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Abstract
Among all the technical challenges to enforcing
AI regulations, one crucial, yet under-explored
problem is the risk of audit manipulation. These
manipulations occur when a platform deliber-
ately alters its answers to a regulator to pass
an audit without modifying its answers to other
users. In this paper, we introduce a novel ap-
proach to manipulation-proof auditing by taking
into account the auditor’s prior knowledge of the
task solved by the platform. Through both practi-
cal and formal analysis of our framework, we ar-
gue that 1) Current audits are easily manipulated,
2) Regulators must not rely (only) on public pri-
ors (e.g., public datasets), 3) Looking at the accu-
racy of the platform’s answers is a good baseline
to detect manipulations.

1. Introduction
Independent fairness audits by auditors serve as a critical
tool for assessing the fairness of machine learning (ML)
models and ensure that model providers remain account-
able to the public (Birhane et al., 2024; Raji, 2024; Raji
et al., 2022). As models are placed in production, auditors
rely on black-box interactions, where queries are sent to the
model, and the responses are analyzed to identify poten-
tial fairness violations (e.g., see (Kim et al., 2019)). How-
ever, this reliance on black-box audits leaves the process
vulnerable to manipulations by the platform, also known
as fairwashing. Regulatory practices currently require au-
ditors to notify platforms in advance of an audit. Plat-
forms can thus strategically alter the model or its responses
during the audit to create the appearance of fairness, ef-
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fectively concealing underlying biases and unfair practices
from the auditor while maintaining operational efficiency
for its users. Consider, for example, a social media plat-
form that employs an ML model to moderate content, au-
tomatically removing posts deemed harmful or misleading.
During a fairness audit, the platform could deploy a more
lenient moderation model that appears unbiased, only to re-
vert to a stricter, potentially biased version once the audit
concludes, effectively concealing unfair treatment of cer-
tain user groups.

This work presents a novel theoretical framework and a
practical implementation for preventing manipulations by
the platform. Our analysis starts from a simple observa-
tion: auditors can readily collect labeled data, reflecting
the platform’s service from independent sources – a com-
mon practice whose theoretical and empirical implications
remain unexplored. For example, in the moderation exam-
ple discussed earlier, the auditor could have some undeni-
able evidence at hand, to confront the model under scrutiny,
e.g., “A post with this content must pass the moderation fil-
ter, otherwise there is some bias on a protected feature of
the user profile”. Thus, by incorporating this dataset, the
auditor can independently verify the platform’s responses,
cross-referencing them against known ground truth labels.
By combining black-box interactions with prior knowledge
from the labeled dataset, our method enables more reliable
detection of fairness violations while reducing the reliance
on assumptions about the platform’s behavior. Specifically,
we aim to answer the following research question: Can the
auditor’s prior knowledge of the ground truth prevent fair-
washing in fairness audits?

2. Background: Auditing ML Models
This work studies fairness audits of ML decision-making
systems under manipulation by the model-hosting plat-
form. We first formalize the decision-making system and
then introduce the dynamics of fairness auditing.

ML decision-making systems. From feature transforms
to specific business rules, modern ML decision-making
systems can be remarkably complex. We abstract all this
complexity by modeling the entire system as a function
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h : X → Y (e.g., h can be a ML model). The set of
possible queries X is called the input space, and the set
of possible answers is called the output space. We con-
sider binary classification problems, which is in line with
related work in the domain of ML fairness analysis (Yan &
Zhang, 2022; Godinot et al., 2024). Each query is associ-
ated with a protected attribute a ∈ A, which the platform
is legally required not to discriminate against. Examples
of such attributes include gender, age, or race and are typ-
ically defined by law. The platform has access to the pro-
tected attribute a either as a feature of the input space X or
by a proxy (e.g. looking at the name of the person to deter-
mine the gender). We define D as the data distribution on
X × A. For any subset S ⊂ X × A and protected feature
value a ∈ A, we will write Sa = {x | (x, a′) ∈ S, a′ = a}
and h(S) = {h(x) | (x, a) ∈ S}. Throughout the paper,
when it is clear from the context we will abuse the S nota-
tion: S will either be a subset of X , X ×A or X ×A×Y .

ML Auditing A ML audit is ”any independent assess-
ment of an identified audit target via an evaluation of artic-
ulated expectations with the implicit or explicit objective
of accountability” (Birhane et al., 2024). A ML audit in-
volves three entities. The platform is the entity hosting the
ML decision-making system. The users are those using the
service hosted by the platform. The auditor is the entity
conducting the audit to verify whether the ML model is
compliant for all users. The auditor could be a state regu-
lator, a consulting firm, or even a group of users.

Fairness metric In this work, we consider ML audit tar-
geting the fairness of the studied system. Specifically, the
auditor chooses a fairness metric and sends queries to the
platform to determine whether the platform abides by their
fairness criterion. Among all the (un-)fairness metrics, we
study the Demographic Parity (DP) (Calders et al., 2009),
which is commonly used in the fairness evaluation litera-
ture thanks to its simplicity. DP is defined as follows:

µ(h) =
P(X,A)∼D (h(X) = 1|A = 1)

− P(X,A)∼D (h(X) = 1|A = 0)
(1)

For a platform, DP is the easiest metric to manipulate (Yan
& Zhang, 2022; Ajarra et al., 2024) as it only depends
on the outcome of the ML model and not on its perfor-
mance on the different protected groups. Thus, a plat-
form can artificially adjust outputs, e.g., providing more
positive outcomes for an underrepresented group. To de-
cide whether a platform passes the audit or not, the auditor
builds an audit set S ⊂ X × A and evaluates the plug-
in DP estimator: µ̂(h, S) = 1

|S1|
∑

x∈S1
1 {h(x) = 1} −

1
|S0|

∑
x∈S0

1 {h(x) = 1}. Based on µ(h), we also define
the set of fair models F =

{
h ∈ YX : µ(h) = 0

}
.

D  
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Figure 1. The auditing process as conducted by an auditor, which
proceeds in three steps. The platform exposes a model hp to the
users. To appear fair to the auditor while not deteriorating the
utility for its users, the platform manipulates its answers on the
audit set S.

3. Enhancing Black-box Auditing with a Prior
Since a malicious platform can manipulate the DP metric
with relative ease, the auditor has to find ways to prevent
these manipulations (e.g., using a different metric) or to
detect them. In this section, we explore the latter. To de-
tect manipulations, the auditor must use prior knowledge
about what constitutes a ”likely set of answers” on its au-
dit dataset S. Then, using this prior, they would be able to
estimate the likelihood that the set of answers hm(S) they
received has been manipulated.

Definition 3.1 (Auditor prior). The auditor prior is a set of
models Ha ⊂ YX that the auditor can reasonably expect to
observe given her knowledge of the decision task by the
platform.

Examples of auditor prior For example, in (Tan et al.,
2018), the authors study feature importance by training two
models — one on a public dataset and another via distilla-
tion of the audited ML model — and comparing the re-
sulting models. Building on the active learning literature,
Yan & Zhang and Godinot et al. explored the case of an
auditor knowing the hypothesis class of the platform, i.e.,
Ha = H. Ajarra et al. proposed to use an assumption
about the Boolean Fourier coefficients of H to construct
Ha. Finally, Garcia Bourrée et al. and Shamsabadi et al.
used side-channel access (e.g., an additional API or expla-
nations) to the ML model to define Ha and derive guaran-
tees on the measured fairness. In Section 4, we introduce
a labeled dataset Da that the auditor will leverage to de-
fine Ha. Definition 3.1 captures all of the situations above
and allows to formulate general results about the problem
of robust auditing.
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The auditing process The auditing process consists of
three steps which we visualize in Figure 1. Here, hp refers
to the model that the platform exposes to its users (the top
part of Figure 1) and hm refers to the model exposed to the
auditor (bottom part of Figure 1). First, the auditor builds
an audit set S ⊂ X and sends the queries in S to the plat-
form (step 1 ). The platform receives S all at once and
computes the answers using its model hp. To appear fair if
it is not, the platform projects its labels hp(S) on the set F
of fair models. This defines a manipulated model hm and
the answers hm(S) the platform will send to the auditor
(step 2 ). The auditor receives hm(S) and exploits these
samples to evaluate whether the platform is fair (hm ∈ F)
and honest (hp = hm), (step 3 ). Since the auditor does
not have direct access to hp, they compare hm to their prior
Ha to decide whether the platform is honest or malicious.
Thus, the auditor tests the two following properties of hm:

Is the platform fair? hm

?
∈ F (2)

Is the platform honest? hm

?
∈ Ha (3)

For dataset priors (i.e., when Ha is a ball, see Section 4),
we draw F and Ha in Figure 2. Given a model hm, the
fairness audit is equivalent to checking if hm belongs to the
blue shaded area. In the example of Figure 2, the platform
would be flagged as malicious as hm belongs to F but not
to Ha.

Auditing axioms To avoid trivial audits, we add two
modeling assumptions. The first axiom ensures that any
honest platform with a model hp will never appear as ly-
ing. The second axiom prevents trivial audits for which
the auditor could directly conclude from his prior that the
platform is unfair. Those assumptions are expressed as:

hp ∈ Ha and Ha ∩ F ̸= ∅ (4)

On public auditor priors A typical auditor proceeds in
the following way. Upon examining a platform’s model
hm, the auditor must first understand the task addressed
by hm and what constitutes a ”good-performing model” on
this task. In our moderation example, the auditor might
try to look for public moderation datasets to test the per-
formance of hm with a few examples. It might also look
for publicly-available moderation models to compare their
resulting input/output pairs with those of hm. Unfortu-
nately, our first remark is that regardless of the prior the
auditor might construct, if these models are public (or at
least known by the platform), the platform will always be
able to manipulate the audit:

Theorem 3.2. Assume the platform knows Ha, it can then
always pick hm ∈ {Ha ∩ F} to appear both fair and hon-
est.

Figure 2. Representation of the auditor prior Ha, the honest plat-
form model hp and a corresponding malicious model hm on the
fair F plane. The red area represents the area where platforms
optimal manipulations are detected as dishonest: they fall outside
of the blue region of F .

4. Using Labeled Datasets for More Robust
Audits Against Manipulations

As a simple instanciation of our robust auditing framework,
we propose to study the use of a private (because of The-
orem 3.2) dataset Da, collected by the auditor to construct
the auditor prior Ha. This idea (coupled with an assump-
tion on the hypothesis class) has been studied experimen-
tally (Tan et al., 2018) but the more recent theoretical works
on robust auditing diverged towards studying priors on the
model itself rather than on the data (Shamsabadi et al.,
2022; Yan & Zhang, 2022; Ajarra et al., 2024).

Definition 4.1 (Dataset prior). Let Da = (Xa, Aa, Ya) ∈
Xn ×An × Yn be a labeled dataset the auditor has access
to. The dataset prior Ha is defined as the set of models that
have a reasonable risk on Da.

Ha =
{
h ∈ YX : L(h,Da) < τ

}
. (5)

Optimal manipulation Given the audit set S and its
model hp, the objective of a manipulative platform is to
create a set of answers hm(S) that appear fair to the au-
ditor but also do not raise suspicions. Ideally, the platform
would like to know the auditor prior Ha (see Theorem 3.2),
but in the general case it cannot because it is not public in-
formation. As a consequence, the platform cannot directly
optimize its answers to be expectable and fair. However, it
still has cards up its sleeve; it already trained a model hp

on a dataset D that is close to that of the auditor Da.

Thus, instead of searching hm in Ha ∩ F , the platform
can assume that its true model hp is expectable – that is,
hp ∈ Ha – and try to find a fair model hm ∈ F while
flipping as few labels as possible from hp. Therefore, the
optimal manipulation is the projection of hp on F :

h∗
m = projF (hp) = argmin

h∈F
d(h, hp). (6)
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Figure 3. The concealable unfairness by the platform for different detection scores and manipulation strategies. We highlight this for two
features of the CelebA dataset (left) and for two different ML models trained on the ACSEmployment dataset (right). The horizontal red
line indicates the DP of the most unfair model without manipulation.

The distance d in Equation (6) is the value of risk L of h
using the labels of hm as the ground truth. This scenario
captures the fairwashing approach in (Aı̈vodji et al., 2021)
in the context of explanation manipulations. To gain intu-
ition, we represent the audit case for |S| = 3 in Figure 2.
By definition of the dataset prior, Ha is a ball of radius τ ,
centered on Ya, the labels given in the audit dataset Da.

5. Evaluating the robustness of audits
While evaluating audits is a broad topic (Costanza-Chock
et al., 2022), we focus on their statistical performance. To
empirically quantify the extent to which the platform can
manipulate the unfairness of its ML model, we introduce
the concealable unfairness: the maximum level of unfair-
ness a platform can hope to hide before being detected as
malicious. Since any practical fairness repair method can
be used as a manipulation methods, we ask (RQ1) What
is the best manipulation strategy implementation? In Ap-
pendix E, we also study the dynamics of the concealable
unfairness when the audit budget |S| increases.

Concealable unfairness The concealable unfairness
∆µ(hp, hm) is defined as the Demographic Parity gap be-
tween the manipulated and honest models. To decide
whether the model observed during the audit is manipu-
lated, the auditor has to decide whether hm ∈ Ha or not.
To do so, the auditor estimates L(h,Da) by computing the
detection score Detect(hm, S).

∆µ(hp, hm) = |µ̂(hm, S)− µ̂(hp, S)| (7)

Detect(hm, S) =
∑

(x,y)∈S

1 {hm(x) ̸= y} (8)

In Figure 3, we plot the value of the concealable unfairness
∆µ(hp, hm) against the detection score Detect(hm, S)
computed by the auditor, for different manipulation meth-
ods (ROC Mitigation (ROC), Optimal Label Transport
(OT-L), Linear Relaxation (LinR) and Threshold Manipu-
lation (ThreshOpt)). We show the results of LeNet models
trained on two CelebA targets (first and second subplots),
and Gradient Boosted Decision Tree (GBDT) and Logistic
Regression (Log. Reg.) models trained on ACSEmploy-
ment (third and fourth subplots). The horizontal red lines
indicates the DP of the most unfair model without manipu-
lation.

Results First, we observe that for all the datasets, the
platform can conceal significant amounts of unfairness:
from 10 to 20 points differences between the two protected
groups. Comparing the concealable unfairness values with
the DP of the most unfair honest model (red horizontal
line), we observe that the manipulation strategies almost all
able to totally conceal the original model unfairness. Then,
focusing on the x axis, the difference in Detect(hm, S) be-
tween the different honest models highlights the impact the
performance of the platform’s model should have on the
detection threshold τ . In fact, depending on the dataset
and on the model, Detect(honest, S) varies from ∼ 0.1 to
∼ 0.2. In Appendix E, we explore a solution to setup the
threshold.

6. Conclusion
We explored both theoretically and experimentally the con-
ditions in which an auditor can be manipulated or not when
in the context of auditing with a prior. We provided an em-
pirical method to tune the manipulation detection thresh-
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old to maximize the auditor probability to detect malicious
platforms. As of futurework, it would be of practical in-
terest to empirically derive means to find suitable radiuses,
based on real uses cases an auditor can extract from her ac-
tivity. In addition, we think that studying the gain for the
detection power of the auditor, by combining the various
priors proposed in the state of the art with ours would be an
interesting outcome.

Impact Statement
This work theoretically and empirically analyzes fairness
audits in ML decision-making systems to strategic manip-
ulations by platforms seeking to evade regulatory scrutiny.
By demonstrating how prior knowledge by auditors can en-
hance the robustness of black-box audits, we provide in-
sights into mitigating audit manipulations. Our findings
have implications for policymakers, auditors, and ML prac-
titioners, further emphasizing the need for rigorous audit-
ing frameworks that resist adversarial behavior.

The societal impact of this work is twofold. On the positive
side, improving the robustness of fairness audits ensures
greater accountability for platforms deploying ML models
in high-stake domains such as finance or healthcare. By ex-
ploring the risk landscape of audit manipulations, our ap-
proach contributes to more trustworthy ML systems. How-
ever, we also highlight the limitations of current audit prac-
tices, suggesting that reliance on public priors can easily be
exploited.
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A. Characterization of the audit manipulability for dataset priors
Definition A.1. The probability Puf that the auditor accurately detects a manipulative platform with optimal manipulation
is Puf = P (h∗

m /∈ Ha|hp ∈ Ha).

In practice, the auditor can estimate Puf by leveraging their access to the dataset Da. For instance, they can train multiple
models on Da and approximate the set of expectable models Ha as the set of trained models that satisfy Equation 5.
Furthermore, the auditor can estimate Puf as the proportion of these models that remains expectable when projected
onto F . This provides the auditor with a convenient method to estimate the probability of detecting malicious platforms.
Now that we defined the prior Ha as the dataset prior (Definition 4.1), it is possible to derive the exact value of Puf . In
Theorem A.2, we consider the l2-norm, but any metric might be considered. For simplicity, and because the auditor does
not have any other additional knowledge of the platform’s model, we assume that the distribution of models on Ha is
uniform. Only the final expression of Puf would change without those two assumptions. See Theorem F.3 in Appendix F
for the general formula without those assumptions.

Theorem A.2. If Ha is a ball centered in the ground-truth ha with radius τ (i.e. Ha = B(ha, τ)) in the space (YX , ∥.∥2)
then the probability that the auditor correctly detects a malicious platform trying to be fair is

1− 1

Wn

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

with δ = d(ha,F), the distance of ha to F and Wn is the n-term of Wallis’ integrals.

The proof of Theorem A.2 is deferred to Appendix F. It is also possible to prove that, if ha ∈ F then Puf = 0 (Corol-
lary F.5). In other words, if the ground truth is fair and the prior Ha is a ball centered in the ground truth, then the auditor
has zero chance to detect a manipulated model as non-expectable.

More generally, it is possible to choose τ (the threshold to characterize the expectable set) depending on δ such that Puf

is high. For instance, if τ = δ then Puf = 1 (Corollary F.4) so it is always possible to achieve audit with accuracy Puf by
correctly setting τ .

We now proceed to study the expression of Puf in Theorem A.2. In particular, we derive a bound on Puf to investigate the
case when there is a strictly positive likelihood of the auditor successfully detecting a malicious platform.

Corollary A.3. If n even, Puf lies in between 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

and 1, i.e., 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

≤ Puf ≤ 1.

The proof has been postponed to Appendix F. Moreover, in order to develop an insight into the behavior of the lower
bound of Puf , further analysis of the expression derived in Corollary A.3 and of the case where Puf has been carried out
in Appendix F. In particular, Corollary A.3 combined with Corollary F.4 and Corollary F.5 help the auditor choose τ to
maximize the probability of detecting malicious platforms.

In practice, τ is determined by the prior knowledge of the auditor. In the PAC-learning theory, the sample complexity
is the number of examples that are required to guarantee a Probably Approximately Correct model. That is to say, it is
possible to link the sample complexity with accuracy, a confidence parameter and some properties of the hypothesis class.
For PAC-learnable hypothesis class, the more examples, the better the accuracy. If the auditor wants a high Puf , they must
have δ

τ → 1 and so they must have the largest possible prior dataset.

Takeaway. The auditor can always calculate a priori the probability to correctly detect a malicious platform trying to be
fair. This probability depends on multiple factors, among them the sample complexity: the more examples the auditor has
in the prior dataset, the best the detection.

B. Online v.s. batch auditing
Note that we assume that the platform receives all audit queries at once and that it is possible to detect all the audit queries.
In practice, the queries are usually issued online (that is, one-by-one) by the auditor, through web-scraping or through an
API. Compared to online auditing, it is easier for the platform to manipulate an audit if it knows all the audit queries before
having to answer. On the other hand, because the auditor has to send all their queries at once, they cannot use the answers
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of the platform to actively guide the generation of the audit questions (e.g. as in (Yan & Zhang, 2022; Godinot et al.,
2024)). Ultimately, our setting is built as a worst-case analysis of the auditing game.

C. Experimental setup
C.1. Datasets and models

We conduct our experiments on tabular and vision modalities. The tabular dataset comes from the ACSEmployment task
for the state of Minnesota in 2018, which is derived from US Census data and provided in folktables (Ding et al., 2021).
The objective of this task is to predict whether an individual between the age of 16 and 90 is employed or not. As input
features of the model hp, we consider several attributes of the individual, including gender, race, and age. The fairness of
the models is evaluated along the race attribute given in the dataset: one group consists of individuals identified as “white
alone”, while the other includes all remaining individuals.

For the vision modality, we study CelebA (Liu et al., 2015), which consists of images of celebrities along with several
binary attributes associated with each image, such as whether the person in the photo is blond, smiling, or if the photo is
blurry. As input to a vision model, we use the image to predict one of the associated attributes. The target attribute varies
across experiments and will be specified accordingly. The Demographic Parity is evaluated along the gender attribute given
in the dataset. For the ACSEmployment dataset, we train GBDT and Log. Reg. models, while for CelebA, we train a LeNet
convolutional neural network (Lecun et al., 1998). GBDT and Log. Reg. are trained using the default parameters of their
respective implementations in SCIKIT-LEARN. Meanwhile, LeNet is trained irrespective of the target attribute using the
Adam optimizer with a learning rate of γ = 0.001, a batch size of 32, and for two epochs, which is sufficient for the model
to converge on all features.

C.2. Implementing optimal audit manipulations

In practice, computing the optimal manipulation hm = projF (hp) amounts to solving:

hm(S) ∈ argmin L(h, {(x, hp(x)) : x ∈ S})
s.t. µ̂(h, S) < τ

(9)

We note that this problem is the same problem solved by in-processing and post-processing fairness repair methods (Caton
& Haas, 2024). Thus, ironically, computing the optimal manipulation is equivalent to choosing the optimal fairness repair
method. The only difference being on which set the fairness constraints and accuracy objectives are defined: the audit set
S instead of the training dataset. Thus, since any practical fairness repair method can be repurposed for manipulation, we
adapted four classical fairness repair methods: ROC (Kamiran et al., 2012), OT-L (Jiang et al., 2020), LinR (Lohaus et al.,
2020) and ThreshOpt (Hardt et al., 2016).

D. Related Work
Companies are often motivated to bypass fairness audits to hide the unfairness of their ML models (Aivodji et al., 2019).
Addressing fairness issues often requires compromising model performance for advantaged groups which can discourage
companies from embracing fair training practices (Zietlow et al., 2022; Zhao & Gordon, 2022). At the same time, there
is an increase in regulatory efforts to combat such manipulations and enforce fairness (Crémer et al., 2023). Frameworks
such as the Algorithmic Accountability Act (AAA) (Congress, 2022) (US) and the Digital Markets Act (DMA) (Union,
2022) (EU) impose penalties on platforms failing to meet fairness standards.

Fairness auditing evaluates ML models to ensure fairness and accountability, often without access to proprietary model
internals (Ng, 2021). This black-box auditing approach relies on querying the model and analyzing its outputs against pre-
defined fairness metrics (Birhane et al., 2024; de Vos et al., 2024). Current attempts to enhance fairness audits with tangible
guarantees draw inspiration from hypothesis testing (Si et al., 2021; Taskesen et al., 2021; DiCiccio et al., 2020; Cen & Alur,
2024; Cherian & Candès, 2024; Bénesse et al., 2024), online fairness auditing (Chugg et al., 2023; Maneriker et al., 2023),
and formal methods for fairness certification (Albarghouthi et al., 2017; Ghosh et al., 2021; 2022; Borca-Tasciuc et al.,
2022). Beyond statistical methods, the work of Yadav et al. explore the role of explanations in the auditing process (Yadav
et al., 2023). Recent works also stress the importance of broadening the lens of algorithm auditing by incorporating user
perspectives and sociotechnical factors (Lam et al., 2023; Deng et al., 2023). On another line of research, Confidential-
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PROFITT and FairProof propose to integrate cryptographic techniques in cooperation with the platforms, to ensure the
faithfulness of platform responses during audits (Yadav et al., 2024; Shamsabadi et al., 2023; Waiwitlikhit et al., 2024);
this is, however, more intrusive and technically restrictive, and thus awaits for adoption.

Manipulating fairness audits is an active area of research. It has been shown that fairness can be faked through biased
sampling when the decision maker is allowed to publish a labeled dataset as proof of model fairness (Fukuchi et al.,
2020). Adversarial attacks on explanation methods, such as LIME and SHAP, can be employed to produce misleading
interpretations of model behavior (Fokkema et al., 2023; Shamsabadi et al., 2022; Laberge et al., 2022; Aı̈vodji et al.,
2021; Slack et al., 2020; Anders et al., 2020; Aivodji et al., 2019; Le Merrer & Trédan, 2020). Platforms can also modify
the output of their models to create the appearance of fairness without addressing underlying biases (Yan & Zhang, 2022;
Garcia Bourrée et al., 2023; Godinot et al., 2024). However, the challenge of designing audits that are robust to advanced
manipulation strategies remains open.

This work studies leveraging prior knowledge, such as labeled datasets owned by auditors, to enhance the robustness of
fairness audits. Distill-and-Compare is a distillation approach that assumes that the auditor has a prior about the ground
truth and hypothesis class (Tan et al., 2018). Other audit approaches also assume prior knowledge of the hypothesis
class (Yan & Zhang, 2022; Godinot et al., 2024). This work goes beyond existing approaches by deriving theoretical
guarantees and bounds.

E. Dynamics of the concealable unfairness as the audit budget increases
In this section, we study the dynamics of the concealable unfairness when the audit budget |S| increases.: (RQ2) Can the
auditor always find an audit budget that prevents the platform from hiding any unfairness, i.e., that always allows to flag
the platform if malicious (Appendix E)?

The probability of detecting manipulations (via the the detection score) should intuitively increase as the auditor gains
access to a larger number of data samples (i.e., has a higher audit budget) since this allows for a more accurate comparison
of hp with the data prior Ha. In this experiment, we explore how well this intuition holds in practice. For this purpose, we
fix the hyperparameters for each manipulation method by selecting those that result in the highest concealable unfairness
for a given base model. Then, for each base model–target attribute pair, we determine the maximum concealable unfairness
that a platform can achieve while ensuring that its detection score (see eq. 8) remains below the detection threshold. As
proposed in Section 4 the threshold for each model is set to 1 − x, where x represents the maximum accuracy achieved
when training a set of models on the corresponding target. This process is repeated for audit budgets ranging from 100 to
5, 000.

The results of this experiment are shown in Figure 4. The two plots on the left display the results for CelebA using the
same base model but different target attributes, while the two plots on the right show results for ACSEmployment using the
same target attribute but different base models. These results reveal two distinct cases. In the first case (CelebA Smiling
in Figure 4), the concealable unfairness converges to zero as the audit budget increases. This is due to the low aleatoric
uncertainty associated to the Smiling target. Since the task is easier, the accuracy range of models trained on Smiling
is narrower, leading to a tighter detection threshold τ . In the second case (all the other facets of Figure 4), the concealable
unfairness remains nonzero despite an increasing budget.

Furthermore, in many cases, even with a high audit budget, some increase of unfairness remains undetectable by the
auditor. Consequently, the platform retains some capacity to conceal unfairness even at high audit budgets. This stresses
the hardness of the auditor’s task in some configurations, and lead to a negative answer to (RQ2). In that light, we also
observe that –in response to (RQ1)–, the Linear Relaxation and ROC Mitigation manipulation strategies are the most
effective for a manipulative platform.

F. Proofs and additional theoretical results
As in (Buyl & De Bie, 2022), let Z ≜ X × A × {0, 1} denote the sample space, from which the auditor draws samples
Z ≜ (X,A, Y ). The auditor sample the binary predictions Ŷ ∈ {0, 1} from a probabilistic classifier h : X → [0, 1] that
assigns a score h(X) to the belief that a sample with features X belongs to the positive class. It is assumed that X ⊂ RdX

and A = {[A0, A1]/A0, A1 ∈ {0, 1}} = {[1, 0], [0, 1]}(the one-hot encoding of the protected feature with two groups).
We also assume that Ha is an open set of Z .
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Figure 4. The concealable unfairness for different audit budgets (i.e., data samples from the labeled dataset). We highlight this for two
features of the CelebA dataset (left) and for two different ML models trained on the ACSEmployment dataset (right).

Table 1. Notations

H HYPOTHESIS CLASS
F SET OF FAIR MODELS
Ha SET OF EXPECTABLE MODELS
ha GROUND TRUTH
δ DISTANCE BETWEEN THE GROUNDTRUTH AND THE SET OF EXPECTABLE MODEL
hp ORIGINAL MODEL OF THE PLATFORM
hm MANIPULATED MODEL OF THE PLATFORM
X INPUT SPACE
D DATA DISTRIBUTION
X SAMPLE FROM INPUT SPACE
Y OUTPUT SPACE
Y SAMPLE FROM OUTPUT SPACE
A PROTECTED FEATURE
Z SAMPLE SPACE
Z SAMPLE
n DIMENSION OF Z

We denote F the set of all score functions f : X → {0, 1} that satisfy (PDP):

F ≜ {f : X → {0, 1} : EZ [g(Z)f(X)] = 0n}

with ∀k ∈ [2], gk = Ak

EZ [Ak]
− 1, 0n a vector of n = dF zeros.

Assuming that the predictions Ŷ |X are randomly sampled from a probabilistic classifier h(X), then the traditional fairness
notion of demographic parity (DP) is equivalent to PDP. But if Ŷ is not sampled from h(X) but instead decided by a
threshold, DPD is a relaxation of the actual DP notion. That is to say, F is the set of all score functions that are fair
regarding the demographic parity on A.

As F is the kernel of the linear transformation f : EZ [g(Z)f(X)], F is a hyperplane of Z .

As F is a hyperplane of Z , it is dense or closed in Z .

F.1. Cases where F is dense in Z .

Lemma F.1. If F is dense in Z , the auditor has a probability to detects it as manipulated equals to zero.

Proof. If F is dense in Z then for every function f ∈ Z , every open neighborhood of f intersects F . In particular, it

12



Robust ML Auditing using Prior Knowledge

always exists a model hm ∈ F that is in a neighborhood of hp and in Ha. In that case, hm is fair and expectable, so the
auditor has a probability to detects it as manipulated equals to zero.

This case is a pathological case where the platform can still appear fair and honest. For the next theoretical results, we are
interested in the case where F is closed in Z .

F.2. Cases where F is closed in Z .

If F is a hyperplan closed in Z , it has an empty interior (i.e. ∂F = ∅) as its codimension is 1. In the following, we can
thus use F instead of ∂F , as both are equals.

Similarly, we can define the normal vector to F which is actually the vector that is used for all the projections we use in
this paper. In Equation (6), we defined h∗

m = projF (hp) (i.e. h∗
m is the orthographic projection of the expectable model hp

in the set of fair models F).

Having an hyperplan lead to the natural definition of (hyper)cylinder, that we use in the following theorem.

Definition F.2. A right cylinder C(H,B) is the set of all points whose orthographic projection on a hyperplane H lies in
a set B with B a subset of the boundary of H . B is called the base of the cylinder.

Theorem F.3. The probability Puf that the auditor correctly detects a malicious platform trying to be fair is
P (Ha\C(F ,Ha ∩ ∂F)|Ha).

Proof. The auditor correctly detects a malicious platform trying to be fair if and only if the manipulated model is fair but
not expectable. The manipulated model is fair but not expectable if and only if the orthographic projection h∗

m of hp in F
is not in Ha ∩ ∂F . Thus, the manipulated model is fair but not expectable if and only if hp /∈ C(F ,Ha ∩ ∂F) (following
Definition F.2). As by assumption hp ∈ Ha (Equation (4)), it means that hp ∈ Ha\C(F ,Ha ∩ ∂F). The auditor correctly
detects a malicious platform trying to be fair with probability P (Ha\C(F ,Ha ∩ ∂F)|Ha).

Theorem A.2 is a special case of Theorem F.3 with additional assumption. We now prove the main Theorem Theorem A.2.

Theorem A.2. If Ha is a ball centered in the ground-truth ha with radius τ (i.e. Ha = B(ha, τ)) in the space (YX , ∥.∥2)
then the probability that the auditor correctly detects a malicious platform trying to be fair is

1− 1

Wn

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

with δ = d(ha,F), the distance of ha to F and Wn is the n-term of Wallis’ integrals.

Proof. As established in Theorem F.3, Puf = P (Ha\C(F ,Ha ∩ ∂F)|Ha).

The probability P (Ha\C(F ,Ha ∩ ∂F)|Ha) is the probability to be in the ball Ha without the probability to be in the
intersection between the ball Ha and the cylinder C(F ,Ha ∩ ∂F). In the following, we denote V #

n (τ, δ) this quantity.

As Ha is an ball, its volume is:

V ball
n (τ) =

πn/2τn

Γ(n+2
2 )

with Γ(z) =
∫∞
0

tz−1e−tdt (NIST, 2013).

The volume of the intersection between the cylinder and the ball is the sum of the three following volumes:

• the solid cylinder with height between −δ and δ

• the spherical cap of Ha that is above the previous cylinder (i.e. the part of Ha with height between δ and τ )

• the spherical cap of Ha that is bellow the previous cylinder (i.e. the part of Ha with height between −δ and −τ )
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According to (Li, 2010), the volume of each spherical cap is

V cap
n (τ, δ) =

π(n−1)/2τn

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ

And the volume of the cylinder of height 2δ is

V cylinder
n (τ, δ) = 2δV ball

n−1(
√

τ2 − δ2)

Thus,

V #
n (τ, δ) = V ball

n (τ)− 2V cap
n (τ, δ)− V cylinder

n (τ, δ)

=
πn/2τn

Γ(n+2
2 )

− 2
π(n−1)/2τn

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ
π(n−1)/2(

√
τ2 − δ2)n−1

Γ(n+1
2 )

According to Theorem F.3, the probability that the auditor correctly detects a malicious platform trying to be fair is
P (Ha\C(F ,Ha ∩ ∂F)|Ha). That is to say, it is the ratio of V #

n (τ, δ) over V ball
n (τ):

Puf = P (Ha\C(F ,Ha ∩ ∂F)|Ha)

=
V #
n (τ, δ)

V ball
n (τ)

= 1− 2
Γ(n+2

2 )

Γ(n+1
2 )

π(n−1)/2

πn/2

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ
(τ2 − δ2)(n−1)/2

τn
Γ(n+2

2 )

Γ(n+1
2 )

π(n−1)/2

πn/2

= 1− 2√
π

Γ(n+2
2 )

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ√
π

(τ2 − δ2)(n−1)/2

τn
Γ(n+2

2 )

Γ(n+1
2 )

= 1− 2√
π

Γ(n+2
2 )

Γ(n+1
2 )

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ
(τ2 − δ2)(n−1)/2

τn

)

The function Γ can be written with Wallis’ integrals as: Wn =
√
π
2

Γ(n+1
2 )

Γ(n+2
2 )

with ∀n,Wn =
∫ π/2

0
sinn(θ)dθ.

In the other hand,

δ
(τ2 − δ2)(n−1)/2

τn
=

δ

τ

(τ2 − δ2)(n−1)/2

τn−1

=
δ

τ

(
τ2 − δ2

τ2

)(n−1)/2

=
δ

τ

(
1− δ2

τ2

)(n−1)/2

Thus, Puf = 1− 1
Wn

(∫ arccos(δ/τ)

0
sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

Before dealing with this complete expression, we propose some particular cases that are easily interpretable.

Corollary F.4. If Ha is a ball centered in the ground-truth ha that is tangent to F , then the auditor has a probability one
to correctly detect a malicious platform trying to be fair.

14
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Ha = B(ha, τ) ∧ τ = δ =⇒ Puf = 1.

with δ = d(ha,F), the distance of ha to F .

Proof. If Ha is tangent to F then δ = τ . Thus, arccos(δ/τ) = arccos(1) = 0 and
∫ arccos(δ/τ)

0
sinn(θ)dθ = 0.

Thanks to the formula of Theorem A.2 with δ/τ = 1, Puf = 1− 1
Wn

(0− 0) = 1.

If Ha is tangent to F , Puf = 1.

This corollary means that by reducing the threshold τ to the minimal value (δ), the auditor is sure to detect any manipulation
of the platform.

Corollary F.5. If Ha is a ball centered in the ground-truth ha that is fair, then the auditor has a probability zero to correctly
detect a malicious platform trying to be fair.

Ha = B(ha, τ) ∧ ha ∈ ∂F =⇒ Puf = 0.

Proof. If ha ∈ ∂F then δ = 0 and arccos(δ/τ) = arccos(0) = π/2 in the formula of Theorem A.2. Thus, Puf =
1− 1

Wn
(Wn − 0) = 0.

This last case is the case where the ha of the auditor is fair. Intuitively, if ha is fair, half of the model that the platform can
construct are naturally fair and the other half are naturally unfair. Thus, it is very easy to change from an unfair model to a
fair model without changing too much the honest model. Thus, detecting such manipulation is very hard for the auditor.

Now, we study the general expression of Puf in Theorem A.2. In particular, we study a lower bound of Puf to study when
the probability is strictly positive.

Corollary A.3. If n even, Puf lies in between 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

and 1, i.e., 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

≤ Puf ≤ 1.

Proof. Puf = 1− 1
Wn

(∫ arccos(δ/τ)

0
sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)

Wn =
∫ arccos(δ/τ)

0
sinn(θ)dθ +

∫ π/2

arccos(δ/τ)
sinn(θ)dθ

So, 1
Wn

∫ arccos(δ/τ)

0
sinn(θ)dθ ≤ 1 (with n even).

And Puf ≥ 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

Lemma F.6. The lower bound according to δ/τ has two extremums that are for δ/τ = 1 or δ/τ = γ with γ =√
n+3−

√
n−1

2 .

Remark. Note that γ only depend on the dimension n and leads to 0 when n leads to infinity.

Proof. We define fn (the lower bound) s.t.

fn(δ, τ) =
δ

Wnτ

(
1− δ2

τ2

)(n−1)/2

Change of variable x = δ
τ , f(x) = x

Wn (1− x2)(n−1)/2.

We are interested in cases where τ > δ, i.e. 0 < x < 1.

15
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Moreover, f has an extremum iff f ′ = 0 somewhere in [0, 1].

∀x ∈ [0, 1],Wnf
′(x) = (1− x2)(n−1)/2 − (n− 1)x2(1− x2)(n−3)/2

= (1− x2)(n−3)/2(x2 +
√
n− 1x− 1)(x2 −

√
n− 1x− 1)

i.e. f ′(x) = 0 for the following elements:

• x = −1 < 0

• x = 1

• −
√
n−1−

√
n+3

2 < 0

• −
√
n−1+

√
n+3

2 ∈ [0, 1]

•
√
n−1−

√
n+3

2 < 0

•
√
n−1+

√
n+3

2 > 1 (if n ≥ 2)

So f has two local extremums in [0, 1], one for 1 and one for γ =
√
n+3−

√
n−1

2 .
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