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Abstract

Understanding architectural differences in language models is challenging, espe-
cially at academic-scale pretraining (e.g., 1.3B parameters, 100B tokens), where
results are often dominated by noise and randomness. To overcome this, we in-
troduce controlled synthetic pretraining tasks that isolate and evaluate core model
capabilities. Within this framework, we discover Canon layers: lightweight ar-
chitectural components—named after the musical term “canon”—that promote
horizontal information flow across neighboring tokens. Canon layers compute
weighted sums of nearby token representations and integrate seamlessly into
Transformers, linear attention, state-space models, or any sequence architecture.
We present 12 key results. This includes how Canon layers enhance reason-
ing depth (e.g., by 2×), reasoning breadth, knowledge manipulation, etc. They
lift weak architectures like NoPE to match RoPE, and linear attention to rival
SOTA linear models like Mamba2/GDN—validated both through synthetic tasks
and real-world academic-scale pretraining. This synthetic playground offers an
economical, principled path to isolate core model capabilities often obscured at
academic scales. Equipped with infinite high-quality data, it may even predict
how future architectures will behave as training pipelines improve—e.g., through
better data curation or RL-based post-training—unlocking deeper reasoning and
hierarchical inference.

1 Introduction

Recent advances in large language models (LLMs) have sparked transformative progress across
numerous tasks, including question answering, summarization, translation, code generation [13, 15,
39, 61]. Despite rapid progress, systematic understanding of effective neural architecture design has
remained elusive, fundamentally hindered by some major challenges.

Challenge 1: Pretraining loss as an unreliable proxy for intelligence. Architectural comparisons
often rely on perplexity or cross-entropy loss, but these metrics do not reliably reflect real-world
capabilities—especially since natural data is skills-mixed. For example, state-space architectures
like Mamba [19, 26] frequently achieve lower perplexity early in training due to rapid memorization,
yet perform poorly on complex reasoning tasks. Reliance on early stopping via perplexity is thus
problematic: it may lead to comparing models that have merely internalized surface-level linguistic

∗Following the theory community tradition, we defer the full and future editions of this paper to our
project page physics.allen-zhu.com and ssrn.com/abstract=5240330. The full V1.1 paper underwent
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ity. Synthetic GatedDeltaNet (GDN) experiments were newly added in V2.0. Results for 1–8B Canon-layer-
pretrained models on real-world data are open-sourced on our website (physics.allen-zhu.com). These
were not included in our original NeurIPS 2025 submission, and we reserve the right to submit them elsewhere.
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Real-life Pretraining Obscures Architecture Differences

At academic scale (1.3B parms, 100B tokens):

architectural differences lost in noise

controlled study ≈

across random seeds: ≥2-4%

across models: 1-2%

Beyond this scale:

insufficient to see architectural strengths

models fail simplest 2-hop reasoning:
X born in 1970. Y same birth 
year as X. When was Y born?

real-world data: too skill-mixed, delays “emergent” skills

Synthetic Pretraining Enables Reliable Comparison

Our solution: synthetic pretraining playground

• reasoning depth (Depo)
• reasoning breadth (Brevo)

Clear & controlled outcomes
✓ Mini scaling-laws reveal model limits
✓ Sharply reveal model differences (e.g., 2x reasoning depth)

Llama(RoP
E)

this paper

✓ Early emergence of advanced skills
✓ Low cost supports rigorous studies
✓ High-quality data predicts future architectures

• knowledge capacity (Capo)
• knowledge manipulation (Mano)
• hierarchical structures (Lano)

computationally infeasible
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Figure 1: Architecture search in noisy real-life pretrain (good luck!) vs. synthetic playground (scientific rigor).

patterns without developing deeper reasoning or factual understanding [31].

Challenge 2: Noise below emergence thresholds. Emergent abilities—complex skills that only
arise in large-scale models (e.g., 7B parameters, 10T tokens [1])—complicate architectural compar-
isons at smaller, academic scales (e.g., 1.3B parameters, 100B tokens [9, 25, 70]). At these scales,
small benchmark gains (e.g., 2%) often result from random initialization or data shuffling—variance
that can cause 2–4% swings in accuracy (see Figure 1). More fundamentally, models fail even the
simplest 2-hop reasoning tasks, performing no better than random guessing.2 This basic reasoning
floor masks architectural differences in more advanced cognitive skills, making evaluation at this
scale deeply unreliable. While large-scale industry training might reveal these differences, its pro-
hibitive cost blocks systematic ablations, impeding academic contributions to rigorous architecture
science—and often reducing design choices to heuristics and guesswork.

Challenge 3: Grokking, Data Quality, and Curriculum Learning. Failures in complex rea-
soning tasks typically stem from deficiencies in training data, not architectural limitations. Too
few challenging samples and a lack of intermediate-complexity data often force models to rely on
unstable grokking behavior—where generalization only emerges after unnecessarily long pretrain-
ing [43]—and disrupt curriculum learning [10]. For instance, models lacking 2-hop reasoning data
may unpredictably learn 3-hop tasks after extensive exposure to 1-hop and 3-hop examples. This
makes training highly sensitive to randomness, further complicating architectural comparisons. Re-
inforcement learning (RL)-based post-training methods, such as GRPO [53] and PPO [52], aim to
address this by delivering tailored data at optimal difficulty levels. While effective, these methods
introduce new experimental confounds—it becomes unclear whether performance gains stem from
pretraining, RL fine-tuning, stochastic training dynamics, or architectural strength.

Our approach: Atomic decomposition of intelligence. To overcome the noise and cost of real-
world pretraining—especially at academic scales where even 2-hop reasoning fails to emerge—we
decompose intelligence into core (ideally atomic!) components, such as reasoning depth and
breadth, and design synthetic, controllable pretrain tasks to isolate and evaluate them independently.
This framework sharply characterizes architectural strengths and scalability under clean, idealized
conditions (see Figure 1), offering a principled and economical path for architecture design.
This approach directly addresses Challenge 1 by enabling single-skill evaluations, minimizing the
confounding factors prevalent in real-world pretraining data. For example, it allows rigorous com-
parisons of whether architecture A outperforms architecture B in reasoning depth, while ensuring
modifications do not degrade other capabilities. By isolating intrinsic architectural biases, synthetic
pretrain tasks reveal properties often obscured by noise and mixed signals in typical real-life setups.
Challenge 2 is mitigated by lowering resource needs for rigorous comparisons. Synthetic bench-
marks yield infinite high-quality data, enabling meaningful pretraining even for smaller models (e.g.,
GPT2-small) where complex skills might otherwise not emerge. In these controlled environments,
capabilities like deep multi-hop reasoning emerge clearly and reliably, allowing rapid identification
of architectural limitations, investigation of mini scaling-laws, and uncover trends that real-world
pretrained models often fail to reveal due to noise or insufficient signal despite extensive training.
For Challenge 3, we manage data difficulty distributions to ensure adequate representation of
intermediate-complexity samples, smoothing learning curves and enabling the early and consis-

2In our simplest 2-hop reasoning tasks, birth years for 3 individuals are presented, followed by 3 “[name2]
was born in the same year as [name1]” equivalences. The model is prompted to infer the second group’s birth
years. Academic-scale models can only guess. See Result 12.
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tent emergence of advanced skills—unlike less predictable real-world data prone to grokking-driven
instability. As training pipelines improve—via better data curation or RL-based continued pretrain-
ing—synthetic pretrain benchmarks may provide predictive insight into which architectures best
support scaling to more advanced tasks in the future.

We draw inspiration from physics, where idealized settings—such as frictionless planes or vac-
uum chambers—reveal first principles by removing confounding factors. Similarly, synthetic tasks
eliminate the noise, randomness, and data contamination of real-world datasets, enabling clean,
controlled, apples-to-apples architectural comparisons, much like Galileo’s Pisa tower experiment.
This paper’s key contributions are summarized below:

Result 0: Building the Synthetic Playground (Section 2+3). We introduce five synthetic pre-
training tasks—DEPO (reasoning depth), BREVO (reasoning breadth), CAPO (knowledge capacity),
MANO (knowledge manipulation), and LANO (hierarchical language structure). This controlled en-
vironment can reveal clear, commonsense capability trends at smaller scales: linear attention (e.g.,
GLA [69]) consistently underperforms; state-space models like Mamba2 [19] excel at memory but
struggle with reasoning; and full Transformers dominate on complex reasoning tasks.

Result 1: Canon Layers Add Horizontal Information Flow (see full paper) . Transformers
lack horizontal information flow within layers, leading to inefficiencies even on simple tasks like
associative recall. Drawing on the musical canon (overlapping repetition), we introduce Canon
layers, horizontal “residual links” across neighboring tokens that can be flexibly inserted at multiple
points — before attention (Canon-A), inside attention (Canon-B), before MLP (Canon-C), inside
MLP (Canon-D). While Canon layers can be implemented in many ways—even simple random
averaging is highly effective—this paper focuses on trainable 1-d linear convolutions of kernel size
4. This is lightweight and integrates seamlessly into any sequence model with minimal code.

Results 2–5: When Transformer Meets Canon (see full paper) .

• BOOST PERFORMANCE. In our playground, Canon layers improve reasoning depth
(200–400%), reasoning breadth (30%), knowledge manipulation length (30%), and more.
These stem from enhanced hierarchical learning dynamics and come with minimal compu-
tational overhead.

• REVIVING NOPE. Integrating Canon layers transforms NoPE models into strong performers,
often matching or surpassing RoPE(+Canon). Canon layers outperform positional fixes like
ALiBi [44] or H-Alibi [30], and reducing/removing RoPE usage improves length generaliza-
tion.

• ABLATION STUDY. Canon layers contribute cumulatively across sublayer positions (Canon-
A/B/C/D), independently of attention or MLP components. Residual links improve training
efficiency; minimal parameter tuning is required without compromising stability.

• MLP AND MOE. Canon layers can recover some knowledge capacity lost in gated MLP or
mixture-of-expert (MoE) architectures, via improved training efficiency and stability.

Results 6–7: When Linear Attention Meets Canon (see full paper) .

• BOOST PERFORMANCE. Canon layers elevate Gated Linear Attention (GLA [69]) from 1-hop
to 4-hop reasoning depth, double its reasoning breadth and knowledge manipulation length,
making it comparable to Mamba2 and even surpassing it on tasks like BREVO.

• ABLATION STUDY. Residual links and full Canon (A/B/C/D) are essential for maximizing
effectiveness for linear-attention models, partial implementations may underperform.

Results 8–9: When Mamba Meets Canon (see full paper) .

• SECRET OF SUCCESS. Mamba2’s performance is driven by its built-in conv1d mechanism,
which acts as a non-linear Canon-B layer applied to selective coordinates. Removing conv1d
drops performance to match GLA, while replacing it with full Canon layers further boosts
results, highlighting the importance of horizontal information flow over SSM design.

• ABLATION STUDY. Canon choices—such as integration points and residual links—can influ-
ence Mamba2’s performance. Mimetic initialization [63], while optimized for length gener-
alization, harms shorter-context tasks, underscoring the need for diverse pretraining environ-
ments.
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Design Criteria for Synthetic Pretrain Tasks

 Challenge architectural depth:

avoid shallow tasks (e.g., associative recall)

mental depth 4 × 8 CoT steps = 32 total steps.

 Test mental reasoning (system-1):

 Focus on short (e.g., 4096) context length

long context often summarized to 
short windows for deep reasoning

 Ensure real-world relevance

avoid tasks solvable by external tools 

“452352 +  547647 = 999999”
 

context length 4096

summarization (CoT)

long context (e.g., 1M tokens)
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Figure 2: Our design criteria for synthetic pretrain tasks.

Results 10–11: Comparing Architectures (see full paper) .

• CONTROLLED COMPARISONS. Applying full Canon layers consistently across RoPE, NoPE,
Mamba2, and GLA allows controlled comparisons, revealing that full transformers outperform
linear models in hierarchical reasoning tasks, achieving twice the reasoning depth.

• REASONING DEPTH CHALLENGES. In GLA and Mamba2, limited reasoning depth stems
from accumulated compression and retrieval errors—not memory capacity—pinpointing a
key focus for future research on linear models. Until this is resolved, hybrid designs (e.g.,
sliding-window Transformers with linear backbones) remain the most scalable path to deeper
reasoning.

Result 12: Academic-Scale Real-World Pretraining (see full paper) . Training 1.3B-parameter
models on 100B tokens (context length 4096) reveals high noise and limited resolution, making
many architectural comparisons statistically unreliable. Still, several consistent patterns emerge.
Canon layers significantly improve NoPE and GLA—elevating them to match RoPE and Mamba2,
respectively—while removing conv1d weakens Mamba2 to GLA level. Linear models lag behind
full Transformers on retrieval-heavy tasks, even with Canon layers. All models fail 2-hop reasoning,
even in short contexts (e.g., 100 tokens), underscoring the limitations of academic-scale pretraining.
Reducing or removing RoPE improves long-context generalization when Canon layers are present.
These results align with our synthetic findings (Results 3, 6, 8, 10, 11).

In summary, Canon layers fundamentally improve horizontal information flow across diverse archi-
tectures, enabling deeper reasoning and efficient scalability. Combined with synthetic benchmarks,
they provide systematic insights into future opportunities in model design.

Future research. We plan to explore applications of Canon layers beyond academic scale, whose
preliminary findings (w.r.t. 1-8B models pretrained using 1-2T tokens) align closely with those in
this paper. Code is available on GitHub, models on HuggingFace, and all links are provided at
physics.allen-zhu.com.

2 Synthetic Tasks for Decomposing Intelligence

We design synthetic tasks to systematically evaluate specific capabilities of language model archi-
tectures under controlled conditions, minimizing confounds and enabling clean comparisons. Task
selection is guided by four criteria:

Criterion 1: Tasks must not be shallow. Shallow tasks—like associative recall or copying—are
easily solvable by small and shallow models, and do not meaningfully test architectural strength.
Deep learning relies on stacked layers to progressively learn abstract features [4], so tasks involving
hierarchical reasoning better evaluate architectural scalability and efficiency.

Criterion 2: Emphasis on mental thinking. Tasks should assess a model’s ability to reason in-
ternally without Chain-of-Thought (CoT). While CoT helps decompose problems, it does not reflect
intrinsic “system 1” reasoning [74]. For example, a model reasoning 4 steps internally and 8 via CoT
achieves 32 steps, but only internal ones reflect architectural strength. Current models like o3/R1
produce verbose reasoning traces even for trivial prompts (e.g., “Hello”)—revealing inefficiencies
in system 1. To guide architectural progress, tasks must target mental reasoning.

Criterion 3: Avoid emphasis on length generalization. Length generalization is often unsta-
ble—sensitive to random seeds and training order [79]—and thus unreliable for comparing architec-
tures. While length generalization is important, models over-optimized for long contexts (e.g., 100k
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Five Synthetic Tasks Isolating Atomic Skills

❖ (DEPO): Mental reasoning depth 

❖ (BREVO): Mental reasoning breadth

❖ (CAPO): Knowledge capacity

❖ (MANO): Knowledge manipulation

❖ (LANO): Hierarchical language structure

(directed path given in random order)

⟹ What’s the 𝑘-th 
successor of 𝐴?

(DAG given in random order)

⟹ What does A 
depend on, list in 
topological order?

[name] was born in [year], hometown is [city], works for [company]…

How many bit-per-parameter can a model store?

⟹ What’s answer mod 23?

Structural reasoning: resolving ambiguity via global 
dynamic programming on CFG languages

13 20 15 2

+ −

×

multi-hop reasoning on knowledge 
(i.e., 23× 23 lookup tables)

1  2  3  3  1  3  3  1  2  1  2  2  1  1  1  1  2 ...

parse tree 1parse tree 2

010110 1110 0011001010

⋯⋯

⋯ ⋯

Figure 3: Overview of our five synthetic tasks, each isolating an atomic skill for rigorous architectural compar-
ison.

tokens) may exhibit reduced performance on standard lengths like 4096 tokens.3 In practice, long
inputs are typically summarized into shorter windows before reasoning, so we prioritize evaluating
architectures on dense, 4096-token contexts, where critical reasoning unfolds.

Criterion 4: Relevance to real-world skills. Tasks should prioritize broadly applicable skills while
avoiding capabilities better suited to external tools. For example, large-number arithmetic (e.g.,
adding 10-digit numbers) is theoretically interesting but can be delegated to Python interpreters;
failures in this area typically reflect limited data exposure rather than architectural weaknesses (e.g.,
Llama3 70B miscalculates 452352 + 547647). Synthetic tasks should focus on universally relevant
skills, aligned with real-world applications, to ensure meaningful assessments.

2.1 Our First Set of Five Synthetic Pretrain Tasks

To operationalize the criteria above, we design five synthetic tasks—each targeting a distinct dimen-
sion of language model capability. We name them DEPO, BREO, CAPO, MANO, and LANO.

Task DEPO: Mental reasoning depth. Reasoning depth represents a fundamental capability for
LLMs, requiring models to retrieve information through multi-step computation. Task DEPO evalu-
ates reasoning depth as k-hop traversal over directed permutations, where models compute the k-th
successor for each query q entirely internally, without intermediate steps like Chain-of-Thought
(CoT).4 Each instance is formatted as:

<bos> x1 y1 x2 y2 ... xn yn <query_k1> q1 a1 <query_k2> q2 a2 ... <eos>

Here, 2n tokens encode n directed edges xi → yi, forming a random permutation of n nodes.
The dataset is controlled by two parameters: N , the maximum permutation size, and K, the maxi-
mum reasoning depth. During training, n is sampled from [3, N ], while k ∈ [1,K]. Context lengths
are fixed to 2048 tokens. We employ two variants of DEPO:

• DEPO1: Each node spans 1–2 tokens from vocab size 50, with N = 225, 300, 375 and K = 8.

• DEPO2: Each node spans 5–7 tokens from vocab size 4, with N = 75, 100, 125 and K = 16.

Evaluation focuses on both the hardest cases (n = N , k = K) and intermediate difficulty (k =
K/2). For weaker models, we utilize reduced training setups with K = 4, denoted DEPO1(K = 4)
and DEPO2(K = 4). The full methodological details are provided in Appendix A.1.

Task BREVO: Mental reasoning breadth. This evaluates a model’s ability to process multiple
dependencies simultaneously, as required in tasks involving tree-like traversal or dependency graphs.
For example, solving queries like “Who are Alice’s nephews?” or GSM-like examples requires
parallel reasoning across branches of a graph to process relationships bottom-up [72]. Task BREVO
isolates this capability using recursive traversal of directed acyclic graphs (DAGs), abstracting away
natural language or arithmetic complexities. Each task instance is formatted as:

<bos> x1 y1 x2 y2 ... xm ym <query> q <ans> a1 a2 ... ap <eos>

Here, 2m tokens define m edges xi → yi, representing dependencies where yi depends on xi. Upon
receiving a query vertex q, the model outputs all vertices recursively reachable from q, sorted in
topological order starting from the leaves (e.g., u → v → q yields output u followed by v).

3This is observed in methods like ALiBi [44], Halibi [30], and Mimetic initialization [63], whose perfor-
mance degrades on shorter contexts, as we show in this paper.

4Using CoT would reduce the k-hop task to simpler 1-hop associative recall.
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The dataset is parameterized by N , the maximum graph size, with DAGs created using n ≤ N
nodes, each of degree at most 4. Pretraining data is sampled by varying graph sizes, while testing
focuses on the hardest graphs (n = N ). We employ two variants of BREVO:

• BREVO1: Each vertex name spans a single token, with N = 70/90/110, fit within 1024
tokens.

• BREVO2: Name spans 2–4 tokens of vocab size 4, with N = 30/40/50, fit within 1536
tokens.

A key discovery from [72] revealed that, due to the non-uniqueness of valid outputs, language mod-
els must preprocess the entire topological order of the DAG mentally before generating the first
token a1. This insight confirms that our synthetic data rigorously evaluates reasoning breadth by
requiring models to globally process the underlying graph structure before producing outputs.

Task CAPO: Knowledge capacity. Task CAPO evaluates a model’s efficiency in encoding factual
knowledge directly within its parameters, quantified as bits per parameter, which measures reli-
able storage capacity. Following the framework in [7], synthetic datasets of (fake) biographies are
constructed to test knowledge retention. Each biography includes several attributes (e.g., birthdate,
university, employer, etc.) and is presented in diverse paraphrased formats to reduce surface-level
memorization [5, 6]. Capacity is measured using the next-token prediction distribution, accounting
for both exact correctness and partial accuracy.
To highlight architectural differences, we adopt an undertrained regime where each biography is
exposed only 100 times during pretraining.5 The dataset includes N = 50K to 2M biographies,
encoding 2× 106 to 108 total bits of information. Models of varying sizes are tested, and results are
visualized via “bit vs. model size” plots. Additional details are provided in Appendix A.3.

Task MANO: Knowledge manipulation. Task MANO evaluates a distinct form of reasoning:
the ability to manipulate stored knowledge internally, contrasting with in-context reasoning tasks
like DEPO or BREVO. While those tasks focus on reasoning over external tokens, MANO requires
models to retrieve factual knowledge embedded in their parameters and perform hierarchical compu-
tation entirely mentally. This combination of retrieval and reasoning makes knowledge manipulation
uniquely challenging and a skill that must be learned during pretraining.6

To test this capability, MANO employs synthetic modular arithmetic expressions inspired by human
mental computation, particularly small-number arithmetic like the 9×9 multiplication table. Models
solve multi-step arithmetic problems without intermediate steps like Chain-of-Thought. For exam-
ple, given: <bos> + * a b - c d <ans> the task requires evaluating ((a× b)+(c−d)) mod 23
for ℓ = 3, where operands a, b, c, d are sampled uniformly from [0, 22]. Modular arithmetic provides
the foundational factual knowledge (23×23 operation tables), while the task challenges hierarchical
reasoning by recursively composing operations. Additional details are provided in Appendix A.4.
The dataset is parameterized by a maximum expression length L, with ℓ sampled uniformly from
[1, L]. We prepare three MANO datasets across difficulty levels: L = 10, 13, and 16.

Task LANO: Hierarchical language structure. Task LANO evaluates structural reasoning over
hierarchical relationships and long-range dependencies. Unlike DEPO, BREVO, and MANO, which
rely on explicit key-value pairs (in-context or knowledge), LANO challenges models to infer implicit
recursive structures across sequences and resolve global ambiguities within them.
To test this, LANO leverages synthetic datasets built from context-free grammars (CFGs). Training
sequences consist of CFG-valid sentences separated by <bos> tokens. For example:

<bos> 3 3 2 2 1 ... 3 3 1 2 <bos> 1 2 3 3 1 ... 1 2 2 1 <bos> ...

CFGs are designed with token-level ambiguity, where local tokens (e.g., 1, 2, 3) provide insufficient
information to directly infer their mapping to CFG rules. Resolving this requires dynamic program-
ming to globally map the entire sequence to a valid recursive application of CFG rules, which must

5Exposing each biography 1000 times during pretraining diminishes architectural differences, as even trans-
formers without MLP layers can achieve similar storage efficiency [7]. Uniform exposure ensures clean sys-
tematic comparisons while avoiding confounding effects tied to rare outliers and junk data [7].

6For instance, questions like “Was [name] born in an even or odd month?” or derived 2-hop queries such as
“What is [name]’s sister’s birthdate?” demand reasoning layers over stored knowledge. These skills cannot reli-
ably emerge through supervised fine-tuning alone [6] and require development during pretraining or continued
pretraining.
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8L512D 12L512D 8L768D 12L768D

N=225

N=300

N=375

97/100% 99/100% 96/100% 93/100%
98/100% 84/99% 43/99% 95/100%
79/98% 99/100% 1/24% 3/27%

Task Depo1(K=4, k=4/2)
Llama(RoPE) - original

8L512D 12L512D 8L768D 12L768D

N=225

N=300

N=375

7/46% 2/14% 14/55% 19/62%
1/11% 1/9% 1/22% 4/31%
0/4% 0/0% 0/6% 1/16%

Task Depo1(K=4, k=4/2)
GLA - original

8L512D 12L512D 8L768D 12L768D

N=225

N=300

N=375

12/65% 29/67% 24/74% 43/84%
4/35% 12/46% 13/62% 13/61%
1/22% 13/56% 7/33% 10/42%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 12L512D 8L768D 12L768D

N=75

N=100

N=125

99/100% 100/100% 99/100% 100/100%
99/100% 100/100%100/100%100/100%
97/100% 100/100%100/100%100/100%

Task Depo2(K=4, k=4/2)
Llama(RoPE) - original

8L512D 12L512D 8L768D 12L768D

N=75

N=100

N=125

3/22% 1/5% 5/39% 3/12%
6/34% 1/13% 3/25% 1/6%
1/1% 1/3% 2/26% 4/18%

Task Depo2(K=4, k=4/2)
GLA - original

8L512D 12L512D 8L768D 12L768D

N=75

N=100

N=125

18/61% 80/95% 30/86% 69/89%
17/63% 47/83% 17/55% 42/82%
5/39% 46/85% 10/41% 24/75%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 12L512D 8L768D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 12L512D 8L768D 12L768D

N=70

N=90

N=110

33.7% 36.5% 46.1% 42.2%
1.7% 2.8% 6.2% 11.9%
1.2% 10.7% 2.9% 15.2%

Task Brevo1
GLA - original

8L512D 12L512D 8L768D 12L768D

N=70

N=90

N=110

3.7% 80.1% 50.1% 72.4%
0.3% 0.5% 3.8% 4.8%
0.1% 0.0% 1.1% 1.2%

Task Brevo1
Mamba2(mlp) - original (conv1d)

8L512D 12L512D 8L768D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 12L512D 8L768D 12L768D

N=30

N=40

N=50

2.8% 45.5% 21.5% 33.2%
0.7% 1.0% 1.8% 8.8%
0.1% 0.7% 1.0% 1.6%

Task Brevo2
GLA - original

8L512D 12L512D 8L768D 12L768D

N=30

N=40

N=50

50.8% 95.6% 68.1% 3.4%
12.5% 67.0% 14.5% 0.5%
3.3% 12.4% 4.0% 0.5%

Task Brevo2
Mamba2(mlp) - original (conv1d)
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Figure 4: Initial comparison of RoPE, Mamba2, and GLA on five synthetic tasks. GLA performs poorly
everywhere except knowledge capacity (CAPO); Mamba2 excels at knowledge (CAPO, MANO);
Llama(RoPE) is best at reasoning (DEPO, BREVO, LANO). This confirms our synthetic playground
as effective for architectural comparisons, but introducing Canon layers (see rest of the paper) will
build a Pisa tower for more controlled and fair comparisons, where the landscape shifts drastically
and reasoning depth improves 2–4×.

also be learned during training. This reasoning grows in worst-case complexity (O(n3)) as sequence
lengths increase. Details are in Appendix A.5.
Building upon cfg3f [3], which includes sequences of lengths 100–500, we introduce extended
datasets cfg3j and cfg3k, with sequences ranging up to 200–1000 tokens to increase recursive depth
and test models on more nested rules and longer dependencies. Training uses context lengths of
1536 for cfg3j and cfg3k, compared to 512 for cfg3f. Evaluation prompts models with <bos> to
generate CFG-valid sentences, validated via a dynamic programming parser. KL divergence is also
used to compare token distributions against ground truth.

In summary, this set of five synthetic tasks covers non-overlapping skills and distinct aspects of
accuracy—token-level (DEPO, MANO), generative (BREVO, LANO), and distributional (CAPO,
LANO). While this pool can be further enriched, it serves as a strong starting point for deriving
meaningful architectural insights, as demonstrated in the following sections.
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3 Initial Comparison on Well-Known Architectures

Language model architectures have evolved significantly since Transformers [64], resulting in three
major families distinguished by computational mechanisms.
Quadratic-time attention models, pioneered by the original Transformer, include prominent archi-
tectures such as BERT [35] and GPT2 [46]. Recent refinements include Rotary Position Embeddings
(RoPE) [12, 59] and gated MLP layers [54]. We use the Huggingface implementation of Llama,
denoted as Llama(RoPE), incorporating RoPE and gated MLP, and a variant without positional em-
beddings, Llama(NoPE). We refer to these as RoPE and NoPE respectively when clear from the
context. We exclude relative positional embeddings due to limited empirical benefits but additional
computational costs [3].
RoPE models often generalize poorly beyond training context lengths. In contrast, NoPE general-
izes better but suffers from lower overall performance. Recent attention-score modifications (e.g.,
ALiBi [44] and Hard-Alibi [30]) partially address this trade-off; we discuss in later sections.
Linear-time attention reduces computation by compressing sequences into fixed-length represen-
tations. Examples include Linformer [65], Performer [14], Linear Transformer [34]. We focus on
more recent Gated Linear Attention (GLA) [69], known for computational efficiency and scalability.
Recurrent and state-space models process long sequences using evolving hidden states instead of
attending over all tokens. Mamba [19, 26] exemplifies this category; we analyze its second gen-
eration (Mamba2). Other prominent models include S4 [56], S5 [56], RetNet [60], RWKV [42],
HGRN [45], GSA [77], DeltaNet [71], and GatedDeltaNet [70].

Avoidance of hybrid architectures. We exclude models integrating attention with linear or state-
space methods—e.g., Griffin [20], Samba [48], GatedDeltaNet-H1/H2 [70] or sliding-window atten-
tion—to maintain clarity. Such hybrid approaches excel in extremely long contexts (e.g., 1 million
tokens), but our analysis focuses explicitly on precision within standard context windows (4096 to-
kens). In practice, long contexts are often compressed to shorter segments (e.g., via CoTs) for final
detailed processing, making precise local reasoning essential.
Hybrid models can obscure architectural trade-offs; aggregated results may not reflect individual
component contributions clearly. For instance, Mamba2 is strong in memory tasks yet weaker in
structured reasoning. Hybrids blending linear/state-space modules with attention can mask these
distinctions. Thus, for transparency, this study focuses entirely on isolated architectures to clearly
analyze their inherent strengths and weaknesses.

Architecture Size Standardization. To ensure fair comparisons, we standardize model sizes and
evaluate Llama, GLA, and Mamba2 as representative architectures from each family.
For all tasks except CAPO, we experiment with four architecture sizes. Llama models have 12 or
8 layers, with hidden dimensions of 768 or 512 (and 12 or 8 heads), denoted as 12L768D, 8L512D,
etc. (12L768D matches GPT2-small). We translate these configurations into GLA, Mamba2,
Mamba2(mlp) and Gated DeltaNet (GDN) to ensure comparable parameter counts.7

For CAPO (bit-per-parameter knowledge capacity), we vary model and data sizes more widely. Fol-
lowing [7], we denote model scale by ℓ-h: for Llama, this means ℓ layers, hidden size 64h, and h
heads. We extend this notation consistently to GLA and Mamba2.

Training. We use identical training settings (batch size, training steps, learning rates, etc.) across
architectures to ensure fair comparisons. Complete details are provided in Appendix A. We also fix
random seeds so that all architectures pre-train on precisely identical data sequences.

3.1 Initial Comparison Results

From Figure 4, linear-attention GLA performs weakest overall, Mamba2 excels in knowledge tasks
(CAPO, MANO), and Llama(RoPE) performs best on reasoning tasks (DEPO, BREVO, LANO).
These results validate the effectiveness of our synthetic playground; however, we avoid deeper in-
terpretation at this point. As shown later, Llama and GLA lack a critical architectural component,

7The original Mamba2 has no MLP layers: each Mamba layer has 6d2 parameters (for hidden size d),
compared with 12d2 in Llama. Thus, we configure Mamba2 with 24 or 16 layers to match Llama’s size.
Mamba2(mlp) alternates Mamba and gated MLP blocks, thus keeping 12 or 8 total layers. See details in
Appendix C.
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making this initial comparison incomplete, unfair, and less informative.
For now, we highlight several key remarks.

3×4 mini scaling laws. Randomness may affect outcomes. For example, in Task MANO, despite
two seeds and four learning rates per configuration, smaller models sometimes outperform larger
ones. Thus, robust statistical comparisons are crucial. We address this by testing our synthetic tasks
systematically at three data scales and four architecture sizes (even more for Task CAPO). These
“3×4” mini scaling laws enable clearer visual comparisons, reducing variability.

Benefits of synthetic tasks. Synthetic tasks clarify architectural differences starkly (e.g., 90% vs
5%), clearly exposing strengths and weaknesses. By contrast, real-world experiments often produce
modest differences (e.g., 2%) buried in noise. Thus, synthetic pretraining environments allow clean
evaluations of architectures’ scalability and true capabilities.

Interpreting task failures. If a specific architecture (of a given size) fails at a certain difficulty
level (e.g., large N or k), it does not imply the model cannot learn the skill given infinite training.
Our comparison uses a fixed, limited training budget: all architectures train for the same number of
steps with identical data and shuffling, reporting best accuracy across multiple learning rates. Thus,
results should be seen as differences in the speed of skill acquisition, not absolute capability.8

Predicting future pipelines. Synthetic tasks simulate idealized, high-quality pretraining conditions
targeting core skills like multi-hop reasoning (DEPO). Unlike datasets such as FineWeb-edu or
SlimPajama, which contain sparse reasoning examples obscured by simpler content, synthetic tasks
highlight core capabilities. Currently, 100B-token pretraining fails even simplest 2-hop reasoning
(Result 12). As training pipelines evolve—via improved data curation or RL-based post-training—
synthetic tasks like DEPO may better predict models’ potential and guide architectural choices.

The remainder of this paper is deferred to the full version.
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construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full experimental configurations are described in Appendix A, B and B, in-
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper quantifies noise due to random seeds (e.g., Figure 1) and only
interprets performance differences above that margin.
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies hardware (e.g., A100/H100 GPUs), training duration,
batch sizes, and Canon layer runtime overhead (Appendix 4 and A).
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses only synthetic or publicly available datasets and does not
involve human subjects, privacy risks, or misuse scenarios.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Conclusion discusses potential benefits of more reproducible and
resource-efficient architecture evaluations, and no foreseeable negative impacts are iden-
tified.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release high-risk models or data; it works with synthetic
benchmarks and academic-scale training only.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external models and datasets (e.g., Mamba2, SlimPajama) are cited with
source, version, and licenses are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [No]

Justification: New synthetic datasets and evaluation suites are introduced, but not yet re-
leased; documentation is provided in Appendix A and release is planned post-submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved, and no IRB approval was necessary.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Justification: LLMs were not used as an important, original, or non-standard component of
the core research methods described in this paper. Any LLM usage was for general writing
assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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