
Published as a conference paper at ICLR 2024

COLLIE: SYSTEMATIC CONSTRUCTION OF
CONSTRAINED TEXT GENERATION TASKS

Shunyu Yao⇤ Howard Chen⇤ Austin W. Hanjie⇤ Runzhe Yang⇤ Karthik Narasimhan
Department of Computer Science, Princeton University
{shunyuy, hc22, hjwang, runzhey, karthikn}@princeton.edu

ABSTRACT

With the rapid improvement of large language models capabilities, there has been
increasing interest in challenging constrained text generation problems. However,
existing benchmarks for constrained generation usually focus on fixed constraint
types (e.g. generate a sentence containing certain words) that have proved to be
easy for state-of-the-art models like GPT-4. We present COLLIE, a grammar-
based framework that allows the specification of rich, compositional constraints
with diverse generation levels (word, sentence, paragraph, passage) and modeling
challenges (e.g. language understanding, logical reasoning, counting, semantic
planning). We also develop tools for automatic extraction of task instances given a
constraint structure and a raw text corpus. Using COLLIE, we compile the COLLIE-
v1 dataset with 2,080 instances comprising 13 constraint structures. We perform
systematic experiments across five state-of-the-art instruction-tuned language mod-
els and analyze their performances to reveal shortcomings. COLLIE is designed
to be extensible and lightweight, and we hope the community finds it useful to
develop more complex constraints and evaluations in the future.

1 INTRODUCTION

Large language models (LLMs) are increasingly capable of generating coherent and fluent text
when provided with high-level prompts (OpenAI, 2023a). Such capabilities have raised the bar for
automated text generation, allowing us to explore more nuanced ways of utilizing LMs. One such
line of inquiry is constrained text generation, whereby the LM is asked to adhere to a particular
topic (Keskar et al., 2019; Dathathri et al., 2020), or avoid using certain words (Lu et al., 2021; 2022).
However, these works scratch the surface of a broader phenomenon — LMs do not just generate
text, as evidenced by their use in more structured tasks like problem solving (Yao et al., 2022), code
generation (Chen et al., 2022b) and even tool use through API calls (Schick et al., 2023).

This raises a natural question — ‘what is the next iteration of text generation benchmarks that can

evaluate these advanced capabilities in LLMs’? We posit that one direction is incorporating logical
and compositional challenges via constrained text generation. Existing benchmarks for constrained
generation, however, focus only on particular constraint types, require tailored pipelines to collect
data and annotations, and/or can only evaluate a specific aspect of LM strengths (Lin et al., 2020;
Chen et al., 2022a). They also suffer from challenges in scalable dataset construction.

In this paper, we propose COLLIE, a grammar-based framework that enables systematic construction
of compositional constraints over diverse generation levels (e.g., words, sentences, paragraphs) and
semantic requirements (e.g., language understanding, logical reasoning, counting). Operationally,
COLLIE allows researchers to 1) easily specify constraint templates, and then automatically 2) extract
constraint values from language corpora, 3) render them into natural language instructions, and 4)
evaluate model generations against the constraint instructions.

Existing benchmarks for constrained generation focus only on particular constraint types and formats
(e.g., “generate a sentence with words...”). These limitations mean that benchmarks become quickly
obsolete as LLMs progress. In contrast, the modular and extensible design of COLLIE allows the

*Equal contribution. Project site with code and data: https://collie-benchmark.github.io.
Collie is a herding dog that can help guide domesticated animals like llamas and alpacas.

1

https://collie-benchmark.github.io

Published as a conference paper at ICLR 2024

United we stand,
humanity can overcome any
challenge for the betterment
of mankind.

Extraction

Instruction
Rendering

Constraint
Grammar

Model

Generate a sentence with at
most 10 words where the
third last word is ‘mankind’.

Text Corpora
The only thing that
will redeem mankind
is cooperation.

❌

Fluency

Conformance

Evaluation

<latexit sha1_base64="9kGUx4NeFAa1QTf1se9C6lZ73O0=">AAACa3icbVHLTtwwFHVCaWGgdIAFVWFhdTQVoHaU0KqwQUJlw5KKDiBNpiPHuRksHDvYN4VRFBZ8Irv+QTf9h3rCqC2PK1k+PuceP47jXAqLQfDT86eeTT9/MTPbmJt/ufCqubh0bHVhOHS5ltqcxsyCFAq6KFDCaW6AZbGEk/h8f6yf/ABjhVbfcJRDP2NDJVLBGTpq0Lx5RyOEK0QsuS4UVuvRlXj/l7vUJqncErIcRxZwI5JwQTfpNY0uIRkCjSL6b4dc26f9Hz5u0F262WjXfJyW9Vwe7VfV961BsxV0grroYxBOQItM6nDQvI0SzYsMFHLJrO2FQY79khkUXELViAoLOePnbAg9BxXLwPbLOquKth2T0FQbNxTSmv3fUbLM2lEWu86M4Zl9qI3Jp7RegelOvxQqLxAUvzsoLSRFTcfB00QY4ChHDjBuhLsr5WfMMI7uexouhPDhkx+D461O+LkTfv3U2vsyiWOGrJK3ZJ2EZJvskQNySLqEk1/egrfivfZ++8v+G3/trtX3Jp5lcq/89h/5xbnO</latexit>

count(⇠, word, ;) ⇤ ^
pos(⇠, word, �3) = ⇤

(9 words) (13 words)

<latexit sha1_base64="5wK6g5SlP8NaYfY3K6Oh917gYFI=">AAACcnicbVHLbtQwFHXCq4RHpyA2IIFhNKityihpEbBBquiGZVGZttJ4GDnOzdSqY6f2De0oCnt+jx1fwYYPwBMiHm2vZPn4nHv8OE5LJR3G8fcgvHL12vUbSzejW7fv3F3urdzbd6ayAkbCKGMPU+5ASQ0jlKjgsLTAi1TBQXq8s9APPoN10uiPOC9hUvCZlrkUHD017X0dPKcM4QwRa2Eqjc0qO5Mbf7hTY7PGL6Eoce4A15iCE7pOv1B2CtkMKGP07w6lcZf7X2yt0bd0PRq0fJrX7Vzv7TTNp82I7W0Nk2mvHw/jtuhFkHSgT7ranfa+scyIqgCNQnHnxklc4qTmFqVQ0ESsclByccxnMPZQ8wLcpG4ja+jAMxnNjfVDI23Zfx01L5ybF6nvLDgeufPagrxMG1eYv5nUUpcVgha/D8orRdHQRf40kxYEqrkHXFjp70rFEbdcoP+lyIeQnH/yRbC/OUxeDZMPL/vb77o4lsgj8oyskoS8JtvkPdklIyLIj+BB8Dh4EvwMH4ZPwy67MOg898l/FW78AmMAu4Q=</latexit>

§3.1
<latexit sha1_base64="J9xepQosPKTzGm5Sd3OK93KzAbI=">AAACcnicbVHLbtQwFHXCq4RHBxAbkMAwGtRWZZR0ELBBquiGZVGZttJ4GDnOzdSqYwf7hnYUhT2/x46vYMMH4AkRj7ZXsnx8zj1+HKelkg7j+HsQXrp85eq1levRjZu3bq/27tzdd6ayAsbCKGMPU+5ASQ1jlKjgsLTAi1TBQXq8s9QPPoN10ugPuChhWvC5lrkUHD01630dPKMM4RQRa2Eqjc0aO5Wbf7gTY7PGL6EoceEA15mCT3SDfqHsBLI5UMbo3x1K4y72Px+t0zd0Ixq0fJrX7Vzv7TTNx62I7Y2Go1mvHw/jtuh5kHSgT7ranfW+scyIqgCNQnHnJklc4rTmFqVQ0ESsclByccznMPFQ8wLctG4ja+jAMxnNjfVDI23Zfx01L5xbFKnvLDgeubPakrxIm1SYv57WUpcVgha/D8orRdHQZf40kxYEqoUHXFjp70rFEbdcoP+lyIeQnH3yebC/NUxeDpP3L/rbb7s4VshD8pSskYS8ItvkHdklYyLIj+B+8Ch4HPwMH4RPwi67MOg898h/FW7+AmYIu4Y=</latexit>

§3.3

<latexit sha1_base64="6ENIAMGN94i0bOdBG+FvfDL1S7c=">AAACcnicbVHLbtQwFHXCq4RHpyA2IIFhNKityigpFbBBquiGZVGZttJ4GDnOzdSqY6f2De0oCnt+jx1fwYYPwBMiHm2vZPn4nHv8OE5LJR3G8fcgvHL12vUbSzejW7fv3F3urdzbd6ayAkbCKGMPU+5ASQ0jlKjgsLTAi1TBQXq8s9APPoN10uiPOC9hUvCZlrkUHD017X0dPKcM4QwRa2Eqjc0qO5Mbf7hTY7PGL6Eoce4A15iCE7pOv1B2CtkMKGP07w6lcZf7X7xco2/pejRo+TSv27ne22maT5sR29saJtNePx7GbdGLIOlAn3S1O+19Y5kRVQEaheLOjZO4xEnNLUqhoIlY5aDk4pjPYOyh5gW4Sd1G1tCBZzKaG+uHRtqy/zpqXjg3L1LfWXA8cue1BXmZNq4wfzOppS4rBC1+H5RXiqKhi/xpJi0IVHMPuLDS35WKI265QP9LkQ8hOf/ki2B/c5i8GiYftvrb77o4lsgj8oyskoS8JtvkPdklIyLIj+BB8Dh4EvwMH4ZPwy67MOg898l/FW78AmSGu4U=</latexit>

§4.1

<latexit sha1_base64="zjZIGCboq3D0U6RBj8l/SYyllCw=">AAACcHicbVHLbtQwFHVCgZLyGOgGiaIaRoPaEYyS8twgVXTDsqhMW2k8jBznZmrVsYN9QzuKwpb/Y8dHsOEL8KQjHm2vZPn4nHv8OE5LJR3G8Y8gvLJ09dr15RvRys1bt+907t7bd6ayAobCKGMPU+5ASQ1DlKjgsLTAi1TBQXq8M9cPvoB10uiPOCthXPCplrkUHD016XzrPaEM4RQRa2Eqjc0GO5VP/3AnxmaNX0JR4swBbjIFn2mffqXsBLIpUMbo3x1K4y73P3u+Sd/SftRr+TSv27ne22maT1sR23s56XTjQdwWvQiSBeiSRe1OOt9ZZkRVgEahuHOjJC5xXHOLUihoIlY5KLk45lMYeah5AW5ct4E1tOeZjObG+qGRtuy/jpoXzs2K1HcWHI/ceW1OXqaNKszfjGupywpBi7OD8kpRNHSePs2kBYFq5gEXVvq7UnHELRfo/yjyISTnn3wR7G8NkleD5MOL7va7RRzL5AF5TDZIQl6TbfKe7JIhEeRnsBqsBQ+DX+H9cD18dNYaBgvPKvmvwv5vKYm7Ew==</latexit>

§5

Figure 1: Our COLLIE framework for constraint structure specification, ground truth extraction,
instruction rendering, and evaluation. First, the user specifies the constraint structure without a
specific target value (expressed in ⇤). Second, the constraint structure is used to extract ground truth
examples from text corpora that contain the target values. Third, the constraint structure and target
values are rendered into a natural language instruction. Finally, the model’s generation is evaluated
against the constraint and the ground truth. The model (gpt-3.5-turbo) violates the constraints
by exceeding word limits and leaving the word ‘mankind’ at the end instead of the specified position.

broader NLP community to contribute additional constraints that can co-evolve with LLM capabilities
over time, while also providing a convenient endpoint for users that only want to evaluate their model
without developing their own constraints. The flexibility of such a grammar-based framework may
not only be useful for evaluation, but also in practice (e.g. word constraints, words blacklist, etc.).

We construct the dataset COLLIE-v1 with 2,080 constraint instances across 13 different types, using
three different corpora: Wikipedia (Foundation, 2022), CC-News (Hamborg et al., 2017), and Project
Gutenberg (Brooke et al., 2015). We perform zero-shot evaluations of five state-of-the-art LLMs
of varying sizes including GPT-4 (OpenAI, 2023a) and PaLM (Anil et al., 2023). While GPT-4
comparatively performs the best, it still achieves an average constraint satisfaction rate of only 50.9%.
We find that challenges correlate with position – for instance, instructing models to begin a sentence
with a specific word leads to a 100% success rate for GPT-4, while asking models to end a sentence
with a particular word results in a success rate of 40%-60%. These insights can help us diagnose
LLMs, which in turn can improve LLM capabilities, and further advance the benchmark itself.

To summarize, we make the following contributions: (1) We introduce COLLIE, a framework for
systematic generation of compositional constraints, that is flexible and extensible. (2) We use
COLLIE to curate a new dataset COLLIE-v1 comprising of 13 constraint structures. (3) We perform a
comprehensive evaluation of five state-of-the-art LLMs of varying sizes and provide useful insights
for both model and benchmark development in the future.

2 RELATED WORK

Constrained text generation (CTG). Early work in controllable text generation used control codes to
steer the generation towards desired topics or to reduce undesirable content, by controlling for broad
attributes such as sentiment or toxicity (Hu et al., 2017; Keskar et al., 2019; Dathathri et al., 2020;
Krause et al., 2021). Other work on constrained decoding provides to the language model a collection
of lexical items as constraints to be included or excluded in the final generated text (Hokamp and Liu,
2017; Hasler et al., 2018; Dinu et al., 2019; Hu et al., 2019; Lin et al., 2020; Lu et al., 2021; 2022;
Li et al., 2022b). Recent advances in instruction tuning LLMs (Ouyang et al., 2022) have brought
major improvements to controllability. These advancements have made it challenging to use existing
controllable generation datasets to fully assess the capabilities of modern LLMs. InstructCTG (Zhou
et al., 2023) is a concurrent work that also constructed a dataset with text constraints. However, it
mainly focuses on synthesizing 5 types of simple CTG instructions for tuning small language models
such as T5-11B (Raffel et al., 2020), whereas COLLIE serves to construct much more challenging and
open-ended CTG tasks to evaluate and diagnose start-of-the-art LLMs like GPT-4 (OpenAI, 2023b).
Lastly, there is a line of work that sets up CTG in more practical downstream applications, such as
controllable summarization (Zhang et al., 2023). The flexibility of COLLIE allows these “functional
constraints” to be incorporated for more usefulness, which we leave for future work.

2

Published as a conference paper at ICLR 2024

Grammar-based compositional tests. Building benchmarks with data synthesized from grammars
has been explored previously in the context of question answering (Weston et al., 2015), instruction
following (Chevalier-Boisvert et al., 2019; Ruis et al., 2020)) and visual reasoning (Johnson et al.,
2017). These benchmarks showcased the utility of grammars to systematically generate a comprehen-
sive set of test cases or to specify some fixed constraints. In contrast, COLLIE aims to enable flexible,
and dynamic constraint construction that can co-evolve with models. Furthermore, previous datasets
were synthetic with limited linguistic diversity and practical applicability to real-world scenarios. In
contrast, since our COLLIE framework extracts values and examples from natural language corpora
to construct the constraints, it represents a more realistic challenge for modern LLMs.

Systematic and scalable language benchmarks. The emergence of increasingly powerful general-
purpose language models has created a need for scalable benchmarks that can systematically and
comprehensively evaluate them. A few recent examples include HELM (Liang et al., 2022), BIG-
Bench (Srivastava et al., 2022), MMLU (Hendrycks et al., 2020), TaskBench500 (Li et al., 2022a), and
Natural Instructions (Wang et al., 2022). However, building such benchmarks require considerable
human effort, and may become obsolete when stronger models enter the arena. We provide a
new perspective in this race between model capabilities and challenging benchmarks: leverage
compositionality to construct automatic and scalable benchmarks with minimal human effort that can
co-evolve with model capabilities to remain challenging and relevant.

3 COLLIE FRAMEWORK TO CONSTRUCT CONSTRAINED TEXT GENERATION

COLLIE allows researchers to easily 1) specify textual constraint structures via a grammar, then
automatically 2) extract constraint values from text corpora, 3) render constraints into natural language
instructions, and 4) evaluate generations with respect to constraints.

Grammar. Two observations about text constraints motivate a grammar characterization: 1) they
involve different levels of text, e.g. character, word, sentence, or paragraph; and 2) many of them
specify either the count or position at a certain text level (existence is equivalent to count > 0).

Let capitalized letters (S, M, C, T) denote non-terminal variables, and other symbols (`, �, �, v)
denote terminals. A full constraint specification within our grammar S (Eq. 1) consists of two
parts: a generation level (level(⇠) = `) specifying whether the generated text ⇠ should be a
word, a sentence, a paragraph, or a document, and a multi-constraint M (Eq. 2), which is a log-
ical composition of one or more base-constraints C. A text T (Eq. 4) within these constraints
can either be the full generated text ⇠, or a part of it when qualified with a pos(·). For example,
pos(pos(⇠, paragraph, 3), sentence, �1) means “the last sentence of the 3rd paragraph of the gener-
ated text”. For terminal variables, we define a level ` of a text (Eq. 5), a string or number relation �
or � (Eq. 6), and a string or number value vstr or vnum (Eq. 7). ^ represents the logical ‘and’ operator,
and _ represents the logical ‘or’. With these definitions, we construct the following grammar:

S ! (level(⇠) = `) ^ M (constraint specification) (1)
M ! C | C ^ M | C _ M (multi-constraint) (2)
C ! count(T, `, vstr | `0) � vnum | pos(T, `, vnum) � vstr (base-constraint) (3)
T ! ⇠ | pos(T, `, vnum) (text) (4)
` ! char | word | sentence | paragraph | passage (level) (5)
� !=| 6= � !=| 6=|>|<||� (relation) (6)

vstr 2 ⌃⇤ vnum 2 Z (value) (7)
At the core of our grammar, we consider two (symmetrical) types of base-constraints C (Eq. 3):

1. Count constraints. count(T, `, vstr) � vnum constrains the occurrences of a particular level-`
string vstr. For example, count(T, word, ‘happy’) 3 means “T should contain the word ‘happy’
no more than 3 times”. In contrast, count(T, `, `0) � vnum constrains the occurrences of level-`
strings in each level-`0 unit of text T. For example, count(T, char, sentence) = 50 means “each
sentence of text T should have exactly 50 characters”.

2. Position constraints. pos(T, `, vnum) � vstr specifies that a particular part of the text T should
equal (or not equal) the given string vstr. For example, pos(T, word, 3) = ‘happy’ means “the
3rd word should be ‘happy’ in text T”. We also allow negative indices for reverse counting,
e.g.pos(T, char, �1) 6= x means “the last letter should not be ‘x’ in text T”.

3

Published as a conference paper at ICLR 2024

Note that the grammar above can easily be extended to accommodate more types of base-constraints
(e.g. part of speech, sentiment) by implementing the corresponding semantic checks — we leave this
to future work. Also for convenience, we use constraint structure to refer to a family of constraint
specifications that only differ in their values (e.g. generate a sentence with exactly x words, x 2 N),
and constraint to refer to a particular constraint specification with concrete values (e.g. generate a

sentence with exactly 5 words).

Examples and conceptual challenges. Our grammar can express a wide range of constraints through
logical compositions of base-constraints across different text levels. Table 1 illustrates some structures
across generation levels, identified by names such as para01 for paragraph generation, etc.

from collie.constraints import (
Constraint, TargetLevel,
Count, Relation

)
c = Constraint(
target_level=TargetLevel(’word’),
transformation=Count(),
relation=Relation(’==’),

)
text = ’This is a good sentence.’
print(c.check(text, 5)) # True

Figure 2: Example COLLIE code for a
simple number of words constraint.

In addition to the generation levels, count and pos across
different levels introduce a variety of challenges. For exam-
ple, word01 and sent01 challenge token-based language
models to count characters; pass01 requires high-level se-
mantic planning for models to generate a coherent passage
under constraints; sent04 and para02 challenge mod-
els to generate text with presence or absence of particular
words; sent03, para03, and para04 require count-
ing at multiple levels; and word02, word03, sent02,
para05, and pass01 combine counting and positional
challenges at different levels, which can be considered most
demanding conceptually. We empirically assess the diffi-
culty of constraint structures in Section 5. Example COLLIE
usage is presented in Figure 2.

Table 1: List of all constraint structures used in COLLIE-v1, with (simplified) example values.
ID Example instruction Multi-constraint M
word01 Generate a word with at least 15 letters. count(⇠, char,word) � 15
word02 Generate a word with 10 letters, where

letter 1 is ‘s’, letter 3 is ‘r’, letter 9 is ‘e’.
count(⇠, char,word) = 10 ^ pos(⇠, char, 1) = ‘s’
^ pos(⇠, char, 3) = ‘r’ ^ pos(⇠, char, 9) = ‘e’

word03 Generate a word with at most 10 letters and
ends with “r".

count(⇠, char,word) 10 ^
pos(⇠, char,�1) = ‘r’

sent01 Please generate a sentence with exactly 82
characters. Include whitespace into your
character count.

count(⇠, char, sentence) = 82

sent02 Generate a sentence with 10 words, where
word 3 is “soft” and word 7 is “beach” and
word 10 is “math”.

count(⇠,word, sentence) = 10 ^
pos(⇠,word, 3) = “soft" ^
pos(⇠,word, 7) = “beach" ^
pos(⇠,word, 10) = “math"

sent03 Generate a sentence with at least 20 words,
and each word less than six characters.

count(⇠,word, sentence) � 20 ^
count(⇠, char,word) 6

sent04 Generate a sentence but be sure to include
the words “soft”, “beach” and “math”.

count(⇠,word, ‘soft’) > 0 ^
count(⇠,word, ‘beach’) > 0 ^
count(⇠,word, ‘math’) > 0

para01 Generate a paragraph where each sentence
begins with the word “soft”.

pos(pos(⇠, sentence, 1),word, 1) = ‘soft’^
pos(pos(⇠, sentence, 2),word, 1) = ‘soft’ ^ ...

para02 Generate a paragraph with at least 4
sentences, but do not use the words “the”,
“and” or “of”.

count(⇠, sentence, paragraph) � 4 ^
count(⇠,word, ‘the’) = 0 ^
count(⇠,word, ‘and’) = 0 ^
count(⇠,word, ‘of’) = 0

para03 Generate a paragraph with exactly 4
sentences, each with between 10 and 15
words.

count(⇠, sentence, paragraph) = 4 ^
count(⇠,word, sentence) � 10 ^
count(⇠,word, sentence) 15

para04 Generate a paragraph with at least 3
sentences, each with at least 15 words.

count(⇠, sentence, paragraph) � 3 ^
count(⇠,word, sentence) � 15

para05 Generate a paragraph with 2 sentences that
end in “math” and “rock” respectively.

count(⇠, sentence, paragraph) = 2 ^
pos(pos(⇠, sentence, 1),word,�1) = “math" ^
pos(pos(⇠, sentence, 2),word,�1) = “rock"

pass01 Generate a passage with 2 paragraphs, each
ending in “I sit.” and “I cry.” respectively.

count(⇠, paragraph, passage) = 2 ^
pos(pos(⇠, paragraph, 1), sentence,�1) = “I sit." ^
pos(pos(⇠, paragraph, 2), sentence,�1) = “I cry."

4

Published as a conference paper at ICLR 2024

In conjunction with the grammar, we develop a set of compiling tools to help construct datasets with
minimal human efforts. Concretely, the pipeline of dataset construction involves 4 stages (Figure 1):

1. Specify constraint structures. Researchers can specify constraint structures (e.g. Table 1), and
optionally with a value range (e.g. “generate a sentence with x words”, and 5 x 10). This is the
only stage that involves manual effort.

2. Extract constraint values from corpora. We design an automatic extraction algorithm that runs
through a given text corpus to find strings that fit a constraint structure with some value ranges. For
example, given the constraint structure count(⇠, word, ;) = x with value range 5 x 10, the
extraction algorithm returns sentences in the corpus that have 5-10 words, with associated word
counts. This ensures each constraint has at least one natural solution. More details are in Section 4.1.

3. Render natural language instructions. Each constraint can be rendered into a natural language
instruction (Table 1) via ruled-based translation, thanks to the compositionality grammar of COLLIE.
For example, a constraint count(⇠, char, ‘v0) = 2 ^ count(⇠, char, ‘i0) = 3 can be synthetically
rendered into the instruction “Please generate a word with exactly 2 character ‘v’ and exactly 3
character ‘i’.”. It is also possible to improve the instruction fluency or naturalness by adding additional
rules to the synthetic translation, or use LLMs to polish instructions. More details are in Section A.1.

4. Evaluate generations. Given text ⇠ generated by a model, we use a parser to evaluate it against a
constraint specification S and derive a True/False value, indicating if ⇠ satisfies S. We use an average
success rate as the main metric to evaluate constraint conformance. We can also compare the fluency
of ⇠ against the corpus-extracted “groundtruth” text, and render more fine-grained natural language
feedback indicating which base-constraints are met and which not (see Section A.2).

4 COLLIE-V1 DATASET

We construct COLLIE-v1 using constraints structures from Table 1, which contains 2,080 constraint
instances from 13 constraint types, with 1,435 unique constraint prompts. The broader NLP commu-
nity can contribute to future dataset releases by adding additional constraints, metrics, data sources.
The curated constraint set can co-evolve with models to become more challenging and comprehensive
as model capabilities improve.

4.1 CONSTRAINT SPECIFICATION AND EXTRACTION

Constraint specification. We begin by defining 13 constraint structures. We chose these 13 structures
to span various generation levels (word, sentence, paragraph and passage generation) and challenges
(counting, position). In total, we have 3 word-level, 4 sentence-level, 5 paragraph-level, and 1
passage-level constraint structures. Of these 13 constraint structures, 5 are single-level and the
remaining 8 are multi-level constraints. See Table 1 for the exact constraint structures we use.

Constraint extraction. While constructing constraint structures is straightforward using our grammar,
choosing constraint targets is challenging for two reasons: (1) Not all targets will admit a conforming
natural language string. For instance, the constraint, “Generate a two word sentence beginning with
the word The.” has no grammatically acceptable answer. (2) Even if a constraint admits a possible

answer, it may not admit a plausible answer. For instance, “Generate a sentence with 1928 words” is
possible, but any such sentence is very unlikely to appear in regular discourse.

To address both challenges, we sample constraint target values from natural language corpora, which
we denote as the data source. Given a constraint structure C and documents D = {d1, ..., dn}, we
chunk each document into a series of strings di = {s1, ..., sm}, where each si can be a sentence,
paragraph, or passage as required by C. Each string si undergoes source-specific automated filtering
and post-processing to remove artifacts, which we detail in Section B.4. Given C and si, we extract
target values such that C is satisfied. In most cases, the satisfying target values can be directly
extracted using our provided utilities. For example, for constraints with structure “sentence with x
words”, we can directly apply word tokenization and counting to the example string si. In cases in
which direct extraction is not possible, (e.g. “do not include word w”), we specify a range of possible
targets (e.g. {the, and, of}) to sweep over. All in all, our approach ensures that (1) there exists a
natural language string that can satisfy each constraint and target pair, and (2) the targets follow a

5

Published as a conference paper at ICLR 2024

(a) (b) (c)

Figure 3: Data statistics. (a) Number of constraints from each constraint structure. (b) Fraction of
strings removed by automated filtering. (c) Length statistics for different levels for each data source.

plausible distribution induced by natural language corpora. Our extraction system is extensible, and
can operate on new constraints and data sources with minimal modifications.

Extensibility Adding additional data sources to the extraction pipeline is similarly easy, requiring
a text delimiter, and optional string filtering and post-processing functions. As a case-study on the
extensibility of COLLIE, we demonstrate how to extend constraints to include POS-tags such as
“Generate a sentence with verbs”. Details are in section B.5.

4.2 DATA SOURCES

To adequately cover diverse styles and content, we extract constraint targets from three distinct data
sources: Wikipedia (Wiki) (Foundation, 2022), Common Crawl News (CC-News) (Hamborg et al.,
2017), and the Project Gutenberg Corpus (Guten) (Brooke et al., 2015). We provide an overview of
these data sources below and leave source-specific filtering and post-processing details to Section B.4.

Wiki. Wikipedia (Wiki) (Foundation, 2022) consists of over 6 million English Wikipedia articles.
We included this data source for the diverse subject matter present in the corpus.

CC-News. The Common Crawl News corpus (CC-News) (Hamborg et al., 2017) consists of 708,241
English language news articles published between Jan 2017 and December 2019. We include
CC-News to include interview dialogues, as well as popular culture and current events.

Guten. The Project Gutenberg corpus (Guten) (Brooke et al., 2015) consists of over 50,000 docu-
ments that include fiction, histories, biographies, and other works that are in the public domain in the
United States. We include this corpus for its variety in genres (e.g. non-fiction, fiction, plays, etc.)
and style from different time periods.

4.3 DATA VALIDATION AND STATISTICS

We extract constraints from 300 randomly sampled documents from each source. After extracting
the target values, we sample up to 100 targets for each constraint structure on each data source. We
remove any string targets by that begins or ends with any character that is not a letter or number.
We randomly sample 5 out of these 100 targets and their supporting examples to qualitatively verify
their validity. Since the extraction process is relatively fast, we modify filters and post-processors if
there are systemic issues and re-run the extraction phase. We provide statistics of the final number of
constraints from each constraint structure in Figure 3(a). Some constraints (e.g. number of sentences
per paragraph) are tightly clustered around the mean, and thus do not induce many valid constraint
targets. The fraction of strings filtered for each data source and level is presented in Figure 3(b). The
automated filtering removes a large fraction of the strings in most cases, as high recall is important
to ensure quality. The high fraction of omitted passages is due to the removal of passages < 2
paragraphs in length. Mean lengths for each level and data source is presented in Figure 3(c).

6

Published as a conference paper at ICLR 2024

(a) (b) (c)

(d) (e) (f)

Figure 4: Model comparison. (a) Overall model performance summarized by weighted average
across all constraint groups. (b) -(f) Constraint satisfaction rates of generated texts by GPT-4, GPT-
3.5, PaLM, Vicuna-7B, and Alpaca-7B across various constraint groups. Error bars represent standard
error. Constraint group names are in Table 1. Sample sizes are reported in Figure 11.

5 RESULTS

Our main experiments in this paper focus on a zero-shot prompting setup with the following language
models (LMs): 1) larger and closed-source LMs such as OpenAI GPT (Brown et al., 2020; OpenAI,
2023b) (gpt-3.5-turbo, gpt-4) and Google PaLM-2 (Anil et al., 2023) (text-bison-001);
2) smaller and open-source LMs such as Alpaca-7B (Taori et al., 2023), Vicuna-7B (Chiang et al.,
2023). We performed additional one-shot prompting and find GPT performances similar to zero-shot
performance, see Section C.1. By default, we use a sampling temperature of 0.7, and sample multiple
trials (20 for GPT/PaLM, 5 for Alpaca/Vicuna). All experiments were run in July, 2023.

Zero-shot performance comparison. As evidenced in Figures 4(a), GPT-4 consistently surpassed
other models in zero-shot constrained text generation performances, achieving more than twice the
constraint satisfaction rate than other non-GPT models. The overarching performance trend observed
shows GPT-4 leading the pack, followed by GPT-3.5 and PaLM with a large gap, and then followed
closely by the smaller models, Vicuna-7B and Alpaca-7B.

Constraints all models can follow. Certain tasks, specifically word01 (generating a word with at
least a letters), sent04 (generating a sentence containing words X, Y, Z), and para01 (generating
a paragraph with each sentence starting with the word X), posed minimal challenge to the majority of
contemporary language models. These tasks demonstrate the proficiency of current models at simple
constraints ensuring existence, as depicted in Figure 9(f).

Constraints partially solved by GPT-4 only. However, a notable distinction arose when tasks
incorporated more counting/position constraints and requested longer generations. Tasks such as
word03, para04, para05, and pass01 were only partially addressed by GPT-4, with constraint
satisfaction rates ranging between 40% and 70%. Despite GPT-4’s partial success in these tasks,
other models failed to deliver any satisfactory performance.

Constraints remaining very challenging. Furthermore, some tasks proved challenging across all
models. Tasks word02, sent01, sent02, and para03 present challenges in terms of arbitrary
position constraints and mixed counting levels (see Section 5.1 for detailed analysis), indicating areas
that necessitate further advancements in language model technology. Moreover, the average pass@20
rate of GPT-4 was above 63% across all constraints, significantly higher than the 32% achieved by
GPT-3.5, as depicted in Figure 5. Although GPT-4 demonstrated a significant performance advantage,
its constraint satisfaction rate of 63% is far from perfect. This suggests considerable scope for
improvement in controllable text generation with language models. These findings underscore the
opportunities and challenges in the continued evolution of language models.

7

Published as a conference paper at ICLR 2024

Figure 5: Pass@k performance. We sam-
ple the model-generated text 20 times for
all instruction prompts in the dataset. The
curves represent the average pass rate across
all instruction prompts up to k samples. The
shaded areas indicate the standard errors.

Figure 6: Position effect. Satisfaction rates of LMs on
tasks involving pos(⇠, level, i). The tasks word02 and
sent02 impose constraints on characters and words
at arbitrary positions. The task para01 constrains the
first word. The tasks word03, para05, and pass01
constrain the last characters, words, and sentences.

Figure 7: Counting level effect. Satisfaction rates for LMs on tasks involving count(⇠, level, ').
Task word01 sets a minimum word length of a. Task sent01 requires exactly a characters in a
sentence. Task sent03 asks a sentence to contain at least b words, with each word no longer than a
letters. Task para04 asks a paragraph to consist of at least b sentences, each containing a minimum
of a words. Task para03 further imposes an upper limit on the number of words per sentence.

5.1 ANALYSIS

Performance consistency across data sources. We observe a high degree of consistency in the
performance of models on a given constraint structure, regardless of the data source. This uniformity
is evident across all models, as highlighted in Figure 9 (g). This indicates that the ability of a language
model to adhere to the logic of constraints takes precedence over the specific target values or the
distribution of the data.

Position effect. As depicted in Figure 6, the pos(⇠, level, i) function, constraining the i-th sub-string
(letter, word, or sentence), exhibits varying levels of difficulty depending on the value of i. Models
generally perform well when the positional constraint is applied to the first sub-string (i = 1, task
para01). However, only GPT-4 displays partial success with the last positional constraints (i = �1,
tasks word03, para05, pass01). Notably, all models encounter difficulties when generating text
that satisfies positional constraints at arbitrary positions i. Additionally, we find that the position
effect exhibits a lower sensitivity to constraint levels.

Counting level effect. Counting characters within a word is easier than within a sentence for models,
as illustrated in Figure 7. Furthermore, tasks demanding exact equality (task sent01) prove more

8

Published as a conference paper at ICLR 2024

(a) (b)

Figure 8: GPT-4 interactive generation performance. (a) Constraint satisfaction rate of GPT-4
generated texts in the 4th round across various constraint groups. (b) GPT-4 overall performance in
different feedback rounds. The 1st round is zero-shot, and the 2nd - 4th rounds are with feedback.

challenging than those requiring a range (task para03), and are considerably more difficult than
tasks specifying just an upper or lower bound (tasks word01, sent03, para04).

Increased difficulty with logical composition. The incorporation of logical compositions into
constraints considerably increases their difficulty. Task sent03 serves as an example of this, adding
an extra constraint at the sentence level compared to task word01. Despite the assumption that
the added constraint should be manageable for all models, performance on task sent03 uniformly
trails behind that on task word01, as shown in Figure 7. This highlights the intricacy and challenge
introduced by logical compositions within constraints.

Performance enhancement through feedback and interaction. We utilize COLLIE to generate
automated natural language feedback (e.g., “Your task is to generate a word with exactly 2 character
‘v’ and exactly 3 character ‘i’. However, you generate a word with 3 character ‘v’ and 4 character
‘i’.”), and engage LLMs in a generation-feedback dialogue. In Figure 8, we observe a significant
20% improvement in GPT-4 performance after the second round of feedback. However, the model’s
performance plateaus at 66% even after three additional rounds of feedback, comparable to pass@5
using i.i.d. sampling. The extent of performance improvement varies across tasks, with word03’s
constraint satisfaction rate increasing from 62.1% to 10%. Conversely, word02, sent01, and
sent02 tasks remain challenging for the model. These findings suggest that there is still room for
improvement, highlighting the difficulty of our dataset, and emphasizing the need for further research
on better ways to incorporate natural language feedback.

6 CONCLUSION

In this work, we present COLLIE, a grammar-based framework for specifying textual constraints.
COLLIE simplifies the process of creating constrained-generation datasets by enabling researchers to
focus on specifying high level constraint structures, while COLLIE automatically extracts constraint
values, renders natural language instructions, and assesses model performance. To demonstrate the
utility of the COLLIE framework, we construct COLLIE-v1 with 1,132 constraints from 13 different
types, extracted from 3 different data sources. We evaluate five state-of-the-art LLMs of various sizes
on COLLIE-v1, and find that it provides fine-grained insights into model capabilities and shortcomings.
We hope that model developers can use COLLIE-v1 to develop more capable models, while future
releases of COLLIE can continue to adapt to the capabilities and needs of future models and users.

LIMITATIONS AND SOCIETAL IMPACTS

Although care was taken to design the filtering and processing functions, such automated approaches
are never perfect and remaining artifacts in corpora might lead to unnatural reference texts or con-
straints. Further filtering (e.g., by grammar checkers, parsers, or humans) could improve the dataset
quality. Our representative constraint structures were selected to encompass diverse constrained
generation challenges, but as with all generation benchmarks, they cannot capture all dimensions

9

Published as a conference paper at ICLR 2024

and nuances of model capabilities. Benchmarks are highly influential in shaping model develop-
ment, the capabilities and limitations of which may disproportionately impact different communities.
Our benchmark is no exception. However, by providing an extensible, easy-to-use framework for
constraint development, we hope COLLIE will enable diverse stakeholders to engage with dataset
building, helping ensure that future model capabilities serve diverse interests and needs.

ACKNOWLEDGEMENTS

We thank Xiao Liu for Vicuna/Alpaca APIs that supported our preliminary experiments, and Princeton
NLP Group for helpful discussion and feedback in general. We acknowledge support from a Princeton
SEAS Innovation grant and the National Science Foundation under Grant No. 2239363. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey,
Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

S. Bird. Nltk: the natural language toolkit. In Proceedings of the COLING/ACL 2006 Interactive

Presentation Sessions, pages 69–72, 2006.

J. Brooke, A. Hammond, and G. Hirst. Gutentag: an nlp-driven tool for digital humanities research in
the project gutenberg corpus. In Proceedings of the Fourth Workshop on Computational Linguistics

for Literature, pages 42–47, 2015.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners. In Advances in Neural Information Process-

ing Systems (NeurIPS), 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

H. Chen, H. Li, D. Chen, and K. Narasimhan. Controllable text generation with language constraints.
In preprint, 2022a. URL https://arxiv.org/abs/2212.10466.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. Pet-
roski Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. Hebgen Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba. Evaluating large language models trained on code. In preprint, 2022b. URL
https://arxiv.org/abs/2107.03374.

M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and Y. Bengio.
Babyai: A platform to study the sample efficiency of grounded language learning. In International

Conference on Learning Representations (ICLR), 2019. URL https://arxiv.org/abs/
1810.08272.

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%*
chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and R. Liu. Plug and play
language models: A simple approach to controlled text generation. In International Conference

on Learning Representations (ICLR), 2020. URL https://openreview.net/pdf?id=
H1edEyBKDS.

10

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2212.10466
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1810.08272
https://arxiv.org/abs/1810.08272
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/pdf?id=H1edEyBKDS
https://openreview.net/pdf?id=H1edEyBKDS

Published as a conference paper at ICLR 2024

G. Dinu, P. Mathur, M. Federico, and Y. Al-Onaizan. Training neural machine translation to apply
terminology constraints. In Association for Computational Linguistics (ACL), 2019.

W. Foundation. Wikimedia downloads, 2022. URL https://dumps.wikimedia.org.

F. Hamborg, N. Meuschke, C. Breitinger, and B. Gipp. news-please: A generic news crawler and
extractor. In Proceedings of the 15th International Symposium of Information Science, pages
218–223, March 2017. doi: 10.5281/zenodo.4120316.

E. Hasler, A. de Gispert, G. Iglesias, and B. Byrne. Neural machine translation decoding with
terminology constraints. In North American Association for Computational Linguistics (NAACL),
2018.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

C. Hokamp and Q. Liu. Lexically constrained decoding for sequence generation using grid beam
search. In Association for Computational Linguistics (ACL), 2017.

J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post, and B. Van Durme. Improved lexically
constrained decoding for translation and monolingual rewriting. In North American Association

for Computational Linguistics (NAACL), 2019.

Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Toward controlled generation of text. In
International Conference on Machine Learning (ICML), 2017.

J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick. Clevr: A
diagnostic dataset for compositional language and elementary visual reasoning. In Conference on

computer vision and pattern recognition (CVPR), 2017. URL https://ieeexplore.ieee.
org/document/8099698.

N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. CTRL: A conditional transformer
language model for controllable generation. In preprint, 2019. URL https://arxiv.org/
abs/1909.05858.

B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar, S. Joty, R. Socher, and N. F. Rajani. GeDi:
Generative discriminator guided sequence generation. In Findings of the Empirical Methods in

Natural Language Processing (EMNLP Findings), 2021. URL https://aclanthology.
org/2021.findings-emnlp.424.

Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur, P. von Platen, S. Patil, J. Chaumond,
M. Drame, J. Plu, L. Tunstall, J. Davison, M. Šaško, G. Chhablani, B. Malik, S. Brandeis,
T. Le Scao, V. Sanh, C. Xu, N. Patry, A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue,
T. Matussière, L. Debut, S. Bekman, P. Cistac, T. Goehringer, V. Mustar, F. Lagunas, A. Rush, and
T. Wolf. Datasets: A community library for natural language processing. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
175–184, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational
Linguistics. URL https://aclanthology.org/2021.emnlp-demo.21.

B. Z. Li, J. Yu, M. Khabsa, L. Zettlemoyer, A. Halevy, and J. Andreas. Quantifying adaptability in
pre-trained language models with 500 tasks. In North American Association for Computational

Linguistics (NAACL), 2022a. URL https://arxiv.org/abs/2112.03204.

X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-lm improves controllable
text generation. In Advances in Neural Information Processing Systems (NeurIPS), 2022b. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu,
A. Kumar, et al. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110, 2022.

B. Y. Lin, W. Zhou, M. Shen, P. Zhou, C. Bhagavatula, Y. Choi, and X. Ren. Commongen: A
constrained text generation challenge for generative commonsense reasoning. In Findings of the

Empirical Methods in Natural Language Processing (EMNLP Findings), 2020.

11

https://dumps.wikimedia.org
https://ieeexplore.ieee.org/document/8099698
https://ieeexplore.ieee.org/document/8099698
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2021.emnlp-demo.21
https://arxiv.org/abs/2112.03204
https://openreview.net/forum?id=3s9IrEsjLyk

Published as a conference paper at ICLR 2024

X. Lu, P. West, R. Zellers, R. L. Bras, C. Bhagavatula, and Y. Choi. Neurologic decoding:
(un)supervised neural text generation with predicate logic constraints. In North American Associ-

ation for Computational Linguistics (NAACL), 2021. URL https://aclanthology.org/
2021.naacl-main.339.pdf.

X. Lu, S. Welleck, P. West, L. Jiang, J. Kasai, D. Khashabi, R. L. Bras, L. Qin, Y. Yu, R. Zellers, N. A.
Smith, and Y. Choi. Neurologic a*esque decoding: Constrained text generation with lookahead
heuristics. In North American Association for Computational Linguistics (NAACL), 2022. URL
https://aclanthology.org/2022.naacl-main.57.

OpenAI. Gpt-4 technical report. In preprint, 2023a. URL https://arxiv.org/abs/2303.
08774.

OpenAI. Gpt-4 technical report, 2023b.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2022. URL
https://openreview.net/forum?id=TG8KACxEON.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of

Machine Learning Research, 21(1):5485–5551, 2020.

L. Ruis, J. Andreas, M. Baroni, D. Bouchacourt, and B. M. Lake. A benchmark for systematic
generalization in grounded language understanding. In Advances in Neural Information Processing

Systems (NeurIPS), 2020. URL https://arxiv.org/abs/2003.05161.

T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language models can teach themselves to use tools. In preprint, 2023.
URL https://arxiv.org/abs/2302.04761.

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro,
A. Gupta, A. Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Stan-
ford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Naik, A. Ashok, A. S.
Dhanasekaran, A. Arunkumar, D. Stap, et al. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. In Proceedings of the 2022 Conference on Empirical

Methods in Natural Language Processing, pages 5085–5109, 2022.

J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. Van Merriënboer, A. Joulin, and T. Mikolov. Towards
ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,
2015.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. In International Conference on Learning Representations (ICLR),
2022. URL https://arxiv.org/abs/2210.03629.

Y. Zhang, Y. Liu, Z. Yang, Y. Fang, Y. Chen, D. Radev, C. Zhu, M. Zeng, and R. Zhang. Mac-
sum: Controllable summarization with mixed attributes. Transactions of the Association for

Computational Linguistics, 11:787–803, 2023.

W. Zhou, Y. E. Jiang, E. Wilcox, R. Cotterell, and M. Sachan. Controlled text generation with natural
language instructions. arXiv preprint arXiv:2304.14293, 2023.

12

https://aclanthology.org/2021.naacl-main.339.pdf
https://aclanthology.org/2021.naacl-main.339.pdf
https://aclanthology.org/2022.naacl-main.57
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://arxiv.org/abs/2003.05161
https://arxiv.org/abs/2302.04761
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2210.03629

	Introduction
	Related Work
	Collie Framework to Construct Constrained Text Generation
	Collie-v1 Dataset
	Constraint specification and extraction
	Data sources
	Data validation and statistics

	Results
	Analysis

	Conclusion
	Natural Language Rendering of Constraints
	Instruction rendering
	Feedback rendering

	Dataset
	Extraction overview
	Text filters
	Text post-processing
	Data sources
	Extending Collie for POS-Tags

	Additional Experimental Results
	One-shot experiments
	Constraint satisfaction rates
	Additional evaluations

