
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Navigating the Digital World as Humans Do:
UNIVERSAL VISUAL GROUNDING FOR GUI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) are transforming the capabilities of
graphical user interface (GUI) agents, facilitating their transition from controlled
simulations to complex, real-world applications across various platforms. However,
the effectiveness of these agents hinges on the robustness of their grounding
capability. Current GUI agents predominantly utilize text-based representations
such as HTML or accessibility trees, which, despite their utility, often introduce
noise, incompleteness, and increased computational overhead. In this paper, we
advocate a human-like embodiment for GUI agents that perceive the environment
entirely visually and directly take pixel-level operations on the GUI. The key is
visual grounding models that can accurately map diverse referring expressions
of GUI elements to their coordinates on the GUI across different platforms. We
show that a simple recipe, which includes web-based synthetic data and slight
adaptation of the LLaVA architecture, is surprisingly effective for training such
visual grounding models. We collect the largest dataset for GUI visual grounding
so far, containing 19M GUI elements and their referring expressions over 1.3M
screenshots, and use it to train UGround, a strong universal visual grounding model
for GUI agents. Empirical results on six benchmarks spanning three categories
(grounding, offline agent, and online agent) show that 1) UGround substantially
outperforms existing visual grounding models for GUI agents, by up to 20%
absolute, and 2) agents with UGround outperform state-of-the-art agents, despite
the fact that existing agents use additional text-based input while ours only uses
visual perception. These results provide strong support for the feasibility and
promises of GUI agents that navigate the digital world as humans do.

MobileWeb Desktop
Turn on Wi-FiFind the trade-in value for PS4 Install the Township application
Mobile

Figure 1: Examples of agent tasks across platforms and performance on GUI grounding (♣:
ScreenSpot), offline agent (♠: Multimodal-Mind2Web, AndroidControl, and OmniAct), and online
agent benchmarks (♥: Mind2Web-Live and AndroidWorld) when using GPT-4 as the planner.

1 INTRODUCTION

GUI (graphical user interface) agents, which are autonomous agents acting in the digital world via
operating on GUIs, have been rapidly co-evolving with large language models (LLMs). On the
one hand, the general multimedia understanding and generation capability of (multimodal) LLMs
empower GUI agents to generalize beyond simple simulated settings (Shi et al., 2017; Humphreys
et al., 2022) to diverse and complex real-world environments, including the web (Deng et al., 2023;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Zhou et al., 2024; Yao et al., 2022), desktop (Xie et al., 2024; Wu et al., 2024) and mobile operating
systems (Rawles et al., 2023; Yan et al., 2023; Rawles et al., 2024). On the other hand, GUI agents
have become an important testbed for LLMs, providing both the necessary breadth and depth for
driving continued development as well as a pathway to many commercially viable automation
applications.

Most humans perceive the digital world visually and act via keyboards, mice, or touchscreens. In
principle, the embodiment of a GUI agent should already be complete if it can 1) visually perceive
the GUI renderings, and 2) have effectors equivalent to a keyboard for typing and equivalent to a
mouse or touchscreen for pixel-level operations like clicking and hovering.1 However, current GUI
agents assume more than that. For perception, most current agents rely on reading the underlying
text-based representations such as HTML or accessibility (a11y) trees (Deng et al., 2023; Gur et al.,
2024; Zhou et al., 2024).2 Only with the recent advances in multimodal LLMs (MLLMs) does visual
perception become broadly viable, but text-based representations are still used jointly (Zheng et al.,
2024; Koh et al., 2024; Zhang et al., 2024a). For effectors, most current agents act via selecting from
a list of options, e.g., HTML elements (Deng et al., 2023; Zheng et al., 2024) or labeled bounding
boxes (He et al., 2024; Zhang et al., 2024a), instead of pixel-level operations directly on the GUI.
Obtaining those options in turn often requires access to text-based representations and/or separate
models for detecting objects and text (Wang et al., 2024a; Kapoor et al., 2024).

However, there is no free lunch, and those additional requirements come with their limitations.
On the one hand, text-based representations are noisy and incomplete. Full HTMLs contain a
considerable amount of irrelevant information. A11y trees are more compact and mainly contain
semantic information, but similar to other semantic annotations that rely on voluntary participation,
they widely suffer from incomplete and incorrect annotations.3 In contrast, visual renderings, by
design, are information-complete and only contain information relevant to users. On the other hand,
the additional input increases latency and inference costs. Zheng et al. (2024) found that HTML
can consume up to 10 times more tokens to encode than the corresponding visual. Meanwhile,
obtaining the a11y tree can be time-consuming in itself, especially in desktop or mobile environments.
The added latency and cost at every step are further compounded in the long-horizon agent tasks,
compromising user experience and practicality.

In this work, we are interested in how far GUI agents with a human-like embodiment, i.e., only visual
observation of environments and pixel-level operations, can go. There have been a few attempts (Shaw
et al., 2023; Hong et al., 2024; Cheng et al., 2024), but they are rarely adopted in state-of-the-art
solutions. We find that a major bottleneck is grounding, i.e., mapping textual plans generated by an
(M)LLM to the precise locations on the GUI. There are three desiderata for a GUI agent grounding
model: 1) High accuracy. A single grounding error can get an agent stuck and fail the whole task.
2) Strong generalization. It should work on different GUIs: desktop (Windows, Linux, macOS),
mobile (Android, iOS), different websites, etc. 3) Flexibility. It should plug and play in different
MLLMs instead of being tightly coupled with a certain model. Existing visual grounding methods
for GUI agents (Shaw et al., 2023; Hong et al., 2024; Cheng et al., 2024) fail to meet these desiderata,
hindering the advances towards GUI agents with human-like embodiment.

The main contributions of this work are three-fold:

1. We make careful arguments and a strong case for GUI agents with human-like embodiment that
perceive the digital world entirely visually and take pixel-level operations on GUIs, and propose
a generic framework, SeeAct-V, for building such agents by adapting from the popular SeeAct
framework (Zheng et al., 2024).
2. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of
the LLaVA architecture (Liu et al., 2024c), is surprisingly effective for GUI visual grounding. Using
this recipe, we construct and release the largest GUI visual grounding dataset to date, covering

1Except for auditory perception, which is out of scope of this study.
2The a11y tree is a compact yet informative representation intended for assistive technologies to facilitate

people with disabilities, e.g., visual impairment.
3A 2024 survey over the top one million websites found that 95.9% of the home pages had accessibility

conformance errors such as missing alternative text for images or missing form input labels, with an average of
56.8 errors per page (WebAIM, 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

19M GUI elements and their referring expressions over 1.3M GUI screenshots. We also train and
release a universal visual grounding model, UGround, on the dataset.
3. We conduct the most comprehensive evaluation for GUI agents to date, covering six benchmarks
spanning three categories (Figure 1): grounding (desktop, mobile, and web), offline agent evaluation
(desktop, mobile, and web), and online agent evaluation (mobile and web). The results demonstrate:
1) UGround substantially outperforms existing visual grounding models for GUI agents across the
board, by up to 20% absolute. 2) SeeAct-V agents with UGround can achieve at least comparable
and often much better performance than state-of-the-art agents that use additional text-based input.
These results provide strong support for the feasibility and promises of GUI agents that navigate the
digital world as humans do.

2 METHOD

56, 26)
s(“4k monitor”)

Input: Where are the pixel coordinates of ”the search
bar at the top of the page”

MLLM

…
Action: Type
Value: 4k monitor
Element Description:
The search bar at the top of the
page

Execution

Mouse &
Keyboard

Grounding

Vision-Only Observation
TASK: Find the cheapest 4k monitor

Human-Like Operation

Click (556, 26)
Type (“4k monitor”)

User: What are the pixel coordinates of
the element corresponding to “The
search bar at the top of the page” ?

(556, 26)

Element Description: The search bar at
the top of the page.
Action: Type
Value: 4k monitor

Planning
User: Decide the next action for the task.

Vision-Only Observation
Element Description: The search bar at
the top of the page.
Action: Type
Value: 4k monitor

Planning

Grounding
User: What are the pixel coordinates
of the element corresponding to “The
search bar at the top of the page” ?
(556, 26)

User: Decide the next action to complete the task.

Element Description: The search bar
at the top of the page.
Action: Type
Value: 4k monitor

Planning

Grounding

Vision-Only Observation
TASK: Find the cheapest 4k monitor

User: What are the pixel coordinates
of the element corresponding to “The
search bar at the top of the page” ?
(556, 26)

Human-Like Operation

Click (556, 26)
Type (“4k monitor”)

User: Decide the next action for the task.

Figure 2: SeeAct-V, which uses screenshots as the only environmental observation (task instructions
are input as text), without relying on HTML or a11y trees. It includes an MLLM that generates
textual plans and a visual grounding model to map textual plans into coordinates on the screenshot.
Note: “Click” is always automatically inserted before “Type”.

2.1 OVERVIEW

We adapt the popular SeeAct framework (Zheng et al., 2024) to one in which agents only take visual
observation of the environment and directly conduct pixel-level operations, denoted as SeeAct-V
(Figure 2). The original SeeAct has two stages, planning and grounding. An MLLM is used for both
planning and grounding. At each step, an MLLM first generates a textual plan, and grounding is
then done by asking the MLLM to select from a short list of grounding candidates. The grounding
candidates are either filtered HTML elements or labels of Set-of-Mark (SoM; Yang et al. (2023))
annotations on the screenshot, both of which require HTMLs or a11y trees as additional input. In
contrast, SeeAct-V only uses screenshots for environmental observation. For grounding, SeeAct-V
uses a separate model specialized for visual grounding that directly produces the coordinates on the
current screen where the agent should act.

A strong visual grounding model therefore becomes the key for making SeeAct-V a compelling
framework. Ideally, it should generalize across platforms (e.g., web, desktop, and mobile) and
handle diverse ways of referring to GUI elements. Considering the rapid evolution of MLLMs,
this grounding model should be easily pluggable into different MLLMs to help ground their plans
into different GUI environments. Finally, GUI screenshots can vary drastically in resolution and
orientation, therefore the grounding model should handle a wide range of input resolutions. The
main technical contribution of this work is a surprisingly simple recipe (incl. data and modeling) for
training such universal visual grounding models. We introduce our simple data synthesis strategy in
§2.2, followed by modeling considerations in §2.3. With this simple recipe, we construct the largest
training data for GUI grounding to date and train UGround, a strong universal visual grounding
model for GUI agents.

2.2 DATA CONSTRUCTION

We synthesize a large, high-quality, and diverse set of ⟨screenshot, referring expression, coordinates⟩
triplets as training data for visual grounding, where we use the center point coordinates of an element

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as the expected output. Our data synthesis will be based on webpages. Webpages are ideal for
grounding data synthesis because their dual representation––we can easily get the full HTML, the
visual rendering, and fine-grained correspondences between the two (e.g., HTML elements to precise
bounding boxes). HTML elements also contain rich metadata such as CSS or accessibility attributes,
opening numerous opportunities for synthesizing diverse referring expressions (REs). Finally, since
GUI designs share many similarities across platforms, we hypothesize that visual grounding models
trained only on web data may still generalize to other platforms like desktop and mobile UIs.

1. Red icon labeled “UNIQLO”
2. Button at the top left corner
3. Navigate back to the homepage

1. Hollow heart button
2. Button below the Pokémon shirt
3. Favor the Pokémon shirt

Figure 3: Examples of visual, positional,
and functional REs.

Common RE Types for GUIs. People use diverse ways to
refer to GUI elements (Figure 3). Previous visual ground-
ing works (Hong et al., 2024; Cheng et al., 2024) have
not sufficiently considered this dimension of diversity. We
categorize common REs for GUI elements into three types:
1) Visual REs, i.e., salient visual features like text or im-
age content, element types (e.g., buttons or input fields),
shapes, colors, etc. 2) Positional REs, including both
absolute (e.g., “at the top left of the page”) and relative po-
sitions (e.g., “to the right of element X”) to other elements.
Besides straightforward positional information, contex-
tual references (e.g., “for Item A,” “under the section X”)
are more challenging for grounding because they require
understanding both positional relationships and semantic
relationships between elements (e.g., a like button is asso-
ciated with a product). 3) Functional REs, i.e., referring
to elements by their main functions (e.g., “Navigate to
Home,” “Go to My Cart”). Composite types that combine
two or more of these types are also common, especially
when stronger disambiguation is needed, e.g., “click the
heart button under the Pokémon shirt to add to favorite.”

Hybrid RE Synthesis from Web. We propose a novel
hybrid synthesis pipeline, orchestrating both carefully curated rules as well as LLMs to generate
diverse REs for HTML elements: 1) Primary Descriptors: We extract abundant visual and functional
information that are embedded in the attributes of HTML elements. For example, HTML attributes
like inner-text and alt provide visual clues (including text content), while accessibility attributes
like aria-label reveal more functional aspects of an HTML element. However, HTML attributes
are often incomplete. To harvest visual and functional signals beyond HTML attributes, we use an
open MLLM, LLaVA-NeXT-13B (Liu et al., 2024b). We input the visual rendering of an HTML
element along with its available attributes to the MLLM and prompt it to generate diverse REs. This
process often yields composite REs that combine some HTML attributes with visual features (e.g.,
“hollow heart”) or new knowledge from the MLLM (e.g., a blue bird icon represents Twitter). Similar
to Lai et al. (2023), we also employ an LLM (Llama-3-8B-Instruct; AI@Meta (2024)) to make these
generated REs more concise. We randomly select one of the following as the primary descriptor of
an element: a visual HTML attribute, a functional HTML attribute, or the synthesized description
by LLMs. 2) Positional Expressions: We curate rules to generate positional REs according to the
absolute position of an element in the screenshot as well as its spatial relationship to neighboring
elements (e.g., “at the top of the page,” “between element A and B”). We also create multiple rules to
generate contextual references. For example, we identify elements of certain types in the screenshot
(e.g., radio buttons, checkboxes, input fields) as landmarks, and generate REs for them based on their
spatial and structural relationship (e.g., hierarchical structure of the DOM tree) to others (e.g., “the
input field labeled Birthday”).

We collect screenshots (mix of portrait and landscape views in various resolutions) and metadata of
web elements (salient HTML attributes, bounding box coordinates) from Common Crawl,4 and then
apply data synthesis pipeline to get our main training dataset (Web-Hybird). We leave more details
to Appendix C.1.

Supplementary Data. There have been multiple prior efforts on constructing grounding data for
Android, so we incorporate the existing datasets as well. We also use GPT-4o to directly synthesize

4https://commoncrawl.org/

4

https://commoncrawl.org/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Overview of training datasets used for UGround.

Dataset Annotation # of Elements # of Screenshots Platform

Web-Hybrid (Ours) Rule + LLM 18M 773K Web

Web-Direct (Ours) GPT 408K 408K Web
GUIAct (Chen et al., 2024) GPT + Human 140K 13K Web
AndroidControl (Li et al., 2024b) Human 47K 47K Android
Widget Caption (Li et al., 2020b) Human 41K 15K Android
UIBert (Bai et al., 2021) Human 16K 5K Android
AITZ (Zhang et al., 2024b) GPT + Human 8K 8K Android

Total 19M 1.3M Web + Android

a small set of REs for web elements, with a focus on more open-ended REs (no constraints on the
type) and functional REs (Web-Direct). These additions help provide more diverse REs and cover
elements in Android, especially those not commonly found on the web (e.g., toggle buttons).

In total, we compile a dataset totaling 19M UI elements, with the majority (95%) from our hybrid
synthesis pipeline (Table 1). Elements on the same screenshot are batched to accelerate training.

2.3 MODEL DESIGN

We adopt a widely used open-source model architecture, 7B LLaVA-NeXT (Liu et al., 2024b), as our
backbone model for visual grounding. We make a few adaptations to tailor it for GUI grounding.

Input-Output Formulation. We always instruct the model to answer “In the screenshot, what are
the pixel element coordinates corresponding to {Description}?” Following recent work in visual
grounding (Cheng et al., 2024), we represent the answer in natural language so we can directly use
autoregressive decoding. Specifically, we opt for coordinates in the numerical form (e.g., “(1344,
1344)”) to precisely point to an element without any normalization.

Image Resolution. GUI screenshots are much larger than typical natural images, often requiring
a resolution above 1,000px for legibility. LLaVA (Liu et al., 2024c;a) was initially built for 336px
images, and was later scaled up to at most 772px via the AnyRes technique (Cheng et al., 2023;
Gao et al., 2024; Liu et al., 2024b; Xu et al., 2024; Dong et al., 2024). It resizes and splits a large
image into small slices, encodes each slice independently with the vision encoder, and adds a special
token at the end of each row to help the language model keep track of the image shape. AnyRes
allows easy scaling up of input resolution. However, it is always a trade-off between the diversity
of supported resolutions and the speed of training and inference. To strike a balance and avoid
meaningless excessive resolutions, we enlarge the allowed input sizes to 36 ViT (Dosovitskiy et al.,
2020) slices, and use CLIP@224px (Radford et al., 2021) as the image encoder for more flexible
splitting, pushing the maximum supported resolution to 1,344× 1,344 (landscape) and 896× 2,016
(portrait). Additionally, we use Vicuna-1.5-7b-16k (Zheng et al., 2023) with 16K context length
to handle long visual contexts. Finally, there is a low-resolution image fusion module commonly
used in AnyRes. However, we find it ineffective for GUI grounding, as 224px is too small to provide
informative global context, so we leave it out from our model. More details are in Appendix D.

3 EXPERIMENTS

Most existing studies on GUI agents typically evaluate on one or two benchmarks. In contrast,
we conduct a much more comprehensive evaluation on GUI agents to show the universality of our
method. Our evaluation employs six benchmarks that span all three major platforms (i.e., web,
desktop, and mobile) and cover three settings: visual grounding (§3.1), offline agent evaluation on
cached environment states (§3.2), and online agent evaluation in live environments (§3.3). The visual
grounding setting focuses on the grounding performance of UGround, while the agent settings test
the end-to-end effectiveness of the SeeAct-V framework with UGround integrated. On the agent
benchmarks, we compare the vision-only SeeAct-V framework with prior SOTA methods that usually
require additional text-based representations (HTML or a11y tree) as input. Within SeeAct-V, we
also compare UGround with existing visual grounding models whenever possible.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Grounding accuracy on ScreenSpot (Standard Setting). Results for GPT-4, CogAgent, and
SeeClick are from Cheng et al. (2024).

Grounding Model
Mobile Desktop Web

AverageText Icon/Widget Text Icon/Widget Text Icon/Widget

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3

CogAgent (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround (Ours) 82.8 60.3 82.5 63.6 80.4 70.4 73.3

Table 3: Grounding accuracy on ScreenSpot (Agent Setting) with planner-generated REs.

Planner Grounding
Mobile Desktop Web

Avg.Text Icon/Widget Text Icon/Widget Text Icon/Widget

GPT-4 SeeClick 76.6 55.5 68.0 28.6 40.9 23.3 48.8
UGround 90.1 70.3 87.1 55.7 85.7 64.6 75.6

GPT-4o SeeClick 81.0 59.8 69.6 33.6 43.9 26.2 52.3
UGround 93.4 76.9 92.8 67.9 88.7 68.9 81.4

3.1 GUI VISUAL GROUNDING

We first evaluate UGround on the ScreenSpot benchmark (Cheng et al., 2024), which is specifically
designed for visual grounding on GUIs. The benchmark consists of 1,272 single-step instructions
and the corresponding bounding box of the target elements across mobile (e.g., iOS and Android),
desktop (e.g., macOS and Windows), and web environments. These elements vary between text-based
elements, icons (e.g., the trash can icon) and widgets (e.g., to-do lists), representing diverse GUI
element types.

We evaluate under two settings: 1) Standard Setting. In the standard setting of ScreenSpot, the
instructions are written by human annotators with a primary focus on functional description of the
target elements, e.g., simply “close” to refer to the ‘X’ button that closes a window or “set an alarm
for 7:40” when the input image shows the iPhone clock app with a list of inactive alarms. 2) Agent
Setting. For GUI agents, a grounding model needs to work with a planning model (e.g., an MLLM)
and ground the REs it generates, which includes not only functional REs but also visual and positional
REs (see §2.2). To provide a more comprehensive evaluation on visual grounding for GUI agents,
we input each ScreenSpot example to an MLLM, which acts as a planning model, and asks it to
generate diverse REs for the target element. This setting is therefore more representative of the
grounding challenges in GUI agents. We mainly compare UGround with SeeClick (Cheng et al.,
2024), the state-of-the-art visual grounding model on ScreenSpot, and another visual grounding
model CogAgent Hong et al. (2024). To show the challenge of visual grounding for general-purpose
models, we also compare with GPT-4 and GPT-4o.

Results. As shown in Table 2 and Table 3, UGround outperforms all existing models across all
the settings and platforms by a substantial margin, about an absolute improvement of 20% on
average under the standard setting and 29% under the agent setting. Interestingly, UGround performs
remarkably well on desktop UIs, despite the fact that it is never trained on desktop screenshots
(Table 1). Compared with existing models, UGround performs especially well on icons and widgets,
which are generally more challenging for grounding because that requires deeper understanding of
the contextual (e.g., positional) and semantic (e.g., functional) information. Overall, the strong results
on ScreenSpot clearly demonstrates UGround’s universal grounding capability across platforms and
planners as well as the remarkable effectiveness of our simple data synthesis and modeling recipe.

3.2 OFFLINE AGENT EVALUATION

We discuss the experimental setup for three offline agent evaluation benchmarks followed by result
discussion. Concrete examples from each benchmark are given in Appendix B.

Web: Multimodal-Mind2Web. We use Multimodal-Mind2Web (Zheng et al., 2024), the multimodal
extension of Mind2Web (Deng et al., 2023), for our evaluation on realistic web tasks. The test

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Element accuracy on Multimodal-Mind2Web. Results by Choice and SoM are from Zheng
et al. (2024). The SoM results are on subsets of 30 tasks for each split.

Input Planner Grounding Cross-Task Cross-Website Cross-Domain Avg.

Image + Text GPT-4 Choice 46.4 38.0 42.4 42.3
SoM 29.6 20.1 27.0 25.6

Image
(SeeAct-V)

GPT-4 SeeClick 29.7 28.5 30.7 29.6
UGround 45.1 44.7 44.6 44.8

GPT-4o SeeClick 32.1 33.1 33.5 32.9
UGround 47.7 46.0 46.6 46.8

split consists of 1,013 tasks spanning over 100 different websites. Each task contains a high-level
task instruction and a sequence of actions, with a screenshot of the webpage before each action, as
the golden trajectory. All the webpages along the golden trajectory are cached to support offline
evaluation. The tasks are crowdsourced with a focus on ensuring real-world meaningfulness (i.e.,
what real users would need on those websites).

Zheng et al. (2024) have clearly demonstrated the necessity of visual perception for web agents,
so we mainly compare with zero-shot methods that use MLLMs as planners and omit text-only
LLMs. Zheng et al. (2024) have also identified grounding as the main challenge and proposed
several grounding strategies, including 1) Choice, where the planner is asked to choose from a
short list of filtered HTML elements, and 2) SoM, where the input screenshot is superposed with
set-of-mark (Yang et al., 2023) labels and the planner is asked to select from the labels. Both strategies
require additional text-based representations (i.e., HTML) to obtain the candidates and/or locate the
elements in the screenshot to label. We report element accuracy, i.e., accuracy of selecting the correct
element, and omit operation scores because they are orthogonal to grounding comparisons.

Mobile: AndroidControl. We use AndroidControl (Li et al., 2024b), a large-scale Android dataset
comprising 15K unique tasks over 833 Apps. Screenshots, action sequences, and a11y trees are
cached from human demonstrations as golden trajectories for training and evaluation purposes. Each
action is also labeled by a corresponding low-level instruction (e.g., “set the hours to 6”). Following Li
et al. (2024b), we use 500 random steps from the test set. We compare with the SOTA zero-shot
method, the text-only version of M3A (Rawles et al., 2024), which instructs GPT-4 to generate
textual actions as well as select elements from the a11y tree (Choice). We adopt the two task settings
in Li et al. (2024b): high-level tasks, where only the high-level intent is provided, and low-level
tasks, where both the high-level intent and the corresponding low-level instruction for each step are
available. We use the standard metric, step-wise accuracy, where a step is considered successful only
if all the predicted actions, elements, and arguments (if applicable) are correct.

Desktop: OmniACT. We use OmniACT (Kapoor et al., 2024) to evaluate the accuracy of UGround
on desktop tasks. The dataset consists of 9,802 tasks covering 38 desktop applications and 27 websites
across different desktop platforms (macOS, Windows, and Linux). Each task requires the generation
of a PyAutoGUI script, which is a sequence of actions to complete the task on a single screenshot.
The SOTA method, DetACT (Kapoor et al., 2024), extracts UI elements and their coordinates through
a combination of OCR (optical character recognition), icon matching, and color detection modules.
These elements are filtered by task relevance and then passed to LLMs or MLLMs to generate the
PyAutoGUI script with the appropriate coordinates for interaction.

For SeeAct-V, we replace the input of the DetACT pipeline with only screenshots and instruct
MLLMs to generate element descriptions rather than directly generate coordinates. We then employ
UGround to obtain the coordinates of the elements, which are subsequently integrated into the
PyAutoGUI scripts. To ensure a fair comparison, we strictly follow the approach in Kapoor et al.
(2024), including the same prompt and retrieval strategy that selects five in-context examples from
the training set based on task similarity. We report the action score, which measures the accuracy of
the action sequences while penalizing errors in generated arguments.

Results. As shown in Table 4, Table 5, and Table 6, SeeAct-V with UGround outperforms all the
baselines across the board, despite only using raw screenshots as input while baselines use additional
input. UGround also consistently outperforms a strong GUI grounding model, SeeClick. These
results provide solid support for human-like vision-only embodiment for GUI agents, a position this
work aims to make a case for. The results also further validate UGround’s efficacy as a universal
grounding model for GUI agents.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Step accuracy on AndroidControl
over 500 random actions from the test split.
Baseline results are from Li et al. (2024b).

Input Planner Grounding
Step Accuracy

High Low

Text GPT-4 Choice 42.1 55.0

Image
(SeeAct-V)

GPT-4 SeeClick 39.4 47.2
UGround 46.2 58.0

GPT-4o SeeClick 41.8 52.8
UGround 48.4 62.4

Table 6: Action scores (AS) on OmniACT.
Baseline reults are from Kapoor et al. (2024).

Inputs Planner Grounding AS

Text GPT-4 DetACT 11.6
Image + Text DetACT 17.0

Image
(SeeAct-V)

GPT-4 SeeClick 28.9
UGround 31.1

GPT-4o SeeClick 29.6
UGround 32.8

Table 7: Completion rate (CR) and task success
rate (SR) on Mind2Web-Live. Baseline results
are from Pan et al. (2024).

Inputs Planner Grounding CR SR

Text GPT-4 Choice 44.3 21.1
GPT-4o 47.6 22.1

Image
(SeeAct-V)

GPT-4 UGround 50.7 23.1
GPT-4o 50.8 19.2

Table 8: Task success rate (SR) on Android-
World. Baseline results are from Rawles
et al. (2024)

Input Planner Grounding SR

Text GPT-4 Choice 30.6
Image + Text SoM 25.4

Image
(SeeAct-V)

GPT-4 UGround 31.0
GPT-4o 32.8

3.3 ONLINE AGENT EVALUATION

We further evaluate our approach in an end-to-end manner on two online agent benchmarks that
closely resemble the offline web and Android benchmarks in §3.2, but involve interactions with live
websites and mobile applications. Due to the high cost of online evaluation, we only use UGround
for grounding.

Web: Mind2Web-Live. We use the test set from Mind2Web-Live (Pan et al., 2024). The benchmark
is built on Mind2Web (Deng et al., 2023) by adding functional evaluation to the tasks that makes
automated evaluation possible on live websites. Specifically, it defines and annotates key nodes for
each task, which are critical steps that must be completed for a task to be considered successful,
regardless of which trajectory an agent takes. The baseline agent from Pan et al. (2024) is text-only,
perceives and interacts with webpages by hundreds of HTML elements at a time. For SeeAct-V, we
change the observation to be screenshots only, and make necessary changes to the original action
space to fully eliminate the dependency on HTML during planning, grounding, and execution (details
in Appendix E.5). We use standard metrics: micro completion rate, which measures the proportion of
completed key nodes across all the tasks, and task success rate, which measures the proportion of
fully completed tasks.

Mobile: AndroidWorld. We use AndroidWorld (Rawles et al., 2024), an online mobile agent
benchmark running in Android emulators. It includes 116 tasks across 20 Apps, with evaluation
based on the final states of the device. We compare with the SOTA agent M3A and its text-only
variant from Rawles et al. (2024). They receives both raw and SoM images, together with textual UI
elements, or only the textual UI elements as the observation respectively. Both variants employ a
ReAct-style reasoning process (Yao et al., 2023) to select the next target element from a list of UI
elements. Additionally, they integrate self-reflection (Shinn et al., 2024) for the agent to summarize
its current action and improve decision-making in subsequent steps. We report task success rate,
which measure the percentage of fully completed tasks.

Results. SeeAct-V with UGround gets comparable or higher performance in online agent evaluation,
as shown in Table 7 and Table 8. Particularly, it achieves a much higher success rate compared
with the SoM variant of M3A, even though Android environments have less dense UI layouts and
are generally more suitable for SoM (i.e., less obstruction by the SoM labels). These results again
provide solid support for the feasibility and promises of human-like vision-only embodiment for GUI
agents and the effectiveness of UGround.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

ScreenSpot-Desktop

AndroidControl-Low

AndroidControl-High

ScreenSpot-Mobile

Multimodal-Mind2Web

ScreenSpot-Web

46.5
9.3

5.3
27.7

8.7
18.2

Percentage %

UGround Error Planner Error

Figure 4: Error distribution from manual analysis.

50 100 200 400 773
50

60

70

80

Web Synthetic Training Data (K) (# Screenshots)

Pe
rf

or
m

an
ce

Mobile
Web
Desktop
Average
SeeClick (Avg.)

Figure 5: Scaling curve of UGround on
ScreenSpot w.r.t. Web-Hybrid data size.

3.4 ERROR ANALYSIS

We conduct a manual error analysis of the best performing method, SeeAct-V with UGround, to
understand the bottleneck for further improvement. We randomly sample 60 failure cases from
each split of ScreenSpot (agent setting with GPT-4o), AndroidControl, and Multimodal-Mind2Web.
Except for data annotation errors, errors from the models can be categorized into planning errors, i.e.,
generating plans with incorrect element descriptions, and grounding errors, i.e., predicting incorrect
coordinates for a correct element description from the planner.

As shown in Figure 4, planning errors are the dominant cause of failures across all benchmarks,
further confirming the strong grounding capability of UGround. The most frequent error is that the
planner generates (otherwise correct) description of an incorrect element on the screen, indicating a
lack of correct understanding of either the task and/or the elements. Other common planning errors
include hallucinating non-existent elements or producing overly generic descriptions that are too
vague to uniquely locate the target element, even for human evaluators.

On the other hand, on ScreenSpot-Mobile and ScreenSpot-Desktop, a considerable portion of the
failures do stem from grounding errors. Both desktop and mobile UIs feature a pervasive use of icons
with idiosyncratic meaning. For example, a stylized dollar sign represents the Zelle App, or an icon
with two cartoon people represents one’s contact list in Miscorosft Outlook. We find that pretrained
MLLMs and our web-centric grounding training are effective in capturing the semantics of popular
icons (e.g., icons representing Google) or commonsense meaning (e.g., clock icons usually represent
time-related functions like alarms). However, it is challenging to capture the idiosyncratic semantics
of icons in the long tail, which arguably requires either additional documentation or more targeted
exploration to learn. This is a major cause of the grounding errors. Interestingly, when tested on
more realistic agent tasks, e.g., in AndroidControl, AndroidWorld, and OmniACT, UGround still
proves to be relatively robust. This is because most of the agent tasks concern things in the head
of the distribution; things in the long tail are naturally rare (though still important). This explains
the strong performance of UGround on mobile and desktop agent benchmarks. Nonetheless, how to
capture idiosyncratic semantics in the long tail is still an open challenge for grounding.

3.5 TRAINING DATA ANALYSIS: SCALING AND ABLATIONS

We conduct scaling analysis and ablation studies on our training data to better understand the
contribution of different data for UGround’s strong performance. We use the agent setting of
ScreenSpot with GPT-4o as the planner.

Scaling Curve on Web-Hybrid. We investigate the scaling of our primary synthetic dataset, Web-
Hybrid, which consists of 18M data instances over 773K web screenshots in total. The scaling results
in Figure 5 show that the average performance consistently improves as the data scales up, though
the return starts diminishing after 100K screenshots. Notably, with just 50K screenshots (about 1M
elements) as training data, UGround surpasses SeeClick by more than 10%, which is trained on about
3M web and Android elements from about 400K screenshots. The results clearly show the high data
quality and the effectiveness for grounding training of our data synthesis pipeline. Upon manual
inspection, we observe that additional data after 100K screenshots primarily enhances understanding
of less frequent elements such as radio buttons, checkboxes, or very small text elements. As data

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 9: Training data ablations for UGround on ScreenSpot.

Training Data
Mobile Desktop Web

AverageText Icon/Widget Text Icon/Widget Text Icon/Widget

Web-Hybrid 89.0 73.4 88.1 61.4 84.8 64.6 76.9
Others 92.3 71.2 84.5 46.4 87.0 59.2 73.4
All 93.4 76.9 92.8 67.9 88.7 68.9 81.4

increases, the model can point to the center of element bounding boxes more accurately and better
handle tiny hyperlinks.

Training Data Ablations. To further investigate the impact of training data sources, we compare
the performance of UGround trained on only Web-Hybrid, only the supplementary data, or both
(see Table 1). Results in Table 9 further validate the necessity of Web-Hybrid. Training on other data
without Web-Hybrid often underperforms training on Web-Hybrid alone. This is most evident on
icons and widgets, which require understanding more diverse aspects, such as visual features and
functions, than text-based elements. Finally, these two data sources are complementary and their
combination yield the best performance across the board.

4 CONCLUSIONS AND LIMITATIONS

We introduce UGround, a universal GUI visual grounding model developed with large-scale web-
based synthetic data. UGround shows strong cross-platform generalization and significantly outper-
forms the prior SOTA model SeeClick on ScreenSpot. We propose a vision-only framework SeeAct-V
that allows pixel-level interactions based solely on visual input. Our evaluations on both offline and
online benchmarks demonstrate that SeeAct-V agents with UGround can achieve comparable and
often better performance than prior SOTA agents that rely on additional textual inputs like HTML or
a11y trees for observation or grounding.

Nevertheless, there are still some limitations that can be addressed in future work to advance visual
grounding in GUI and visually grounded GUI agents. First, UGround is trained on very large-scale
synthetic data. Considering the similarity and repetition of elements between web pages, there is
much room to improve data efficiency during training, for example by better data grouping and
deduplication. On the other hand, despite the cross-platform generalization shown in our experiment
results, the issue of long-tail elements remains unaddressed in this work. Mobile UIs and desktop
UIs often feature specific icons, where it can be impractical to account for every long-tail element in
the training set. Additionally, no desktop UI data is incorporated in the training of this work, which
limits the performance on desktop UIs. Given the scarcity of training datasets for desktop UIs, we
anticipate the development of more comprehensive datasets in this domain. Lastly, UGround depends
on an external planner, and without training on downstream tasks, it cannot function independently as
a GUI agent. Nonetheless, we hope that our datasets, model, and framework can contribute to future
studies of vision-only agents, as well as contribute to advancing the grounding capabilities of future
end-to-end models.

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL CARD.md.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. Uibert: Learning generic multimodal representations for ui understanding.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
pp. 1705–1712, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Pratyay Banerjee, Shweti Mahajan, Kushal Arora, Chitta Baral, and Oriana Riva. Lexi: Self-
supervised learning of the ui language. arXiv preprint arXiv:2301.10165, 2023.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Yuchen Mao, Wenjing Hu, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? arXiv preprint arXiv:2407.10956,
2024.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023a.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023b.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and Ningyu
Zhang. Can we edit multimodal large language models? In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 13877–13888, 2023.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845–854, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In Advances in Neural Information Processing
Systems, volume 36, pp. 28091–28114, 2023.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, et al. Internlm-xcomposer2-4khd: A pioneering
large vision-language model handling resolutions from 336 pixels to 4k hd. arXiv preprint
arXiv:2404.06512, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Peng Gao, Renrui Zhang, Chris Liu, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao, Shijie
Geng, Ziyi Lin, Peng Jin, et al. Sphinx-x: Scaling data and parameters for a family of multi-modal
large language models. arXiv preprint arXiv:2402.05935, 2024.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. In International Conference on Learning Representations, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning, pp.
9466–9482. PMLR, 2022.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. Deep fragment embeddings for bidirectional
image sentence mapping. Advances in neural information processing systems, 27, 2014.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents, 2024.

Zhengfeng Lai, Haotian Zhang, Wentao Wu, Haoping Bai, Aleksei Timofeev, Xianzhi Du, Zhe Gan,
Jiulong Shan, Chen-Nee Chuah, Yinfei Yang, et al. From scarcity to efficiency: Improving clip
training via visual-enriched captions. arXiv preprint arXiv:2310.07699, 2023.

Bo Li, Hao Zhang, Kaichen Zhang, Dong Guo, Yuanhan Zhang, Renrui Zhang, Feng Li, Ziwei Liu,
and Chunyuan Li. Llava-next: What else influences visual instruction tuning beyond data?, May
2024a. URL https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/.

Gang Li and Yang Li. Spotlight: Mobile ui understanding using vision-language models with a focus.
In The Eleventh International Conference on Learning Representations, 2022.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv preprint
arXiv:2406.03679, 2024b.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8198–8210, 2020a.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
5495–5510, 2020b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024c.

Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual
tokenization for grounding multimodal large language models. arXiv preprint arXiv:2404.13013,
2024.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 11–20, 2016.

12

https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi
Shang, Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online
environments. arXiv preprint arXiv:2406.12373, 2024.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

Yijun Qian, Yujie Lu, Alexander G Hauptmann, and Oriana Riva. Visual grounding for user interfaces.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 6: Industry Track), pp.
97–107, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control. In Advances in Neural Information
Processing Systems, volume 36, pp. 59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems, 36:
34354–34370, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. In
ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024a.

Weiyun Wang, Min Shi, Qingyun Li, Wenhai Wang, Zhenhang Huang, Linjie Xing, Zhe Chen, Hao
Li, Xizhou Zhu, Zhiguo Cao, et al. The all-seeing project: Towards panoptic visual recognition
and understanding of the open world. In The Twelfth International Conference on Learning
Representations, 2024b.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024c.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

WebAIM. The WebAIM Million. https://webaim.org/projects/million/, 2024. Accessed:
2024-08-04.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu,
and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement. In
ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024.

13

https://webaim.org/projects/million/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Ruyi Xu, Yuan Yao, Zonghao Guo, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
Maosong Sun, and Gao Huang. Llava-uhd: an lmm perceiving any aspect ratio and high-resolution
images. arXiv preprint arXiv:2403.11703, 2024.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. ArXiv,
abs/2404.05719, 2024.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

Zhuosheng Zhan and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024a.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713,
2024b.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Advances in Neural Information
Processing Systems, volume 36, pp. 46595–46623, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In The Twelfth International Conference on Learning Representations, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table of Contents in Appendix

A Related Work 16

B Examples 17

B.1 Multimodal-Mind2Web . 17

B.2 AndroidControl . 17

B.3 OmniACT . 18

B.4 Training Data . 19

C Data Construction 20

C.1 Web-Hybrid . 20

C.2 Web-Direct . 21

C.3 Open-source Data . 22

D Model and Training Details 22

D.1 Overview . 22

D.2 AnyRes . 22

D.3 Training . 22

E Evaluation Details 23

E.1 Model Endpoints . 23

E.2 Multimodal-Mind2Web . 23

E.3 AndroidControl . 23

E.4 OmniACT . 23

E.5 Mind2Web-Live . 24

E.6 AndroidWorld . 24

F Prompts 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORK

GUI Agents. LLMs and MLLMs have demonstrated great capabilities and potentials in GUI
automation, working as digital agents in various GUI environments (Yan et al., 2023; Kim et al.,
2024; Wang et al., 2024a; Zheng et al., 2024; Xie et al., 2024). Despite the growing number of studies
focused on building multimodal agents (Koh et al., 2024; Zhou et al., 2024; Cao et al., 2024), most
work still relies on HTML or a11y trees for grounding, even when they are not used for observation.
In this work, we advance an alternative line of research: pixel-level visually grounded GUI agents
(Shaw et al., 2023; Zhan & Zhang, 2023; Hong et al., 2024; Cheng et al., 2024). Unlike nearly
all previous work of this line, we propose a generic two-stage approach that separates planning
and visual grounding to build vision-only GUI agents, which perform remarkably well on realistic
agent benchmarks with vision-only inputs, and offers the flexibility to the choices of planning and
grounding models.

Visual Grounding. Visual grounding has been long studied on natural images (Karpathy et al., 2014;
Mao et al., 2016; Yu et al., 2016). More recently, with the advancements of MLLMs, their visual
grounding capabilities on natural images have attracted significant attention (Bai et al., 2023; Chen
et al., 2023a;b; Peng et al., 2023; Wang et al., 2024b;c; Ma et al., 2024). However, due to significant
gaps in image resolution and GUI understanding, these models trained on natural contexts work
poorly on GUI visual grounding (Cheng et al., 2024). One of the most popular approaches, SoM
(Yang et al., 2023), proposes a visual prompting method that adds marks such as boxes and numbers
to images and instructs MLLM to identify the referred objects by the labels. It is widely adopted in
GUI scenarios (Yan et al., 2023; He et al., 2024; Koh et al., 2024), but still suffers from problems
including reliance on complete object information or object segmentation. Only few studies have
been conducted for visual grounding on GUI screenshots. Based on Rico(Deka et al., 2017), Bai
et al. (2021) annotates referring expressions by humans; RicoSCA (Li et al., 2020a) generate a larger
synthetic referring expression dataset; and Li et al. (2020b) collect human-labeled captions of UI
elements. They have been primary resources for GUI grounding for a long time (Li & Li, 2022;
Banerjee et al., 2023). Later on, Qian et al. (2024) synthesize referring expressions from Rico by
heuristic rules and train a vision language model by a new layout-aware contrastive learning technique.
CogAgent (Hong et al., 2024) compiles HTML documents and screenshots from real websites to GUI
grounding data for the pretraining stage, and finetunes on open-source and in-house human-labeled
data, to build a 19B MLLM with strong pixel-level GUI grounding capabilities. Ferret-UI (You et al.,
2024) develop a UI generalist MLLM trained on a series of UI-related tasks including grounding.
The most similar effort to ours is SeeClick (Cheng et al., 2024), which enhances Qwen-VL (Bai et al.,
2023) by finetuning on GUI grounding data, including simplistic synthetic data compiled from real
websites. It still falls shorts of the small image resolution of Qwen-VL, as well as the simplistic
nature of the training data. Cheng et al. (2024) also create a new grounding benchmark for GUIs,
which benefits our evaluation and analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B EXAMPLES

B.1 MULTIMODAL-MIND2WEB

Task: Find the page with instructions on how to return orders online.

GPT-4o:
ACTION: SCROLL DOWN
ELEMENT: None
VALUE: None

GPT-4o:
ACTION: CLICK
ELEMENT: Link labeled
'Returns / Exchanges' in
the footer of the webpage
VALUE: None

User: In the screenshot, what are the pixel
coordinates (x, y) of the element corresponding
to "Link labeled 'Returns / Exchanges' in
the footer of the webpage" ?

UGround: (326, 604)

Dividing into blocks Planning

Block 1

Grounding

 Next Action: CLICK (326, 604)

Block 2

Figure 1: Example of the Mind2Web Evaluation Pipeline.

B.2 ANDROIDCONTROL

Task: I am feeling hungry and want to try something new.
Search for a margherita pizza recipe in the SideChef app.

GPT-4o: {'action_type': 'click',
'element': "the first search result labeled
'margherita pizza'"}

User: In the screenshot, what are the pixel
coordinates (x, y) of the element
corresponding to "the first search result
labeled 'margherita pizza' " ?

UGround: (540, 399)

User: High-Level Goal: {Task Above}
Previous Actions: ["Open the
sideChef app", "Enter the margherita
pizza in the search bar"]

User: High-Level Goal: {Task Above}
Low-Level Instruction: Click on the
first result.

GPT-4o: {'action_type': 'click', 'element':
"first search result for 'margherita
pizza'"}

User: In the screenshot, what are the pixel coordinates (x, y)
of the element corresponding to "first search result for
'margherita pizza' " ?

Next Action (High & Low) :
{'action_type': 'click', 'x': 540, 'y': 399}

UGround: (540, 399)

Planning Grounding

High-Level

Low-Level

High-Level

Low-Level

Figure 2: Example of the AndroidControl Evaluation Pipeline .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.3 OMNIACT

Task: Fill "Singapore" as the travel destination on the search bar.

GPT-4o:
pyautogui.click("Input field labeled
'Flying to' ")
pyautogui.write("Singapore")
pyautogui.press("enter")

User: In the screenshot, what are the pixel coordinates (x, y) of the
element corresponding to "Input field labeled 'Flying to' " ?

UGround: (1440, 306)

User: Based on the screenshot, generate the
PyAutoGUI script for the task.

Planning Grounding

Final Script:
pyautogui.click(1440, 306)
pyautogui.write("Singapore")
pyautogui.press("enter")

Figure 3: OmniACT Evaluation Pipeline Example.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.4 TRAINING DATA

Mobile

Web

The clickable word "TAAL" located in the navigation
menu between "HOME" and "SCHRIJVEN"

Navigate to "Freud’s Unconscious – The Psychoanalysis of a
Dream, and its Dreamer" article page.

Click on the add
icon again.

Select the setting icon
from top right corner.

Select the down arrow
button beside "Lifestyle."

Go to options.
Click on the "Snoozed" label located at

the middle left part of screen.

Web-Direct

Instruction: Agree to the site's use of cookies.
Action: Click the "AGREE & PROCEED"
button in the cookie notification bar.

Instruction: Navigate to the
Products section.
Action: Click the "Products"
dropdown menu.

Instruction: Learn more about PostgreSQL hosting.
Action: Click the "Get Started" button under the
PostgreSQL hosting section.

Instruction: Access the
documentation.
Action: Click the "Docs" link
in the header.

Instruction: Sign up
for a new account.
Action: Click the "Sign
up" button.

GUIAct

AndroidControl UIBertWidgetCaptionAITZ

The image of "Google Translate"

CLICK button labeled "Login / Register"

Web-Hybrid

CLICK button for "SURVEY EQUIPMENT"

Figure 4: Examples of Training Data from different sources.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C DATA CONSTRUCTION

We describe the details of our data construction in this section. Illustrative examples of all our training
data are given in Figure 4.

C.1 WEB-HYBRID

Following prior work (Hong et al., 2024; Cheng et al., 2024), we download and randomly sample
from the latest Common Crawl1. We apply few filtering methods, excluding non-webpage files based
on URLs, and removing non-English pages based on labels of language provided by Common Crawl.
We use Playwright to load and render the webpages, capturing screenshots and collecting metadata
for web elements. The metadata includes bounding box coordinates and potentially useful HTML
attributes, such as the element’s tag, text (inner text), and alternative text (e.g., alt).

During the rendering process with Playwright, we randomly apply different image sizes to cover a
wide range of resolutions and aspect ratios. Specifically, approximately one-third of the data uses
mobile-friendly aspect ratios, where the webpages are rendered in mobile web mode. By doing this,
some of the websites automatically switch to their mobile versions, which helps improve the coverage
of mobile UI environments. For each long webpage, we randomly sample a block of content within a
viewport-sized area to ensure diversity in the captured content.

As detailed in §2.2, we employ a hybrid strategy to generate referring expressions (REs) for web-
page elements. Below, we firstly describe how we leverage MLLMs (LLaVA-NeXT-13B) and
LLMs (Llama-3-8B) to generate concise, element-level descriptions without positional or contextual
information.

We extract the bounding box regions from the webpage screenshots corresponding to the elements
and pass these smaller cropped element images along with their main HTML attributes into LLaVA.
Using the prompts outlined below, we prompt LLaVA to generate an element description based on its
internal knowledge, the element’s image, and relevant HTML attributes:

Based on the attached image of a web element, please provide a short description of the web element
displayed. The goal is to capture the intuitive and visual appearance of the element. Use the accompanying
HTML information as context but focus more on describing what is visually observable. Avoid directly
referencing HTML attributes; instead, interpret their possible visual implications if they can be inferred
from the image. Be cautious of potential inaccuracies in the HTML attributes and use them to enhance
understanding only when they align reasonably with what can be inferred visually.

HTML: {A list of salient HTML attributes}

We observe that since the input to LLaVA is a small cropped image, the model tends to have less hallucinations
compared to directly caption an element with a bounding box overlaid in the image. However, due to the limited
language capabilities of 13B LLaVA, it often generates lengthy interpretations rather than concise referring
expressions.

To address this, we then pass the generated description to Llama-3-8B, using the following prompt to instruct it
to condense the interpretation into a brief referring expression:

Here is a description to an element in an webpage. Using the detailed description provided, create a concise
phrase that captures the essential visual and functional characteristics of the web element. The rephrased
description should be straightforward, simple and precise enough to allow humans quickly spot this element
in a webpage screenshot. Focus on the most prominent visual features and any critical function indicated
by the text.

Description: {}

Leave only your final description in the answer, without any explanation.

Next, we describe the generation process for each crawled element.

1CC-MAIN-2023-50

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We begin by categorizing the webpage elements based on their tags into two groups: interactive elements (e.g.,
a, input, select, etc.) and pure text elements (e.g., p, h1, h2, etc.). Referring expressions are only generated for
interactive elements, while pure text elements are used as potential sources for generating referring expressions.
The primary reason is that interactive elements are the main targets in GUI grounding tasks. Additionally, the
bounding boxes of certain pure text elements, as crawled, tend to have a few mismatches, which can introduce
noise into the dataset.

For each interactive element, we first apply an OCR model (EasyOCR2) to extract text from the element’s
bounding box. If the similarity between the OCR-extracted text and the element’s inner-text exceeds a
threshold of 0.7, we treat the element as a textual element and skip the MLLM-based synthesis pipeline. This
helps us avoid generating trivial data, such as “Gray links labeled by link text”. Furthermore, for textual elements,
we filter out those that share identical text with other elements on the same page to prevent grounding ambiguities,
which could arise when multiple elements share the same label within a single screenshot.

Based on handwritten rules, we label each element’s neighboring elements in various directions (multiple
neighbors are allowed), mark the nearest upper h1, h2, or h3 elements (titles), and determine its absolute position
(e.g., center of the screenshot, top, top-left corner) to generate absolute position-based referring expressions.
We randomly select 0-2 relative elements in different directions and randomly pick elements whose distance
from the target is within 500 pixels (empirically, always selecting the closest element does not yield the best
performance). These are used to generate relative position descriptions. Some of the relative descriptions are
further randomly modified to common terms such as “next to” or “between”. For contextual references, we
create the following rules: If an element is detected as a checkbox or radio button based on its HTML properties,
we assume it has a corresponding label (e.g., “radio button for Yes”). If such labels are provided in the HTML
attributes, we use them directly; otherwise, we select the nearest element on the same row as the label (or the
nearest element in the same column if none exist in the same row). Similarly, we add potential labels for input
fields and select boxes. We then generate expressions like “under”, “in”, or “under section A” based on the
hierarchical structure of the titles (primarily h1, h2, and h3). If an element has title, alt, or aria-label
attributes, they are always utilized as potential descriptors, typically covering both visual and functional REs,
with most being functional REs.

Finally, for each element, we randomly combine any descriptors (from accessibility labels, the element’s own
text, or MLLM-based descriptions) with absolute position descriptions (randomly included, not always) and
randomly add 0-2 relative or contextual descriptions (for radio buttons or similar elements, the label is always
included; in other cases, 0-2 descriptors are randomly added) to generate the final referring expression. For each
webpage, we use up to 100 elements. When randomly selecting elements, we prioritize those with accessibility
labels or those annotated by MLLMs. We limit the total number of pure text elements to no more than three
times the sum of elements with accessibility labels and MLLM-annotated elements (with a minimum of 10, or
the actual number of available elements, whichever is lower) to reduce the number of pure text elements. We
also count the occurrences of all unique accessibility labels and their respective frequencies. In total, our training
set contains approximately 1.9M unique accessibility labels. For labels appearing more than 1,000 times, we
downsample them to appear only 1,000 times in the training set. For example, the label “Next” appears 13K
times, but is downsampled to 1K occurrences in our training data.

C.2 WEB-DIRECT

Figure 5: Example of the im-
age annotations of a bounding
box and an arrow

For the Web-Direct dataset, we directly employ GPT-4o to generate referring
expressions. We observed that, due to its limited grounded understanding
capabilities, simply enclosing an element in the image with a bounding box
often leads to notable hallucinations, even with GPT-4o. This is especially
prevalent when it provides descriptions of nearby elements. However, we
aim to avoid the high cost of manual post-verification. Through empirical
studies, we found that highlighting an element with an arrow, in addition to
a bounding box, helps mitigate hallucinations. Therefore, for each webpage
and any arbitrary element on the page, we annotate the element with a red
bounding box and a red arrow pointing to it. Additionally, we explicitly ask
GPT whether it can identify the element, which further reduces potential
hallucinations and helps filter out a small number of crawling errors or
occluded elements.

We use the following prompt to generate free-form referring expressions:

Here is supposed to be an interactive element (button, link, dropdown, text box etc) in the red box pointed
by an arrow in the screenshot. Can you find int? Is it visible from the screenshot? Can you write a concise

2https://github.com/JaidedAI/EasyOCR/

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

description that is sufficient for humans to locate it from the screenshot? Your response should be a json.
For example, “visible”: true, “description”: “your description here”.

Furthermore, we use the following prompt to generate more functionally oriented referring expressions:

Here is supposed to be an interactive element (button, link, dropdown, text box etc) in the red box pointed by
an arrow in the screenshot. Can you find int? Is it visible from the screenshot? What unique function does
this element enable? Your response should be a json. For example, “visible”: true, “action”: “subscribe the
latest updates”.

C.3 OPEN-SOURCE DATA

We leverage several high-quality open-source referring expression datasets in Android, as well as GUIAct, as an
additional source of web data. Specifically:

1. GUIAct: We use the annotated data from GUIAct (web-single). Any steps that do not involve coordinates
or are marked as multi-step operations (for example, “click ... then type”) are filtered out. We use both the
Instruction and Action annotations for grounding (i.e., each element is seen in training twice with different
expressions).

2. AndroidControl: Similarly, we use the human-annotated actions from the training set. We filter out any
actions that do not have associated coordinate data, ensuring that only steps with specific visual grounding
targets are included in the dataset.

3. Widget Caption: For each element in the training set, multiple functional captions are provided. To enhance
data variety, we randomly select two captions per element from the available set of functional captions during
data construction.

4. UIBert: We use the training set elements from UIBert without any additional special processing, directly
utilizing the referring expressions provided by this dataset.

5. AITZ: We incorporate the annotated actions (Thought) from AITZ, using each step’s action annotation for
grounding in the dataset. These annotations contribute to a more diverse set of referring expressions, particularly
for action-oriented grounding tasks.

D MODEL AND TRAINING DETAILS

D.1 OVERVIEW

For flexible investigation about the model architecture, we build the architecture based on LLaVA-NeXT (Liu
et al., 2024b), and train from scratch using opensource data from Liu et al. (2024a). We use CLIP-ViT-L-14
(224px) as our base image encoder for more flexible splitting of AnyRes , and freeze it during training. We use
Vicuna-1.5-7b-16k (Zheng et al., 2023) as the language backbone as a long-context LM backbone for handling
long visual contexts.

D.2 ANYRES

As described in §2.3, AnyRes allows convenient scaling up of image resolutions, although it’s not always
benifitial to enlarge image resolutions (Li et al., 2024a). We keep the main pipeline of AnyRes, splitting images
into 224px grids. However, to keep identical image aspect ratios, we resize only by width and pad to the bottoms
if needed, and use pixel-level coordinates in numbers that are compatible with this design. We allow at most 36
grids, for a maximum resolution of 1344*1344 and 896*2016. We empircally find AnyRes does not generalize
to unseen image resolutions for visual grounding. Therefore, we resize images by width to keep them within
the training resolution ranges when needed. We remove the low-resolution image for providing global context,
because it intuitively does not providing informative contexts when images are larger than 1000px, and we
empirically find it slightly hurt the performance.

D.3 TRAINING

Our training primarly consists of two stages:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. LLaVA-1.5 Pretraining and Finetuning: We follow the exact pretraining in Liu et al. (2024a). Then, in the
instruction finetuning stage, we change the grounding data from normalized coordinates to absolute coordinates
as we wish, and start to use our modified AnyRes setting.

2. GUI Visual Grounding: Then we train UGround on our training datasets.

Due to the huge computation cost of handling high resolution images, we use LoRA (Hu et al., 2022) for
instruction finetuning in the two stages, with a device batch size of 4.

The first stage takes about 50 hours on a single 4x NVIDIA A100 machine. And for the large scale GUI data
training, we use 112 NVIDIA H100 GPUs and finish the training in about 6 hours.

E EVALUATION DETAILS

E.1 MODEL ENDPOINTS

As studied in (Pan et al., 2024), MLLM endpoints could pose slight effects to the performance of GUI tasks.
Hence, we provide the specific endpoint names we use in our evaluation, as well as those of the baselines we use
(if available).

• Ours (across every benchmark): gpt-4-turbo-2024-04-09 and gpt-4o-2024-05-13

• Multimodal-Mind2Web: gpt-4-1106-vision-preview

• OmniACT: gpt-4-0613 and gpt-4-1106-vision-preview

• Mind2Web-Live: gpt-4-0125-preview and gpt-4o-2024-05-13

• AndroidWorld: gpt-4-turbo-2024-04-09

E.2 MULTIMODAL-MIND2WEB

Many screenshots in Multimodal-Mind2Web have giant vertical heights (e.g., 1,280× 10,000 pixels). Similar
to Zheng et al. (2024), to avoid the overly long screenshots, we divide whole webpage screenshots into viewport-
sized blocks, and simulate scrolling down to the next block when agents either determine that no valid action
can be taken or explicitly choose to scroll. Specifically, we divide each full-page screenshot into 1,280× 1,000
pixel blocks, except for the final block, which may be shorter depending on the page’s total height. Most of the
target elements are within the first block (about 80%). See Figure 1 for an illustrative example of the pipeline.

We report element accuracy on the benchmark, and an element grounding is considered to be correct if the output
coordinates fall in the box coordinates of the ground truth element.

E.3 ANDROIDCONTROL

We adopt the M3A (Multimodal Autonomous Agent for Android) prompt (Rawles et al., 2024), the state-of-the-
art zero-shot method in Li et al. (2024b). We make minor modifications to integrate UGround to M3A.

We follow the standard data processing steps outlined in Li et al. (2024b). During evaluation, coordinates
generated by grounding models are translated to the smallest visible element that includes the coordinates.

E.4 OMNIACT

We follow the method in Kapoor et al. (2024) for prompt design and the selection of five in-context examples.
The prompt is slightly modified to generate element descriptions as function parameters for PyAutoGUI
scripts, instead of directly outputting coordinates. The examples are selected based on task similarity using
MiniLM (Wang et al., 2020) (MiniLM-L12-H384) embeddings. After generating the PyAutoGUI script with
element descriptions, we use grounding models to predict the corresponding coordinates and substitute them
back into the original script. See Figure 3 for an illustrative example of the pipeline.

The evaluation metrics in OmniACT include Sequence Score and Action Score. The Sequence Score measures
whether the predicted action sequence exactly matches the ground truth. If the sequence is correct, the Action
Score is calculated by penalizing inaccuracies in how the script performs the task, including: Click Penalty
(Mp), applied when predicted coordinates fall outside the target element’s bounding box; Key Penalty (Kp),
triggered when the predicted key set differs from the ground truth for press and hotkey actions; and Write
Penalty (Wp), which measures discrepancies between the predicted and actual typed text using the BLEU score.

We compare our method with DetACT (Kapoor et al., 2024), the state-of-the-art method in Kapoor et al. (2024),
which extracts UI elements and their coordinates through a combination of OCR, icon matching, and color

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

detection. These elements are filtered by task relevance and passed to LLMs or MLLMs to generate the
PyAutoGUI script. In contrast, our method does not use a pre-generated elements list. The planner model
focuses on generating precise element descriptions based solely on the screenshot. Additionally, we corrected
basic errors in the public evaluation scripts (for example, wrong file paths and wrong calculation of distances).

E.5 MIND2WEB-LIVE

The baseline agent in Pan et al. (2024) is text-only, perceives and interacts with webpages by hundreds of textual
HTML elements at a time. To study vision-only agents, we change the observation to pure screenshots. We also
make necessary changes to the standard action space to entirely isolate HTML from the planning, grounding, and
execution: 1) We add Scroll Up and Scroll Down to the action space to better support vision-only agents with
viewport-sized observation. 2) We remove Fill Form and Fill Search from the action space, which use an
additional judgment model to determine whether to press enter after typing through HTML information. Instead,
we use Type and Press Enter to let the agent make its own decisions autonomously. 3) We disable API-based
Select, and force agents to select options merely through clicking and makes the action more challenging. We
admit some select buttons cannot be easily operated with only Click. We compromise this point to fullfill the
motivation of this study.

E.6 ANDROIDWORLD

We build SeeAct-V agents based on the M3A agent in Rawles et al. (2024), which receives both raw and SoM
images, and reason about the next action in a ReAct style (Yao et al., 2023) and choose the next target element
from the element list. It also adopts self-reflection (Shinn et al., 2024) in the agent pipeline to instruct agents to
summarize the current move and facilitate the following steps.

We mainly remove SoM images and textual list of elements from a11y tree in the observation (in both planning
and reflection phases), and change element-based actioins to pixel-level actions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F PROMPTS

Table 1: Prompt used for the planning model in Multimodal-Mind2Web, modified from the prompt
in (Zheng et al., 2024)

System Role
You are imitating humans doing web navigation for a task step by step.
At each stage, you can see the webpage like humans by a screenshot and know the previous actions
before the current step through recorded history.
You need to decide on the first following action to take.
You can click an element with the mouse, select an option, type text with the keyboard, or scroll
down.

Task Description
You are asked to complete the following task: {Task description}
Previous Actions: {List of previous actions, if any}
The screenshot below shows the webpage you see.

Useful Guidelines
First, observe the current webpage and think through your next step based on the task and previous
actions.

To be successful, it is important to follow the following rules:
1. Make sure you understand the task goal to avoid wrong actions.
2. Ensure you carefully examine the current screenshot and issue a valid action based on the
observation.
3. You should only issue one action at a time.
4. The element you want to operate with must be fully visible in the screenshot. If it is only partially
visible, you need to SCROLL DOWN to see the entire element.
5. The necessary element to achieve the task goal may be located further down the page. If you don’t
want to interact with any elements, simply select SCROLL DOWN to move to the section below.

Reasoning
Explain the action you want to perform and the element you want to operate with (if applicable).
Describe your thought process and reason in 3 sentences.

Output Format
Finally, conclude your answer using the format below.
Ensure your answer strictly follows the format and requirements provided below, and is clear and
precise.
The action, element, and value should each be on three separate lines.

ACTION: Choose an action from CLICK, TYPE, SELECT, SCROLL DOWN. You must choose one
of these four, instead of choosing None.

ELEMENT: Provide a description of the element you want to operate. (If ACTION == SCROLL
DOWN, this field should be none.)
It should include the element’s identity, type (button, input field, dropdown menu, tab, etc.), and text
on it (if applicable).
Ensure your description is both concise and complete, covering all the necessary information and less
than 30 words.
If you find identical elements, specify its location and details to differentiate it from others.

VALUE: Provide additional input based on ACTION.
The VALUE means:
If ACTION == TYPE, specify the text to be typed.
If ACTION == SELECT, specify the option to be chosen.
Otherwise, write ‘None’.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 2: Prompts used for the planning model in AndroidControl, modified from the prompt in (Li
et al., 2024b) and (Rawles et al., 2024)

General Instruction
You are an agent who can operate an Android phone on behalf of a user.
Based on user’s goal/request, you may complete some tasks described in the requests/goals by
performing actions (step by step) on the phone.

When given a user request, you will try to complete it step by step. At each step, you will be given the
current screenshot and a history of what you have done (in text). Based on these pieces of information
and the goal, you must choose to perform one of the action in the following list (action description
followed by the JSON format) by outputting the action in the correct JSON format.
- If you think the task has been completed, finish the task by using the status action with complete as
goal status: {''action type'':''status'',''goal status'':''successful''}
- If you think the task is not feasible (including cases like you don’t have enough information or cannot
perform some necessary actions), finish by using the 'status'action with infeasible as goal status:
{''action type'': ''status'', ''goal status'': ''infeasible''}
- Click/tap on an element on the screen, describe the element you want to operate with: {''action type'':
''click'', ''element'': ⟨target element description⟩}
- Long press on an element on the screen, similar with the click action above: {''action type'':
''long press'', ''description'': ⟨target element description⟩}
- Type text into a text field: {''action type'': ''type text'', ''text'': ⟨text input⟩, ''element'':
⟨target element description⟩}
- Scroll the screen in one of the four directions: {''action type'': ''scroll'', ''direction'': ⟨up, down, left,
right⟩}
- Navigate to the home screen: {''action type'': ''navigate home''}
- Navigate back: {''action type'': ''navigate back''}
- Open an app (nothing will happen if the app is not installed): {''action type'': ''open app'',
''app name'': ⟨name⟩}
- Wait for the screen to update: {''action type'': ''wait''}

Useful Guidelines
Here are some useful guidelines you need to follow:
General:
- Usually there will be multiple ways to complete a task, pick the easiest one. Also when something
does not work as expected (due to various reasons), sometimes a simple retry can solve the problem,
but if it doesn’t (you can see that from the history), SWITCH to other solutions.
- If the desired state is already achieved (e.g., enabling Wi-Fi when it’s already on), you can just
complete the task.

Action Related:
- Use the 'open app' action whenever you want to open an app (nothing will happen if the app is not
installed), do not use the app drawer to open an app unless all other ways have failed.
- Use the 'type text' action whenever you want to type something (including password) instead of
clicking characters on the keyboard one by one. Sometimes there is some default text in the text field
you want to type in, remember to delete them before typing.
- For 'click', 'long press' and 'type text', the element you pick must be VISIBLE in the screenshot to
interact with it.
- The 'element' field requires a concise yet comprehensive description of the target element in a single
sentence, not exceeding 30 words. Include all essential information to uniquely identify the element.
If you find identical elements, specify their location and details to differentiate them from others.
- Consider exploring the screen by using the 'scroll'action with different directions to reveal additional
content.
- The direction parameter for the 'scroll' action specifies the direction in which the content moves and
opposites to swipe; for example, to view content at the bottom, the 'scroll'direction should be set to
'down'.

Text Related Operations:
Continued on the next page

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 2 – Continued from the previous page

- Normally to select certain text on the screen: ⟨i⟩ Enter text selection mode by long pressing the area
where the text is, then some of the words near the long press point will be selected (highlighted with
two pointers indicating the range) and usually a text selection bar will also appear with options like
'copy', 'paste', 'select all', etc. ⟨ii⟩ Select the exact text you need. Usually the text selected from the
previous step is NOT the one you want, you need to adjust the range by dragging the two pointers. If
you want to select all text in the text field, simply click the 'select all' button in the bar.
- At this point, you don’t have the ability to drag something around the screen, so in general you can
not select arbitrary text.
- To delete some text: the most traditional way is to place the cursor at the right place and use the
backspace button in the keyboard to delete the characters one by one (can long press the backspace to
accelerate if there are many to delete). Another approach is to first select the text you want to delete,
then click the backspace button in the keyboard.
- To copy some text: first select the exact text you want to copy, which usually also brings up the text
selection bar, then click the 'copy' button in bar.
- To paste text into a text box, first long press the text box, then usually the text selection bar will
appear with a 'paste' button in it.
- When typing into a text field, sometimes an auto-complete dropdown list will appear. This usually
indicating this is a enum field and you should try to select the best match by clicking the corresponding
one in the list.

High-Level Prompt
{General Instruction}
The current user goal/request is: {High-level goal}
Here is a history of what you have done so far: {History}

The current raw screenshot is given to you.
{Useful Guidelines}

Now output an action from the above list in the correct JSON format, following the reason why you
do that. Your answer should look like:
Reason: ...
Action: {''action type'': ...}

Your Answer:

Low-Level Prompt
{General Instruction}
The user’s high-level goal/request is: {High-level goal}
The current next step’s low-level goal is: {Low-level goal}

The current raw screenshot is given to you.
{Useful Guidelines}

Now output an action from the above list in the correct JSON format, following the reason why you
do that. Your answer should look like:
Reason: ...
Action: {''action type'': ...}

Your Answer:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 3: Prompt used for the planning model in OmniACT, modified from the prompt in (Kapoor
et al., 2024)

General Instruction
You are an excellent robotic process automation agent who needs to generate a PyAutoGUI script for
the tasks given to you.
You will receive some examples to help with the format of the script that needs to be generated.

There are some actions that require you to provide an element description for the elements you want
to operate on. For the description, follow the requirements below:
Element Description Requirements:
Provide a concise description of the element you want to operate.
It should include the element’s identity, type (button, input field, dropdown menu, tab, etc.), and text
on it (if have).
If you find identical elements, specify their location and details to differentiate them from others.
Ensure your description is both concise and complete, covering all the necessary information and less
than 30 words, and organize it into one sentence.

[IMPORTANT!!] Stick to the format of the output scripts in the example.
[IMPORTANT!!] Use only the functions from the API docs.
[IMPORTANT!!] Follow the output format strictly. Only write the script and nothing else.

API Reference
Here is the API reference for generating the script:
def click(element=description):
'''Moves the mouse to the element corresponding to the description and performs a left click.
Example:
High Level Goal: Click at the rectangular red button labeled ''Next''.
Python script:
import pyautogui
pyautogui.click(''Rectangular red button labeled ''Next'' '')
'''
pass

def rightClick(element=description):
'''Moves the mouse to the element corresponding to the description and performs a right click.
Example:
High Level Goal: Right-click at link labeled ''vacation rentals''under the ''housing''section.
Python script:
import pyautogui
pyautogui.rightClick(''Link labeled ''vacation rentals''under the ''housing''section'')
'''
pass

def doubleClick(element=description):
'''Moves the mouse to the element corresponding to the description and performs a double click.
Example:
High Level Goal: Double-click at folder named ''courses''.
Python script:
import pyautogui
pyautogui.doubleClick(''Folder named ''courses'' '')
'''
pass

def scroll(clicks=amount to scroll):
'''Scrolls the window that has the mouse pointer by float value (amount to scroll).
Example:
High Level Goal: Scroll screen by 30.
Python script:
import pyautogui
pyautogui.scroll(30)
'''
pass

Continued on the next page

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 3 – Continued from the previous page

def hscroll(clicks=amount to scroll):
'''Scrolls the window that has the mouse pointer horizontally by float value (amount to scroll).
Example:
High Level Goal: Scroll screen horizontally by 30.
Python script:
import pyautogui
pyautogui.hscroll(30)
'''
pass

def dragTo(element=description, button=holdButton):
'''Drags the mouse to the element corresponding to the description with (holdButton) pressed. hold-
Button can be 'left', 'middle', or 'right'.
Example:
High Level Goal: Drag the screen from the current position to recycle bin with the left click of the
mouse.
Python script:
import pyautogui
pyautogui.dragTo(''Recycle bin with trash can shape'', ''left'')
'''
pass

def moveTo(element = description):
'''Takes the mouse pointer to the element corresponding to the description.
Example:
High Level Goal: Hover the mouse pointer to search button.
Python script:
import pyautogui
pyautogui.moveTo(''Request appointment button'')
'''
pass

def write(str=stringType, interval=secs between keys):
'''Writes the string wherever the keyboard cursor is at the function calling time with
(secs between keys) seconds between characters.
Example:
High Level Goal: Write ''Hello world''with 0.1 seconds rate.
Python script:
import pyautogui
pyautogui.write(''Hello world'', 0.1)
'''
pass

def press(str=string to type):
'''Simulates pressing a key down and then releasing it up. Sample keys include 'enter', 'shift', arrow
keys, 'f1'.
Example:
High Level Goal: Press the enter key now.
Python script:
import pyautogui
pyautogui.press(''enter'')
'''
pass

def hotkey(*args = list of hotkey):
'''Keyboard hotkeys like Ctrl-S or Ctrl-Shift-1 can be done by passing a list of key names to hotkey().
Multiple keys can be pressed together with a hotkey.
Example:
High Level Goal: Use Ctrl and V to paste from clipboard.
Python script:
import pyautogui

Continued on the next page

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 3 – Continued from the previous page

pyautogui.hotkey(''ctrl'', ''v'')
'''
pass

Examples
Here are some examples similar to the tasks you need to complete.
However, these examples use coordinate format for actions like click, rightClick, doubleClick,
moveTo, dragTo, instead of element description.
You should only refer to the actions in these examples, and for the output format, stick to the content
in the API reference.
For example, do not output ''pyautogui.click(100,200)'', instead output ''pyautogui.click(''Gray Tools
menu button with a downward arrow in the top right corner'') ''.
Omit ''import pyautogui'', do not include any comments or thoughts. Your output should only contain
the script itself.
{Example list}

Task Description
Based on the screenshot, generate the PyAutoGUI script for the following task: {Task description}
You should list all the necessary steps to finish the task, which could involve multiple steps. Also,
ensure simplifying your steps as much as possible, avoid dividing a single task into multiple steps if
it can be completed in one.

Table 4: Prompt used for the planning model in ScreenSpot (Agent Setting).

Task Description
You are an excellent agent for mobile, web, and desktop navigation tasks.
Describe the target element for this task based on the provided screenshot:
Task: {Task description}

Element Description Requirements
Provide a concise description of the element you want to operate.
Ensure your description is both concise and complete, covering all the necessary information in less
than 30 words, and organized into one sentence.
If you find identical elements, specify their location and details to differentiate them from others.

Output Format
Your output should only include the element description itself and follow the requirements.
Do not start with “the target element” or “the element”.

30

	Introduction
	Method
	Overview
	Data Construction
	Model Design

	Experiments
	GUI Visual Grounding
	Offline Agent Evaluation
	Online Agent Evaluation
	Error Analysis
	Training Data Analysis: Scaling and Ablations

	Conclusions and Limitations
	Related Work
	Examples
	Multimodal-Mind2Web
	AndroidControl
	OmniACT
	Training Data

	Data Construction
	Web-Hybrid
	Web-Direct
	Open-source Data

	Model and Training Details
	Overview
	AnyRes
	Training

	Evaluation Details
	Model Endpoints
	Multimodal-Mind2Web
	AndroidControl
	OmniACT
	Mind2Web-Live
	AndroidWorld

	Prompts

