
RPG360: Robust 360 Depth Estimation with
Perspective Foundation Models and

Graph Optimization

Dongki Jung Jaehoon Choi Yonghan Lee Dinesh Manocha
University of Maryland, College Park

{jdk9405, kevchoi, lyhan12, dmanocha}@umd.edu

ERP Image

ERP Image

Perspective
Foundation 

Model

Omnidirectional
Camera

Prior Knowledge

Ours

Point Cloud

Ground TruthDepth Anywhere360MonoDepth

Figure 1: (Left) 360◦ images can be transformed into multiple undistorted tangential plane images, and then scale-ambiguous
depth maps can be predicted using perspective-foundation models [46, 68, 25]. (Right) 360MonoDepth [47] and Depth
Anywhere [60], have addressed the scale ambiguity issue using optimization or learning-based methods. However, these
approaches suffer from 3D structural degradation, as seen in the reconstructed point cloud visualization. Our proposed method
leverages the prior knowledge of the perspective foundation model along with graph optimization, thereby enhances 3D
structural awareness and achieves superior performance.

Abstract

The increasing use of 360◦ images across various domains has emphasized the
need for robust depth estimation techniques tailored for omnidirectional images.
However, obtaining large-scale labeled datasets for 360◦ depth estimation remains
a significant challenge. In this paper, we propose RPG360, a training-free robust
360◦ monocular depth estimation method that leverages perspective foundation
models and graph optimization. Our approach converts 360◦ images into six-
face cubemap representations, where a perspective foundation model is employed
to estimate depth and surface normals. To address depth scale inconsistencies
across different faces of the cubemap, we introduce a novel depth scale align-
ment technique using graph-based optimization, which parameterizes the pre-
dicted depth and normal maps while incorporating an additional per-face scale
parameter. This optimization ensures depth scale consistency across the six-face
cubemap while preserving 3D structural integrity. Furthermore, as foundation
models exhibit inherent robustness in zero-shot settings, our method achieves supe-
rior performance across diverse datasets, including Matterport3D, Stanford2D3D,
and 360Loc. We also demonstrate the versatility of our depth estimation ap-
proach by validating its benefits in downstream tasks such as feature matching
3.2 ∼ 5.4% and Structure from Motion 0.2 ∼ 9.7% in AUC@5◦. Project Page:
https://jdk9405.github.io/RPG360/
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1 Introduction

360◦ sensors offer significant advantages due to their wide field of view, allowing the capture of rich
contextual information within a single image [74, 9, 22, 66]. The growing adoption of such panoramic
images in various applications, such as robot navigation [38, 65], virtual reality [35], autonomous
vehicles [41], and immersive media [10], necessitates robust depth estimation, generalizing to zero-
shot settings, techniques specifically tailored for 360◦ images. However, applying conventional
perspective depth estimation methods [67, 68, 71, 25, 62] to 360◦ images directly is challenging
due to fundamental differences in camera models, which introduce distortions. To address these
challenges, previous research in 360◦ depth estimation has broadly followed two approaches: 1)
learning-based methods and 2) optimization-based methods.

Existing learning-based approaches [78, 43, 73, 54, 27, 59, 2, 1, 77, 72, 28] have focused on
designing 360◦ depth estimation networks trained on labeled 360◦ datasets. These methods attempt
to mitigate distortions through adaptive network architectures [78, 53, 61], or by leveraging cubemap
[58, 59, 27] and tangent image [37, 51] projections during training. However, a major limitation of
these approaches is the scarcity of labeled datasets for 360◦ depth estimation. A few works have
proposed self-supervised training methods [79] or generating pseudo ground truth depth maps [60] to
overcome this limitation.

In contrast, optimization-based methods leveraging perspective foundation models [47, 42] offer an
alternative approach that does not require labeled datasets. Recently, monocular depth estimation
methods based on foundation models in the perspective image domain [45, 67, 68, 32, 71, 25, 62]
have demonstrated robust performance in zero-shot scenarios. 360◦ images can be transformed
into multiple tangential plane images to reduce distortions. This transformation enables respective
depth and normal estimation on each tangential plane, which can then be recombined into a single
equirectangular projection. Leveraging pre-trained robust foundation models helps address the
limitations associated with the lack of labeled 360◦ datasets. However, a key challenge remains:
Monocular depth estimation encounters scale ambiguity when merging independently estimated
depth maps from different viewpoints. While several methods [47, 42] for 360◦ depth estimation
propose blending overlapped regions of tangent-plane depth maps from perspective networks, this
simple blending overlooks crucial 3D structural information, as shown in Fig. 1. Although the depth
maps may exhibit high quality in 2D space, their corresponding 3D point clouds often suffer from 3D
structural inconsistencies and performance degradation.

Main Results: We present a novel structure-aware optimization technique for 360◦ depth estimation
using perspective foundation models [71, 25, 11]. Our approach converts an equirectangular projec-
tion image into perspective images via cubemap projections, which represent the 360◦ scene without
overlapping regions. Depth and normal estimation are performed using a perspective foundation
model. Since monocular depth estimation provides only relative depth information, the depth scales
across different faces of the cubemap may be inconsistent. To address this issue, we introduce a novel
graph optimization approach that parameterizes the predicted depth maps and surface normals with
additional per-face scale parameters. This parameterization ensures depth scale consistency across
different perspective images of the cubemap. Our approach demonstrates robust depth estimation per-
formance across diverse datasets, including indoor and outdoor environments such as Matterport3D
[5], Stanford2D3D [4], and 360Loc [26]. The main contributions include:

• We propose a robust optimization-based 360◦ depth estimation method leveraging perspec-
tive foundation models to address the scarcity of labeled 360◦ dataset.

• We introduce a graph optimization formulation that integrates depth and surface normals with
additional per-view scale parameters to enforce depth scale consistency. This optimization
preserves the 3D structure and demonstrates superior performance in terms of 3D evaluation
metrics.

• Most learning-based methods exhibit performance degradation when trained on a dataset
that differs from the test scenes. In contrast, our method does not require a training dataset
and is unaffected by domain gap.

• We demonstrate the versatility and benefits of our 360◦ depth estimation approach by apply-
ing it to downstream tasks such as feature matching [30] and structure-from-motion [31].
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2 Related Work

2.1 Perspective Foundation Models

Foundation models possess remarkable adaptability, allowing them to generalize effectively across
different contexts. CLIP [44] has exhibited outstanding versatility across a wide range of vision-
language tasks. DINOv2 [39] introduced a powerful visual encoder designed for various downstream
2D vision applications, such as segmentation, object detection, and depth estimation. DUSt3R [63]
further explores the applicability of foundation models in 3D vision tasks, leveraging CroCo [64] pre-
training to enhance performance. Furthremore, learning-based monocular depth estimation methods
have evolved from optimizing training techniques for various model architectures [12, 16, 19, 20, 6–8]
to enhancing zero-shot capabilities [45, 46, 11, 67, 68, 32, 71, 25], enabling strong generalization
across diverse domains. Notably, Metric3D [71, 25] extends this direction by specifically exploring
zero-shot performance for metric depth estimation and surface normal prediction.

2.2 360◦ Depth Estimation

360◦ depth estimation suffers from the inherent distortions introduced by the equirectangular pro-
jection. OmniDepth [78] leverage Spherical Convolutions [53] to mitigate this projection distortion.
Other methods improve performance by combining multiple projection techniques, such as fusing
equirectangular and cubemap projections [58, 59, 27] or adopting icosahedral projections [1]. Addi-
tionally, dilated convolutions have been explored to enhance feature extraction in distorted panoramic
images [77]. Gravity-aligned feature learning has also been proposed to improve 360◦ depth estima-
tion [54, 43]. Meanwhile, transformer-based approaches [28, 73, 2, 51] have recently gained traction
for capturing global panoramic context more effectively. Despite these advancements, supervised
learning methods for 360◦ depth estimation still heavily rely on labeled datasets. Due to the lack of
large-scale real-world annotations, these methods are often dependent on synthetic datasets [11, 75, 3],
potentially causing performance degradation in real-world scenarios.

To mitigate this issue, some works explore self-supervised learning via view synthesis [57, 79].
Another line of research focuses on leveraging pre-trained perspective monocular depth estimation
models for panorama depth estimation. For example, the pre-trained weights of a perspective
monocular depth estimation model are fine-tuned on 360◦ images using distortion-aware convolutional
filters [56]. More recently, perspective foundation models have been incorporated, alleviating the
dependency on large-scale labeled 360◦ datasets. 360MonoDepth [47] utilizes foundation models
trained on perspective images [45, 46] to predict depth on tangent images, which are later merged
using a blending algorithm. Depth Anywhere [60] adopts a different approach by predicting depth for
cubemap images using a foundation model [67] and generating pseudo ground truth, which is then
refined through affine-invariant loss. However, while these methods incorporate certain distortion-
aware techniques, they lack explicit consideration of 3D structural consistency in the estimated depth
maps. We propose a novel approach that leverages perspective foundation models to estimate depth
while explicitly promoting 3D structure awareness for 360◦ depth estimation.

3 Our Approach: RPG360

The overall process is illustrated in Fig. 3. In Section 3.1, the Equirectangular Projection (ERP)
image captured by a 360◦ camera is first converted into distortion-free perspective (PER) images for
individual monocular depth estimation. We adopt a cubemap projection to represent PER images due
to its computational efficiency, as every pixel is treated as a parameter and the cubemap representation
avoids overlapping regions. The estimated depth maps are then merged back into the ERP domain
using the refinement method described in Section 3.2.

3.1 Transformation of Coordinate Systems

An ERP image is a 2D plane representation that depicts normalized rays on a spherical sur-
face in a flattened form. The coordinate transformation can be formulated as ξ = π(S),
where ξ = (θ, ϕ) denotes the spherical coordinates with θ ∈ [−π, π], ϕ ∈ [−π

2 ,
π
2 ]. The

corresponding 3D Cartesian coordinates are given by the unit vector S = (Sx, Sy, Sz). For
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PER images obtained from a six-face cubemap projection, c ∈ {0, ..., 5} indicates the cor-
responding face of the cubemap. The pixel coordinates of PER images are denoted as pi,
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Figure 2: Differences in depth definitions between cam-
era models. (Left) In a perspective camera, depth is
defined as the distance along the z-axis from the camera
center. (Right) In an omnidirectional camera, depth is
measured as the Euclidean distance from the camera cen-
ter to the 3D point.


Sx = sin(θ) cos(ϕ)

Sy = sin(ϕ)

Sz = cos(θ) cos(ϕ),

p̃c = K ·RT
c · S. (1)

where p̃c is the homogeneous coordinate of pc. The
rotational extrinsic parameter for each face i is repre-
sented as Rc, while K ∈ R3×3 denotes the intrinsic
camera matrix, which sets the focal length and the
principal point at half of the image size. Using this
coordinate transformation, we can convert the depth

maps between PER and ERP space. Notably, the definition of depth differs between perspective
cameras and omnidirectional cameras. As illustrated in Fig.2, depth in PER cameras is measured as
the distance along the z-direction, whereas in 360◦ cameras, it represents the radial distance from the
sensor. Thus, a scaling factor ρ should be applied during the warping process to compensate for the
variation in depth definitions,

DERP ⟨ξ⟩ = ρDPER
c ⟨pc⟩, ρ = ∥K−1 · p̃c∥. (2)

where DPER
i is the predicted depth map from the pre-trained PER depth estimation model [25] and

⟨·⟩ represents the nearest neighbor interpolation. We can obtain 3D points P from the ERP depth
map DERP ,

P = DERPS. (3)

3.2 Graph-based Optimization for Scale Alignment

Scale and Shift Alignment Monocular depth estimation inherently suffers from scale ambiguity,
leading to inconsistent depth scales across different PER images. To address this inconsistency,
previous studies have proposed methods such as estimating scale and shift between frames [45, 70, 23].
This can be formulated as a linear equation,

D∗ = λ D + τ. (4)

However, ensuring consistent depth D∗ across different frames is challenging, as we rely on single
scalar values λ ∈ R and τ ∈ R for all pixels in the depth map D.

Graph Optimization for Local Scale Alignment We employ a graph optimization algorithm that
parameterizes the predicted depth and normal maps. This optimization refines the depth maps by
adjusting the local scale, which is analogous to the shift term, but the adjustment is applied to each
pixel rather than relying on a single scalar value. We define this optimization function based on a
simple equation that represents a plane defined by (P 0,n0),

n0 · (P − P 0) = 0, (5)

where P 0 is a 3D point and n0 is its corresponding normal vector of the surface. P indicates any
point lying on the same plane. Inspired by [50], we define the 3D points corresponding to each
pixel in the predicted depth maps as nodes and assign edge weights based on the likelihood that two
adjacent points belong to the same plane,

Lp =
∑
i

∑
j∼i

wij∥ni · (Pj −Pi)∥2 + α
∑
i

∑
j∼i

wij∥nj − ni∥2, (6)

where j ∼ i denotes the neighbor pixels of i in the graph, and wij represents the edge weight
between pixel i and its adjacent pixel j in the ERP space. We set α as 0.5. In Eq. 6, the first term
ensures two points are positioned in the same plane, while the second term ensures that neighboring
points maintain a consistent plane based on the likelihood wij between adjacent pixels. Based on the
assumption that areas with the same texture correspond to the same object surface [34, 14, 49, 50],
we define the edge weights using local patches and the spatial distance between pixels,

wij = exp
(
−∥Qi −Qj∥2F

2σ2
int

)
exp

(
−∥i− j∥22

2σ2
spa

)
, where jx ≡ jx mod W, jy = jy, (7)
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Figure 3: Overview of our depth estimation method. 1) The input equirectangular (ERP) image is projected onto a six-face
cubemap, where each non-overlapping face is independently processed by a perspective foundation model to generate depth
and normal maps. The normal maps are transformed into a common coordinate system and merged into a single ERP normal
map. However, due to the inherent limitations of monocular depth estimation, the merged depth maps exhibit depth scale
inconsistencies across faces. 2) To resolve this issue, the merged depth and normal maps are parameterized, incorporating an
additional scale parameter λ. Using these parameters, we perform graph optimization under a local planar approximation to
obtain a scale-aligned ERP depth map. For the construction of graph, we use the intensity values and the distances between a
pixel i (white node) and its adjacent pixels j (red nodes) to define the edge weights wij . Based on these weights, 3D points
are aligned on the surface using both depth and normal information.

where Qi represents a patch centered at pixel i of the image, ∥ · ∥F denotes the Frobenius norm,
and σint and σspa are set to 0.07 and 3.0, respectively. Since an ERP image has its left and right
extremities aligned, the x-coordinate jx of pixel j should be updated using the modulo operation
with the ERP image width W to ensure periodic boundary conditions.

Per-face Parameter for Global Scale Alignment Simply using Eq. 6 may result in over-smoothed
depth propagation in neighboring points, as shown in Fig. 6. Therefore, we exploit regularization
terms for depth and normal maps to preserve the high fidelity of the input geometry. Here, we
incorporate the per-face scale parameter λc ∈ R6 to achieve global scale alignment for the depth of
each cubemap face. This additional parameter λc functions similarly to the scale term in Eq. 4. The
per-face scale parameter λc is expanded to match the size of each cubemap face, and then transformed
and integrated into the ERP space as a scale map λ ∈ RH×W .

Ld =
∑
i

|Di − λDi|mi, Ln =
∑
i

|ni − ni|mi, (8)

where D and n denote input ERP depth and normal maps. The confidence masks m are determined
based on the cosine similarity between the input normal and the normal computed from the input
depth map using the 8-neighbor convention [69, 29]. The total loss function is formulated as a
weighted sum of the proposed loss terms,

Ltotal = ηp Lp + ηd Ld + ηn Ln, (9)

where ηp, ηd, ηn are weights selected through grid search.

4 Experiments

4.1 Experiments Settings

Datasets and Evaluation Metrics We conduct extensive experiments on benchmark datasets
–– Matterport3D [5], Stanford2D3D [4], and 360Loc [26] — using images of a resolution
1024 × 512. For Matterport3D and Stanford2D3D, we adopt the official train and test splits. We
additionally evaluate on Matterport3D-2K (2048 × 1024) for high-resolution benchmarks, fol-
lowing [47]. 360Loc consists of four scenes, including both indoor and outdoor environments,
each providing panoramic sequences of mapping and query images. We employ all mapping se-
quences from 360Loc, which include ground truth poses and depth maps, to evaluate the zero-shot
performance of depth estimation. As monocular depth estimation increasingly emphasizes 3D
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Table 1: Quantitative comparison on the Matterport3D (M) and Stanford2D3D (S) test set. M+ indicates the combination of
M and Structured3D [75]. We evaluate 360◦ depth estimation performance under three different settings: (a) when the training
and test scenes are identical, (b) when the training and test scenes differ, and (c) in a training-free setup. The best methods
for each category are shown in bold faces. Most learning-based methods exhibit performance degradation when trained on a
dataset that differs from the test scenes. In contrast, the optimization-based methods using perspective foundation models ( )
do not require a training dataset, making them unaffected by domain gap. Under the training-free setting, RPG360 improves
the Chamfer distance by 46.7% on Matterport3D (M) and 64.2% on Stanford2D3D (S), compared to 360MonoDepth.

Method Dataset 3D metrics
Train → Test Chamfer ↓ F-Score ↑ IoU ↑

(a)

SliceNet [43] M → M 1.197 21.247 13.104
UniFuse [27] M → M 0.444 42.721 28.573
ACDNet [77] M → M 0.584 44.863 30.785
BiFuse++ [59] M → M 0.834 39.383 26.066
Elite360D [1] M → M 0.291 67.189 54.663
Depth Anywhere [60] M+ → M 0.420 53.997 39.482

(b)

SliceNet [43] S → M 0.873 24.433 14.734
UniFuse [27] S → M 0.542 33.832 21.711
ACDNet [77] S → M 0.580 32.277 19.985
Elite360D [1] S → M 0.539 34.489 21.548

(c) 360MonoDepth [47] → M 0.632 28.056 16.998
RPG360 (Ours) → M 0.337 58.816 44.912

Method Dataset 3D metrics
Train → Test Chamfer ↓ F-Score ↑ IoU ↑

(a)

SliceNet [43] S → S 0.201 70.700 57.453
UniFuse [27] S → S 0.331 43.481 28.555
ACDNet [77] S → S 0.271 56.832 42.007
Elite360D [1] S → S 0.223 66.031 51.764

(b)

SliceNet [43] M → S 1.205 21.681 12.763
UniFuse [27] M → S 0.277 56.150 40.678
ACDNet [77] M → S 0.495 43.497 28.586
BiFuse++ [59] M → S 0.770 46.650 31.731
Elite360D [1] M → S 0.184 73.501 60.175
Depth Anywhere [60] M+ → S 0.498 50.927 35.021

(c) 360MonoDepth [47] → S 0.576 25.230 14.672
RPG360 (Ours) → S 0.206 73.917 61.880

structural awareness for practical applications [52, 40], we adopt 3D metrics, such as Chamfer
Distance, F-Score and IoU, rather than 2D metrics to better assess improvements in 3D structure
and geometry. Further details of the 3D metrics are described in the supplementary materials.

Table 2: Quantitative comparison on 360Loc (L). For
Depth Anywhere, we train and test on 360Loc using its
pseudo labeling (Lp) technique. Among optimization-
based methods leveraging perspective foundation models
( ), RPG360 improves the Chamfer distance by 17.2%
compared to 360MonoDepth.

Method Dataset 3D metrics
Train → Test Chamfer ↓ F-Score ↑ IoU ↑

(a)

SliceNet [43] M → L 2.941 8.164 4.409
UniFuse [27] M → L 2.533 10.373 5.670
ACDNet [77] M → L 2.423 10.572 5.728
BiFuse++ [59] M → L 2.379 8.682 4.647
Elite360D [1] M → L 1.759 14.797 8.565
Depth Anywhere [60] M+ → L 2.226 11.889 6.571
Depth Anywhere [60] M+, Lp → L 1.457 17.145 10.112

(b) 360MonoDepth [47] → L 2.274 8.992 4.873
RPG360 (Ours) → L 1.883 19.605 11.502

Comparison Models As also noted in [60], many
recent methods [1, 2, 73, 36, 37, 51, 72] have not
fully released their pre-trained models or provided
their code and implementation details. Some also use
different datasets, making direct comparison difficult.
Therefore, we evaluate our method on fully accessible
benchmarks, comparing it with both learning-based
[43, 27, 77, 59, 1, 60] and optimization-based [47]
approaches using 3D metrics. In addition, to demon-
strate the effectiveness of our approach in relation to
recent methods, we also include evaluations on 2D
metrics. For each method, We adopt the backbone
or pre-trained model that achieved the highest perfor-

mance as reported in the original paper (e.g., EfficientNet-B5 [55] for Elite360D [1] and BiFuse++
for Depth Anywhere [59]). To mitigate scale ambiguity in monocular depth estimation, we apply
median alignment [76] in all evaluations. Further details are provided in the supplementary material.

Implementation Details We use the Adam optimizer [33] to perform gradient descent on a single
RTX A5000 GPU. To accelerate convergence, we adopt a multi-scale approach following [50]. The
ERP depth map DERP l ∈ R⌊h/2l⌋×⌊w/2l⌋ where l ∈ {0, ..., L− 1}, is downsampled by a factor of
2l. In this experiment, we set L = 3 and use learning rates of 5× 10l−L. Each optimization step is
performed for 300, 150, and 30 iterations. The weights of the loss terms ηp, ηd, and ηn are set to 50,
0.5, and 10, respectively.

4.2 Experimental Results

As shown in Table 1, although supervised methods perform well when the training and testing
domains are the same, their performance degrades significantly when applied to different domains.
Interestingly, Table 1 also reveals the opposite trend: some of the methods, such as Elite360D
[1], trained in Matterport3D achieve better performance on the Stanford2D3D test set than those
trained on the Stanford2D3D train set. Given that the Matterport3D dataset is much larger than
Stanford2D3D, we can infer that the available volume of labeled 360◦ data in Stanford2D3D might
be insufficient for effective learning, depending on network capacity. This demonstrates that the lack
of labeled 360◦ datasets poses a significant challenge for supervised learning approaches.

As a potential solution to this problem, the perspective foundation models offer advantages because of
their inherent robustness across diverse scenes, and they leverage knowledge from large-scale datasets.
360MonoDepth [47], which employs the perspective foundation model with a blending algorithm,
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Figure 4: Qualitative comparison of 3D point clouds reconstructed from depth maps across different datasets. Depth
Anywhere and Elite360D are learning-based methods, while 360MonoDepth and Ours are optimization-based methods with
perspective foundation models. Our RPG360 demonstrates superior structural accuracy, most closely matching the ground
truth in 3D space.

achieves high-quality depth estimation in 2D-based metrics [47]. However, its performance in 3D
metrics is suboptimal, as it ignores 3D structural information during optimization. Depth Anywhere
[60] addresses the lack of labeled datasets by generating a pseudo ground truth through a perspective
foundation model. While it demonstrates competitive performance compared to other supervised
learning methods, its structural information appears distorted when visualized in 3D point clouds,
as shown in Fig. 4. By incorporating our graph-based optimization with the additional per-face
parameter, we demonstrate that our method achieves comparable or superior performance across
diverse datasets. Furthermore, Fig. 4 shows our method produces point clouds with significantly
fewer artifacts in 3D space, further validating its effectiveness.

Table 2 presents zero-shot quantitative results on 360Loc, which consists of both indoor and outdoor
scenes. For a fair comparison, we trained Depth Anywhere [60] using its pseudo-labeling method
on 360Loc and evaluated its performance. Elite360D [1] performs well in indoor scenes like its
training domain but exhibits performance degradation in zero-shot tests. Our method achieves better
performance in terms of F-Score and IoU, demonstrating its robustness in diverse environments. We
conduct 2D metric evaluations on the Matterport3D dataset as shown in Table 3. Learning-based
methods generally demonstrate stronger performance on 2D metrics than optimization-based methods.
We also evaluate optimization-based methods using high-resolution 2K images, following [47, 42].
To ensure a fair comparison, we implement 360MonoDepth [47] with Metric3D v2 [25]. However,
since 360MonoDepth is originally designed to output inverse depth (as in MiDaS v3 [46]), using
a model that predicts standard depth results in degraded blending performance. In contrast, our
method requires depth predictions. Therefore, we only evaluate methods that directly produce depth
outputs [25, 11], in order to avoid additional normalization issues when converting inverse depth to
depth. Since Peng and Zhang [42] leverages both a perspective and a 360◦ network, it outperforms
360MonoDepth, which relies solely on a perspective network. Although our method relies exclusively
on a perspective model, it still achieves superior performance, benefiting from both the robustness of
foundation models and the structural awareness introduced by graph optimization.
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Table 3: Quantitative comparison using 2D metrics on the (a, b) Matterport3D (M, 1024 × 512) and (c, d) Matterport3D-2K
(M-2K, 2048 × 1024) test sets. In the 2K high-resolution setting, (c) learning-based methods (360 Train.) exhibit performance
degradation, whereas (d) optimization-based methods (Opti.), including ours, demonstrate stronger performance.

Method Backbone or 360 Train. Opti. Dataset Lower is better Higher is better
Pretrained Model Train → Test Abs Rel RMSE δ1.25 δ1.252 δ1.253

(a)

SliceNet [43] ResNet50 [24] ✓ ✗ M → M 0.176 0.613 0.872 0.948 0.972
UniFuse [27] ResNet34 [24] ✓ ✗ M → M 0.106 0.494 0.890 0.962 0.983
EGFormer [73] Transformer ✓ ✗ M → M 0.147 0.603 0.816 0.939 0.974
ACDNet [77] ResNet50 [24] ✓ ✗ M → M 0.101 0.463 0.900 0.968 0.988
BiFuse++ [59] ResNet34 [24] ✓ ✗ M → M 0.112 0.485 0.881 0.966 0.987
HRDFuse [2] ResNet34 [24] ✓ ✗ M → M 0.117 0.503 0.867 0.962 0.985
Elite360D [1] EfficientNet-B5 [55] ✓ ✗ M → M 0.105 0.452 0.899 0.971 0.991
Depth Anywhere [60] BiFuse++ [59], Depth Anything [67] ✓ ✗ M+ → M 0.085 - 0.917 0.976 0.991

(b)
360MonoDepth [47] MiDaS v2 [46] ✗ ✓ → M 0.264 0.916 0.612 0.854 0.941
RPG360 (Ours) Omnidata v2 [11] ✗ ✓ → M 0.215 0.672 0.796 0.935 0.973
RPG360 (Ours) Metric3D v2 [25] ✗ ✓ → M 0.203 0.667 0.859 0.953 0.977

(c)
Elite360D [1] EfficientNet-B5 [55] ✓ ✗ M → M-2K 0.309 0.979 0.538 0.824 0.930
Depth Anywhere [60] BiFuse++ [59], Depth Anything [67] ✓ ✗ M+ → M-2K 0.167 0.789 0.815 0.947 0.978
Peng and Zhang [42] UniFuse [27], LeRes [70] ✓ ✓ M → M-2K 0.115 0.611 0.871 0.954 0.982

(d)

360MonoDepth [47] MiDaS v3 [46] ✗ ✓ → M-2K 0.208 0.791 0.656 0.890 0.961
360MonoDepth [47] Metric3D v2 [25] ✗ ✓ → M-2K 0.300 1.144 0.455 0.766 0.897
RPG360 (Ours) Omnidata v2 [11] ✗ ✓ → M-2K 0.147 0.545 0.820 0.947 0.980
RPG360 (Ours) Metric3D v2 [25] ✗ ✓ → M-2K 0.107 0.464 0.899 0.969 0.987

Image Warp before Tuning Warp after Tuning

---------------------------- Dense Feature Matching ---------------------------- ------------------- Spherical SfM -------------------

YVUC4YcDtcY

Ess.
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GT Mesh

Figure 5: Qualitative results of the downstream tasks using our method. For dense feature matching, EDM [30] estimates
more confidential correspondences after tuning with pseudo ground truth generated by RPG360, compared to the initial results.
For initial pose estimation in IM360 [31], SnP with RPG360 reconstructs a slightly more accurate 3D structure than two-view
geometry-based estimation (Ess.).

4.3 Experimental Analysis

To highlight the significance and utility of robust depth estimation, we apply our method to down-
stream 360◦ vision tasks. By leveraging our 360◦ depth estimation method, we can estimate the
relative poses between multiple view frames. To accomplish this, we implement the Spherical-n-Point
(SnP) algorithm [21] in conjunction with RANSAC [13].

Dense Feature Matching Since obtaining ground truth correspondences in 360◦ images is chal-
lenging, most existing learning-based feature matching approaches for 360◦ datasets are primarily
restricted to indoor environments [17, 18, 30]. Consequently, when evaluating the feature matching
method [30] in outdoor scenes, such as 360Loc, we observe performance degradation. To address
this issue, we utilize our robust depth estimation method, which leverages the perspective foundation
model. With the aid of SnP and RANSAC, pseudo ground truth correspondences are generated using
the relative pose and depth maps from RPG360 in 360Loc query scenes. We then finetune EDM for
several iterations and evaluate it on the 360Loc mapping sequences. Table 4 and Figure 5 showcase
the advantages of our proposed depth module.

Structure from Motion IM360 [31] demonstrates significant improvements in localization and
mapping for large-scale indoor scenes sparsely captured with 360◦ cameras. During the localization
process, relative poses are initialized using two-view geometry estimation based on epipolar geometry
and essential matrix decomposition in spherical cameras. Instead of relying on this two-view geometry,
we employ SnP [21] with RANSAC [13], utilizing our predicted depth maps before performing
spherical incremental triangulation. As shown in Table 6, our approach achieves improvements in
AUC errors across most scenes, demonstrating that robust depth estimation can boost the performance
of other vision tasks. The qualitative result is presented in Fig. 5.
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Table 4: Performance of dense feature matching
[30] with and without tuning using RPG360. Our
robust depth estimation improves AUC@5◦ by 5.4%
in the hall scene of 360Loc.

Method Scene Tuning AUC ↑
@5° @10° @20°

EDM [30] atrium ✗ 37.19 65.01 82.11
EDM [30] atrium ✓ 38.37 65.99 82.62
EDM [30] concourse ✗ 33.13 56.97 75.81
EDM [30] concourse ✓ 34.53 58.52 77.26
EDM [30] hall ✗ 37.83 63.20 80.92
EDM [30] hall ✓ 39.88 64.67 81.57
EDM [30] piatrium ✗ 44.45 69.91 84.86
EDM [30] piatrium ✓ 46.49 70.34 85.06

Table 5: Ablation study on different foundation models and the impact
of the per-face parameter λc on 3D reconstruction performance. While
graph optimization alone provides limited performance improvement,
incorporating our proposed per-face parameter λc leads to superior
results, highlighting its effectiveness in 3D reconstruction quality.

Foundation Graph Per-face 3D metrics
Model Opti. Param. λc Chamfer ↓ F-Score ↑ IoU ↑
Marigold [32] ✓ ✓ 0.916 23.962 14.262
GeoWizard [15] ✓ ✓ 0.752 27.923 16.919
Omnidata v2[11] ✓ ✓ 0.402 50.035 35.968
Metric3D v2[25] ✗ ✗ 0.380 51.366 36.971
Metric3D v2[25] ✓ ✗ 0.382 51.605 37.303
Metric3D v2[25] ✓ ✓ 0.337 58.816 44.912

Table 6: Performance of spherical Structure from Motion
(SfM) [31] using Epipolar geometry (Ess.) or Spherical-n-
Point (SnP) [21] as the initial pose. RPG360 enables the use
of SnP, resulting in a 9.7% improvement in AUC@3◦ for
the YVUC3YcDtcY scene in Matterport3D, demonstrating
the effectiveness of our robust depth estimation in enhancing
spherical SfM performance.

Method Scene Init Pose AUC ↑
@3° @5° @10°

IM360 [31] 2t7WUuJeko7 Ess. 49.16 69.05 84.53
IM360 [31] 2t7WUuJeko7 SnP 51.17 70.48 85.24
IM360 [31] 8194nk5LbLH Ess. 34.91 44.16 66.87
IM360 [31] 8194nk5LbLH SnP 34.45 46.56 67.25
IM360 [31] pLe4wQe7qrG Ess. 73.95 84.37 92.18
IM360 [31] pLe4wQe7qrG SnP 74.19 84.52 92.26
IM360 [31] RPmz2sHmrrY Ess. 53.44 71.87 85.93
IM360 [31] RPmz2sHmrrY SnP 52.92 71.54 85.77

IM360 [31] YVUC4YcDtcY Ess. 72.40 83.40 91.71
IM360 [31] YVUC4YcDtcY SnP 79.44 87.67 93.83
IM360 [31] zsNo4HB9uLZ Ess. 52.35 71.14 85.49
IM360 [31] zsNo4HB9uLZ SnP 53.50 71.84 85.86

With Scale Param. 𝝀Without Scale Param. 𝝀

Figure 6: Effect of the per-face scale parameter λc. (Left)
Without λc, Eq. 6 only smooths the gap between 3D points
from different face views within the cubemap, leading to
noticeable distortions and misaligned structures. (Right)
By incorporating λc in Eq. 8, depth scale consistency is
improved, resulting in enhanced structural integrity.

Ablation Study We analyze the performance variations of our method when using different
perspective foundation models, as shown in Table 5. Marigold [32] and GeoWizard [15] utilize
Stable Diffusion [48], whereas Omnidata [11] and Metric3D [25] are trained on large-scale datasets
using multi-task learning. All these models are capable of predicting both depth and surface normal
maps. Although diffusion-based models [32, 15] generate high-fidelity depth maps, their 3D point
cloud reconstructions suffer from quality degradation when used for scene reconstruction. Table
5 also demonstrates the effectiveness of the per-face parameter λc in graph optimization. Without
λc, performance remains similar regardless of whether graph optimization is applied. However,
incorporating our proposed per-face parameter λc leads to noticeable improvements, confirming its
contribution to reconstruction quality. The corresponding qualitative improvements are illustrated
in Fig. 6. The per-face scale parameter λc provides flexibility for 3D points to move collectively
within each face, preventing adjacent points from different faces from being simply normalized. This
encourages depth consistency while preserving the original structure.

5 Conclusion, Limitations, and Future Work

In this paper, we propose a novel framework for 360◦ depth estimation. Leveraging foundation
models for perspective images, we convert a single ERP image into six-face cubemap images and
predict depth and surface normal maps for each face. To ensure depth scale consistency across
different faces of the cubemap, we parameterize the predicted depth and normal maps and employ a
graph optimization technique with the proposed per-face scale parameter for depth scale alignment.
Our optimization-based approach may produce less detailed depth estimations for thin structures
compared to training-based methods. However, by leveraging prior knowledge from perspective
foundation models, it demonstrates strong robustness in zero-shot settings. Furthermore, as more
powerful foundation models emerge, we expect the advantages of our method to become even
more pronounced. In the future, we aim to extend the robustness of our approach beyond SfM to
applications such as multiview image reconstruction.
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proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sec. 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec. 5
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Theory assumptions are not included in this work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our proposed methods are described in Sec. 3. Details are included in Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We use the public datasets and cite them in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are done using the fixed random seed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Details are included in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not use pretrained language models, image generators, or scraped
datasets.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Details are included in Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our proposed method is included in Sec. 3.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Crowdsourcing and research with human subjects are not included in this
work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is not related to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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