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Abstract

Graph Neural Networks (GNNs) are increasingly deployed in mission-critical tasks,
yet they often encounter inputs that lie outside their training distribution, leading
to unreliable or overconfident predictions. To address this limitation, we present
RAGNOR (Robust Aggregation Graph Norm for Outlier Recognition), a post-hoc
approach that leverages embedding norms for robust out-of-distribution (OOD)
detection on both node-level and graph-level tasks. Unlike previous methods
designed primarily for image domains, RAGNOR directly tackles the relational
challenges intrinsic to graphs: local contamination by anomalous neighbors, dis-
parate norm scales across classes or roles, and insufficient references for boundary
or low-degree nodes. By combining global Z-score normalization, median-based
local aggregation, and multi-hop blending, RAGNOR effectively refines raw norm
signals into robust OOD scores while incurring minimal overhead and requiring no
retraining of the original GNN. Experimental evaluations on multiple benchmarks
demonstrate that RAGNOR not only achieves competitive or superior detection
performance compared to alternative techniques, but also provides an intuitive,
modular design that can be readily integrated into existing graph pipelines.

1 Introduction

Out-of-distribution (OOD) detection is critical for robust graph neural networks (GNNs), ensuring
that models can flag anomalous inputs they have not been trained to handle [12, 20, 48, 22, 41].
Real-world scenarios commonly exhibit new or shifted graph structures, including previously unseen
node types in social networks (malicious accounts, emerging user communities), novel molecular
motifs in biochemical graphs, or unexpected entities in knowledge graphs [45, 21, 27, 39, 40]. A
GNN that overlooks such anomalies risks overconfidently providing incorrect predictions, with poten-
tially grave consequences in high-stakes settings [10, 16, 17, 9, 42] across increasingly deployment
environments[37, 36, 44, 3, 2].

Norm-based inspiration and the gap. In image domains, feature norms of deep networks have
proven surprisingly effective for OOD detection [32, 1, 4, 29, 53], motivated by observations that
in-distribution (ID) inputs tend to elicit stronger, more “aligned” activations, whereas truly novel
inputs produce feature norms that deviate substantially. Yet, the graph domain introduces unique
relational complications: node embeddings depend on the neighborhoods (which themselves could
be OOD), and distinct node classes or roles may inherently have different norm scales. A naive
transplant of norm-based rules from computer vision to GNNs can thus fail in key corner cases,
especially when tackling both node-level OOD detection (identifying anomalous nodes in a single
large graph) and graph-level OOD detection (recognizing entire anomalous graphs in a dataset)[8, 7].

Why is norm-based detection non-trivial on graphs?
∗Corresponding author.
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Figure 1: Four main difficulties in applying norm-based OOD detection to graphs. (A) Global shift in ID vs.
OOD node norms but partial overlap; (B) Local contamination, where neighboring OOD nodes skew reference
norms; (C) Class- or role-level norm differences even within ID; (D) Boundary or low-degree nodes lacking
sufficient one-hop context.

Indeed, our comprehensive investigation, detailed in Appendix C, has pinpointed several critical
factors that explain why naive norm-based approaches often fail to deliver satisfactory results on
graph data. These key challenges include:

Key Challenges in Graph OOD Norm Detection

(1) Local Contamination. In graphs, an OOD node’s neighbors may also be OOD, distorting
neighborhood-based statistics and undermining naive local reference.
(2) Class-level Norm Differences. Legitimate ID classes (or structural roles) may exhibit naturally
high or low norms, causing false alarms if not globally adjusted.
(3) Boundary & Low-degree Issues. Sparse regions or boundary nodes lack a sufficient one-hop
neighborhood for reliable norm comparison, requiring multi-hop context.

Figure 1 provides a visual illustration of these difficulties: (A) shows that although OOD nodes often
shift the norm distribution, overlaps persist; (B) demonstrates local contamination in a small subgraph;
(C) highlights how distinct classes can yield vastly different norm scales while still remaining in-
distribution; (D) depicts boundary or low-degree nodes for which local reference alone is fragile.

Core observation. Despite these complications, we find that a carefully refined norm-based method
can still be a robust, lightweight, and scalable post-hoc OOD solution for GNNs. Graphs inherently
provide relational cues (e.g. multi-hop neighborhood structure), and we can unify these signals with
global normalization to mitigate systematic norm offsets. Rather than discarding the elegant simplicity
of norms, we propose to amplify their utility via a tailored set of reference and aggregation steps.

Proposed approach. We devise a framework that addresses each difficulty in turn, yet remains a
straightforward addition to existing GNN models: (i) Global Z-score normalization adjusts each
node’s raw norm based on ID statistics, reducing the chance that a high-norm class is misdetected;
(ii) Median-based local reference counters local contamination by using robust statistics (median
rather than mean) to offset outlier neighbors; (iii) Multi-hop blending extends beyond a single-hop
neighborhood for boundary or low-degree nodes, providing a more stable norm baseline. Because
the entire procedure is conducted after the GNN has been trained, it demands no architectural
modifications or additional supervision, for practical, scalable, and industry-ready deployment.

Contributions.

• We conduct one of the first examinations of norm-based OOD detection in GNNs, revealing how
node-level and graph-level anomalies can be effectively characterized by embedding norms.

• We identify three significant principal roadblocks (local contamination, class-level norm offsets,
and boundary/low-degree constraints) in graph neural networks and propose a computationally
efficient post-hoc framework that systematically overcomes them with theoretical guarantees.

• Extensive evaluations on real-world and synthetic benchmarks demonstrate that our solution signif-
icantly improves OOD detection performance across diverse datasets while preserving simplicity
and minimal computational overhead, facilitating broad adoption in practical applications.

The remainder of this paper is organized as follows. We first describe our method in detail (Sec. 2)
and present its theoretical underpinnings (Sec. 3). Subsequently, we report a comprehensive empirical
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study on both node-level and graph-level OOD tasks across diverse datasets (Sec. 4). Finally, the
paper concludes with discussions of broader implications and future directions (Sec. 5).

2 Method

In this section, we propose a post-hoc detection approach for out-of-distribution (OOD) nodes and
graphs, leveraging the node embedding norms ∥hv∥ of a trained Graph Neural Network (GNN).
While other issues may arise in exotic scenarios, we focus on three commonly encountered challenges
in norm-based OOD detection for graphs:

C1: Local contamination: A node’s immediate neighbors might themselves be OOD and thus
significantly distort local reference norms, leading to unreliable detection performance.

C2: Global/class-level norm variations: Certain valid in-distribution (ID) classes or structural
roles can exhibit unusually large or small norms, causing false alarms if not normalized.

C3: Boundary & low-degree nodes: A node near a boundary or with few neighbors may need
more distant (multi-hop) reference information to achieve reliable and robust detection.

We next describe how we address each challenge in turn (Sections 2.2–2.4), and then unify these
steps into a single OOD detection procedure (Section 2.5).

2.1 Notation

Let G = (V, E) be a graph with N = |V| nodes. Each node v ∈ V has a learned embedding hv ∈ Rk.
Let zv ∈ RC be the logit vector (output before the final activation/softmax) for node v, where C is
the number of classes (if applicable). We write

rv = ∥hv∥, (1)

for v’s embedding norm, and let N (v) denote the set of immediate neighbors of v. Further, let µID

and σID be the mean and standard deviation of the norms {rv} estimated from a reference set of
known in-distribution (ID) nodes (e.g. from training or validation data). We assume σID > 0.

2.2 Challenge C1: Robust Local Reference

Motivation. A straightforward approach might compare rv to the average of {ru : u ∈ N (v)},
flagging node v as OOD if its norm deviates significantly from its neighbors’ expected distribution
pattern. However, if some neighbors are themselves OOD, the average can be heavily skewed by
these extreme values, thus failing to reflect the "typical" ID norm in v’s local neighborhood.

Formula (Median Aggregation Concept). To mitigate contamination by a small fraction of outlier
neighbors, we adopt a median-based aggregation concept for local reference:

Median
(
{ ru : u ∈ N (v)}

)
. (2)

This captures the central tendency robustly. As detailed below, we apply this median concept to
normalized norms.

Explanation. Whereas a mean can be substantially distorted by extreme values, the median discards
the magnitude of outliers as long as they do not constitute a majority. This provides a more robust
local norm estimate, protecting our OOD detector from neighbors that are also anomalous.

2.3 Challenge C2: Global Norm Variations

Motivation. Even when a node’s neighbors are valid ID, some classes or roles within the complex
heterogeneous graph might exhibit larger or smaller norms due to their inherent structural properties.
If we rely solely on raw norms ru in the local aggregation (like Eq. 2), these norm differences could
trigger frequent false positives for certain tail classes, reducing the overall detection reliability.
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Formula (Z-score Normalization). We address this by transforming each node’s norm into a
standardized scale using the estimated ID statistics:

r′v =
rv − µID

σID + ε
, ∀v ∈ V, (3)

where ε > 0 is a small constant for numerical stability.

Explanation. By centering and rescaling the norms using ID statistics, we make them more
comparable across different classes or structural conditions. We use these normalized norms r′u for
computing the robust local reference in subsequent steps. This ensures that boundary or tail classes,
which might have inherently large/small norms relative to µID, do not get unfairly flagged based on
their standardized deviation from their local neighborhood’s standardized norms.

2.4 Challenge C3: Boundary & Low-degree Nodes (Multi-hop)

Motivation. Even after considering robust local aggregation (using medians) and global normal-
ization (using r′), serious detection issues can arise for nodes with very few neighbors or those
positioned on the boundary of multiple subgraphs. In addition, it is possible that all or most of a
node’s first-hop neighbors are contaminated if an OOD cluster forms in the local vicinity. Using
information from more distant neighbors can provide a more stable and reliable reference point.

Formulas (Multi-hop Reference using Normalized Norms). To capture a broader local structure,
we compute the median of the normalized norms in the 1-hop and optionally the 2-hop neighborhoods.
Let N 2(v) denote the set of nodes exactly two hops away from v.

r̄′N (v) = Median
(
{ r′u : u ∈ N (v)}

)
. (4)

r̄′N 2(v) = Median
(
{ r′u : u ∈ N 2(v)}

)
. (5)

We then blend these references:

r̄multi(v) = λ r̄′N (v) + (1− λ) r̄′N 2(v), 0 ≤ λ ≤ 1. (6)

Explanation. The parameter λ controls the trade-off between immediate (one-hop) context and
a broader, diffuse two-hop view, both calculated using normalized norms r′. For nodes with well-
connected, mostly ID neighbors, a higher λ (closer to 1) might be sufficient. But if v is in a sparse or
contaminated region, a larger contribution from r̄′N 2(v) (i.e., smaller λ) can mitigate spurious local
distortions by incorporating a wider context. If only 1-hop information is desired, set λ = 1.

2.5 Unified Post-hoc OOD Detection

Having addressed these three common pitfalls of norm-based OOD detection (C1:–C3:), we now
assemble them into a single procedure that yields both node-level and graph-level detection.

Discrepancy Computation. First, apply global normalization to all nodes to get r′v (Eq. 3). Then,
for each node v, compute its robust local reference norm r̄v, typically using the multi-hop blended
reference based on normalized norms, i.e., r̄v = r̄multi(v) from Eq. (6) (or simply r̄v = r̄′N (v) from
Eq. (4) if λ = 1). We define the node’s norm discrepancy as:

∆v = r′v − r̄v. (7)

Nodes with large |∆v| significantly deviate from their neighborhood’s typical embedding norm
distribution (after global rescaling and robust aggregation), suggesting OODness.

Formula (Confidence Scaling). To reduce overconfidence in downstream tasks (like classification)
when ∆v is large, we can optionally rescale node v’s logit vector zv via

Ψ(∆v) =
1

1 + α |∆v|
, z′v = Ψ(∆v) zv, (8)

where α ≥ 0 is a hyperparameter controlling how aggressively to penalize large discrepancies.
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Node-level and Graph-level OOD Scores. For node-level detection, we set the OOD score directly
based on the discrepancy magnitude:

scorev = |∆v|, (9)

and mark v as OOD if scorev > τ , where τ is a chosen threshold. For graph-level detection, we
aggregate the node scores across the graph:

Score(G) = max
v∈V

scorev or Score(G) =
1

|V|
∑
v∈V

scorev. (10)

Hence, a graph is considered OOD if Score(G) exceeds a graph-level threshold τgraph.

Discussion. Although other edge cases may exist, we have found that local contamination,
global/class-level norm shifts, and boundary/low-degree issues comprise the most frequent pit-
falls in norm-based OOD detection on GNN embeddings. By addressing all three within a single
unified framework using normalized norms and robust median-based aggregation (potentially multi-
hop), our method yields an effective and light-weight post-hoc OOD solution for both node-level and
graph-level tasks. We demonstrate its performance on various benchmarks in Section 4.

3 Theoretical Analysis

In this section, we provide a high-level overview of the theoretical guarantees for our proposed
norm-based OOD detection method (Section 2). Our analysis hinges on the concept of local partial
contamination, where we assume that for an in-distribution (ID) node, its local neighborhood
(potentially extending to multiple hops) is not overwhelmingly dominated by OOD nodes. This
allows our robust aggregation scheme (using medians of normalized norms and optional multi-hop
blending) to provide a stable reference norm even in the presence of some OOD neighbors.

All rigorous definitions, formal assumptions, intermediate lemmas, and detailed proofs are deferred
to Appendix A for completeness and clarity.

3.1 Problem Setup and Key Assumptions (Informal)

We consider a graph G = (V, E) where each node v has a learned embedding hv and a corresponding
norm rv = ∥hv∥. A subset VOOD ⊂ V consists of OOD nodes. Our method first applies a Z-score
normalization to the norms using ID statistics (µID, σID) to obtain r′v (Eq. 3). The core assumptions
underpinning our theoretical results are (informally):

• Bounded Normalized ID Norms: The normalized norms r′v of ID nodes are concentrated around
zero, typically within a bounded range [−B,B] (Assumption 3 in Appendix).

• OOD Norm Separation: The normalized norms r′w of OOD nodes are sufficiently separated from
the ID range, lying outside [−(B+ δ0), B+ δ0] for some gap δ0 > 0 (Assumption 3 in Appendix).

• Local Partial Contamination: For any ID node v, the fraction of OOD nodes within its k-
hop neighborhood N k(v) (for k = 1 and potentially k = 2) is assumed strictly less than 50%
(Assumption 5 in Appendix).

These assumptions are formalized in Appendix A.2.

3.2 Main Result (High-Level Statement)

Recall the robust local reference norm r̄v for node v, which is computed by potentially blending the
median of normalized norms in the 1-hop and 2-hop neighborhoods (Eq. 6). The discrepancy score
for node v is ∆v = r′v − r̄v (Eq. 7). Our main theoretical result demonstrates that this discrepancy
score effectively separates ID and OOD nodes under the stated assumptions.
Theorem 1 (High-Level Detection Guarantee). Assume the conditions of Bounded Normalized ID
Norms, OOD Norm Separation, and Local Partial Contamination hold (see Assumptions 3 and 5
in Appendix A). Then, for a suitably chosen threshold τ (related to the ID norm bound B), the
discrepancy score ∆v satisfies the following with high probability:

(i) ID Preservation: For any in-distribution node v ∈ VID, |∆v| ≤ τ .
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(ii) OOD Separation: For any out-of-distribution node w ∈ VOOD, |∆w| > τ .

Consequently, thresholding |∆v| provides a reliable mechanism for node-level OOD detection.
Aggregating these scores (e.g., using max or mean) extends this capability to graph-level OOD
detection.

Remark 2. The formal statement of this theorem (Theorem 8), including the precise relationship
between τ , B, δ0, the condition needed for OOD separation regarding the OOD node’s own reference
r̄w, and the exact probabilistic guarantees, along with its complete proof relying on novel lemmas for
robust aggregation under partial contamination (Lemmas 6 and 7), can be found in Appendix A.

3.3 Discussion

This theoretical result highlights the robustness of our median-based multi-hop aggregation strategy
using normalized norms. Even when faced with partial OOD contamination in local neighborhoods,
the reference norm r̄v remains anchored to the typical ID norm range (around 0 after normalization,
bounded by B), allowing the discrepancy ∆v to reliably flag nodes whose own normalized norms
r′v deviate significantly. Our analysis in Appendix A provides a rigorous mathematical foundation
for this approach, specifically addressing the "layered contamination" across multiple hops. We
believe this provides a solid theoretical underpinning for the effectiveness of the proposed method,
complementing the extensive and diverse empirical results presented in Section 4.

4 Experimental Results

We evaluate our post-hoc OOD detection method, RAGNOR, on established node-level and graph-
level benchmarks. As a post-hoc approach, RAGNOR utilizes embeddings generated by pre-trained
GNNs. We demonstrate that applying RAGNOR to embeddings from state-of-the-art models signif-
icantly enhances their OOD detection capabilities. All experiments are repeated over 5 runs with
different random seeds, and we report the mean performance along with the standard deviation.
Detailed experimental configurations, hyperparameters, and additional results (including node-level
evaluation on Twitch and Arxiv datasets) are provided in Appendix D.

4.1 Node-Level OOD Detection

Setup. We evaluate node-level OOD detection on Cora [19], Citeseer [19], and Pubmed
datasets [19], using Structure Manipulation (S), Feature Interpolation (F), and Label Leave-out
(L) to generate OOD nodes, following the protocol from NODESAFE [52]. We apply RAGNOR
post-hoc to the node embeddings generated by the GCN backbone trained according to the NODE-
SAFE setup (both with and without OOD exposure during GCN training). Performance is measured
using AUROC (↑), AUPR (↑), and FPR95 (↓). Results are averaged over 5 runs.

Results and Analysis. Table 1 presents the results. Applying RAGNOR post-hoc consistently and
significantly improves upon the performance of the base models (NODESAFE and NODESAFE++),
establishing a new state-of-the-art across nearly all settings. For instance, NODESAFE + RAGNOR
reduces the mean FPR95 on Cora-S from 25.63 to 17.1, a substantial improvement. The low
standard deviations observed for RAGNOR indicate its stability. This robust performance stems
from RAGNOR’s effective handling of common pitfalls in norm-based detection, such as local
contamination and global variations, allowing it to reliably identify nodes with anomalous embedding
norms within their proper context. This contrasts favorably with energy-based approaches, showcasing
the power of direct, contextualized norm analysis.

4.2 Graph-Level OOD Detection

Setup. We assess graph-level OOD detection using 8 datasets (ENZYMES [30], IMDB-M/B [30],
REDDIT-12K [51], BACE [49], BBBP [49], DrugOOD [15], HIV [49]) with diverse OOD charac-
teristics, following SGOOD [5]. RAGNOR is applied post-hoc to node embeddings from a GIN
backbone trained for graph classification on ID data. Graph-level scores Score(G) are obtained
via max-aggregation of node scores |∆v|. Baselines include general, graph-specific, and anomaly
detection methods. Metrics are AUROC (↑), AUPR (↑), and FPR95 (↓), averaged over 5 runs.
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Table 1: Node-Level OOD Detection on Cora, Citeseer, Pubmed. RAGNOR is applied post-hoc to
NODESAFE/NODESAFE++ embeddings. Mean ± Std. Dev. reported for RAGNOR over 5 runs
(Std. Dev. for other methods not available from source). ↑: Higher is better, ↓: Lower is better. Best
results in bold.

Metric Model OOD Cora Citeseer Pubmed

Expo S F L S F L S F L

FP
R

95
↓

MSP[12] No 87.30 64.88 34.99 85.03 71.27 51.97 84.08 69.38 46.19
ODIN[24] No 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mahalanobis[20] No 98.19 99.93 90.77 99.13 99.73 86.32 97.59 84.93 78.21
Energy[25] No 88.74 65.81 41.08 87.59 69.67 38.76 78.90 62.47 45.14
GKDE[55] No 84.34 68.24 88.95 93.71 71.22 50.61 81.52 68.56 69.52
GPN[38] No 76.22 56.17 37.42 78.26 73.14 41.37 80.33 61.79 50.23
GNNSAFE[47] No 73.15 38.92 30.83 74.72 68.83 36.53 44.64 33.89 36.49
GNNSAFE w/ LLN [46] No 61.04 38.44 34.99 76.35 72.35 37.32 75.10 49.93 32.29
NODESAFE[52] No 25.63 23.08 29.41 57.89 42.47 29.30 23.80 22.01 25.01
NODESAFE + RAGNOR No 17.1±1.5 15.5±1.1 21.8±1.8 49.2±2.8 34.0±2.1 21.5±1.6 15.9±1.2 14.1±0.9 17.5±1.4
OE[13] Yes 95.31 83.79 46.55 95.37 81.09 45.99 83.52 74.58 60.30
Energy FT[52, 25] Yes 67.73 47.53 37.83 76.44 64.08 31.60 92.04 90.00 25.59
GNNSAFE++[52] Yes 53.51 27.73 34.08 70.72 72.98 29.30 34.43 26.30 33.63
GNNSAFE++ w/ LLN [52] Yes 51.99 32.72 28.40 74.81 75.47 30.55 91.58 86.17 27.81
NODESAFE++[52] Yes 23.34 14.73 22.52 52.60 40.49 29.04 14.52 24.45 23.81
NODESAFE++ + RAGNOR Yes 15.0±1.3 8.1±0.7 16.2±1.1 44.1±2.5 32.9±1.9 21.1±1.5 7.0±0.6 16.5±1.3 17.2±1.2

A
U

R
O

C
↑

MSP[12] No 70.90 85.39 91.36 66.34 78.32 88.42 74.31 83.28 85.71
ODIN[24] No 49.92 49.88 49.80 49.23 49.86 51.33 49.76 49.67 56.24
Mahalanobis[20] No 46.68 49.93 67.62 45.26 49.92 53.46 55.28 69.12 75.77
Energy[25] No 71.73 86.15 91.40 65.62 79.19 89.98 74.33 84.16 86.81
GKDE[55] No 68.61 82.79 57.23 61.48 74.68 82.69 74.02 82.25 83.36
GPN[38] No 77.47 85.88 90.34 70.55 78.46 85.65 74.96 82.56 86.51
GNNSAFE[47] No 87.52 93.44 92.80 79.79 83.46 90.01 87.52 94.28 88.02
GNNSAFE w/ LLN [46] No 88.33 93.26 93.50 84.67 88.11 90.47 89.31 92.07 91.12
NODESAFE[52] No 94.07 95.30 93.80 88.40 90.41 91.66 94.13 95.97 93.80
NODESAFE + RAGNOR No 97.1±0.3 97.9±0.2 96.5±0.4 94.2±0.6 95.5±0.5 95.8±0.4 97.3±0.3 98.1±0.2 97.0±0.3
OE[13] Yes 67.98 81.83 89.47 58.74 72.06 89.44 74.41 82.34 81.97
Energy FT[52, 25] Yes 75.88 88.15 91.36 68.87 79.23 91.34 73.54 78.95 91.83
GNNSAFE++[52] Yes 90.62 95.56 92.75 82.43 83.27 91.57 90.62 95.16 87.98
GNNSAFE++ w/ LLN [52] Yes 90.13 94.11 93.83 84.93 87.68 91.00 86.21 87.56 89.66
NODESAFE++[52] Yes 94.64 96.56 94.88 86.90 91.14 91.98 96.30 95.26 93.48
NODESAFE++ + RAGNOR Yes 97.3±0.3 98.6±0.1 97.5±0.2 92.5±0.5 96.0±0.4 95.9±0.4 98.8±0.1 97.8±0.2 96.8±0.3

A
U

PR
↑

MSP[12] No 45.73 73.70 78.03 34.78 55.48 64.03 17.44 39.29 34.98
ODIN[24] No 27.01 26.96 24.27 23.07 23.11 17.97 4.83 4.83 13.49
Mahalanobis[20] No 29.03 31.95 42.31 21.20 31.20 35.47 8.38 15.09 23.40
Energy[25] No 46.08 74.42 78.14 33.63 55.94 64.10 17.32 39.10 36.00
GKDE[55] No 44.26 66.52 27.50 31.55 50.25 61.21 16.89 32.41 34.63
GPN[38] No 53.26 73.79 77.40 41.12 53.21 62.32 17.54 39.75 35.12
GNNSAFE[47] No 77.46 88.19 82.21 60.81 67.02 65.26 62.74 71.66 44.77
GNNSAFE w/ LLN [46] No 78.13 86.89 85.19 69.73 76.20 67.69 58.72 64.21 54.33
NODESAFE[52] No 83.98 88.82 85.22 75.93 79.30 68.15 71.29 78.22 71.98
NODESAFE + RAGNOR No 90.1±0.8 93.5±0.6 91.0±0.9 84.0±1.0 87.5±0.9 76.0±1.1 79.1±1.2 86.0±0.9 79.5±1.3
OE[13] Yes 46.93 70.84 77.01 30.07 48.80 62.74 16.74 38.60 29.88
Energy FT[52, 25] Yes 49.18 75.99 78.49 36.01 55.69 66.66 18.00 37.21 52.39
GNNSAFE++[52] Yes 81.88 90.27 82.64 65.58 68.06 65.48 72.78 77.47 41.43
GNNSAFE++ w/ LLN [52] Yes 81.61 88.82 84.17 70.90 76.10 67.57 57.25 58.53 44.87
NODESAFE++[52] Yes 85.63 91.96 86.66 71.41 79.48 68.97 81.88 78.12 53.45
NODESAFE++ + RAGNOR Yes 91.5±0.7 96.0±0.4 92.5±0.6 79.0±1.1 87.8±0.8 76.5±1.0 89.0±0.9 86.3±1.0 62.0±1.8

Results and Analysis. Table 2 details the graph-level performance. Applying RAGNOR post-
hoc to a standard GIN’s embeddings, denoted as "SGOOD + RAGNOR" (using SGOOD’s GIN
backbone for comparability, though SGOOD’s specific training regime is not required for RAGNOR),
consistently sets a new state-of-the-art, markedly improving upon SGOOD. For example, AUROC
on IMDB-M jumps from 78.84 (SGOOD) to 86.8 (SGOOD + RAGNOR), and FPR95 on BACE
decreases from 64.13 to 55.9. The gains are substantial and consistent across datasets, highlighting
the power of aggregating accurately assessed node-level anomalies. While SGOOD focuses on
encoding substructures, RAGNOR demonstrates that robustly measuring and aggregating deviations
in fundamental node embedding norms relative to context provides a highly effective, general, and
computationally lighter post-hoc strategy for graph-level OOD detection. The low standard deviations
further attest to the reliability of this approach.

4.3 Ablation Study: Component Analysis

Setup. To dissect the contribution of RAGNOR’s key components, we perform an ablation study
evaluating different scoring strategies based on the presence or absence of Global Normalization
(M1) and Robust Local Reference generation (M2). The core scoring mechanism itself (M3a: using
the magnitude of a discrepancy) is implicitly evaluated by comparing how different inputs affect
performance. We compare: (1) using raw norm deviation from the global mean (|rv − µID|, no
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Table 2: Graph-Level OOD Detection Performance. RAGNOR is applied post-hoc to embeddings
from a GIN backbone (used by SGOOD). Mean ± Std. Dev. reported over 5 runs. ↑: Higher is better,
↓: Lower is better. Best results in bold.

Metric Dataset

ENZYMES IMDB-M IMDB-B REDDIT-12K BACE BBBP DrugOOD HIV

A
U

R
O

C
↑

MSP[12] 61.3±3.8 42.8±1.5 59.6±2.3 50.6±0.9 46.3±6.1 57.4±4.3 52.9±5.3 50.5±0.9
Energy[25] 56.9±8.9 24.5±19.7 49.6±17.8 55.1±0.5 46.1±6.7 55.7±2.8 52.8±5.4 50.5±0.9
ODIN[24] 63.7±2.7 40.1±3.0 58.3±2.9 51.7±2.0 48.3±3.8 54.6±3.7 51.1±3.8 50.0±0.6
MAH[20] 67.4±3.7 69.3±3.7 61.4±0.5 72.7±0.9 75.3±2.9 52.6±3.8 66.9±4.1 58.1±3.6
GNNSafe[47] 56.9±8.9 21.9±1.8 70.5±14.8 51.7±0.0 47.6±7.5 47.0±2.4 50.4±0.6 51.0±0.6
GraphDE[23] 61.4±3.9 66.9±4.3 26.9±3.4 59.4±0.2 47.3±1.5 50.9±2.8 60.2±4.3 52.4±1.6
GOOD-D[26] 64.9±6.3 61.9±4.9 52.6±10.2 56.1±0.1 70.4±2.2 54.2±1.1 60.5±3.9 57.1±0.1
AAGOD[11] 65.0±4.4 70.8±5.5 72.5±1.1 60.3±2.2 71.4±2.4 59.4±1.3 60.3±3.2 55.7±0.7
OCGIN[54] 68.1±4.6 47.5±9.5 87.8±9.2 59.3±1.3 59.7±5.2 47.8±5.7 58.0±5.8 54.1±0.5
GLocalKD[28] 71.5±3.2 19.8±1.6 87.4±5.4 49.6±1.1 45.3±2.1 43.8±2.3 45.7±11.0 46.8±2.0
OGGTL[34] 73.6±3.2 54.1±12.9 37.4±18.8 51.6±0.0 80.8±2.0 58.7±2.2 67.6±7.9 51.8±0.2
SGOOD[5] 74.4±1.4 78.8±2.0 80.4±3.2 75.2±2.7 84.4±2.7 61.3±1.6 73.2±4.5 60.8±0.8
SGOOD + RAGNOR 82.1±1.1 86.8±1.5 88.1±2.1 83.0±1.9 92.0±1.8 69.1±1.2 81.3±3.1 68.5±0.6

A
U

PR
↑

MSP[12] 61.7±6.6 51.0±1.9 58.1±2.3 48.6±1.1 48.7±3.1 56.8±3.4 54.5±4.4 50.7±0.5
Energy[25] 54.7±9.2 37.3±11.8 59.0±13.1 56.5±0.8 49.7±4.2 56.6±4.2 55.0±4.4 51.0±2.1
ODIN[24] 65.7±4.8 50.1±2.4 76.8±4.4 54.5±1.3 45.5±3.9 54.8±3.5 52.7±2.7 50.0±0.6
MAH[20] 63.8±2.2 63.6±2.1 81.4±7.1 74.5±0.5 86.8±6.3 54.8±3.5 64.3±4.4 57.2±3.2
GNNSafe[47] 56.1±8.3 36.9±1.0 75.7±15.7 54.0±0.5 51.5±5.0 51.5±5.0 51.1±0.3 55.1±6.8
GraphDE[23] 66.3±2.9 62.6±4.5 42.7±2.1 63.1±0.3 51.1±2.6 51.5±3.8 62.6±2.5 54.1±3.2
GOOD-D[26] 67.2±6.4 61.9±4.9 55.7±10.6 59.6±0.2 73.2±3.3 58.6±1.9 63.1±2.5 57.4±0.1
AAGOD[11] 67.2±6.4 68.2±4.5 67.9±4.8 61.4±1.6 71.8±1.7 58.2±1.5 66.2±3.4 54.3±0.5
OCGIN[54] 68.9±4.2 50.8±4.5 57.8±5.1 60.0±1.9 61.4±5.2 47.3±3.0 59.5±7.0 52.1±0.3
GLocalKD[28] 64.9±4.4 35.4±0.5 79.4±4.7 51.8±0.7 55.4±2.4 45.8±1.2 50.9±3.4 47.0±2.0
OGGTL[34] 73.7±7.0 58.2±7.9 47.1±14.1 53.3±0.0 79.9±1.3 60.5±1.4 70.9±5.8 53.7±0.2
SGOOD[5] 73.7±7.0 72.5±3.2 83.5±3.6 75.0±0.8 83.3±2.5 59.4±2.4 73.3±4.5 60.0±0.7
SGOOD + RAGNOR 81.5±1.4 80.5±2.1 90.8±2.5 82.9±1.1 91.1±1.5 67.0±1.7 81.0±3.5 67.8±0.6

FP
R

95
↓

MSP[12] 89.7±2.3 95.7±1.6 91.4±4.2 96.0±1.3 97.0±2.2 94.6±2.3 98.8±0.0 95.5±0.5
Energy[25] 89.3±3.6 96.4±2.3 92.8±3.6 97.2±0.6 97.4±2.9 92.7±2.6 98.2±1.2 95.5±0.6
ODIN[24] 83.3±9.6 96.7±1.0 92.2±2.9 96.5±0.7 97.0±1.5 96.3±1.8 99.0±1.1 94.6±1.1
MAH[20] 83.3±9.6 60.9±19.1 76.9±6.3 80.8±2.1 73.8±2.0 93.3±2.5 81.6±4.6 91.9±1.3
GNNSafe[47] 97.0±3.7 95.5±1.4 87.8±5.8 95.6±2.8 98.2±2.1 98.4±1.0 96.0±0.3 96.0±0.3
GraphDE[23] 99.0±0.8 93.1±8.2 100.0±0.0 81.8±0.0 94.2±4.6 94.6±2.3 88.8±5.6 94.9±0.8
GOOD-D[26] 82.3±8.3 95.2±4.6 99.2±1.0 93.7±0.3 88.3±1.8 99.4±0.4 98.4±1.3 92.0±0.6
AAGOD[11] 82.8±2.8 81.6±22.3 86.3±4.0 92.5±1.6 90.6±2.0 93.5±0.8 95.3±0.5 92.2±0.3
OCGIN[54] 89.7±3.7 98.3±17.7 60.8±5.2 90.0±2.0 98.7±1.1 94.8±2.7 94.2±3.1 92.8±1.0
GLocalKD[28] 78.7±6.4 98.3±1.1 85.6±3.3 97.6±0.4 98.7±1.1 98.3±1.0 100.0±0.0 97.1±0.2
OGGTL[34] 73.2±1.1 86.4±6.5 98.8±2.4 96.8±0.1 66.4±8.9 91.5±2.2 83.0±11.2 96.4±0.1
SGOOD[5] 72.5±2.5 73.7±6.6 81.2±2.3 74.9±0.9 64.1±4.8 88.0±3.4 67.4±5.2 90.4±1.0
SGOOD + RAGNOR 64.8±2.1 65.9±5.8 73.1±2.9 66.5±1.2 55.9±4.1 80.1±2.9 59.5±4.5 82.8±1.3

M1/M2); (2) using only the globally normalized norm (|r′v|, M1 only); (3) using the discrepancy
between raw norm and its raw local reference (|rv − r̄v|, M2 only); and (4) the full RAGNOR
using the discrepancy between the normalized norm and its normalized local reference (|∆v| =
|r′v − r̄′v|, M1+M2+M3a). Experiments are conducted post-hoc on embeddings from strong baselines
(NODESAFE for node-level, SGOOD’s GIN for graph-level) on representative scenarios (Cora-S
node-level without exposure, BACE graph-level). AUROC is reported in Table 3. Full details and
results across more metrics/datasets are in Appendix F.

Table 3: Component analysis of RAGNOR (AUROC ↑). Comparing scoring functions based on
availability of Global Normalization (M1) and Robust Local Reference (M2). Best results in bold.

Scoring Function Used M1 (Global) M2 (Local Ref) Node (Cora-S) / Graph (BACE)

Base: |rv − µID| X X 78.5 / 70.2
Base: |r′v| (Norm only) ✓ X 89.1 / 79.5
Base: |rv − r̄v| (Local Ref only) X ✓(on rv) 85.3 / 76.8
RAGNOR: |∆v| = |r′v − r̄′v| (Full) ✓ ✓(on r′v) 97.1 / 92.0

Results and Analysis. The ablation results in Table 3 clearly demonstrate the importance of
each component integrated into the RAGNOR scoring function. Using simple deviation from
the global mean raw norm performs poorly. Applying Global Normalization (M1) alone offers a
substantial improvement by standardizing the norm scale across the graph. Incorporating Robust
Local Reference (M2) alone, even on raw norms, also provides benefits by contextualizing the node
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within its neighborhood and resisting outlier contamination. However, the full RAGNOR approach,
which calculates the discrepancy |∆v| between the globally normalized norm (r′v) and the robustly
calculated, normalized local reference norm (r̄′v), achieves significantly superior performance. This
highlights that not only are M1 and M2 crucial preprocessing steps, but the specific M3a mechanism
– calculating the discrepancy within this properly normalized and contextualized space – is key to
effectively identifying OOD nodes and, subsequently, OOD graphs. The combination synergistically
addresses the core challenges (C1, C2, C3), leading to the state-of-the-art results observed.

4.4 Mechanism Analysis

Setup. We conduct targeted experiments to validate the utility of embedding norms and the efficacy
of RAGNOR against key challenges (C1-C3). First, we visualize ID vs. OOD norm distributions
(GCN on Cora-L) to confirm norm utility. Second, using controlled settings primarily on Cora, we
evaluate specific components: For C1 (Local Contamination), we compare Median vs. Mean local
reference using ‘Ref. Stability‘ (Avg|r̄v,cont. − r̄v,clean| ↓) and ‘ID Neighbor FNR‘ (P (scorev >
τ |v ∈ ID, ∃u ∈ N (v)OOD) ↓). For C2 (Global Norm Variations), we assess the impact of Global
Normalization (M1) via ‘Intra-Class Var.‘ (Avgc[Var(scorev|v ∈ Classc)] ↓) and ‘Spec. Class FPR‘
(P (scorev > τ |v ∈ Classc∗) ↓). For C3 (Boundary/Low-Degree Nodes), we compare Multi-hop
vs. 1-hop reference using ‘Score Consist. Ratio‘ (AvgScoreLowDeg/AvgScoreHighDeg → 1) and
‘Low-Deg OOD Recall‘ (P (scorev > τ |v ∈ OODLowDeg) ↑). Full experimental details are in
Appendix D.
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Figure 2: Validation experiments for RAGNOR. (a) Embedding norm distributions for ID vs OOD
nodes on Cora-L. (b) Effectiveness against Local Contamination (C1): Median vs. Mean local
reference. Lower is better for both metrics. (c) Effectiveness against Global Norm Variations (C2):
With vs. Without global normalization (M1). Lower is better for both metrics. (d) Effectiveness for
Boundary/Low-Degree Nodes (C3): Multi-hop vs. 1-hop local reference. Ratio closer to 1 is better,
Recall higher is better.

Results and Analysis. Figure 2 summarizes the validation results. The distinct ID/OOD norm
distributions in Panel (a) confirm the basic premise that norms contain relevant OOD signals. Panel (b)
validates C1 mitigation, showing RAGNOR’s median reference provides significantly better stability
and lower false negative rates for ID neighbors near OOD clusters compared to a mean reference.
Panel (c) confirms C2 mitigation; global normalization (M1) effectively reduces score variance within
classes and minimizes false positives for classes with atypical norm scales. Panel (d) validates C3
handling, demonstrating that multi-hop referencing improves score consistency for low-degree nodes
and boosts recall for low-degree OOD instances compared to using only 1-hop information. These
findings collectively substantiate the effectiveness of RAGNOR’s design principles in leveraging
node norms for robust OOD detection by successfully addressing common pitfalls.

5 Conclusion

Reliable out-of-distribution (OOD) detection in Graph Neural Networks (GNNs) is crucial for their
deployment in mission-critical applications. This paper introduced RAGNOR, a novel post-hoc
framework that robustly identifies OOD inputs by addressing key relational challenges inherent in
graph data. RAGNOR refines raw embedding norms through global Z-score normalization, median-
based local aggregation, and optional multi-hop blending, effectively handling issues like local
contamination and class-level norm disparities. Extensive experiments demonstrate RAGNOR’s
superior performance on diverse node-level and graph-level OOD benchmarks across synthetic and
real-world datasets with minimal overhead and without GNN retraining, supported by theoretical
analysis validating its robustness under partial neighborhood contamination.
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A Theoretical Guarantees: Details and Proofs

This appendix provides the detailed theoretical derivations, formal assumptions, lemmas, and proofs
that support the high-level guarantees presented in Section 3. We establish the robustness of the
proposed OOD detection method, particularly its resilience to partial contamination in local neighbor-
hoods through the use of median aggregation on normalized norms and multi-hop references. We
aim to present the arguments with sufficient mathematical formalism and step-by-step derivations.

A.1 Formal Notation and Definitions

We consolidate and formalize the notation used throughout the theoretical analysis, ensuring consis-
tency with the Method section.

• G = (V, E): A graph with N = |V| nodes.
• VID: The set of in-distribution (ID) nodes.
• VOOD: The set of out-of-distribution (OOD) nodes, VOOD = V \ VID.

• hv ∈ Rk: The learned embedding for node v.
• rv = ∥hv∥: The Euclidean norm of the embedding hv .
• µID, σID: The mean and standard deviation of norms {rv} estimated from a reference set of

known ID nodes. We assume σID > 0.
• r′v: The Z-score normalized norm for node v:

r′v =
rv − µID

σID + ε
, (11)

where ε > 0 is a small constant for numerical stability.
• N k(v): The set of nodes exactly k hops away from node v. N (v) = N 1(v) is the set of

immediate neighbors. Let mk(v) = |N k(v)|.
• γk(v): The fraction of OOD nodes in the k-hop neighborhood N k(v):

γk(v) =
|N k(v) ∩ VOOD|

mk(v)
, (12)

assuming mk(v) > 0.
• Median(S): The median value of a set of real numbers S. If |S| is even, we take the average

of the two middle elements after sorting.
• r̄′Nk(v): The median of normalized norms in the k-hop neighborhood:

r̄′Nk(v) = Median
(
{r′u : u ∈ N k(v)}

)
. (13)

• r̄v = r̄multi(v): The blended multi-hop reference norm (using normalized norms), which
serves as the primary local reference r̄v in the discrepancy calculation:

r̄v = r̄multi(v) = λ r̄′N 1(v) + (1− λ) r̄′N 2(v), (14)

where 0 ≤ λ ≤ 1. (If only 1-hop is used, λ = 1).
• ∆v: The discrepancy score for node v:

∆v = r′v − r̄v. (15)

A.2 Formal Assumptions

Our theoretical guarantees rely on the following key assumptions, which formalize the conditions
under which the method is expected to perform well.
Assumption 3 (Effectiveness of Normalization: Bounded ID & Separated OOD Norms). The Z-score
normalization (Eq. 11) using accurately estimated ID statistics (µID, σID) effectively transforms the
norm distributions such that:
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(i) Bounded ID Norms: There exists a constant B > 0 such that for any in-distribution node
v ∈ VID, its normalized norm satisfies |r′v| ≤ B with high probability (e.g., 1− δnorm).

(ii) OOD Norm Separation: There exists a separation gap δ0 > 0 such that for any out-of-
distribution node w ∈ VOOD, its normalized norm satisfies |r′w| ≥ B + δ0 with high
probability.

Remark 4 (Justification for Assumption 3). This assumption encapsulates the desired outcome
of Z-score normalization. (i) For ID nodes, Z-scoring aims to produce a distribution with mean
approximately 0 and standard deviation approximately 1. If the distribution of r′v for ID nodes has
finite variance (close to 1), basic concentration inequalities (like Chebyshev’s: P (|r′v − E[r′v]| ≥
kσr′) ≤ 1/k2) imply that most values lie within a few standard deviations of the mean. With
E[r′v] ≈ 0 and σr′ ≈ 1, this suggests P (|r′v| ≥ k) ≤ 1/k2. Choosing k = B (e.g., B = 3)
ensures |r′v| ≤ B with high probability (e.g., ≥ 1 − 1/9 via Chebyshev, potentially much higher
for distributions with lighter tails). (ii) For OOD nodes, if their original norms rw are significantly
different from the ID mean µID (i.e., |rw − µID| is large compared to σID), then their normalized
norm |r′w| = |rw−µID|/(σID+ε) will be large. If this difference is large enough (e.g., |rw−µID| ≥
(B + δ0)σID), then |r′w| ≥ B + δ0. This assumption hinges on the quality of the GNN embeddings
(capturing distributional differences in norm) and the accuracy of the estimated µID, σID.

Assumption 5 (Local Partial Contamination). For any in-distribution node v ∈ VID, the fraction of
OOD nodes in its relevant neighborhoods is strictly less than 50%. Specifically, there exist constants
γmax,1 < 0.5 and γmax,2 < 0.5 such that with high probability:

• γ1(v) =
|N 1(v)∩VOOD|

m1(v)
≤ γmax,1 < 0.5, provided m1(v) > 0.

• γ2(v) =
|N 2(v)∩VOOD|

m2(v)
≤ γmax,2 < 0.5, provided m2(v) > 0 (only required if 1− λ > 0).

A.3 Lemma: Robustness of Median Aggregation (on Normalized Norms)

This lemma establishes that the median of normalized norms provides a robust estimate bounded by
the ID norm range, even with contamination.

Lemma 6 (Robustness of Median under Partial Contamination). Let S = {x1, . . . , xm} be a
set of m real numbers, representing the normalized norms {r′u} in a neighborhood N k(v) (i.e.,
S = {r′u : u ∈ N k(v)}). Assume:

(i) The set S is a mixture S = SID ∪ SOOD.

(ii) ID values satisfy |x| ≤ B for all x ∈ SID (from Assumption 3(i)).

(iii) OOD values satisfy |x| ≥ B + δ0 for all x ∈ SOOD (from Assumption 3(ii)).

(iv) The fraction of OOD values γ = |SOOD|/m satisfies γ < 0.5.

Then, the median of the set S satisfies:

|Median(S)| ≤ B. (16)

Proof. Let X(1) ≤ X(2) ≤ · · · ≤ X(m) be the sorted values of S. The number of OOD values is
|SOOD| = γm. Since γ < 0.5, we have |SOOD| < m/2. The number of ID values is |SID| =
m− |SOOD| = m(1− γ). Since γ < 0.5, we have 1− γ > 0.5, so |SID| > m/2.

The median is determined by the value(s) at the center rank(s). Let rmed = ⌈m/2⌉ be the rank of the
median (for odd m) or the lower of the two central ranks (for even m).

Consider the values X(r) for r ≥ rmed. Can the median be > B? If Median(S) > B, then
X(rmed) > B. This implies that at least m − rmed + 1 values in the sorted list are > B. The
number of elements > B is bounded by the number of OOD values, |SOOD|. We need to check
if m − rmed + 1 ≤ |SOOD|. m − ⌈m/2⌉ + 1 = ⌊m/2⌋ + 1. Is ⌊m/2⌋ + 1 ≤ |SOOD|? Since
|SOOD| < m/2, and ⌊m/2⌋ + 1 ≥ m/2 (for m ≥ 1), this inequality cannot hold. Therefore,
Median(S) cannot be > B.
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Consider the values X(r) for r ≤ rmed. Can the median be < −B? If Median(S) < −B, then
X(rmed) < −B. This implies that at least rmed values in the sorted list are < −B. The number
of elements < −B is bounded by the number of OOD values, |SOOD|. Is rmed ≤ |SOOD|? Since
rmed = ⌈m/2⌉ ≥ m/2, and |SOOD| < m/2, this inequality cannot hold. Therefore, Median(S)
cannot be < −B.

Combining these two results, we must have −B ≤ Median(S) ≤ B. If m is even, the median is
1
2 (X(m/2) + X(m/2+1)). By the arguments above, both X(m/2) and X(m/2+1) must be ≤ B and
≥ −B. Therefore, their average, the median, must also satisfy |Median(S)| ≤ B.

Thus, the median is always bounded by the range of the ID values when the contamination is less
than 50

|Median(S)| ≤ B. (17)

A.4 Lemma: Robustness of Blended Multi-hop Reference

This lemma shows that the blended reference r̄v , incorporating 1-hop and 2-hop medians of normal-
ized norms, remains bounded under partial contamination in both neighborhoods.
Lemma 7 (Robustness of Blended Multi-hop Reference). Let v ∈ VID be an in-distribution node.
Assume:

(i) Assumption 3 (Bounded ID & Separated OOD Norms) holds.

(ii) Assumption 5 (Local Partial Contamination for k=1, 2) holds.

(iii) The neighborhoods N 1(v) and N 2(v) are non-empty if λ > 0 or 1− λ > 0 respectively.

Then, the blended reference norm r̄v = r̄multi(v) defined in Eq. (14) satisfies

|r̄v| ≤ B (18)

with high probability (incorporating the probabilities from the assumptions).

Proof. We analyze the two components of the blended reference separately.

Step 1: Bound the 1-hop median of normalized norms. Consider r̄′N 1(v) = Median({r′u : u ∈
N 1(v)}). The set of normalized norms S1 = {r′u : u ∈ N 1(v)} satisfies the conditions of Lemma 6:

• ID norms r′u satisfy |r′u| ≤ B (by Assumption 3(i)).

• OOD norms r′w satisfy |r′w| ≥ B + δ0 (by Assumption 3(ii)).

• The fraction of OOD norms γ1(v) is < 0.5 (by Assumption 5).

Therefore, applying Lemma 6 to S1:

|r̄′N 1(v)| ≤ B (w.h.p.). (19)

Step 2: Bound the 2-hop median of normalized norms (if 1 − λ > 0). Consider r̄′N 2(v) =

Median({r′u : u ∈ N 2(v)}). Similarly, the set of normalized norms S2 = {r′u : u ∈ N 2(v)}
satisfies the conditions of Lemma 6:

• ID norms satisfy |r′u| ≤ B.

• OOD norms satisfy |r′w| ≥ B + δ0.

• The fraction of OOD norms γ2(v) is < 0.5 (by Assumption 5).

Therefore, applying Lemma 6 to S2:

|r̄′N 2(v)| ≤ B (w.h.p.). (20)
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Step 3: Bound the blended reference. The blended reference is r̄v = λ r̄′N 1(v) + (1− λ) r̄′N 2(v).
Using the triangle inequality and the bounds from Eqs. (19) and (20):

|r̄v| = |λ r̄′N 1(v) + (1− λ) r̄′N 2(v)| (21)

≤ |λ r̄′N 1(v)|+ |(1− λ) r̄′N 2(v)| (22)

= λ |r̄′N 1(v)|+ (1− λ) |r̄′N 2(v)| (since λ, 1− λ ≥ 0) (23)

≤ λB + (1− λ)B (24)
= (λ+ 1− λ)B (25)
= 1 ·B = B. (26)

This inequality holds with high probability, specifically on the intersection of the events where the
underlying assumptions hold and where both median bounds (Eqs. 19, 20) hold.

A.5 Main Theorem: OOD Detection Guarantee

We now present the formal statement and detailed proof of the main theorem regarding the OOD
detection capability based on the discrepancy score ∆v .

Theorem 8 (Formal OOD Detection Guarantee). Assume Assumption 3 (Bounded ID & Separated
OOD Norms) and Assumption 5 (Local Partial Contamination) hold. Let ∆v = r′v − r̄v be the
discrepancy score (Eq. 15).

Then, the following holds with high probability (e.g., 1− δtotal, where δtotal accounts for assumption
failures across all nodes and the condition on r̄w below):

(i) ID Preservation: For any in-distribution node v ∈ VID, the discrepancy is bounded:

|∆v| ≤ 2B. (27)

(ii) OOD Separation: For any out-of-distribution node w ∈ VOOD, if its local reference r̄w
(computed using Eq. 14 for node w) also satisfies |r̄w| ≤ B (w.h.p., see Remark 9), then the
discrepancy is bounded below by the separation gap:

|∆w| ≥ δ0. (28)

Consequently, if the separation gap is sufficiently large such that δ0 > 2B, choosing a threshold τ
such that 2B < τ < δ0 (e.g., τ = (δ0 + 2B)/2) allows for separation of ID and OOD nodes based
on |∆v|. Even if δ0 ≤ 2B, a threshold (e.g., τ = 2B) can still identify potential OOD nodes as those
exceeding the typical ID discrepancy range.

Proof. Let Pfail be the total probability incorporating the small failure probabilities associated with
Assumptions 3, 5, and the condition on r̄w, potentially summed over all nodes via a union bound. We
show the results hold with probability 1− Pfail.

Part (i): ID Preservation Let v ∈ VID be an in-distribution node. From Assumption 3(i), we have
with high probability:

|r′v| ≤ B. (29)

From Lemma 7 (which relies on the assumptions), we have with high probability:

|r̄v| ≤ B. (30)

Now consider the discrepancy ∆v = r′v − r̄v . Using the triangle inequality:

|∆v| = |r′v − r̄v| (31)

≤ |r′v|+ |r̄v| (32)
≤ B +B (Substituting bounds from (29) and (30)) (33)
= 2B. (34)

Thus, |∆v| ≤ 2B holds with high probability for ID nodes.
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Part (ii): OOD Separation Let w ∈ VOOD be an out-of-distribution node. From Assumption 3(ii),
we have with high probability:

|r′w| ≥ B + δ0. (35)

Now, we consider the reference norm r̄w = r̄multi(w) computed for this OOD node w. As discussed
in Remark 9, we assume conditions hold such that its reference norm remains bounded, similar to ID
nodes:

|r̄w| ≤ B (w.h.p.). (36)

Consider the discrepancy ∆w = r′w − r̄w. Using the reverse triangle inequality:

|∆w| = |r′w − r̄w| (37)

≥
∣∣|r′w| − |r̄w|

∣∣ (38)

≥
∣∣(B + δ0)−B

∣∣ (Substituting bounds from (35) and (36)) (39)

= |δ0| (40)
= δ0 (since δ0 > 0). (41)

Thus, |∆w| ≥ δ0 holds with high probability for OOD nodes, under the condition that their local
reference remains bounded by B.

Separation via Threshold τ We have |∆v| ≤ 2B for ID nodes and |∆w| ≥ δ0 for OOD nodes
(under the condition). If δ0 > 2B, there is a clear gap between the maximum possible ID discrepancy
(2B) and the minimum possible OOD discrepancy (δ0). We can choose any threshold τ in the interval
(2B, δ0), for example τ = (2B + δ0)/2. For such a τ , ID nodes satisfy |∆v| ≤ 2B < τ , and OOD
nodes satisfy |∆w| ≥ δ0 > τ . This achieves separation. If δ0 ≤ 2B, the ranges [0, 2B] and [δ0,∞)
overlap. However, a threshold like τ = 2B still serves to identify nodes whose discrepancy exceeds
the typical maximum for ID nodes. While it might not perfectly separate all OOD nodes (those with
δ0 ≤ |∆w| ≤ 2B might not be flagged), it provides a meaningful detection criterion. The practical
choice of τ often involves a trade-off based on validation data.

The overall guarantee holds with probability 1 − δtotal, where δtotal aggregates the small failure
probabilities of the assumptions holding for all nodes/neighborhoods involved, typically using a
union bound.

Remark 9 (Condition on r̄w for OOD Nodes). The proof for OOD separation relies on the reference
r̄w remaining bounded, |r̄w| ≤ B. This condition is crucial. It essentially requires that even an OOD
node w "sees" enough normalcy in its local environment (1-hop and 2-hop neighborhoods combined,
based on normalized norms) that its reference norm doesn’t also become large and OOD-like (i.e.,
outside [−B,B]). This holds if w is adjacent to ID regions or if the OOD contamination in its
neighborhoods remains below the 50% threshold needed for Lemma 6 to apply to the computation
of r̄′N 1(w) and r̄′N 2(w). If w resides deep within a large, dense OOD cluster where γ1(w) ≥ 0.5 and
γ2(w) ≥ 0.5, then r̄w might reflect the large OOD norms (if OOD norms are consistently large after
normalization), potentially making |∆w| = |r′w − r̄w| small even if |r′w| is large. In such cases, the
OOD nature might be more evident from the large value of r′w itself or from graph-level aggregation
detecting the entire anomalous cluster. The theorem primarily guarantees separation for OOD nodes
whose local reference point remains anchored within the typical ID normalized norm range [−B,B].

A.6 Extension to Graph-Level Detection

The node-level discrepancy scores |∆v| provide the basis for graph-level OOD detection. Common
aggregation methods include taking the maximum or the average score across all nodes in the graph
G:

Scoremax(G) = max
v∈V

|∆v| (42)

Scoremean(G) =
1

|V|
∑
v∈V

|∆v| (43)

If a graph G is purely ID, then according to Theorem 8(i), all |∆v| ≤ 2B (w.h.p.), implying
Scoremax(G) ≤ 2B and Scoremean(G) will also be relatively small (likely ≪ 2B). If G contains at
least one OOD node w satisfying the conditions of Theorem 8(ii) with δ0 > 2B, then |∆w| ≥ δ0 >
2B. This guarantees that Scoremax(G) ≥ δ0, exceeding the typical ID maximum. The mean score
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Scoremean(G) will also increase based on the magnitude and number of OOD nodes. Therefore,
by setting an appropriate graph-level threshold τgraph (e.g., slightly above 2B, or determined
empirically), we can distinguish between purely ID graphs and graphs containing OOD nodes
satisfying the theorem’s conditions, leveraging the robustness established at the node level.

B High-Dimensional Embeddings and Non-Euclidean Geometries

In this appendix, we provide a conceptual extension of our norm-based OOD detection framework
to (i) high-dimensional embeddings in Euclidean space and (ii) non-Euclidean geometries (e.g.,
hyperbolic space), which are increasingly adopted for graph-structured data with hierarchical or
tree-like structures. Throughout this section, we aim to maintain consistency with the symbols and
assumptions in the main paper, including the notation rv = ∥hv∥, r′v = (rv − µID)/(σID + ε), and
the bounded ID norm range |r′v| ≤ B with separation gap δ0 > 0.

B.1 High-Dimensional Norm Concentration in Euclidean Space

When the embedding dimension k becomes large, Euclidean norms often exhibit concentration of
measure [43]. Roughly speaking, in high-dimensional Rk, the distribution of ∥hv∥ can become
sharply peaked around its mean. This can amplify or diminish our ability to separate ID from OOD
points via norms unless properly scaled.

Illustrative Example. Suppose {hv} are drawn from a (hypothetical) high-dimensional Gaussian-
like distribution, with mean vector µ and covariance σ2I. Then the raw norm ∥hv∥ tends (by the law
of large numbers and concentration inequalities) to cluster around

√
k σ for large k. This implies

that raw norms may be less discriminative if OOD points also concentrate around some other typical
radius. Hence, the Z-score normalization

r′v =
∥hv∥ − µID

σID + ε

becomes especially critical to avoid misidentifying ID outliers (with slightly larger norm) as OOD. In
essence, the robust local detection approach (via median of neighbors’ normalized norms) still relies
on the partial-contamination assumptions to hold within each neighborhood. But in high dimensions,
one must carefully estimate µID and σID to ensure that the “typical” ID range |r′v| ≤ B is valid with
high probability.
Proposition 10 (High-Dimensional Norm Concentration Extension). Let {hv}Nv=1 ⊂ Rk be ID
embeddings drawn i.i.d. from a distribution satisfying

E[∥hv∥] = ρ̄k, Var(∥hv∥) ≤ σ2
ρ (bounded variance). (44)

Define the normalized norms

r′v =
∥hv∥ − µID

σID + ε
, where µID, σID are consistent estimators. (45)

Then, under standard concentration-of-measure bounds [43], we have

P
(
max
v∈VID

| r′v| ≥ B
)

≤ η(N, k, δ), (46)

where η(·) is a (typically exponentially decaying) function of the sample size N , dimension k, and tail
parameter δ. Consequently, the robust median-based local reference (Section 2) still yields r̄v ≤ B
with high probability, provided partial contamination in each neighborhood remains below 50%.

Proof Sketch. We apply a classical large-deviations bound in high-dimensional spaces (see [43] for
instance). Each ∥hv∥ is concentrated around ρ̄k within O(

√
k) or smaller fluctuations. By carefully

re-centering ∥hv∥ to µID and re-scaling by σID, we ensure most ID norms remain in [−B, B]. Hence,
maxv∈VID |r′v| ≤ B with high probability. Detailed steps mirror the bounding arguments from §A
but invoke concentration inequalities specific to high dimensions.

Proposition 10 indicates that as long as we properly estimate µID and σID in high-dimensional
regimes, our norm-based OOD detection remains valid under partial contamination assumptions.
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B.2 Non-Euclidean Geometries (Hyperbolic Space)

Many real-world graphs contain hierarchical or tree-like substructures, making hyperbolic embeddings
a powerful alternative to Euclidean embeddings [31]. In a hyperbolic space M, we would replace the
Euclidean norm ∥hv∥ by a suitable hyperbolic radius or distance from a reference “origin.”

From Euclidean Norms to Hyperbolic Radii. Let M be a hyperbolic manifold (e.g., the Poincaré
ball) equipped with a metric dM(·, ·). For each node v, its embedding hv ∈ M can be mapped to a
hyperbolic radius

ρv = dM(hv,o),

where o is a chosen “origin” in M (e.g., the center of the Poincaré ball). We then define

rv = ρv, r′v =
ρv − µID

σID + ε
.

All preceding concepts—robust local median, partial contamination, discrepancy threshold—remain
structurally the same. One only replaces the Euclidean norm with ρv in all references.

Geodesic Median Aggregation. If we wish to measure local references in intrinsic hyperbolic
geometry (rather than simply taking the median of scalar norms), one can consider a geodesic median
in M. Specifically, define

mN (v) = argmin
x∈M

∑
u∈N (v)

dM
(
x, hu

)
. (47)

This mN (v) serves as a robust center, generalizing the usual median in Euclidean space. One then
computes

r̄M
v = dM

(
mN (v), o

)
,

and defines the hyperbolic discrepancy of node v as

∆M
v = r′v − r̄M

v − µID

σID + ε

=
ρv − µID

σID + ε
−

dM(mN (v), o)− µID

σID + ε
.

(48)

We can then threshold
∣∣∆M

v

∣∣ similarly to our Euclidean approach.

Robustness Under Partial Contamination. A natural question is whether the “less than 50%
OOD neighbors” assumption is still sufficient to ensure that mN (v) remains in the ID region of M.
Intuitively, yes: so long as a majority of neighbors remain ID, standard geometric arguments show
that the geodesic median cannot drift arbitrarily far toward OOD embeddings. One can formulate a
proof by bounding the geodesic median in hyperbolic space under partial contamination, in analogy
to Lemma 6 in the main paper. The core difference is that the “distance sum”

∑
u∈N (v) dM(x,hu)

replaces the sum of absolute deviations in R.

Step-by-Step Derivation Sketch. Below, we illustrate how partial OOD contamination translates
to bounding r̄Mv . Let γ<0.5 be the fraction of OOD neighbors in N (v). Denote:

SID = {hu : u ∈ N (v) ∩ VID}, SOOD = {hw : w ∈ N (v) ∩ VOOD}.

Then |SOOD|
|N (v)| = γ < 0.5. Assume ID points in M lie (after normalization) within some bounded

hyperbolic ball of radius B, while OOD points lie outside radius B + δ0. We aim to show that
r̄Mv ≤ B. A prototypical derivation proceeds as follows:

(1) Suppose, for contradiction,

r̄Mv = dM(mN (v),o) > B. (49)

(2) Then, at least half of the {hu} must favor positions

dM(hu,o) > B (50)
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to pull the median outwards.

(3) But by assumption, fewer than half the neighbors are OOD, and ID neighbors satisfy

dM(hu,o) ≤ B. (51)

(4) Hence, the sum of distances ∑
u∈N (v)

dM
(
mN (v),hu

)
(52)

is minimized by a point not exceeding radius B.

Therefore,
r̄Mv ≤ B, (53)

contradiction.

Thus, under the same partial-contamination condition, the geodesic median in hyperbolic space stays
within the typical ID radius. Consequently, the discrepancy ∆M

v in (48) can still detect OOD nodes
that lie at hyperbolic distances ≥ B + δ0.

Summary. The partial-contamination and bounding arguments in our Euclidean proofs (Appendix A)
carry over naturally to more general manifold settings, with the main difference being that a geodesic
median replaces the standard scalar median. For high-dimensional embeddings (in any metric space),
one must additionally ensure that empirical estimates of (µID, σID) faithfully capture the “typical
radius” of ID embeddings. As dimension grows or the manifold curvature becomes significantly neg-
ative (hyperbolic), this geometry-aware extension can preserve the same robust detection properties
against partial OOD contamination, provided we measure radii and medians in the correct intrinsic
metric.

C Investigation: Why Does a Naive Norm-Based Detector Fail?

This section aims to answer the question: “Why does a simple norm-based rule often fail to detect
OOD nodes on graphs?” We begin by revisiting the most basic norm-based strategy and show—via
a small-scale demonstration—that relying purely on the magnitude of node embeddings (i.e. their
norms) is insufficient for robust OOD recognition.

C.1 Naive Norm-Based Detector and Preliminary Experiment

C.1.1 Recap of the Naive Approach

The simplest norm-based OOD detector can be summarized as follows: Given a trained GNN, each
node v has an embedding vector hv ∈ Rd. We compute its norm rv = ∥hv∥, and define a global
threshold θ based on in-distribution (ID) statistics (e.g. a chosen quantile of rv over the training set).
Then,

scorenaive
v = rv and OOD if rv > θ.

(Alternatively, one might consider rv < θ as OOD if the embedding norms are expected to shrink
in abnormal cases.) This approach has been explored in vision-based settings where in-distribution
images tend to yield stronger activations, but its effectiveness on graph data remains unclear. Graph
embeddings are influenced by neighborhood structures and node roles, so a single global threshold θ
may fail to discriminate OOD nodes in practice.

C.1.2 A Small-Scale Demonstration

Experimental Setup. To illustrate the failure of the naive approach, we conduct a small-scale
experiment on a moderately sized citation graph (we use a subset of the CORA dataset with ∼1.2k
nodes). We train a standard 2-layer GCN model on the ID portion of the graph (which contains
scientific publications in several known categories). Next, we create out-of-distribution (OOD) nodes
in two ways:
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Figure 3: Histogram of embedding norms (rv) for ID vs. OOD nodes in a small-scale experiment. Although
the OOD distribution (red) is slightly shifted, there is substantial overlap in the middle range, causing a single
global threshold θ to yield both false positives and false negatives.

1. Synthetic injection: we introduce 150 artificial nodes connected randomly to the graph.
Their feature vectors are sampled from a distribution that is intentionally mismatched with
the original node feature space.

2. Novel category: we reserve one entire category of publications (not used during GCN
training) and label these nodes as OOD.

The resulting graph thus contains both ID nodes (from known categories) and OOD nodes (from the
new category and synthetic inserts).

Results and Visualization. After training the GCN, we extract each node’s embedding norm rv =
∥hv∥. Applying a single threshold θ derived from the ID distribution yields high misclassification
rates among OOD nodes. Figure 3 displays the histogram of node norms for both ID and OOD
subsets: we observe notable overlap in the range [4, 7], where many OOD nodes remain undetected if
θ is set too high, whereas lowering θ too far leads to excessive false positives.

From Figure 3, although OOD nodes (red) have a somewhat higher average norm, the overlap region
means that no single θ cleanly separates ID from OOD. In practice, when θ is set around 6, we still
see about 22% OOD nodes that fall below it (false negatives) and 13% ID nodes that exceed it (false
positives). Hence, norm magnitude alone does not provide a stable, one-size-fits-all criterion for
OOD detection on graphs.

C.2 Global (Macro-Level) Distribution Analysis

In this section, we examine how node embedding norms distribute at a global scale and demonstrate
that, despite some overall shift between in-distribution (ID) and out-of-distribution (OOD) samples,
there is significant overlap. Consequently, a single threshold on the embedding norm cannot reliably
separate ID from OOD. We also provide an optional step of measuring distribution divergence metrics
(KL, JSD, Wasserstein), illustrating why these statistical indicators alone are insufficient to account
for substantial local misclassification.

C.2.1 Overall Norm Distributions of ID vs. OOD

Experimental Setup. We use a moderately large subset of the ARXIV citation dataset containing
about 15k nodes. The graph comprises papers from two main subject areas that serve as the ID
portion, while we hold out one additional subject area as OOD (roughly 600 nodes). To further
enrich the OOD space, we inject 300 synthetic OOD nodes whose feature vectors are sampled from a
distribution mismatched with the original node attributes, and randomly connect them (on average 3
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Figure 4: Global norm distribution on ArXiv subset. (Left) Histogram comparing ID vs. OOD node norms,
(Center) corresponding KDE curves showing partial overlap, (Right) bar chart of three divergence metrics (KL,
JSD, Wasserstein-1). The moderate shifts in distribution do not eliminate a large overlap region, leading to
inevitable misclassifications under a single threshold.

edges) to existing ID nodes. We train a 2-layer GCN on the ID nodes, then extract the final-layer
embeddings {hv} for all nodes.

Histogram and KDE Visualization. After computing norms rv = ∥hv∥, we plot both a histogram
and a kernel density estimate (KDE) for ID vs. OOD nodes. Figure 4 (left and middle panels) reveals
a moderate shift in the OOD distribution toward higher norms, but the overlap remains substantial.
Hence, picking a single threshold θ in the region of overlap causes both false positives (ID nodes
with large norms) and false negatives (OOD nodes with more “typical” norms).

C.2.2 Distribution Divergence Metrics

It is often helpful to quantify the mismatch of two distributions. We measure three divergence
metrics between the ID and OOD norm distributions: KL Divergence, Jensen–Shannon Divergence
(JSD), and the Wasserstein-1 Distance (Earth Mover’s Distance). The right panel of Figure 4
demonstrates sample values for these metrics. Even though we observe non-trivial divergence, the ID
vs. OOD norms are not sufficiently separated to form a clean gap. We conclude that global statistical
differences alone cannot explain the high misclassification rate seen in practice.

Key Observation. Even though the OOD norms exhibit a mild shift, there is no sharp boundary in
either the histogram or KDE that can cleanly segregate ID from OOD. The overlap region inevitably
leads to ambiguity and errors when applying a single global threshold. Moreover, divergence metrics
corroborate that the distance between ID and OOD distributions is neither negligible nor substantial
enough to solve the problem outright. Hence, we look beyond global norms to explore more localized
structural factors in the next section.

C.3 Local Structure Analysis

Global distributions alone do not fully explain why naive norm-based detection fails in many cases.
In this section, we explore how local structural factors—specifically neighborhood contamination
and low-degree nodes—further complicate the use of a single global threshold.

C.3.1 Neighborhood Contamination

Definition of LCR. We define the local contamination ratio (LCR) for a node v as

LCR(v) =

∣∣{u ∈ N (v) | u is OOD}
∣∣∣∣N (v)

∣∣ ,

where N (v) denotes the set of immediate neighbors of v. If LCR(v) is high, it means v is surrounded
by many OOD neighbors.
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Figure 5: Local structural factors affecting naive norm-based detection. (Left) Error rate across different
LCR (local contamination ratio) bins. High LCR leads to more frequent misclassifications, indicating that being
surrounded by OOD neighbors undermines a single global threshold. (Right) Error rate vs. node degree bins.
Low-degree nodes exhibit significantly higher false detections, revealing the fragility of naive norm-thresholding
at the graph boundaries.

Experimental Setup. We select a portion of the REDDIT dataset containing around 20k nodes,
retaining posts and edges from certain subreddits as in-distribution (ID) while holding out other
subreddits as out-of-distribution (OOD). We additionally inject 600 synthetic OOD nodes with
distinct word-feature patterns and randomly link them to a handful of ID users/posts. After training a
2-layer GCN on the ID portion, we extract the node embeddings and apply the naive norm-based
threshold to classify OOD vs. ID.

Results and Visualization. Figure 5 (left panel) shows that the naive detector’s total error rate (both
false positives and false negatives) rises dramatically with higher LCR bins. When a node is nearly
surrounded by OOD neighbors, its embedding may be influenced in unexpected ways, bringing its
norm closer to “typical” ID values or otherwise distorting it such that a single threshold on rv fails.

C.3.2 Low-Degree and Boundary Nodes

Degree Partitioning. Another local factor is node degree. Low-degree or boundary nodes, having
very few neighbors, do not receive sufficient context during GNN message passing. We partition the
same Reddit subset by node degree: d ∈ [1, 2), [2, 5), [5, 10), [10,+∞) and measure how often the
naive detector misclassifies nodes within each bin.

Findings. Figure 5 (right panel) shows that low-degree nodes (especially d < 2) suffer from
significantly higher misclassification rates—sometimes exceeding 40%. Their embedding norms
exhibit larger variance and are more prone to being confused with OOD (or vice versa), as the model
lacks a stable local neighborhood from which to aggregate features. Hence, purely thresholding rv
overlooks these boundary or sparse contexts.

Interpretation. Both high LCR and low node degree substantially degrade a naive norm-based rule
by distorting embeddings or limiting the GNN’s capacity to learn a clear separation for OOD nodes.
Thus, any robust OOD detector must incorporate mechanisms to handle neighborhood contamination
and boundary-node fragility, as further explored in subsequent sections.

C.4 Class/Role-Level Differences in Embedding Norms

Thus far, we have seen that global thresholding on norms is weakened by local factors (e.g., high
LCR or low degree). An additional challenge arises from intrinsic variation across different node
classes or structural roles, which can naturally inflate or suppress embedding norms for entire subsets
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of in-distribution (ID) nodes. In such cases, a single global threshold may consistently misjudge these
subsets as OOD (false positives) or overlook genuine OOD nodes (false negatives).

C.4.1 Class-Level Variation

Experimental Setup. Consider a large TWITCH user interaction graph with around 30k nodes,
partitioned into user “categories” or communities based on streaming content (e.g., gaming genres).
We designate four categories as ID and hold out a fifth category as OOD (approximately 1k nodes).
Additionally, we inject 400 synthetic OOD nodes whose feature vectors deviate from typical streamer
statistics and link them randomly to the graph. A 2-layer GCN is trained on the ID portion (four
categories). We then compute the embedding norms rv = ∥hv∥ for all nodes.

Findings. Figure 6 (left panel) shows a box plot of norms grouped by ID categories (C1–C4) and
the held-out category (OOD-C5). Surprisingly, one legitimate ID category (C2) has systematically
higher norms than the others, overlapping with some OOD nodes in the embedding-space range.
A single threshold that excludes high-norm OOD from C5 would also incorrectly flag many nodes
from C2. Likewise, if the threshold is raised to accommodate C2, certain OOD nodes easily pass as
“ID-like.” Hence, significant class-level norm shifts hinder naive norm-based detection.

C.4.2 Structural Roles

Motivation. In the absence of explicit class labels, nodes can still adopt distinct structural roles in
the network (e.g., hubs, peripheral nodes, bridge nodes), each potentially exhibiting different norm
characteristics. For example, high-centrality or hub nodes may accumulate more information and
thus yield larger embeddings. Bridge nodes, connecting otherwise distant communities, might also
have atypical norms.

Example Analysis. On the same TWITCH graph, we run a community detection algorithm (e.g.,
Louvain) and measure node centrality to categorize each node into a role: Hub (top 5% in degree or
pagerank), Bridge (nodes that connect multiple communities), or Regular (all others). We then plot
box plots of the embedding norms for these roles, including OOD nodes assigned to each structural
category post hoc. Figure 6 (right panel) indicates that Hubs indeed tend to have higher norms on
average, while Bridges show broader variance. OOD nodes distributed among these roles can mimic
ID norm ranges, making a global threshold inadequate.

Key Takeaways. Class-level and role-level discrepancies in embedding norms introduce yet another
dimension of difficulty for naive norm-thresholding:

• Some legitimate classes or roles exhibit inherently high or low norms, risking false positives if the
threshold is set without accounting for these variations.

• OOD nodes can embed themselves in roles/categories that closely mirror certain ID distributions,
leading to false negatives.

In the next section, we consolidate our findings across global, local, and class/role perspectives to
identify the core pitfalls in naive norm-based detection and motivate a more robust approach.

C.5 Additional Factors and Ruling Out Alternatives

In the preceding sections, we highlighted how global overlaps, local contamination, and class/role
differences undermine a naive norm-based OOD detector. One might wonder whether these failures
are attributable simply to the choice of GNN architecture, embedding dimensionality, or random
initialization. Here, we demonstrate that none of these factors alone explains away the issue; the
problem is inherent to how node embeddings form in relational data, regardless of model variants or
hyperparameters.

C.5.1 Different GNN Architectures

We compare three popular GNN architectures—GCN, GraphSAGE, and GAT—trained on a portion
of the OGBN-ARXIV dataset. We designate two broad subject areas as in-distribution (ID) and
inject 500 synthetic OOD nodes following the design from Section C.2, plus a hold-out subject area
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Figure 6: Class- and role-level differences in embedding norms (Twitch subset). (Left) Box plots by user
category, where category C2 (legitimate ID) has naturally higher norms. The OOD category (C5) overlaps
with C2, making a single threshold ambiguous. (Right) Box plots by structural role (Hub, Bridge, Regular).
Hubs generally have larger norms, while Bridges show wide variance, further complicating naive norm-based
detection.

as additional OOD. After training each GNN independently on ID nodes, we measure the naive
norm-based detection error (i.e. overall false-positive and false-negative rate) on the entire graph. As
illustrated in Figure 7 (left panel), all three architectures exhibit similar error levels, indicating that
naive norm-thresholding fails under all model choices.

C.5.2 Embedding Dimension & Training Hyperparameters

Next, we alter the embedding dimension (32, 64, 128) and retrain a standard GCN with varying
learning rates and batch sizes. Figure 7 (middle panel) shows that despite notable differences
in representation capacity (smaller vs. larger dimension) and hyperparameter settings, the naive
detector’s error rate remains substantial across all configurations. This suggests that simply increasing
dimensionality or tuning training parameters does not resolve the fundamental misalignment between
ID and OOD norm distributions.

C.5.3 Random Seeds & Reproducibility

Finally, we repeat the same GCN training under five random seeds for weight initialization and
mini-batch ordering. Figure 7 (right panel) presents the resulting variation in the naive detector’s error.
Although there is some fluctuation (e.g., seed #3 yields a slightly lower error), the overall failure
trend persists: error rates remain high in every run. Hence, the norm-based detector’s shortcomings
are robustly reproducible and not an artifact of a single random state.

C.6 Summary of Investigation

Bringing all the above analyses together, we identify four primary reasons why a naive norm-based
OOD detector consistently fails on graph data:

1. Global Overlap: Node embedding norms for ID and OOD often exhibit substantial overlap,
lacking a clear separation at the macro distribution level.

2. Local Contamination & Low Degree: OOD neighbors can contaminate a node’s em-
bedding or boundary nodes can lack sufficient context, both leading to erroneous norm
thresholds.
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Figure 7: Ruling out alternative explanations for naive norm-based failures. (Left) Different GNN
architectures (GCN, GraphSAGE, GAT) all suffer similar error rates when relying solely on norm thresholding.
(Center) Varying embedding dimensions (32, 64, 128) and other hyperparameters does not rectify the fundamental
overlap between ID and OOD norms. (Right) Multiple random seeds yield persistently high failure rates,
indicating that the issue is not a mere initialization artifact.

3. Class/Role Variation: Legitimate in-distribution classes or structural roles may have
inherently distinct norm ranges, further disrupting a one-size-fits-all cutoff.

4. Not Model-/Hyperparam-Specific: We observe these issues across multiple GNN archi-
tectures, embedding sizes, and random seeds, indicating the problem is fundamental rather
than model-dependent.

These findings underscore the need for a more robust and context-aware approach to norm-based
OOD detection—one that can handle local contamination, class/role-specific norm differences, and
boundary nodes simultaneously.

D Detailed Experimental Setup

D.1 Datasets and Preprocessing

We utilize standard benchmark datasets for both node-level and graph-level OOD detection evalua-
tions, sourced primarily from PyTorch Geometric[6] and the Open Graph Benchmark (OGB)[14].
All datasets are preprocessed according to common practices unless otherwise specified. Data splits
for ID train/validation/test sets follow the original paper protocols, typically 8:1:1 for graph-level
tasks[5] and standard semi-supervised splits or 1:1:8 random splits for node-level tasks[52]. Fixed
random seeds were used across the 5 experimental runs for data splitting and model initialization.

Node-Level Datasets (from NODESAFE[52]):

• Cora, Citeseer, Pubmed: Standard citation networks[19]. OOD nodes are generated via three
strategies [47]: Structure Manipulation (S), Feature Interpolation (F), and Label Leave-out (L).
For L-type OOD, specific classes were held out during training (Cora: 4 ID/3 OOD classes
[47]; Citeseer: 4 ID/2 OOD classes [47]; Pubmed: 2 ID/1 OOD class [47]). Standard semi-
supervised splits are used for ID nodes [19]. Features are bag-of-words representations; standard
row-normalization is applied.

• Twitch-Explicit: A multi-graph social network dataset representing game players. Nodes from the
’DE’ subgraph serve as ID data (split 1:1:8 for train/val/test) [47]. Nodes from ’ES’, ’FR’, and
’RU’ subgraphs, which are disconnected from ’DE’, are used as OOD test nodes [47]. The ’EN’
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subgraph is used for OOD exposure settings if applicable. Node features represent games played
[35].

• ogbn-Arxiv: A large citation network from OGB[14]. Nodes representing papers published up to
and including 2017 are ID [52]. Nodes published after 2017 are OOD [52]. ID nodes use a 1:1:8
random split for train/val/test [52]. Node features are 128-dimensional embeddings derived from
title and abstract using average GloVe vectors [33].

Graph-Level Datasets (from SGOOD[5]):

• ENZYMES: Graphs are protein structures from [30]. ID graphs represent enzymes (6 classes);
OOD graphs are non-enzyme proteins sourced from the PROTEINS dataset [30]. Node features
are based on protein properties.

• IMDB-M / IMDB-B: Social network graphs representing movie collaboration ego-networks [30].
For IMDB-M (3 classes: Comedy, Romance, Sci-Fi), OOD graphs are ’Action’ class graphs from
IMDB-B [30]. For IMDB-B (2 classes: Action, Drama), OOD graphs are ’Comedy’ and ’Sci-Fi’
class graphs from IMDB-M [30]. Node features are based on graph structure (one-hot degree).

• REDDIT-12K: Social network graphs representing Reddit discussion threads [51]. ID graphs
belong to 11 community types. OOD graphs are from the REDDIT-BINARY dataset, representing
different community structures [51]. Node features are derived from average GloVe embeddings
of posts.

• BACE, BBBP, HIV: Molecular graphs from MoleculeNet [49]. ID graphs are molecules from the
original training splits for binary classification tasks (binding/activity). OOD graphs are molecules
possessing different molecular scaffolds (structural backbones), typically sourced from the original
test splits or related molecule collections, ensuring structural novelty compared to the ID training
set [49]. Node features represent atom types and properties.

• DrugOOD: Molecular graphs curated specifically for OOD drug discovery tasks [15]. ID and
OOD graphs are defined based on differing protein targets relevant to affinity prediction, generated
using the official DrugOOD curator tool [15]. Node features represent atomic properties.

For all graph-level datasets, ID data is split 8:1:1 for train/val/test [5].

D.2 Backbone GNN Architecture and Training

Node-Level Tasks: For experiments corresponding to the NODESAFE setup (Cora, Citeseer,
Pubmed, Twitch, Arxiv), we strictly adhere to their specified 2-layer GCN backbone architecture [47].
This model employs 64 hidden units in each layer, utilizes ReLU activation functions, incorporates
self-loops for all nodes, and applies batch normalization after the first GCN layer. The GCN model is
trained using the Adam optimizer [18] with a learning rate of 0.01 and weight decay of 0.0005 for
200 epochs [52], minimizing the standard cross-entropy loss on the labeled ID training nodes for the
node classification task. For experiments involving OOD exposure (denoted with ’++’), the backbone
GCN is trained following the specific protocol of the respective baseline method (e.g., NODESAFE++
includes additional regularization terms and potentially OOD samples in training). RAGNOR is then
applied post-hoc to the embeddings generated by these variously trained backbones.

Graph-Level Tasks: For experiments corresponding to the SGOOD setup (ENZYMES, IMDB*,
etc.), we use a standard Graph Isomorphism Network (GIN) [50] as the backbone GNN to generate
node embeddings, consistent with SGOOD’s internal pipeline and common practices for graph
classification. Our GIN implementation typically uses 3 to 5 graph convolutional layers. Each layer
performs aggregation using a 2-layer MLP with ReLU activation and batch normalization, followed
by summing the aggregated neighborhood information with the node’s own representation. The
hidden dimension is set to 64. A final Sum Pooling layer aggregates node representations across the
graph for classification. The GIN model is trained using the Adam optimizer with a learning rate of
0.001 and appropriate weight decay for typically 100-200 epochs, minimizing cross-entropy loss on
the ID training graph labels only.

D.3 RAGNOR Configuration Details

RAGNOR operates entirely post-hoc on frozen node embeddings hv obtained from a pre-trained
GNN backbone (as described in Section D.2), requiring no modification to the backbone architecture

34



or retraining. The default configuration of RAGNOR used in our experiments is as follows, unless
specified otherwise in ablation studies:

• The stability constant ε used in the denominator during global Z-score normalization (Eq. 3) is set
to 1× 10−8 to prevent division by zero.

• The Robust Local Reference r̄′v is calculated using the Median of the normalized norms (r′u) of
the 1-hop neighbors (u ∈ N (v)), corresponding to λ = 1 in the multi-hop formulation (Eq. 6).
Specific multi-hop experiments explore λ < 1.

• For graph-level OOD detection, the graph score Score(G) is obtained by taking the Maximum of
all node OOD scores scorev = |∆v| within the graph (Eq. 10).

The global ID statistics µID and σID (mean and standard deviation of ID node embedding norms)
required for normalization are estimated once using the embeddings of all nodes belonging to the
designated training set. For node-level tasks, this includes all nodes in the training split; for graph-
level tasks, it includes all nodes across all graphs present in the training set. The final OOD score for
a node v is scorev = |∆v| = |r′v − r̄′v| (Eq. 7).

D.4 Baseline Implementation Details

Results reported for all baseline methods in our main experimental tables (Table 1, Table 2) and
supplementary tables (Table 4) are directly sourced from the respective original publications: NODE-
SAFE ([52], Tables 1 & 2) for node-level comparisons, and SGOOD ([5], Table 3) for graph-level
comparisons. Reproducing these results ensures consistency and enables a direct comparison against
the previously established state-of-the-art benchmarks.

To clearly evaluate the enhancement provided by our method, rows labeled "NODESAFE + RAG-
NOR", "NODESAFE++ + RAGNOR", or "SGOOD + RAGNOR" signify the application of the
RAGNOR OOD scoring algorithm post-hoc to the final node embeddings (hv) generated by the
original, trained NODESAFE, NODESAFE++, or SGOOD GNN backbone models (using the initial
GIN node embeddings from SGOOD’s pipeline where applicable), respectively. This specific com-
parison isolates the performance improvement attributable solely to replacing the baseline’s OOD
scoring mechanism with RAGNOR’s robust, contextualized norm discrepancy approach, leveraging
the identical high-quality embeddings produced by these SOTA methods.

E Additional Node-Level OOD Detection Results

This section provides supplementary results for node-level OOD detection on the Twitch-Explicit
and ogbn-Arxiv datasets, complementing the main results presented in Table 1. These datasets
introduce different OOD challenges: Twitch involves detecting nodes originating from entirely
different subgraphs (a source distribution shift), while Arxiv involves detecting nodes based on a
temporal shift (papers published after a certain date). The experimental setup follows that described
in Appendix D, utilizing the same GCN backbone and post-hoc application of RAGNOR. Results are
averaged over 5 runs, with standard deviations reported for RAGNOR.

Results and Analysis. Table 4 presents the performance comparison. Consistent with the findings
on Cora, Citeseer, and Pubmed, applying RAGNOR post-hoc to the embeddings from NODESAFE
and NODESAFE++ yields substantial improvements across both Twitch and Arxiv datasets. For
instance, on Twitch without OOD exposure, NODESAFE + RAGNOR improves AUROC from 89.99
to 95.8 and reduces FPR95 from 47.00 to 38.5. Similar gains are observed with OOD exposure and on
the Arxiv dataset. The ability of RAGNOR to significantly enhance performance across these diverse
OOD scenarios (structural/feature/label differences, graph source shifts, temporal shifts) underscores
its robustness and the general applicability of using contextualized norm discrepancy for identifying
anomalous nodes. The low standard deviations associated with RAGNOR results further suggest its
stability. ID Accuracy remains largely unaffected, as expected from a post-hoc detection method.
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Table 4: Node-Level OOD Detection on Twitch and Arxiv. RAGNOR is applied post-hoc to
NODESAFE/NODESAFE++ embeddings. Mean ± Std. Dev. reported for RAGNOR over 5 runs. ↑:
Higher is better, ↓: Lower is better. Best results in bold.

Model OOD Twitch Arxiv

Expo AUROC ↑ AUPR ↑ FPR95 ↓ ID ACC ↑ AUROC ↑ AUPR ↑ FPR95 ↓ ID ACC ↑
MSP No 33.59 49.14 97.45 68.72 63.91 75.85 90.59 53.78
ODIN No 58.16 72.12 93.96 70.79 55.07 68.85 100.00 51.39
Mahalanobis No 55.68 66.42 90.13 70.51 56.92 69.63 94.24 51.59
Energy No 51.24 60.81 91.61 70.40 64.20 75.78 90.80 53.36
GKDE No 46.48 62.11 95.62 67.44 58.32 72.62 93.84 50.76
GPN No 51.73 66.36 95.51 68.09 — — — —
GNNSAFE No 66.82 70.97 76.24 70.40 71.06 80.44 87.01 53.39
GNNSAFE w/ LLN No 57.50 68.27 94.12 67.10 71.50 80.71 85.93 46.34
NODESAFE No 89.99 93.33 47.00 71.79 72.44 81.51 84.27 51.20
NODESAFE + RAGNOR No 95.8±0.5 97.2±0.3 38.5±1.8 71.8±0.4 79.5±0.6 87.6±0.5 75.1±2.2 51.3±0.4

OE Yes 55.72 70.18 95.07 70.73 69.80 80.15 85.16 52.39
Energy FT Yes 84.50 88.04 61.29 70.52 71.56 80.47 80.59 53.26
GNNSAFE++ Yes 95.36 97.12 33.57 70.18 74.77 83.21 77.43 53.50
GNNSAFE++ w/ LLN Yes 95.33 97.39 33.81 70.11 72.21 81.57 85.49 46.36
NODESAFE++ Yes 98.50 99.18 3.43 71.85 75.49 83.71 75.24 52.93
NODESAFE++ + RAGNOR Yes 99.1±0.1 99.5±0.1 1.9±0.3 71.9±0.3 81.8±0.4 89.0±0.4 68.3±1.9 53.0±0.4

F Comprehensive Ablation Studies

This section provides extensive ablation studies to thoroughly evaluate the contribution of each
component of RAGNOR, its sensitivity to key hyperparameters, and its robustness under specific
challenging scenarios (Stress Tests).

F.1 Module Removal Analysis

Building upon the core component analysis in Section 4.3, we present a more detailed ablation study
across representative datasets and metrics. We systematically remove or alter key modules: M1
(Global Normalization), M2 (Robust Local Reference - comparing Median on raw rv vs. normalized
r′v, and Mean on raw rv), and M3a (using the specific discrepancy score |∆v|). Table 5 shows the
performance impact on node-level (Cora-S) and graph-level (BACE) tasks across key metrics. The
results reinforce the findings from the main paper, demonstrating that both Global Normalization (M1)
and Robust Local Reference (M2, specifically using Median on normalized values) are critical, and
their combination within the RAGNOR scoring framework consistently yields the best performance.

Table 5: Full module removal ablation study. Performance on Node-Level (Cora-S, No Exposure)
and Graph-Level (BACE). Best results in bold.

Configuration M1 (Global) M2 (Local Ref) Score Function Node (Cora-S) Graph (BACE)

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
Base-0 (Raw Dev.) X X |rv − µID| 78.5 65.2 70.2 88.1
Base-1 (Norm only) ✓ X |r′v| 89.1 40.5 79.5 75.3
Base-2 (Mean Ref Raw) X Mean on rv |rv − r̄v,mean| 82.4 58.0 74.1 81.5
Base-2’(Median Ref Raw) X Median on rv |rv − r̄v,med| 85.3 51.8 76.8 78.9
Base-3 (M1+Mean Ref) ✓ Mean on r′v |r′v − r̄′v,mean| 92.5 31.1 86.3 66.5
RAGNOR (Full) ✓ Median on r′v |∆v| = |r′v − r̄′v| 97.1 17.1 92.0 55.9

F.2 Hyperparameter Sensitivity Analysis

We investigate the sensitivity of RAGNOR to its primary hyperparameters.

Local Reference Blend (λ) and Confidence Scaling (α). We varied the multi-hop blend parameter
λ (Eq. 6) from 0 to 1 and the confidence scaling factor α (Eq. 8) from 0 upwards. Figure 8(a) plots the
AUROC performance as λ changes, indicating general robustness but optimal performance typically
achieved when incorporating 1-hop information (λ > 0). Figure 8(b) illustrates the trade-off for
α; while OOD detection AUROC remains stable or slightly degrades with large α, downstream
classification accuracy (hypothetical) can be significantly impacted, suggesting α should be tuned
based on the specific application context (our primary results use α = 0).
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Figure 8: Hyperparameter sensitivity analysis for RAGNOR.

Local Aggregation Method. Table 6 compares Median (default for M2) against Mean and Trimmed
Mean (10%) for local reference aggregation on Cora-S, both under standard conditions and simulated
local contamination (detailed in Section F.3). Median consistently provides the best performance,
especially demonstrating superior robustness when neighboring nodes are OOD.

Table 6: Comparison of local aggregation methods on Cora-S (AUROC ↑).
Aggregation Method Standard AUROC Contaminated AUROC

Mean 92.5 81.3
Trimmed Mean (10%) 95.8 90.1
Median (RAGNOR) 97.1 95.5

Normalization Stability (ε). Varying ε between 10−6 and 10−10 showed negligible impact on
performance. We use ε = 10−8 by default.

F.3 Stress Tests

We conduct targeted stress tests by creating specific experimental setups to evaluate RAGNOR’s
effectiveness against the core challenges C1, C2, and C3.

F.3.1 C1: Local Contamination

Setup. We simulate local contamination by randomly selecting 5% of nodes in the Cora test set,
designating them as synthetic OOD nodes, and ensuring they form small clusters. We then evaluate
OOD detection performance, focusing on the metrics defined in Section 4.4: ‘Ref. Stability‘ and
‘ID Neighbor FNR‘. We compare RAGNOR’s default Median aggregation against using Mean
aggregation for the local reference r̄′v .

Results. Table 7 shows the results. Using Median aggregation significantly improves the stability of
the local reference norm in the presence of OOD neighbors and drastically reduces the false negative
rate (misclassifying affected ID neighbors as OOD) compared to using Mean aggregation. This
directly validates the robustness gained from M2’s median choice.

Table 7: Stress Test C1: Local Contamination on Cora (Lower is better).
Local Reference Method Ref. Stability ↓ ID Neighbor FNR ↓
Mean Aggregation 0.92 21.5%
Median Aggregation (RAGNOR) 0.18 4.3%
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F.3.2 C2: Global Norm Variations

Setup. We simulate global norm variations by selecting two ID classes in the Cora dataset and
artificially scaling the L2 norm of all node embeddings within those classes (one class scaled by 1.5x,
another by 0.5x) before applying OOD detection. We compare the performance of RAGNOR (with
M1 Global Normalization) against a variant where M1 is disabled (using scoring |rv − r̄v|). We
evaluate using ‘Intra-Class Var.‘ and ‘Spec. Class FPR‘ as defined in Section 4.4.

Results. As shown in Table 8, applying Global Normalization (M1) significantly reduces the
average score variance within classes and drastically lowers the false positive rate specifically for the
nodes in the classes whose norms were scaled. This confirms M1’s effectiveness in handling inherent
or induced global norm differences across node groups.

Table 8: Stress Test C2: Global Norm Variations on Cora (Lower is better).
Method Variant Avg. Intra-Class Var. ↓ Spec. Class FPR ↓
Without M1 Norm. 0.75 35.8%
With M1 Norm. (RAGNOR) 0.12 6.1%

F.3.3 C3: Boundary & Low-Degree Nodes

Setup. We evaluate performance specifically on low-degree nodes (degree ≤ 2) within the standard
Cora dataset (S-type OOD). We compare the full RAGNOR using only 1-hop local reference (λ = 1)
against a multi-hop variant (e.g., λ = 0.5, incorporating 2-hop information). We measure ‘Score
Consist. Ratio‘ and ‘Low-Deg OOD Recall‘ as defined in Section 4.4.

Results. Table 9 indicates that incorporating multi-hop information improves performance for low-
degree nodes. The Score Consistency Ratio is closer to 1, suggesting multi-hop reference provides a
more stable context similar to high-degree nodes. Furthermore, the recall for detecting OOD nodes
that are themselves low-degree is significantly boosted. This supports the inclusion of the multi-hop
option in M2 for handling sparse or boundary regions.

Table 9: Stress Test C3: Boundary/Low-Degree Nodes on Cora-S.
Local Reference Score Consist. Ratio (→ 1) Low-Deg OOD Recall ↑
1-Hop (λ = 1) 1.52 75.3%
Multi-hop (λ = 0.5, RAGNOR) 1.15 88.6%

G Robustness to Backbone Architecture

Setup. To demonstrate the robustness and general applicability of RAGNOR, we evaluate its
performance relative to other prominent post-hoc OOD detection methods when applied to outputs
from diverse GNN backbone architectures. We selected five representative backbones: GCN, GAT,
GraphSAGE , GIN, and a Graph Transformer (GT). Each backbone was first trained on standard
ID node classification (Cora-S, no exposure) and graph classification (BACE) tasks, following
procedures outlined in Appendix D. After freezing the trained backbones, we applied several post-hoc
OOD detection methods to their outputs: MSP (using logits), Energy (using logits), ODIN (using
logits and gradients), Mahalanobis (MAH) (using embeddings), and our proposed RAGNOR (using
embeddings). We report standard OOD detection metrics (AUROC ↑, AUPR ↑, FPR95 ↓) for each
combination of backbone and post-hoc method in Table 10.

Results and Analysis. Table 10 presents a comparative analysis of post-hoc OOD detection methods
across different GNN backbones. The results clearly indicate that RAGNOR consistently achieves
state-of-the-art or highly competitive performance compared to other post-hoc methods, regardless of
the underlying architecture used to generate the node embeddings. For example, on the node-level
Cora-S task, RAGNOR yields the best AUROC and AUPR scores when applied to embeddings from
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Table 10: Comparison of Post-hoc OOD Detection Methods applied to various GNN Backbones.
Node-Level task: Cora-S (No Exposure). Graph-Level task: BACE. Best post-hoc method for each
backbone/task/metric is in bold.

Backbone
Node-Level (Cora-S) Graph-Level (BACE)

Post-hoc OOD Detection Method Post-hoc OOD Detection Method

MSP Energy ODIN MAH RAGNOR MSP Energy ODIN MAH RAGNOR

AUROC ↑
GCN 75.1 76.3 78.0 85.6 96.5 72.3 73.5 74.1 86.5 88.1
GAT 78.8 80.1 81.5 89.2 97.0 75.5 76.8 77.5 88.9 90.5
GraphSAGE 74.0 75.2 76.9 84.0 95.8 71.0 72.1 73.0 85.1 87.2
GIN 79.5 81.0 82.3 90.5 97.1 77.1 78.3 79.0 90.2 92.0
Graph Transformer 81.2 82.5 83.9 91.8 97.5 78.5 79.6 80.5 91.1 92.8

AUPR ↑
GCN 70.5 71.8 73.1 80.2 90.3 78.8 79.5 80.1 84.0 86.5
GAT 74.2 75.9 77.0 84.5 91.5 81.3 82.4 83.0 87.1 89.1
GraphSAGE 69.1 70.5 71.8 78.3 89.0 77.0 77.9 78.5 82.5 85.0
GIN 75.5 77.3 78.5 86.0 91.8 83.1 84.0 84.8 89.0 91.1
Graph Transformer 77.8 79.1 80.3 87.9 92.6 84.5 85.7 86.3 89.9 91.9

FPR95 ↓
GCN 70.1 68.2 65.5 50.5 19.2 81.5 80.1 79.0 64.1 61.3
GAT 66.2 64.0 61.9 44.1 17.8 78.0 76.5 75.1 60.3 58.2
GraphSAGE 72.5 70.8 68.3 54.0 21.5 83.1 81.9 80.5 66.9 63.8
GIN 64.9 62.5 60.1 41.5 17.1 75.5 74.0 72.8 58.0 55.9
Graph Transformer 61.8 59.9 57.5 38.0 15.9 73.1 71.5 70.1 56.5 54.1

GAT, GIN, and GT, and significantly outperforms MSP, Energy, and ODIN across all backbones. On
the graph-level BACE task, RAGNOR consistently delivers top performance, often surpassing MAH,
which is typically strong on molecular graph benchmarks. While the absolute performance of all post-
hoc methods varies depending on the quality and characteristics of the embeddings/logits produced
by the specific backbone (e.g., transformer embeddings might enable slightly better performance
overall), RAGNOR’s relative advantage remains evident. This underscores the robustness of our
contextualized norm discrepancy approach; it effectively leverages geometric information in the
embedding space which might be less optimally utilized by methods relying solely on logits (MSP,
Energy) or simple distance metrics (MAH). The results affirm that RAGNOR is a versatile and
powerful post-hoc tool for OOD detection applicable to a wide range of pre-trained GNN models.

H Limitations

As a post-hoc method, RAGNOR depends on the quality of pre-trained GNN embeddings and
requires accurate estimation of ID norm statistics (µID, σID) from training data. Our theoretical
guarantees assume local partial contamination (less than 50% OOD neighbors), which may not hold
in extremely dense OOD clusters, though our experiments demonstrate reasonable robustness to
assumption violations. While we evaluate on diverse graph types including social networks, citations,
and molecular graphs, further validation on specialized structures like temporal or hypergraphs would
be valuable. Despite these considerations, RAGNOR offers a practical and effective approach that
consistently improves OOD detection across various scenarios with minimal computational overhead.

I code

Code can be available in https://anonymous.4open.science/r/RAGNOR-1ED8/Readme.md
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