimizes flatter minima to
improve fine-tuning. By characterizing major and minor distribution shifts, we identify
how TRAM outperforms the trend in anticorrelated generalization scenarios. Our analysis
verifies that TRAM optimizes a smoother loss surface for both in-domain and out-of-domain
distributions. TRAM also improves representation similarity between seen and unseen
distributions to improve cross-domain classification (Section 4).

2 BACKGROUND

We describe SAM and trust region optimization, highlighting how these approaches have similar
goals. Our motivation for TRAM is the unifying features of each approach outlined in Table 1.

Notation: We consider function f : X → Y parameterized by weights θ and evaluated by loss func-
tion ℓ : Y ×Y → R+. The expected loss on true distributionD is LD (θ) = E(x,y)∼D [ℓ (y, f (x; θ))]

and the empirical estimate is LS = 1
n

∑
S ℓ (yi, f (xi; θ)) sampling n training samples, S =

{(xi, yi)}ni=1, from D. Functional distance on model outputs is measured by the Kullback-Leibler
divergence DKL (p||q) between target p and estimate q. We describe successful domain transfer to
distribution D′ as a non-increasing loss for sample S′ ∼ D′.

Sharpness-Aware Minimization: Foret et al. (2021) define local sharpness as
max∥ϵ∥2≤ρ LS (θ + ϵ) − LS (θ). The SAM objective (Equation 1) regularizes parameter
magnitude to minimize this sharpness metric jointly with loss within local parameter neighborhood ρ.

1Code at github.com/tomsherborne/tram_optimizer.
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LSAM
S = min

θ
max

∥ϵ∥2≤ρ
LS (θ + ϵ) +

λ

2
∥θ∥22 (1) ϵ∗ASAM = ρ

θ2∇LS

∥θ∇LS∥2
(2)

This min-max optimization problem is solved in alternating stages. Initial ascent perturbs parameters
θ to θ + ϵ, where ϵ is a perturbation maximizing loss (to minimize local sharpness). The feasible
region for perturbation ϵ is a Euclidean spherical neighborhood with radius ρ > 0. Successive descent
evaluates gradients at θ + ϵ for gradient descent at θ using the local worst-case loss.

The optimal ϵ, the perturbation for worst-case loss within the ρ-ball, is the source of ongoing debate.
Foret et al. (2021) express a closed-form solution setting ϵ as the radius ρ scaled by the normalized
gradient. Kwon et al. (2021) propose Adaptive SAM (ASAM) to improve SAM with invariance to
the loss scaling. For ASAM, each parameter within θ is perturbed by ρ scaled by parameter gradient
and the parameter norm (Equation 2). TRAM follows SAM in setting ϵ with scale invariance and
also augments ϵ such that the update in θ respects a maximum divergence in the function space.

Trust Region Regularization: Trust region regularization encourages low curvature during opti-
mization by regularizing the function output distribution with respect to a previous step’s distribution.
A fine-tuned model with high curvature (i.e., distance) to pre-trained representations may struggle to
connect task-specific knowledge with novel domains. This approach proves successful in penalizing
large policy updates in reinforcement learning (Schulman et al., 2015), encouraging local smoothness
to adversarial perturbation (Jiang et al., 2020) and minimizing catastrophic forgetting for domain
transfer (Aghajanyan et al., 2021).

Equation 3 defines the objective under Trust Region Policy Optimization (TRPO; Schulman et al.,
2015) constraining loss, LS , with a regularization term dθ. TRPO idealizes smoothness in f (x)
by regularizing local function similarity to the previous iterate. The update at t is constrained such
that changes in probability density, pf (·| x, θ) are no larger than some ε measured by divergence
d : Y × Y → R+. There are several ways of defining d—we consider options in Equations 4 to 5.

min
θ

LS (θ) subject to dθ ≤ ε (3)

Equation 4 estimates the trust region as the KL divergence between predictive distributions at the
previous and current step. Intuitively, penalizing divergence from prior steps encourages the function
to stay “close” to the previous distribution i.e., within the trust region of equivalent output. Across
training, dθ encourages small updates with low curvature between fine-tuned and pre-trained models.

dθ (θt−1, θt) = Ex∼D [DKL (pf (·| x, θt−1) ||pf (·| x, θt))] (4)

Equation 5 provides the penalty from R3F (Aghajanyan et al., 2021) where dx estimates the trust
region by sampling from inputs under parametric noise. This penalizes the divergence between
pf (·| x, θt) and pf (·| x+ z, θt) for some zero-mean noise z ∼ N

(
0, σ2

)
. R3F proposes that

sampling z estimates the trust region by simulating a distribution shift in pf corresponding to
perturbed x + z. This encourages similarity to a neighborhood around f (x, θ) with equivalent
output. Either approach estimates the permissible distance for an update in θ without increasing
local representation curvature. We focus on trust region methods to improve generalization across
distributions via improved leveraging of pre-trained structure (Jiang et al., 2020, inter alia).

dx (x+ z, x) = Ez∼N [DKL (pf (·| x+ z, θ) ||pf (·| x, θ))] (5)

Comparison: SAM, TRPO, and R3F have similar goals in searching for generalizable solutions
while appearing superficially distinct. We compare the broad motivations and qualities of methods in
Table 1, highlighting both perspectives optimize for smoothness in different spaces.

SAM minimizes sharpness within a neighborhood in θ set by scalar parameter ρ. Trust region regular-
ization penalizes loss by scalar distance dθ or dx. We hypothesize that this regularization can inform
the size of the SAM neighborhood. Can we jointly minimize sharpness and penalize high curvature in
representations? Considering the sharpness objective

(
max∥ϵ∥2≤ρ LS (θ + ϵ)− LS (θ)

)
we consider

if this ϵ can also satisfy the Equation 3 constraint of dθ or dx < ε. Our intuition here is to minimize
parameter sharpness (i.e., SAM) only within an update promoting low representation curvature.
Combining the features of these solutions could improve generalization to unseen distributions during
fine-tuning.
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Table 1: Comparison between SAM-style, trust region and TRAM learning. SAM optimizes param-
eters for low sharpness, trust region methods optimize for low-curvature representations. TRAM
combines these strategies to bound SAM-style learning within a trust region neighborhood.

Goal ϵ Distance Domain Gradient Forward/Backward

SAM-style Low-sharpness θ Equation 2 — ρ-ball ∇LS at θ + ϵ 2→, 2←
Trust region Low-curvature f (y|x, θ) — dθ or dx DKL over Distance ∇LS + dθ or dx 2→, 1←

TRAM Both Equation 7 dθ or dx dθ- or dx-ball ∇LS at θ + ϵ 3→, 2←

3 TRAM: TRUST REGION AWARE MINIMIZATION

We consider methods improving generalization by encouraging low-sharpness parameters and task
transfer by encouraging low curvature in representation space. We introduce TRAM: Trust Region
Aware Minimization unifying sharpness-aware and trust region optimization. Kim et al. (2022) raise
that the ρ hyperparameter defining the ascent neighborhood in SAM is an “ad hoc” scaling with little
relationship to the loss landscape or parameter geometry. We propose to instead define the ascent
region by a trust region in representation space.

TRAM substitutes ρ in Equation 2 with the trust region metric, d : Y × Y → R∗
+, as defined in

Section 2. We estimate trust regions using the divergence from a prior model distribution (dθ, Equa-
tion 4) or divergence from the current distribution under parametric noise (dx, Equation 5). TRAM
constrains the maximization domain for ascent (i.e., θ → θ + ϵ) to the parameter corollary for the
trust region i.e., max∥ϵ∥2≤d substituted within Equation 1. TRAM perturbs θ with a loss perturbation
only within the parameter neighborhood constrained for low representation curvature. This introduces
function curvature awareness within TRAM in addition to the sharpness-awareness objective for
flatter minima. In contrast, the maximization region, ρ in SAM/ASAM has no sensitivity to function
curvature. We build TRAM on ASAM, and not SAM, after observing strictly better performance in
our preliminary experiments.

∇LTRAM (θ) =
∂LS

∂θ

∣∣∣∣
θ=θ+ϵ∗TRAM

(6) ϵ∗TRAM =
d θ2∇LS (θt)

∥θ∇LS (θt)∥2
(7)

The gradient descent update in TRAM is Equation 6, where ϵ∗TRAM is solved as Equation 7 by
direct substitution of ρ in ASAM. Algorithm 1 in Appendix B.6 details the full training algorithm
for TRAM based on the SAM-style min-max optimization routine. TRAM does not require tuning
a ρ hyperparameter for stable training. TRAM using dθ introduces no new hyperparameters, and
using dx requires only tuning σ for additive noise z. We hypothesize that TRAM jointly minimizes
parameter sharpness and representation curvature to minimize catastrophic forgetting of pre-trained
structure. Our results in Section 4 empirically validate this hypothesis.

Connection to ASAM: The geometric interpretation of TRAM frames the maximization domain
defined by d as a subdomain of the ρ-radius Euclidean ball defined in ASAM. Whereas ASAM
defines a fixed radius by ρ at each step, TRAM instead uses the nonzero d radius constraining
the maximization domain to additionally satisfy the trust region constraint outlined in Equations 3
to 5. Foret et al. (2021, Theorem 2) defines a PAC-Bayesian generalization bound for SAM on LD
assuming ρ > 0. Kwon et al. (2021, Theorem 3) identify a similarly valid bound when considering the
norm-adaptive scaling on ϵ∗ASAM as in Equation 2. We assume d ≤ ρ for similar asymptotic behavior
for ϵ∗TRAM to ϵ∗ASAM. We infer that TRAM inherits the existing generalization bound of ASAM for
any ρ > 0 directly substituted for d i.e., TRAM is a subsolution of ASAM. We can constrain d such
that maxθ¬t

dθ (θ¬t, θt) ≤ ρ or maxz dx (x+ z, x) ≤ ρ to enforce this bound d ∈ (0, ρ ]. However,
we empirically observe this constraint is satisfied for the optimal setting of ρ in ASAM.

Improving Efficiency with TRAM-Fisher: Kim et al. (2022) propose an alternative to SAM
removing the Euclidean assumption for parameter geometry. Fisher SAM (FSAM) instead exploits
the statistical manifold induced by the Fisher Information metric of predictive distribution of the
function, pf (y| x, θ) (Amari, 1998) to set ϵ. This measures statistical divergence between θ and θ+ ϵ
resulting in ϵ∗FSAM in Equation 8 defining an ellipsoid around θ scaled by the Fisher Information
matrix, F (θ). F (θ) is prohibitively expensive at scale and is approximated with Equation 9, the
diagonal of the squared gradient sum for each batch B.
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Table 2: We propose four variants of TRAM based on different trust region estimations. TRAM-θt−1

uses divergence against the previous step; TRAM-θ0 is a simplifying heuristic of this divergence
against the pre-trained model only; and TRAM-x uses noised input divergence, dx. TRAM-Fisher
extends FSAM by measuring the Fisher Information metric around the trust region.

Variant Trust region measurement ϵ Domain Forward/Backward

TRAM-θt−1 dθ (θt−1, θt) Equation 7 dθ-ball 3→, 2←
TRAM-θ0 dθ (θ0, θt) Equation 7 dθ-ball 3→, 2←
TRAM-x dx (x+ z, x) , z ∼ N

(
0, σ2

)
Equation 7 dx-ball 3→, 2←

TRAM-Fisher F̂ (x+ z; θ) , z ∼ N
(
0, σ2

)
Equation 8 F̂ -ellipse 2→, 2←

ϵ∗FSAM =
F (θ)

−1∇LS√
∇LSF (θ)

−1∇LS

(8) F̂ (θ) = Diag

(
1

|B|
∑
i∈B

(log pf (yi|xi, θ))

)2

(9)

We propose TRAM-Fisher as an efficient variant of TRAM inspired by Fisher SAM. Where FSAM
measures the Fisher Information geometry of θ under input x, we instead sample the geometry
of θ under the trust region estimation from x + z. Our proposal is minimal: replace p (yi|xi, θ)
with p (yi|xi + zi, θ) to estimate the Fisher Information Matrix of the trust region neighborhood
as Ez∼N

[
F̂ (x+ z; θ)

]
. We sample parametric noise {zi}|B|

i=0 identically to TRAM and now scale
learning with the information geometry of the low curvature neighborhood, f (x+ z). TRAM-Fisher
uses the same number of forward/backward passes as FSAM and only requires additional processing
to sample z and compute x+ z. TRAM-Fisher matches FSAM in runtime efficiency (with marginal
additional operations) and performs competitively across our experiments. The full TRAM-Fisher
algorithm is shown in Appendix B.6.

Summary: We propose three variants of TRAM, and TRAM-Fisher, summarized in Table 2. TRAM-
θt−1 follows TRPO (Schulman et al., 2015) in using previous step parameters, θt−1, to measure the
trust region. We also propose a simplification of TRAM-θt−1 estimating the trust region using dθ
between current θt and pre-trained model θ0. TRAM-θ0 improves training efficiency by removing an
updating θt−1 state. TRAM-x follows R3F (Aghajanyan et al., 2021) using noise-based trust region
measurement with additional hyperparameter z for sampling parametric noise. Practically, TRAM
requires one additional forward pass adding marginal overhead to the extant complexity of SAM-style
training. Despite this additional cost, Section 4 identifies empirical benefits to TRAM and targeted
improvement to out-of-domain loss surface sharpness and cross-domain representation similarity.

We outline our datasets in Appendix A, and experiment design in Appendix B for both vision and
language modalities. We compare to gradient descent methods (SGD, Adam), sharpness aware
methods (SAM, ASAM, FSAM), and trust region methods (TRPO, R3F, MESA) further detailed in
Appendix B.2. Broadly, we investigate the hypothesis that out-of-distribution generalization improves
by jointly minimizing parameter sharpness and representation curvature in the function.

4 RESULTS

4.1 CROSS-DATASET IMAGE CLASSIFICATION

First, we validate the performance of TRAM in a standardized setting for comparison to other
SAM-style optimizers. We evaluate adapting ViT-base (Dosovitskiy et al., 2021) from ImageNet
pre-training to image classification fine-tuning. We follow the setup of Kim et al. (2022, Section 5.1)
evaluating adaptation to CIFAR-100 (Krizhevsky, 2009), Stanford Cars (Krause et al., 2013), and
Oxford Flowers (Nilsback & Zisserman, 2008). Appendix B.3 details our experiment design.

Table 3 details the Top-1 accuracy results for this experiment with direct comparison to Kim et al.
(2022, Table 3). The best-performing variant of TRAM (TRAM-θt−1 or TRAM-x) is significantly
superior to the closest FSAM competitor (p < 0.01). Other variants of TRAM, TRAM-θ0 or
TRAM-Fisher, are largely competitive with prior methods. Our observations validate the hypothesis
that TRAM improves adaptation across datasets during fine-tuning for image classification. This
comparison acts as a sanity check and demonstrates the utility of our method compared to other SAM-
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Table 3: Cross-dataset adaptation from ImageNet to CIFAR-100, Stanford Cars and Oxford Flowers.
We report Top-1 classification accuracy averaged over five runs, ± the 95% confidence interval, for
direct comparison to Kim et al. (2022).

CIFAR-100 (↑) Cars (↑) Flowers (↑)
SGD 87.97±0.12 92.85±0.31 94.53±0.20
SAM 87.99±0.09 93.29±0.01 95.05±0.06
ASAM 87.97±0.08 93.28±0.02 95.08±0.10
FSAM 88.39±0.13 93.42±0.01 95.26±0.03

TRAM-θt−1 88.47±0.16 93.49±0.04 97.07±0.10
TRAM-θ0 88.31±0.09 93.16±0.07 95.53±0.10
TRAM-x 88.78±0.01 93.32±0.11 96.34±0.03
TRAM-Fisher 88.02±0.18 93.12±0.13 94.90±0.11

Table 4: M2D2 perplexity (lower is better) on Wikipedia (upper) & S2ORC (lower) splits. TRAM-
θt−1 significantly improves over prior work (p < 0.01 Kolmogorov-Smirnov test). Results are
grouped as: (i) optimizers; (ii) trust region methods; and (iii) TRAM variants. The leftmost column
is the training domain and we evaluate zero-shot perplexity on ten domains unseen during fine-tuning
(full details in Appendix A). ZS AVG. is the macro-average of all zero-shot domains.

Wiki SOC. CULT. GEN. HEALTH. HIST. HUMAN. MATH. NAT. PHIL. REL TECH. ZS AVG. ↓
GPT-2 27.2 27.7 27.8 24.5 29.2 28.8 28.6 29.4 27.8 27.7 28.7 28.0

Adam 24.8 26.3 26.4 23.6 27.2 27.0 27.4 27.6 26.3 25.8 27.4 26.5
SAM 24.5 25.9 26.0 23.1 26.9 26.6 26.6 27.2 25.8 25.5 27.0 26.1
ASAM 24.8 25.4 25.6 22.5 27.1 26.4 26.3 26.7 25.5 25.5 28.1 25.9
FSAM 21.7 23.0 23.3 20.6 23.9 23.7 23.8 24.0 23.1 22.8 24.0 23.2

TRPO 21.8 23.0 23.3 20.7 24.0 23.7 23.8 24.0 23.1 22.8 24.1 23.3
R3F 21.8 23.0 23.3 20.7 24.0 23.7 23.8 24.0 23.1 22.8 24.1 23.3
MESA 23.1 24.0 24.3 21.5 25.4 24.9 24.8 25.2 24.1 24.0 25.1 24.3

TRAM-x 21.9 23.1 23.4 20.7 24.0 23.3 23.9 23.9 23.2 22.7 23.9 23.2
TRAM-θt−1 20.9 22.4 22.7 20.1 23.1 22.9 23.2 23.3 22.4 22.0 23.4 22.5
TRAM-θ0 21.9 23.1 23.4 20.7 23.9 23.3 23.9 23.8 23.1 22.7 23.9 23.2
TRAM-Fisher 22.5 23.7 24.0 21.3 24.6 24.0 24.7 24.6 23.8 23.3 24.6 23.9

S2ORC MATH ART ASTRO CONDM. CS ECON. NLIN. PHIL. PHYS. QBIO STAT ZS AVG. ↓
GPT-2 27.6 35.8 32.4 30.9 27.9 29.5 27.6 33.7 33.5 30.9 23.4 30.6

Adam 11.4 44.2 33.9 20.1 21.2 21.0 14.7 41.9 29.5 30.8 16.9 27.4
SAM 10.5 45.3 33.2 18.7 20.3 20.0 13.7 42.4 28.3 30.2 16.1 26.8
ASAM 10.3 45.6 33.2 18.5 20.1 19.8 13.5 42.6 28.2 30.2 15.9 26.8
FSAM 10.4 45.6 33.3 18.5 20.2 19.9 13.5 42.7 28.3 30.2 15.9 26.8

TRPO 10.4 46.0 33.4 18.6 20.3 20.0 13.6 42.9 28.4 30.4 16.0 26.9
R3F 10.4 46.0 33.4 18.6 20.2 20.0 13.6 42.9 28.4 30.4 16.0 26.9
MESA 11.9 44.1 34.1 20.8 21.7 21.6 15.3 41.7 30.0 31.0 17.4 27.8

TRAM-x 10.4 44.9 33.0 18.6 20.1 19.9 13.6 42.0 28.1 30.0 15.9 26.6
TRAM-θt−1 9.6 46.8 32.5 17.2 19.2 18.9 12.6 43.3 27.0 29.6 15.0 26.2
TRAM-θ0 10.4 44.8 33.0 18.6 20.1 19.9 13.6 42.0 28.2 30.0 15.9 26.6
TRAM-Fisher 10.5 46.1 32.4 18.7 20.3 20.0 13.6 43.0 28.2 30.3 16.0 26.9

style optimizers. TRAM yields improved fine-tuned image classification models by encouraging
smoothness in parameter and function space.

4.2 CROSS-DOMAIN LANGUAGE MODELING

We now consider zero-shot cross-domain language modeling using the M2D2 Corpus (Reid et al.,
2022) outlined in Appendix A. We hypothesize that TRAM can improve domain transfer in language
modeling by retaining domain-agnostic information from pre-training when fine-tuning to a specific
domain. We train a GPT-2 Base model (Radford et al., 2019) on the largest domain in each split
of M2D2 (SOC. domain 379M tokens for Wikipedia and MATH 1.4B tokens for S2ORC) and
evaluate perplexity across ten domains unseen during fine-tuning. Appendix B.4 details our complete
experiment design.

Our results in Table 4 validate our hypothesis for TRAM in the cross-domain setting to improve
out-of-domain language modeling fine-tuning on a single domain. All TRAM variants (excluding
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Figure 2: Perplexity on S2ORC training domain (MATH) and zero-shot domains. We report perplexity
across: (a) domains correlated with MATH as STEM domains (see Appendix C.1), (b) ART domain,
and (c) the Philosophy (PHIL.) domain. Each figure includes linear regression trends: the blue dotted
trend is for prior work and green dashed line includes all TRAM variants. Positive slope (ρ > 0)
represents correlated domains, negative slope (ρ < 0) represents anticorrelated domains. We report
Pearson ρ correlation for the blue trend noting p < 0.01 significance.
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TRAM-Fisher) perform comparably or above competitors in zero-shot transfer across both splits
of M2D2. TRAM improves domain transfer in fine-tuned models by better leveraging pre-trained
information from unseen domains within the smoother minima idealized by SAM-style training.
Generally, the naive Adam baseline or the MESA trust region comparison perform poorest at cross-
domain language modeling for Wikipedia or S2ORC splits respectively. As with image classification,
FSAM is the strongest competitor to TRAM. The best variant in both splits is TRAM-θt−1 improving
in-domain and average zero-shot perplexity. TRAM-θt−1 uses the TRPO method of estimating
the trust region using the parameters of the previous step. This variant always yields the lowest
perplexity in the training domain and the majority of similar and distant zero-shot domains. We
additionally verify that TRAM performs competitively at a larger model scale using GPT2-XL (1.5B
parameters) in Table 10 in Appendix C.2. We also compare against a naive combination of methods
(e.g., ASAM+TRPO) in Appendix C.3.

TRAM improves perplexity for all domains in the Wikipedia split, where all zero-shot domains
are positively correlated with the training domain perplexity. However, we observe that perplexity
degrades for domains distant from the fine-tuning domain in S2ORC (MATH) which benefit less from
shared features. Given that neither SAM-style nor trust region methods inverted this anticorrelation
trend, it is unsurprising that TRAM follows suit. This confounder results in the overall best model,
TRAM-θt−1, reporting the worst performance for the distant domains where the overall poorest model,
MESA, reports the best performance. We suggest that optimization alone may be insufficient to
improve zero-shot domain adaptation for larger distribution shifts. We discuss further the correlation
between domain-specific perplexity in Appendix C.1.

4.2.1 EASY AND HARD GENERALIZATION

When evaluating performance variation between different distributional shifts—we find that TRAM
improves on all prior work for minor shifts (e.g., MATH to Physics/PHYS.) and generally matches
or improves on a negative trend for major shifts (e.g., MATH to ART). Discussion of out-of-domain
generalization often overlooks differences between major and minor shifts. In practice, in-domain
performance has a very different relationship to performance when generalizing to a major domain
shift rather than a minor shift. Considering minor distribution shifts, accuracy is strongly correlated
on in-domain and out-of-domain datasets (Miller et al., 2021). However, major distribution shifts may
lead to scenarios where performance is instead anticorrelated with in-domain accuracy (Teney et al.,
2022). Considering these scenarios in the S2ORC task, we observe that models trained using TRAM
often perform better on new domains than their in-domain performance would predict. Furthermore,
TRAM improves perplexity across both minor and major distribution shifts.

Figure 2a shows the close positive correlation between performance on the training domain (MATH)
and the average across all other STEM disciplines, considering all optimization approaches. As
detailed in Appendix C.1, performance correlates with ρ > 0.8 between MATH and each individual
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Table 5: XNLI accuracy (higher is better) for training language (EN) and 14 zero-shot target languages
summarised by ZS AVG. (key in Appendix A). All TRAM variants significantly outperform other
methods (p < 0.01 Wilcoxon test). Results are grouped as: (i) optimizers; (ii) trust region methods;
and (ii) TRAM variants. We report the mean across 20 seeds with standard deviation in Table 13.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH ZS AVG. ↑
Adam 83.9 71.2 77.1 75.7 75.2 78.3 77.6 69.6 74.9 64.6 71.2 72.2 65.8 74.1 73.1 72.9
SAM 84.8 72.1 78.1 76.7 75.7 79.0 77.9 69.8 75.7 65.2 71.8 73.1 66.8 75.1 74.2 73.7
ASAM 85.0 72.0 78.4 76.9 76.1 79.5 78.5 70.4 76.1 65.2 72.5 73.4 66.9 75.5 74.2 74.0
FSAM 84.7 72.2 78.1 76.9 76.0 79.3 78.4 70.0 76.1 65.1 72.2 73.0 66.8 75.3 74.2 73.8

TRPO 84.9 71.3 77.7 76.2 75.3 78.6 77.3 69.2 75.2 64.4 71.6 72.4 65.3 73.8 73.3 73.0
R3F 85.5 72.7 78.9 77.5 76.8 79.9 79.2 70.7 76.8 66.2 72.9 73.9 66.6 75.8 74.6 74.5
MESA 84.9 71.9 77.9 76.7 75.7 78.8 77.8 69.6 75.8 64.1 72.1 72.4 65.7 74.4 73.9 73.3

TRAM-x 86.2 73.5 79.8 78.3 77.5 80.9 79.6 71.4 77.5 66.0 73.8 74.3 67.6 76.7 75.9 75.2
TRAM-θt−1 86.2 73.1 79.5 78.2 77.0 80.2 79.7 71.5 77.5 66.4 73.3 74.2 67.5 76.7 75.8 75.0
TRAM-θ0 85.6 72.9 79.3 77.8 77.4 80.2 79.6 71.2 77.1 65.9 73.3 74.2 67.5 76.7 75.8 74.9
TRAM-Fisher 84.3 73.1 78.7 77.1 76.2 79.5 78.4 71.4 76.6 65.7 73.2 73.6 67.5 75.5 75.5 74.4

STEM category. Considering the blue dotted trend for previous optimization methods (excluding
TRAM), we see that all TRAM optimizers fall on or marginally below the line. This result suggests
that TRAM not only supports in-domain performance but specifically improves generalization to
similar domains.

By contrast, we find there is generally a trade-off between performance on MATH and the hardest
anticorrelated domains: ART (Figure 2b) and Philosophy (PHIL, Figure 2c). Both TRAM-x and
TRAM-θ0 fall far below the trend for previous algorithms where in-domain improvement worsens
out-of-domain perplexity. TRAM not only matches or outperforms existing methods on easier
generalization cases, but exhibits a lesser trade-off between easy and hard generalization compared to
all previous approaches.

4.3 ZERO-SHOT CROSS-LINGUAL TRANSFER

Finally, we now consider if TRAM improves cross-lingual adaptation during monolingual fine-tuning.
We adapt a multilingual pre-trained model to an English entailment classification task (NLI) and
then evaluate the zero-shot cross-lingual capability for the model to classify entailment from inputs
in 14 unseen languages. We hypothesize that TRAM benefits cross-lingual transfer via improved
application of multilingual pre-trained information to a task with only English training data. In
general, languages closer to English (e.g., French, German) are “easier” for transfer than distant or
low-resource languages (e.g., Urdu, Swahili) (Ahmad et al., 2019). An ideal system will produce
equivalent cross-lingual transfer for all zero-shot languages. Our complete experiment design is
outlined in Appendix B.5. We train an XLM-Roberta-based model (Conneau et al., 2020a) on English
MultiNLI (Williams et al., 2018) and report accuracy results for the XNLI cross-lingual entailment
benchmark (discussed in Appendix A).

Table 5 highlights that TRAM improves over all competing methods for the cross-lingual transfer
objective, similar to our findings for cross-dataset image classification and cross-domain language
modeling. Similar to the above tasks, TRAM-x and TRAM-θt−1 are the best-performing algorithms
reporting both the strongest in-domain and average out-of-domain accuracy. Either TRAM variant is
the best method across all individual languages. We identify that all methods worsen for languages
distant from English in a similar trend to language modeling for anticorrelated domains. However,
here TRAM is strictly superior to any other method for both near and distant languages to English.
Notably, TRAM-Fisher significantly improves upon FSAM (p < 0.01) despite the close similarity in
methods. Given the additional forward pass required for TRAM-x, TRAM-Fisher represents a better
performance-complexity trade-off which is competitive in some tasks. We analyze the loss surface
and representation transfer in Table 6 to verify that TRAM extends a low-curvature loss surface
and representation smoothness to all zero-shot languages. In Appendix C.5, we train a model using
TRAM with alternative distances for trust region measurement to analyze the criticality of using
KL divergence. We observe that TRAM is robust to multiple distances with marginal degradation.
These results empirically verify our hypothesis that training with complementary SAM-style and
trust region methods improves the language transferability of a fine-tuned model.
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Table 6: Analysis of (a) ϵ-sharpness and (b) CKA representation similarity for TRAM. We measure
each metric using the XNLI validation set and report for the training language (EN) and the zero-shot
languages (ZS). We report mean of 20 runs ± standard deviation across languages and the Pearson
correlation between EN and ZS AVG. ϵ-sharpness across runs.

(a) ϵ-sharpness ↓ EN ZS AVG. Pearson ρ

Adam 2.16 1.98± 0.79 0.29±0.20
SAM 1.43 3.32± 0.96 0.26±0.34
ASAM 2.57 2.22± 0.79 0.38±0.12
FSAM 2.34 2.62± 0.29 0.27±0.71
TRPO 6.17 2.36± 1.02 0.52±0.25
R3F 6.22 2.56± 1.21 0.50±0.12
MESA 2.76 5.48± 0.75 0.21±0.25

TRAM-θt−1 0.50 1.19±0.38 0.60±0.15
TRAM-θ0 0.75 1.92±0.24 0.58±0.27
TRAM-x 0.61 1.49± 0.49 0.75±0.18
TRAM-Fisher 1.67 2.02± 0.40 0.42±0.37

(b) CKA ↑ EN ZS AVG.

Adam 0.69 0.44± 0.10
SAM 0.69 0.42± 0.10
ASAM 0.69 0.42± 0.10
FSAM 0.73 0.48± 0.10
TRPO 0.70 0.45± 0.10
R3F 0.66 0.40± 0.10
MESA 0.67 0.42± 0.10

TRAM-θt−1 0.77 0.57± 0.10
TRAM-θ0 0.69 0.45± 0.11
TRAM-x 0.75 0.54± 0.11
TRAM-Fisher 0.72 0.49± 0.10

Loss surface dynamics: Investigating the loss surface, we test the hypothesis that TRAM leads to
flatter minima on both in-domain and out-of-domain data. We evaluate validation set ϵ-sharpness
(Keskar et al., 2017), defined in Appendix B.7, across 20 trained models. We report in-domain (for
English) and out-of-domain (zero-shot languages) ϵ-sharpness in Table 6 across TRAM and baselines
(omitting models which under-performed). Most methods unsurprisingly demonstrate a lower in-
domain sharpness but poorer out-of-domain sharpness. TRAM yields a smoother solution for both
the in-domain and out-of-domain regions of the loss surface. We also observe an improved average
Pearson correlation (and lower variance) between in-distribution and out-of-distribution sharpness
using TRAM. This infers that the relationship between loss surfaces of different distributions is
more desirably predictable with TRAM. Notably, other SAM-style methods are worse than Adam for
out-of-domain sharpness—suggesting that current SAM algorithms (excluding TRAM) are possibly
“sharpness-aware” only within the training distribution.

Representation transfer: We analyze the similarity of pre-trained and fine-tuned representations for
the same setup of XNLI. We hypothesize that if TRAM optimizes within the trust region, pre- and
post-fine-tuned representations will be more similar to allow better usage of pre-trained structure.
We measure this relationship using CKA similarity (Kornblith et al., 2019) defined in Appendix B.8.
Similar to the previous analysis, we observe that TRAM produces representations that are more
similar to pre-trained XLM-Roberta representations than any competitor. This applies to both the
EN case and the ZS AVG. case, with all other models performing similarly to the Adam baseline.
Counterintuitively, trust region methods perform no better than SAM-style methods which do not
explicitly target representational similarity. This observation could be related to recent insight into
the smoothness side effects of training with SAM (Wen et al., 2023). We additionally raise that
neither metric in Table 6 shows a similar trend to our empirical findings—comparisons here do
not strictly reflect similar performance variation on specific tasks. Despite empirical improvement,
recent work questions if sharpness meaningfully correlates with generalization (Juneja et al., 2023;
Andriushchenko et al., 2023). Extending TRAM should further evaluate this relationship and
investigate how trust region measurement could inform better predictors of generalization capability.

5 CONCLUSION

We present TRAM: Trust Region Aware Minimization. TRAM optimizes for smoothness in both
parameter and function spaces to improve domain generalization during fine-tuning. TRAM inherits
the capability of SAM to optimize towards flatter minima and integrates trust region awareness to
ensure low local curvature between output representations. We evaluate TRAM on out-of-distribution
scenarios, where the model must generalize to new distributions unseen during training. In this setup,
TRAM proves more effective than SAM-style optimization or trust region methods. Our analysis
identifies how TRAM bucks the anticorrelated trend for major distribution shifts, learns a flatter
out-of-domain loss surface, and improves representation similarity for data unseen during fine-tuning.
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Table 7: Data splits for M2D2 (Reid et al., 2022) across Wikipedia and S2ORC (Lo et al., 2020). For
simplicity, we do not consider the fine-grained subdomains in each domain. All data sourced from
Huggingface (huggingface.co/datasets/machelreid/m2d2)

Split Domain Abbrev. Size (Tokens) Training Domain Train Tokens Validation Tokens Test Tokens

Wiki

Culture and the arts CULT. 289M — — 34.33M
General reference GEN. 60M — — 2.38M
Health and fitness HEALTH. 116M — — 6.83M
History and events HIST. 226M — — 11.65M
Human activities HUMAN. 343M — — 12.41M

Mathematics and logic MATH. 52M — — 1.65M
Natural and physical sciences NAT. 189M — — 13.45M

Philosophy and thinking PHIL. 165M — — 2.32M
Religion and belief systems REL 64M — — 5.44M
Society and social sciences SOC. 397M ✓ 380M 11.8M 11.74M

Technology and applied sciences TECH. 297M — — 11.78M

S2ORC

Art ART 98M — — 1.06M
Astrophysics ASTRO 728M — — 1.14M

Condensed matter CONDM. 688M — — 1.17M
Computer science CS 1.1B — — 1.17M

Economics ECON. 11M — — 1.16M
Mathematics MATH 1.4B ✓ 1.1B 1.46M 1.40M

Nonlinear sciences NLIN. 134M — — 1.28M
Philosophy PHIL. 156M — — 1.06M

Physics PHYS. 737M — — 1.12M
Quantitative biology QBIO 336M — — 1.08M

Statistics STAT 450M — — 1.19M

A DATA SPLITS

VISION DATASETS

For vision modality experiments, we evaluate cross-dataset transfer from ImageNet (Deng et al., 2009)
to CIFAR-100 (Krizhevsky, 2009), Stanford Cars (Krause et al., 2013), and Oxford Flowers (Nilsback
& Zisserman, 2008). We source all datasets from HuggingFace2 using the default training/testing
partitions.

LANGUAGE DATASETS

We evaluate the M2D2 dataset (Reid et al., 2022) for cross-domain language modeling. M2D2
contains two groups: 11 domains from the S2ORC corpus of ArXiv listings (Lo et al., 2020) and an
archive of Wikipedia articles. We train a language model on each split’s largest domain and evaluate
zero-shot generalization to ten domains unseen during fine-tuning. Evaluation uses token-level
perplexity across each domain. Table 7 details the partition sizes (in tokens) for each domain in
M2D2.

Zero-shot cross-lingual transfer is evaluated using MultiNLI and XNLI for entailment classification.
In this task, a model predicts an entailment label (neutral, entailment, contradiction) between sentence
pairs. We use only English language MultiNLI (Williams et al., 2018) for training data and evaluate
the trained model on the 14 unseen natural languages in XNLI (Conneau et al., 2018) during test time.
These datasets are balanced in label classes and we report accuracy per language in our results. A
complete breakdown of partition sizes is shown in Table 8.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 MODEL TRAINING

We fine-tune each pre-trained model without any freezing or additional task-specific parameters
where possible. We also do not explore fine-tuning with low-rank approximations or adapters i.e.,
‘full fine-tuning’. This setup isolates the contribution of the optimization algorithm over additional
capacity in the model. For image classification and cross-lingual entailment classification, we follow

2huggingface.co/datasets/cifar100
huggingface.co/datasets/Multimodal-Fatima/StanfordCars_train
huggingface.co/datasets/nelorth/oxford-flowers
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Table 8: Data splits for XNLI (Conneau et al., 2018). The Training data in English is sourced from
the MultiNLI dataset (Williams et al., 2018) with translations provided for XNLI. Model selection
during training uses only the English validation data. Validation data for other languages is used to
measure ϵ-sharness in our analysis. We omit data splits not used in this work. All data sourced from
HuggingFace (huggingface.co/datasets/xnli).

XNLI Abbrev. Train Sentences Validation Sentences Test Sentences

English EN 393K 2.5K 5K
Arabic AR — 2.5K 5K

Bulgarian BG — 2.5K 5K
German DE — 2.5K 5K
Greek EL — 2.5K 5K

Spanish ES — 2.5K 5K
French FR — 2.5K 5K
Hindi HI — 2.5K 5K

Russian RU — 2.5K 5K
Swahili SW — 2.5K 5K

Thai TH — 2.5K 5K
Turkish TR — 2.5K 5K

Urdu UR — 2.5K 5K
Vietnamese VI — 2.5K 5K

Chinese (Simplified) ZH — — 5K

fine-tuning norms and only introduce a new dataset-specific ‘head’ to predict dataset-specific logits.
For language tasks, we fine-tune each pre-trained model for 50,000 steps using an initial learning rate
of 2 × 10−5, a polynomial decay schedule, and 10,000 step learning rate warmup. We use Adam
(Kingma & Ba, 2017), with a decay factor setting (β1, β2) = (0.9, 0.99), as the base optimizer for
each SAM-style and TR method unless mentioned otherwise. When using validation loss for model
selection, we use only the validation partition of the training domain to reflect a stricter evaluation
setup without access to additional domains during training. All models are trained 1×A100 80GB
GPU for under 72 hours except for GPT2-XL experiments in Appendix C.2.

B.2 BASELINES

We compare to a naive SGD baseline for vision experiments following Kim et al. (2022). Our naive
baseline for language experiments is Adam (Kingma & Ba, 2017) without any augmentation setting
decay factors as (β1, β2) = (0.9, 0.99). All algorithms listed below use Adam as the inner optimizer
for the final update (e.g., Algorithm 1 Step 6).

For sharpness-aware methods: we compare to SAM (ρ = 0.05, Foret et al., 2021), Adaptive SAM
(ASAM, ρ = 0.5, Kwon et al., 2021) and Fisher SAM (FSAM, γ = 0.1, η = 0.1, Kim et al., 2022).

For trust region methods: we compare to Trust Region Policy Optimization (TRPO, Schulman et al.,
2015), R3F (σ = 0.1, Aghajanyan et al., 2021), and MESA (Du et al., 2022). MESA is a variant of
TRPO regularizing output representation divergence between current θt and the exponential moving
average of previous θ<t with decay factor 0.999. For trust-region methods, we add the regularizer
directly to the task-specific loss function with a weighting coefficient of λ = 0.1 (in Equation 3).

B.3 CROSS-DATASET TRANSFER FOR IMAGE CLASSIFICATION

We implement the same cross-dataset adaptation setup as Kim et al. (2022) as a ‘sanity check’
directly comparing TRAM to prior methods in the same setting. This setup is not strictly similar
to the ‘out-of-distribution’ scenario we report for language tasks—this experiment verifies that
TRAM is performant on standard benchmarks and valuably evaluates TRAM in the vision modality.
The objective is to adapt ViT-base (Dosovitskiy et al., 2021) from ImageNet pre-training (Deng
et al., 2009) to additional image classification tasks. We evaluate dataset adaptation to CIFAR-100
(Krizhevsky, 2009), Oxford Flowers (Nilsback & Zisserman, 2008) and Stanford Cars (Krause et al.,
2013) datasets. Our hypothesis is that TRAM can improve applying information from ImageNet to
additional datasets with different labels and input data.
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Algorithm 1 Trust Region Aware Minimization

Input: Training set S = {(xi, yi)}, loss function ℓ, learning rate α, model parameters θ, noise standard
deviation σ {if noise-estimated trust region}.
for t = 1, 2, . . . do

(1) Sample batch of B = {(xi, yi)}|B|
i=0 data from S.

(2) Compute the predictive distribution, pf (·|xB , θt), and gradient of the batch loss∇LB(θ).
(3) Compute trust region distance d as:

dθ using pf (·|xB , θt−1) (Equation 4) or
dx using pf (·|xB + z, θt) , z ∼ N

(
0, σ2

)
(Equation 5).

(4) Compute ϵ∗TRAM :
ϵ∗TRAM = d θ2∇LS(θt)/||θ∇LS(θt)||2

(5) Ascent step perturbing θ to θ + ϵ∗TRAM .
(6) Compute gradient at θ + ϵ∗TRAM as Equation 6:

∇LTRAM (θ) = ∂LS
∂θ

∣∣∣∣
θ=θ+ϵ∗TRAM

(7) Gradient descent update: θ ← θ − α∇LTRAM(θ).
end for

We match the experimental setting of Kim et al. (2022): fine-tuning ViT-base-16 for 200 epochs
with a base optimizer of SGD, an initial learning rate of 5× 10−4, and a cosine learning rate decay
with no warmup or restarts. We do not use early stopping to match prior work and use the final
model regardless of validation loss. We report the average Top-1 accuracy over 5 runs, ± the 95%
confidence interval, in Table 3 for direct comparison to Kim et al. (2022, Table 3).

B.4 CROSS-DOMAIN LANGUAGE MODELING

We consider zero-shot cross-domain language modeling using the M2D2 Corpus (Reid et al., 2022).
Our hypothesis is that TRAM can better apply language modeling information from large text corpora
to improve out-of-domain perplexity when fine-tuning to a specific domain. For S2ORC, we train
on the “Math” domain (MATH, 1.4B tokens) and for Wikipedia, we train on the “Society and social
sciences” domain (SOC., 379M tokens). We use the 112M parameter GPT-2 base model (Radford
et al., 2019) with a batch size of 16 blocks of 1024 tokens following the setup of prior work (Reid
et al., 2022; Chronopoulou et al., 2022; 2023). We evaluate generalization via perplexity for each test
domain. We also evaluate a zero-shot baseline (i.e., GPT-2 before fine-tuning) to contrast with the
same model before domain-specific adaptation. To reduce computation, we train one model with one
random seed per algorithm.

B.5 ZERO-SHOT CROSS-LINGUAL TRANSFER

We test zero-shot cross-lingual transfer by fine-tuning a multilingual model on an English task
and then evaluating the model in other languages. We hypothesize that TRAM can improve task
transfer across languages by improving the usage of information from multilingual pre-training during
monolingual fine-tuning. A poorer model may ‘forget’ other languages during the adaptation process.
We evaluate transfer from English to additional languages by predicting labels for the XNLI test set
after training the model for NLI only in English. We use the 250M XLM-Roberta Base multilingual
pre-trained model (Conneau et al., 2020a) with a classification head trained from scratch. This model
uses a batch size of 32 examples using only English validation loss for model selection. Each reported
result is averaged across 20 runs of varying random seeds to control for variation in loss surface.

B.6 TRAINING ALGORITHMS

The training algorithm for TRAM is outlined in Algorithm 1 using different metrics for trust region
estimation, d, outlined in Section 3. Algorithm 2 details the TRAM-Fisher algorithm. Practically, this
modifies Algorithm 1 in removing one forward pass to estimate the trust region distance and instead
approximate the Fisher Information Matrix of the trust region neighborhood in representation space.
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Algorithm 2 Trust Region Aware Minimization with Fisher Information Matrix (TRAM-Fisher)

Input: Training set S = {(xi, yi)}, loss function ℓ, learning rate α, model parameters θ, noise standard
deviation σ
for t = 1, 2, . . . do

1) Sample batch of B = {(xi, yi)}|B|
i=0 data from S.

2) Compute the predictive distribution, pf (·|xB , θt), and gradient of the batch loss∇LB(θ).
3) Sample input noise z ∼ N

(
0, σ2I|θ|

)
.

4) Approximate the Fisher Information Matrix at x+ z:

F̂ (x+ z; θ) = Diag
(

1
|B|

∑
i∈B (log pf (yi|xi + zi, θ))

)2

5) Compute ϵ∗TRAM−F:

ϵ∗TRAM−F = F̂ (x+z; θ)−1∇LS√
∇LS F̂ (x+z; θ)−1∇LS

.

6) Ascent step perturbing θ to θ + ϵ∗TRAM−F .
7) Compute gradient at θ + ϵ∗TRAM−F as Equation 6:

∇LTRAM−F (θ) = ∂LS
∂θ

∣∣∣∣
θ=θ+ϵ∗TRAM

8) Gradient descent update: θ ← θ − α∇LTRAM−F(θ).
end for

B.7 MEASURING SHARPNESS

We follow Keskar et al. (2017) in evaluating model ϵ-sharpness as Equation 10 where ℓ is the loss
function, x ∈ Rn are n model parameters, A ∈ Rn× p is a matrix restricting the ϵ-sharpness to a
subspace of p parameters (A+ is the pseudo-inverse of A) and Cε is defined as Equation 11 denoting
a “box” region around the solution over which loss is maximized.

ϕx,f (ϵ, A) :=
maxy∈Cϵ

ℓ (x+Ay)− ℓ (x)

1 + ℓ (x)
× 100 (10)

Cϵ = {z ∈ Rp : −ϵ
(
|(A+x)i|+ 1

)
≤ zi ≤ ϵ

(
|(A+x)i|+ 1

)
∀ i ∈ [p]} (11)

For our measurement of ϵ-sharpness, we set A to the identity matrix In×n to measure over the
complete model. We measure ϵ-sharpness over the validation set of XNLI in all languages comparing
between original loss ℓ (x) and maximized loss maxy∈Cϵ ℓ (x+Ay). We follow the ϵ-sharpness
setup of Juneja et al. (2023) using an SGD optimizer, learning rate of 8× 10−5, a 32 example batch
size, accumulation over 4 steps and ϵ of 1× 10−5.

B.8 MEASURING REPRESENTATION SIMILARITY

We follow Kornblith et al. (2019) and Conneau et al. (2020b) in evaluating cross-lingual similarity
using Centered Kernel Alignment (CKA). At a language level, CKA computes a similarity score
between matrix X and Y where X,Y ∈ Rn× d are dense matrices of n outputs of d-dimensional
representations from each model. We compute linear CKA similarity as Equation 12 using the
Frobenius norm. For our cross-lingual transfer experiments, we use the base model output for each
example (i.e., the representation before the classification head) to evaluate similarity.

CKA(X,Y ) =
∥Y TX∥2F

∥XTX∥F ∥Y TY ∥F
(12)

C ADDITIONAL RESULTS

C.1 DOMAIN CORRELATIONS FOR S2ORC

Table 9 details the correlation between zero-shot and training domain perplexity across methods. We
omit the combination approaches (e.g., ASAM+R3F) due to poor performance. For Wikipedia, all
domains are correlated with the training domain indicating that the domain-specific fine tuning on
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Table 9: Pearson correlation between training domains and zero-shot domains for M2D2. We report
how the change in training domain correlates with changes in zero-shot perplexity to analyze how
different domains improve or worsen during fine-tuning. All domains are correlated with SOC. for
the Wikipedia split. ART and PHIL. domains are anti-correlated with MATH training domain for
S2ORC indicating a major distribution shift.

Wiki Domain ρ to SOC. p < 0.01? S2ORC Domain ρ to MATH p < 0.01? STEM?

CULT. 0.982 ✓ ART -0.861 ✓
GEN. 0.983 ✓ ASTRO 0.812 ✓ ✓

HEALTH. 0.970 ✓ CONDM. 0.999 ✓ ✓
HIST. 0.998 ✓ CS 0.996 ✓ ✓

HUMAN. 0.980 ✓ ECON. 0.997 ✓ ✓
MATH. 0.976 ✓ NLIN. 1.000 ✓ ✓
NAT. 0.982 ✓ PHIL. -0.825 ✓
PHIL. 0.985 ✓ PHYS. 0.991 ✓ ✓
REL 0.994 ✓ QBIO 0.932 ✓ ✓

TECH. 0.983 ✓ STAT 0.998 ✓ ✓

ZS AVG. 0.990 ✓ ZS AVG. 0.968 ✓

STEM AVG 0.998 ✓

Table 10: M2D2 perplexity across training algorithms for GPT2-XL. We fine-tune on the MATH do-
main M2D2 S2ORC split and evaluate in-domain and out-of-domain perplexity. We evaluate TRAM,
competitive comparisons and a GPT2-XL zero-shot baseline. We omit algorithms demonstrating
poorer results in smaller scale experiments to limit computation demands. As in Table 4, TRAM
performs strongly compared to all comparisons. We report the average zero-shot perplexity (ZS
AVG.) as the summary metric to judge domain transfer capability (lower is better). Worst perplexity
(excluding zero-shot) is red, best is green.

S2ORC MATH ART PHIL. ASTRO CONDM. CS ECON. NLIN. PHYS. QBIO STAT ZS AVG. ↓
GPT2-XL 16.9 22.8 21.2 19.8 19.0 17.3 18.5 17.8 20.7 19.8 14.9 19.2

Adam 8.7 30.4 28.2 24.0 14.9 15.4 15.4 11.4 21.4 22.1 12.6 19.6
SAM 8.7 29.3 28.0 22.6 14.6 15.1 15.1 11.2 20.5 21.4 12.3 19.0
ASAM 7.9 28.0 26.1 21.8 13.4 14.1 14.1 10.4 19.4 20.3 11.4 17.9
FSAM 7.8 26.7 25.0 21.1 13.1 13.7 13.7 10.2 18.8 19.6 11.2 17.3

TRPO 8.9 27.9 26.4 23.0 14.9 15.3 15.3 11.5 20.8 21.3 12.5 18.9
R3F 8.9 27.9 26.4 23.0 14.9 15.3 15.3 11.5 20.8 21.3 12.5 18.9
MESA 9.1 28.7 26.7 23.7 14.8 15.0 16.3 13.1 20.7 23.2 12.8 19.5

TRAM-θt−1 8.3 25.2 23.8 20.1 13.7 14.0 14.2 10.7 18.9 19.4 11.5 17.2

TRAM-x 8.3 25.3 23.8 20.2 13.8 14.1 14.2 10.8 19.0 19.5 11.6 17.2

SOC. domain has a net positive improvement on all zero-shot domains. This trend is not consistent
for S2ORC where we observe that ART and PHIL. domains are anti-correlated with the MATH
training domain. Improvement to MATH perplexity worsens the performance on these domains across
all methods. As discussed in Section 4.2.1, TRAM reports perplexity below this trend to perform
better than expected for a negatively correlated trend. For comparison, we contrast the correlations
between positively correlated domains (grouped as an average entitled STEM) and anticorrelated
domains in Figure 2.

C.2 TRAINING GPT2-XL WITH TRAM

Bahri et al. (2022) report that training with SAM is effective over all sizes of T5 (Raffel et al.,
2020). We verify if this improvement trend extends to TRAM by training a GPT2-XL model (1.5B
parameters) on the same language modeling task for 100,000 steps. The setup is the same as described
in Appendix B but we use 4 A100 GPUs for training each with a batch size per device of 4 blocks ×
1024 tokens. Perplexity for S2ORC domains is shown in Table 10 where we observe similar trends
to the 112M parameter GPT2 model. We choose not to run these larger experiments on methods
with poor performance in Table 4 (e.g., combined approaches, TRAM-Fisher) to limit computation
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demands. Zero-shot GPT2-XL is a stronger baseline here which some methods struggle to improve
upon despite improvement in the training domain. TRAM-θt−1 and TRAM-x perform similarly
reporting the lowest perplexity in four domains. The most competitive adjacent algorithm is FSAM
reporting the lowest perplexity in seven domains. The difference between FSAM and either TRAM
algorithm is not significant here, as we observed for smaller models in Table 4.

C.3 RESULTS FROM COMBINING OPTIMIZATION ALGORITHMS

Table 11: M2D2 perplexity (lower is better) on Wikipedia (upper) & S2ORC (lower) splits. TRAM-
θt−1 significantly improves over prior work (p < 0.01 Kolmogorov-Smirnov test). Results are
grouped as: (i) optimizers; (ii) trust region methods; (iii) combined SAM optimizers and trust region
methods; and (iv) TRAM variants. The leftmost column is the training domain and we evaluate
zero-shot perplexity on ten domains unseen during fine-tuning (full details in Appendix A). ZS AVG.
is the macro-average of all zero-shot domains.

Wiki SOC. CULT. GEN. HEALTH. HIST. HUMAN. MATH. NAT. PHIL. REL TECH. ZS AVG. ↓
GPT-2 27.2 27.7 27.8 24.5 29.2 28.8 28.6 29.4 27.8 27.7 28.7 28.0

Adam 24.8 26.3 26.4 23.6 27.2 27.0 27.4 27.6 26.3 25.8 27.4 26.5
SAM 24.5 25.9 26.0 23.1 26.9 26.6 26.6 27.2 25.8 25.5 27.0 26.1
ASAM 24.8 25.4 25.6 22.5 27.1 26.4 26.3 26.7 25.5 25.5 28.1 25.9
FSAM 21.7 23.0 23.3 20.6 23.9 23.7 23.8 24.0 23.1 22.8 24.0 23.2

TRPO 21.8 23.0 23.3 20.7 24.0 23.7 23.8 24.0 23.1 22.8 24.1 23.3
R3F 21.8 23.0 23.3 20.7 24.0 23.7 23.8 24.0 23.1 22.8 24.1 23.3
MESA 23.1 24.0 24.3 21.5 25.4 24.9 24.8 25.2 24.1 24.0 25.1 24.3

ASAM+TRPO 25.6 26.8 26.9 24.0 28.0 27.6 27.6 28.2 26.8 26.5 27.9 27.0
ASAM+R3F 25.0 26.0 26.2 23.2 27.4 26.9 26.8 27.4 26.1 25.9 27.1 26.3
ASAM+MESA 25.3 26.3 26.5 23.5 27.7 27.2 27.1 27.7 26.3 26.1 27.4 26.6

TRAM-θt−1 20.9 22.4 22.7 20.1 23.1 22.9 23.2 23.3 22.4 22.0 23.4 22.5
TRAM-θ0 21.9 23.1 23.4 20.7 23.9 23.3 23.9 23.8 23.1 22.7 23.9 23.2
TRAM-x 21.9 23.1 23.4 20.7 24.0 23.3 23.9 23.9 23.2 22.7 23.9 23.2
TRAM-Fisher 22.5 23.7 24.0 21.3 24.6 24.0 24.7 24.6 23.8 23.3 24.6 23.9

S2ORC MATH ART ASTRO CONDM. CS ECON. NLIN. PHIL. PHYS. QBIO STAT ZS AVG. ↓
GPT-2 27.6 35.8 32.4 30.9 27.9 29.5 27.6 33.7 33.5 30.9 23.4 30.6

Adam 11.4 44.2 33.9 20.1 21.2 21.0 14.7 41.9 29.5 30.8 16.9 27.4
SAM 10.5 45.3 33.2 18.7 20.3 20.0 13.7 42.4 28.3 30.2 16.1 26.8
ASAM 10.3 45.6 33.2 18.5 20.1 19.8 13.5 42.6 28.2 30.2 15.9 26.8
FSAM 10.4 45.6 33.3 18.5 20.2 19.9 13.5 42.7 28.3 30.2 15.9 26.8

TRPO 10.4 46.0 33.4 18.6 20.3 20.0 13.6 42.9 28.4 30.4 16.0 26.9
R3F 10.4 46.0 33.4 18.6 20.2 20.0 13.6 42.9 28.4 30.4 16.0 26.9
MESA 11.9 44.1 34.1 20.8 21.7 21.6 15.3 41.7 30.0 31.0 17.4 27.8

ASAM+TRPO 13.7 46.6 36.9 23.6 23.8 23.8 17.4 43.8 33.1 33.5 19.2 30.2
ASAM+R3F 13.5 46.2 36.5 23.3 23.6 23.5 17.2 43.4 32.7 33.2 19.0 29.9
ASAM+MESA 13.4 45.9 36.3 23.1 23.4 23.3 17.0 43.2 32.5 33.0 18.9 29.7

TRAM-θt−1 9.6 46.8 32.5 17.2 19.2 18.9 12.6 43.3 27.0 29.6 15.0 26.2
TRAM-θ0 10.4 44.8 33.0 18.6 20.1 19.9 13.6 42.0 28.2 30.0 15.9 26.6
TRAM-x 10.4 44.9 33.0 18.6 20.1 19.9 13.6 42.0 28.1 30.0 15.9 26.6
TRAM-Fisher 10.5 46.1 32.4 18.7 20.3 20.0 13.6 43.0 28.2 30.3 16.0 26.9

Given that TRAM builds on integrating SAM-style optimization with trust-region regularization, we
additionally compare to a naive combination of each of these methods. We replace the standard loss
function in ASAM with the loss function adding trust region regularization.

Our full results featuring these systems are shown in Table 11 for language modeling and Table 12
for zero-shot cross-lingual transfer. Across both tasks, naive combination approaches are some of the
weakest approaches. When we directly combine ASAM with each trust region regularizer (TRPO,
R3F, MESA), we find that the naive combination approaches perform worse than Adam alone, even
with extensive hyperparameter tuning. We conjecture that the constituent methods fail to compound
constructively because the trust region regularizer does not interact with (or respect) the ρ-ball
neighborhood of ASAM. Therefore, each component may contribute to cross-feature interference,
with a disadvantageous net effect on training. TRAM instead offers to combine strategies with
complementary features without interference.
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Table 12: XNLI accuracy (higher is better) for training language (EN) and 14 zero-shot target
languages summarised by ZS AVG. (key in Appendix A). All TRAM variants significantly outperform
other methods (p < 0.01 Wilcoxon test). Results are grouped as: (i) optimizers; (ii) trust region
methods; (iii) combined SAM optimizers and trust region regularization; and (iv) TRAM variants.
We report the mean across 20 seeds with standard deviation in Table 13.

EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH ZS AVG ↑
Adam 83.9 71.2 77.1 75.7 75.2 78.3 77.6 69.6 74.9 64.6 71.2 72.2 65.8 74.1 73.1 72.9
SAM 84.8 72.1 78.1 76.7 75.7 79.0 77.9 69.8 75.7 65.2 71.8 73.1 66.8 75.1 74.2 73.7
ASAM 85.0 72.0 78.4 76.9 76.1 79.5 78.5 70.4 76.1 65.2 72.5 73.4 66.9 75.5 74.2 74.0
FSAM 84.7 72.2 78.1 76.9 76.0 79.3 78.4 70.0 76.1 65.1 72.2 73.0 66.8 75.3 74.2 73.8

TRPO 84.9 71.3 77.7 76.2 75.3 78.6 77.3 69.2 75.2 64.4 71.6 72.4 65.3 73.8 73.3 73.0
R3F 85.5 72.7 78.9 77.5 76.8 79.9 79.2 70.7 76.8 66.2 72.9 73.9 66.6 75.8 74.6 74.5
MESA 84.9 71.9 77.9 76.7 75.7 78.8 77.8 69.6 75.8 64.1 72.1 72.4 65.7 74.4 73.9 73.3

ASAM+TRPO 85.0 72.4 78.5 77.2 76.4 79.7 78.9 70.4 76.4 65.3 72.4 73.2 66.8 75.7 74.6 74.1
ASAM+R3F 85.1 72.1 78.3 76.9 75.9 79.3 78.4 70.3 76.0 65.1 72.4 73.3 66.3 75.1 74.3 73.8
ASAM+MESA 84.7 71.7 77.8 76.3 75.7 78.8 77.9 69.5 75.4 64.1 71.6 72.7 65.6 74.3 73.4 73.2

TRAM-θt−1 86.2 73.1 79.5 78.2 77.0 80.2 79.7 71.5 77.5 66.4 73.3 74.2 67.5 76.7 75.8 75.0
TRAM-θ0 85.6 72.9 79.3 77.8 77.4 80.2 79.6 71.2 77.1 65.9 73.3 74.2 67.5 76.7 75.8 74.9
TRAM-x 86.2 73.5 79.8 78.3 77.5 80.9 79.6 71.4 77.5 66.0 73.8 74.3 67.6 76.7 75.9 75.2
TRAM-Fisher 84.3 73.1 78.7 77.1 76.2 79.5 78.4 71.4 76.6 65.7 73.2 73.6 67.5 75.5 75.5 74.4

Table 13: Standard deviation of accuracy for the XNLI dataset across 20 training runs with varying
random seed. Results are split into groups for: (i) optimizers, (ii) trust region methods, (iii) combined
methods, (iv) TRAM variants and (v) TRAM using dx with varying metrics for computing divergence.
This accompanies Table 5 and Table 14 which report average values across seeds.

EN BG DE EL AR ES FR HI RU SW TH TR UR VI ZH

Adam 0.34 0.42 0.65 0.47 0.50 0.39 0.51 0.51 0.51 0.65 0.40 0.41 0.43 0.51 0.55
SAM 0.24 0.31 0.35 0.34 0.31 0.32 0.49 0.33 0.50 0.36 0.40 0.35 0.44 0.39 0.39
ASAM 0.33 0.33 0.45 0.39 0.47 0.36 0.51 0.44 0.44 0.51 0.56 0.42 0.47 0.45 0.50
FSAM 0.35 0.31 0.51 0.56 0.35 0.37 0.47 0.41 0.45 0.53 0.37 0.39 0.44 0.35 0.38

TRPO 0.24 0.35 0.37 0.34 0.30 0.39 0.34 0.46 0.40 0.38 0.36 0.34 0.53 0.38 0.34
R3F 0.34 0.40 0.44 0.38 0.35 0.35 0.43 0.42 0.46 0.41 0.41 0.35 0.43 0.39 0.47
MESA 0.34 0.34 0.44 0.24 0.40 0.52 0.37 0.67 0.43 0.26 0.40 0.45 0.59 0.43 0.34

ASAM+TRPO 0.30 0.28 0.36 0.29 0.26 0.28 0.35 0.34 0.44 0.36 0.39 0.38 0.34 0.32 0.32
ASAM+R3F 0.32 0.45 0.45 0.40 0.46 0.36 0.49 0.53 0.50 0.52 0.40 0.49 0.60 0.45 0.49
ASAM+MESA 0.34 0.31 0.30 0.44 0.42 0.39 0.38 0.51 0.58 0.46 0.44 0.31 0.51 0.50 0.46

TRAM-θt−1 0.40 0.31 0.40 0.30 0.36 0.31 0.43 0.50 0.53 0.48 0.43 0.34 0.36 0.49 0.42
TRAM-θ0 0.34 0.38 0.41 0.44 0.48 0.40 0.43 0.53 0.63 0.47 0.66 0.39 0.57 0.50 0.54
TRAM-x 0.31 0.29 0.45 0.44 0.37 0.33 0.38 0.37 0.48 0.39 0.44 0.32 0.43 0.39 0.42
TRAM-Fisher 0.29 0.65 0.67 0.55 0.58 0.60 0.49 0.72 0.69 0.64 0.86 0.49 0.68 0.55 0.73

TRAM-x (MMD) 0.42 0.38 0.46 0.43 0.47 0.35 0.42 0.43 0.48 0.44 0.59 0.49 0.36 0.37 0.59
TRAM-x (L2) 0.30 0.27 0.27 0.26 0.24 0.28 0.27 0.21 0.29 0.26 0.24 0.28 0.21 0.22 0.22

C.4 RUN VARIATION IN CROSS-LINGUAL TRANSFER

For XNLI experiments, we report the mean over 20 runs varying random seed in Table 5 and Table 14.
We report the respective standard deviation values for each reported mean in Table 13.

C.5 CHOOSING A DISTANCE METRIC

TRAM relies on KL divergence to estimate the trust region around the pre-trained function (i.e.,
pf (·|x+ z, θ) or pf (·|x, θt−1)). We propose TRAM with forward KL on the intuition that the
perturbed distribution (i.e., estimated point in the trust region) is the target (i.e., true) output which
the current outputs (i.e., estimate) should match. We empirically verify this setup as the optimal
arrangement (i.e., forward KL). While reverse KL or symmetric KL report only marginally poorer
results, we report only forward KL for simplicity. We also consider alternative distance metrics
in Table 14. We evaluate modifying the best-performing model for XNLI with different distances
to examine if the divergence for trust region estimation is influential in performance. We evaluate
maximum mean discrepancy using an inverse multiquadratic kernel (MMD; Gretton et al., 2012),
or L2 distance within dx. Even using the worst-performing metric, L2 distance, TRAM is still
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Table 14: XNLI accuracy across varying the divergence metric estimating the trust region distance
in TRAM. We compare to using maximum mean discrepancy (MMD) and L2 distance. TRAM is
generally robust to different estimates for the trust region between pf (·|x, θ) and pf (·|x+ z, θ).

EN BG DE EL AR ES FR HI RU SW TH TR UR VI ZH ZS AVG. ↑
TRAM-x (KL) 86.2 79.8 78.3 77.5 73.5 80.9 79.6 71.4 77.5 66.0 73.8 74.3 67.6 76.7 75.9 75.2
TRAM-x (MMD) 86.0 79.3 78.1 77.1 73.2 80.7 79.6 71.4 77.3 66.0 74.0 74.4 67.2 76.3 75.6 75.0
TRAM-x (L2) 85.1 78.7 76.8 76.2 72.2 79.4 78.8 70.4 76.2 65.5 72.6 73.5 67.1 75.8 74.6 74.1

competitive to methods in Table 8. Characterizing the best trust region estimate for TRAM is outside
the scope of this work. Future work should explore the suitability of different distances (e.g., Renyi
divergence) to improve the estimation of the trust region space.
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