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Abstract

Large Language Models (LLMs) have achieved
remarkable success, where instruction tuning
is the critical step in aligning LLMs with user
intentions. In this work, we investigate how the
instruction tuning adjusts pre-trained models
with a focus on intrinsic changes. Specifically,
we first develop several local and global ex-
planation methods, including a gradient-based
method for input-output attribution and tech-
niques for interpreting patterns and concepts
in self-attention and feed-forward layers. The
impact of instruction tuning is then studied by
comparing the explanations derived from the
pre-trained and instruction-tuned models. This
approach provides an internal perspective of the
model shifts on a human-comprehensible level.
Our findings reveal three significant impacts
of instruction tuning: 1) It empowers LLMs
to recognize the instruction parts from user
prompts, and promotes the response generation
constantly conditioned on user instructions. 2)
It encourages the self-attention heads to capture
more word-word relationships about instruc-
tion verbs. 3) It encourages the feed-forward
networks to rotate their pre-trained knowledge
toward user-oriented tasks. These insights con-
tribute to a more comprehensive understanding
of instruction tuning and lay the groundwork
for future work that aims at interpreting and
optimizing LLMs for various applications.

1 Introduction

The remarkable capability of Large Language Mod-
els (LLMs) to align with user intentions is well-
recognized across various real-world applications,
where they are expected to be helpful, honest, and
harmless Al assistants (Ouyang et al., 2022; Ope-
nAl, 2023). Central to these roles, being “help-
ful” is the most fundamental requisite, emphasizing
that LLMs should help users to complete various
tasks, known as the “instruction following” capabil-
ity. Many studies (Raffel et al., 2020; Wang et al.,
2022; Zhou et al., 2023) show that instruction tun-

ing, also called supervised fine-tuning (Ouyang
et al., 2022), is critical to acquire such capability,
by fine-tuning pre-trained models on high-quality
prompt-response pairs. However, the impact of
instruction tuning on the helpfulness of language
models remains inadequately understood, limiting
the improvements toward better Al assistants.

In this work, we focus on exploring how instruc-
tion tuning influences pre-trained models. Specifi-
cally, how do instruction-tuned models utilize the
instruction words to guide their generation in a way
that differs from pre-trained models? Step further,
how do self-attention heads and feed-forward net-
works contribute to this difference by adapting their
pre-trained knowledge, respectively?

However, technically answering these questions
by interpreting LLMs is non-trivial. For the first
question, we aim to quantify the importance of
prompt words to response words, known as attribu-
tion explanations. Existing work (Selvaraju et al.,
2016; Sundararajan et al., 2017; Mu and Andreas,
2020) is proposed for the classification problems,
which is not suitable for auto-regressive LLMs. For
the second question, we seek to interpret both self-
attention and feed-forward layers within LLMs.
The straightforward method (Dar et al., 2022; Geva
et al., 2021) of projecting weight vectors into the
word embedding space and then selecting the most
activated words as explanations is compromised by
the polysemic nature of model weights (Arora et al.,
2018; Scherlis et al., 2022), leading to unclear and
not concise explanations. Other researchers switch
to studying internal activations of the models, such
as heatmap visualization (Vig, 2019), sparse auto-
encoder decomposition (Bricken et al., 2023b; Cun-
ningham et al., 2023), and knowledge probing (Be-
linkov et al., 2018; Jawahar et al., 2019), while
they may yield biased explanations due to the po-
tential bias in the chosen samples for collecting
activations. Overall, existing explanation methods
cannot be directly applied to auto-regressive LLMs.



To fill these gaps, we first develop a series of ex-
planation methods as a toolbox to study LLMs,
including a gradient-based method for prompt-
response attributions and techniques to interpret the
patterns and concepts in self-attention heads and
feed-forward networks at a human-understandable
level. We then investigate the impact of instruc-
tion tuning by comparing the explanations coming
from the pre-trained and instruction-tuned models.
This approach provides an internal perspective of
exploring instruction tuning, distinguishing it from
existing research that primarily focuses on com-
paring the performance of the model trained under
different settings (Liang et al., 2023; Kung and
Peng, 2023; Zhou et al., 2023; Kirk et al., 2023).
We obtain three main findings of the impact of
instruction tuning as follows:

* Finding 1: It enables models to recognize in-
struction words in user prompts and drives
the generation process to be consistently con-
ditioned on these words. We introduce a nor-
malization strategy to make the traditional
gradient-based methods suitable for attribut-
ing response words to prompt words. We
observe that instruction words, such as “Fix
grammar errors:”, influence multiple response
words across different positions, unlike other
words that have a limited effect on the re-
sponse (Sec. 4.1). Additionally, we leverage
a density function to aggregate the overall
importance of each individual prompt word.
This importance density score is quantitatively
shown to correlate strongly with the models’
ability to follow instructions (Sec. 4.2).

* Finding 2: It encourages self-attention heads
to learn more word relations with instruc-
tion verbs than common verbs. We suggest
extracting word-word patterns under the lo-
cal co-occurrence assumption to alleviate the
polysemantic challenge in interpreting self-
attention heads (Sec. 5.1). We notice a signifi-
cant change in the word-word patterns within
the same self-attention head after instruction
tuning. Analysis shows that the word-word
patterns associated with instruction verbs be-
come more popular, especially in the bottom
and middle layers, while patterns linked to
commonly used verbs do not display a similar
increase in popularity. This finding demon-
strates that self-attention heads have a direct
influence on understanding user instructions.

* Finding 3: It adapts the pre-trained knowl-
edge encoded by feed-forward networks into
user-oriented tasks without changing their lin-
guistic structures. We propose interpreting
the principal components of weight vectors to
reach a “concept” level explanation of feed-
forward networks (Sec. 5.2). Our analysis of
these concepts spans two dimensions: user-
oriented tasks' and linguistic levels? (Thomas,
2005). We find that the proportion of concepts
that are suitable for specific tasks, such as
writing, coding, and solving math problems,
becomes significantly greater after instruction
tuning. In contrast, the distribution of these
concepts across different linguistic levels re-
mains the same. This phenomenon shows that
feed-forward networks adapt their pre-trained
knowledge to downstream tasks by slightly ro-
tating the basis of their representation space.

This study reveals that instruction words are cru-
cial to instruction-tuned models because of their
consistent impact on the generation process, and
further emphasizes the distinctive contributions of
self-attention mechanisms and feed-forward net-
works to this functionality. While our focus is on
behavior shifts after instruction tuning, future re-
search might also apply our toolbox to understand
LLMs for various other purposes.

2 Related Work

Interpreting Language Models. Majority inves-
tigations in interpreting LL.Ms aimed to under-
stand the decision-making processes of LLMs for
a specific task or dataset, which involves feature
attribution methods (Li et al., 2015; Vig, 2019;
Kokalj et al., 2021), attention-based methods (Vig,
2019; Barkan et al., 2021), and sample-based meth-
ods (Kim et al., 2018; Wu et al., 2021). Recently,
many researchers turned to understanding why
LLMs can perform in-context learning (Xie et al.,
2021; Olsson et al., 2022; Li et al., 2023; Wei
et al., 2023; Varshney et al., 2023; Xiong et al.,
2023; Duan et al., 2023). In parallel, some works
delved into interpreting the internal components of
LLMs, including the self-attention mechanism (EI-
hage et al., 2021; Sukhbaatar et al., 2019) and feed-
forward networks (Press et al., 2019; Geva et al.,

'User-oriented tasks include “writing”, “coding”, “transla-
tion”, and “solving math problem”.

Linguistic levels include “phonology”, “morphology”,
“syntax”, and “semantic”.



2020; Voita et al., 2023; Petroni et al., 2019; Meng
et al., 2022; Huang et al., 2023). Our work builds
on these foundations, introducing novel interpreta-
tion methods tailored for modern LLMs.

Interpreting Instruction-tuned Models. Inter-
preting instruction tuning is still in the early stages
of exploring unexpected phenomena. A notable
example is the “lost-in-the-middle” effect identi-
fied by (Liu et al., 2023), which demonstrates that
inserting contents in the middle of prompts often
results in poor model performance.Similarly, (Zhou
et al., 2023) showed that even only 1000 prompt-
response pairs could significantly enhance the
instruction-following capabilities of LLMs. More-
over, researchers (Liang et al., 2023; Kung and
Peng, 2023; Zhou et al., 2023) find that instruction-
tuned models just learn superficial patterns through
instruction tuning. These observations motivate us
to investigate the internal changes of instruction-
tuned models, aiming to reach a comprehensive
understanding that recognizes these diverse phe-
nomena under a unified perspective.

3 Preliminary

3.1 Transformer Architecture

Considering V as a pre-defined vocabulary set, then
X denotes an N-length prompting text and Y is
a M-length response from a transformer-based
language model f, where each individual token
Tn € X or Yy, € Y comes from V. f is defined in
a D-dimensional space, starting with an input word
embedding E; € RVI*P presenting input tokens in
X € RVXP_ X goes through L transformer blocks,
each containing a self-attention module and a feed-
forward network. Every self-attention module in-
cludes H heads that operate in a space with D’ di-
mensions. Each self-attention head captures word
relations by A" = softmax(XWf}(Xij)T /€),
where Wh Wi € RP*D" and € is a con-
stant. The aggregation of heads’ outputs is
[A'XWL: .. AHXWHIW,,. Each feed-forward
network is defined as o(XW/))W,, where o
refers to a non-linear function, and W,, W, €
RP”*D Finally, the processed word embeddings
dot product with the transpose of output word em-
beddings E, € RIVI*P for next word prediction.

3.2 General Experimental Settings

Language Models. We choose the LLaMA fam-
ily (Touvron et al., 2023) as the focus for two

reasons. Firstly, LLaMA is one of the most ad-
vanced publicly accessible pre-trained language
model families. Secondly, LLLaMA is the founda-
tion for many instruction-tuned models, providing
a vast array for further research. In this research,
we mainly use the fully fine-tuned versions of Vi-
cuna (Zheng et al., 2023) as the instruction-tuned
model, using LLaMA (Touvron et al., 2023) as the
corresponding pre-trained model®>. We employ a
greedy search (for reproduction) to generate up to
300 tokens for each input prompt.

Instruction Datasets. We collect user-oriented
prompting texts from three publicly available
datasets:  Self-Instruct (Wang et al., 2022),
LIMA (Zhou et al., 2023), and MT-Bench (Zheng
et al., 2023). The Self-Instruct dataset includes 252
pairs of prompts and responses written by humans,
used both for generating more pairs and as a test
set. LIMA, mainly based on questions and answers
from online platforms like Stack Exchange, has
1000 training pairs and 300 testing pairs. On the
other hand, MT-Bench, intended only for machine
evaluation, has 80 human-written pairs across eight
categories but lacks a training set. Our analysis
focuses on the test sets from these datasets.

4 TImpact of User Prompts for
Human Alignment

This section focuses on the differential treatment
of user prompts by instruction-tuned models com-
pared to pre-trained models. We introduce a
gradient-based attribution approach in Sec. 4.1 to
measure the importance of individual input words
on specific output words. In Sec. 4.2, we compare
the importance densities across various models to
study their distinct in using user prompts.

4.1 Quantifying Prompt Influence on
Generation Process

Method. We aim to measure the importance of
each prompt token to each response token. In classi-
fication, input feature importance is typically mea-
sured by monitoring confidence changes upon its
removal (Ribeiro et al., 2016; Feng et al., 2018).
Treating text generation as a sequence of word clas-
sification tasks, the importance of an input token to
an output token is gauged by examining confidence
changes in output generation while the input token

3We implement these models with the code and check-
points available from Huggingface library (Wolf et al., 2019).
We use Imsys/vicuna-7b-delta-v1.1 for Vicuna.



is removed. Therefore, we define importance I, p,
of input token x,, to output token y,,, as:

In,m :p<ym’Zm) _p(ym|Zm,/n)a (1)

where Z,, is the context to generate ¥, by concate-
nating the inquire X and the first m — 1 tokens
of response Y, Z,, ;, omits token x,, from Z,,,
and p(+|-) is the conditional probability computed
by language model f. We accelerate Eq. (1) with

the first-order approximation: I, , = ‘9{9(]{/3’“77[';?) .

E;[z,]", where E;[z,,] is the input word embed-
ding of token x, (check Appendix A for theo-
retical justification). The importance of input to-
kens cannot be compared across different output
tokens due to its dependency on the confidence
f(Ym|Zm). It’s crucial to recognize that a word
with a lower confidence doesn’t necessarily imply
it is a trivial word. Specifically, in language model-
ing, the likelihood of a word y given previous con-
text x could be extended with Bayes’ theorem as
p(y|z) = p(z|y)-p(y). Here, semantic (non-trivial)
words have a lower prior probability p(y) since they
are less common in the general corpus. In addition,
models tend to estimate a lower conditional proba-
bility p(z|y) since it is more challenging to predict
such meaningful words unless they observe a very
strong semantic relation. Consequently, models are
typically more confident about common, less mean-
ingful words, and less confident about semantically
rich, rare words. Therefore, we propose to rescale
the importance scores derived from the same out-
put token to ensure they are comparable across
different output tokens. In addition, we introduce
a sparse operation over the rescaled importance
to overlook the noise introduced by first-order ap-
proximation. To this end, the normalized pairwise

score Sy, = ReLU | | L x ]5’“"/-‘ -b),

ax I
where [-] is the ceiling function, and b € [0, L] is
a hyper-parameter determining the minimal inter-
ested importance level.

Settings. This qualitative experiment demon-
strates how prompt words contribute to response
generation via visualizing salient maps based on
normalized pairwise importance s, ,,. We set
L =10 and b = 0 to faithfully present all informa-
tion (including noise) for visualization. Figure 1
provides a pair of salient maps to the same prompt
corresponding to the model-generated responses
from LLaMA and Vicuna, respectively. We show
more visualization cases in Appendix C.
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Figure 1: Salient maps of the prompt-response pair*from
LLaMA (left) and Vicuna (right).

Obs-1: Instruction tuning helps the models dis-
tinguish between instruction and context words
more accurately. We provide a visualization case
that asks the models to analyze the tone (instruc-
tion) of a given email (context) into one of the listed
categories (background). Both models begin their
responses by repeating the email. Later, Vicuna
successfully analyzes the tone of the email, while
LLaMA fails to do that. Figure 1 (right) shows that
the instruction part is generally brighter than the
background and context part, indicating the strong
influence of instruction words in shaping response
generation. In contrast, context lines only light
up in specific spans and show a diagonal pattern
at the left button of both figures (models are re-
peating the email). The differences between the
left and right plots further highlight the impact of
instruction tuning. Specifically, the left plot has
certain context lines that appear less bright in the
right plot, while certain instruction lines in the right
plot stand out more. This visualization case raises
a hypothesis that the instruction words constantly
contribute to the response generation if the model
successfully follows the user intention. Sec. 4.2
will quantitatively verify this assumption.

4.2 Assessing Instruction Following
Capability with Importance Density

Method. We aim to measure the overall attri-
bution of each input token to the entire response
generation process. Based on Sec. 4.1, an input
token should acquire a greater attribution score
if it is important to generate more output tokens.

4The prompt boldfaces its direct instruction words and underlines its
background: Analyze the word choice, phrasing, punctuation, and capitaliza-
tion in the given email. How may the writer of this email sound to the reader?
These tones include Disheartening, Accusatory, Worried, Curious, Surprised, Disapproving,
Unassuming, Formal, Assertive, Confident, Appreciative, Concerned, Sad, Informal, Regret
ful, Encouraging, Egocentric, Joyful, Optimistic, and Excited.\n\nInput: Hi Jen, \nI hope
you're well. Can we catch up today? I'd appreciate your input on my presentation for
tomorrow’s meeting. Id especially love it if you could double-check the sales numbers with
me. There’s a coffee in it for you!\n\nOutput:




Table 1: Importance density on instruction words over
followed and unfollowed instances from Vicuna.

Table 2: Importance density on instruction words over
responses generated by Vicuna and LLaMA.

Dataset Followed Unfollowed  p-value Dataset Vicuna LLaMA p-value
Self-Instruct  1.22831052 0.89171048 1.de”* Self-Instruct  1.1661+0.53 0.9432404s 8.4e~ "
LIMA 1.6173+0.47 1.279940.44 4.3¢7© LIMA 1.5608+10.48 1.270240.43 2.6e” 14
MT-Bench  1.45841055 0.92901053 2.3¢ 4 MT-Bench  1.331140.59 1.169740.57  0.0804

Following this intuition, the input token z,,’s at-
tribution a,, is measured by leveraging £, /¢, den-
sity function over the normalized importance to
all output tokens: a,, = |[|Sy|[1/]|Sn||p. Where
Sn = [Sn1s-, Snom), and p € RT serves as a
hyper parameter. One nice property of this density
function is if two input tokens have the same total
importance, then the one having greater maximum
importance would receive a greater density score
(check (Hurley and Rickard, 2009) for proof).

Settings. This experiment quantitatively justifies
the assumption observed from Sec. 4.1 that a model
aligns with human intention if it constantly uses
instruction words to guide the generation. Specifi-
cally, we manually annotate a dataset, where each
prompt has been marked its instruction part, and
each response is labeled as either “followed” or
“unfollowed”. Please check Appendix B.1 for the
annotation details. Here, the instruction part in-
cludes sentences that describe background infor-
mation and actions for a task. On the other hand,
“followed” indicates that the model provides infor-
mation pertinent to the user intention, regardless of
the response’s factual correctness. For each prompt-
response pair sourced from our datasets, we com-
pute the importance density score with L = 10,
b =17, and p = 4. We further normalize the scores
to ensure comparability across different instances
and remove the instances with a short response (less
than 5 tokens) as their estimations of density are not
stable. Table 1 compares the average importance
densities between the followed and unfollowed in-
stances from Vicuna, while Table 2 compares the
average importance densities between the Vicuna
generated or LLaMA generated instances. Please
check Appendix B.2 for an analysis of outlier cases.

Obs-2: The importance density on instruction
words reflects the models’ behaviors in following
user intentions. From Table 1, it becomes evident
that attribution scores for “followed” instances con-
sistently outperform those of “unfollowed” across
all datasets. This distinction is statistically val-
idated by notably low p-values, where the null-
hypothesis is the average importance densities of

followed and unfollowed instances are equal. Ta-
ble 1 underscores the strong correlation between
the importance density scores of instruction words
and the instruction following capability. Case stud-
ies in Appendix B.2 suggest that instruction-tuned
models may pretend to follow instructions without
realizing user instructions. Furthermore, Table 4.2
shows that Vicuna achieves greater importance den-
sity scores compared to LLaMA across the three
datasets, indicating instruction tuning empowers
the pre-trained model in better identifying and har-
nessing instruction words from user prompts.

Obs-3: Instruction-tuned models archive a
greater importance density than their pre-
trained models. Table 2 reports the average impor-
tance density over the instruction words by giving
different responses generated by Vicuna or LLaMA.
We could observe that Vicuna constantly assigns
denser importance scores on the instruction words
compared to LLaMA across the three datasets,
where this improvement is validated by student-
t-test, where the null hypothesis is that the average
importance densities computed by responses gen-
erated by Vicuna and LLaMA are equal. Accord-
ing to Obs-2, we draw our conclusion that Vicuna
demonstrates a better instruction-following capa-
bility than LLaMA by more accurately identifying
instruction words and then successfully using them
to guide response generation.

5 Shift within Instruction-tuned Models
This section studies the distinctive contributions of
components in LLMs for human alignment. The
self-attention heads and feed-forward networks are
discussed in Sec. 5.1 and 5.2, respectively.

5.1 Analyzing Self-Attention Heads

Method. We aim to interpret the behaviors of
self-attention heads with word pairs. Given a
self-attention head, the relation between a pair of
words (wg, wp) could be approximated by A, o
SV Ei[wa WiT[d] x E;[wy]WT[d]. Existing
work (Dar et al., 2022) computes the similarities
between words from the entire vocabulary V based
on W, and W, and selects the top-K word pair



with the greatest similarities to represent the rela-
tions encoded by a self-attention head. However,
we notice that the word pairs obtained by this ap-
proach are redundant, leading to a less comprehen-
sive understanding of the self-attention head. To
overcome this problem, we propose to interpret a
self-attention head by aggregating the word pairs
activated by its neuron pairs, which is motivated by
the fact that the relation A, linearly relates to the
activations of column vectors of weights Wg and
W7, called neurons in this paper. But this alter-
native approach suffers from the polysemantic na-
ture of neurons (Elhage et al., 2022; Bricken et al.,
2023a), introducing word pairs that are meaning-
less to be connected. Considering the self-attention
mechanism is designed for capturing word rela-
tions within the input texts, we introduce the word-
word co-occurrence constraint to the word pair
formation. Specifically, we first interpret neu-
rons W [d] and W} T [d] by collecting the top-K
words that could most activate them, i.e. 5(‘11 =
arg mazy cy [vri=x Lwey Eilw] - (WiT[d])"
and gg = arg mCLIEV/gV’n;/‘:K ZwEV’ El[w] .
(WZ/T[d])T. We then form the word pair list 8;1 =
{(wq, wg) : cos(eq,er) > 6}, where w, € 5(?,
wy € S,ff, ey, ey, are their GloVe (Pennington et al.,
2014) word embeddings, and 6 is a threshold. Fi-
nally, the explanation of a self-attention head is de-
scribed with the frequent word pairs that are used
to interpret its neurons.

Settings. We consider K = 100 as a constant and
0 as dynamic values for different words. Specif-
ically, we first compute the cosine similarity be-
tween the given word and 1000 frequent words
with GloVe word embeddings (Pennington et al.,
2014). The threshold of which is the average simi-
larities plus 1.96 times the standard deviation. The
threshold of a word pair is the greater one of their
individual word thresholds. We conduct a qualita-
tive analysis of the word pairs in Appendix F.

The impact of instruction tuning on self-attention
heads is studied by comparing the word pair lists
from the pre-trained and tuned models. First, we

quantify the changes of word pair lists with the
gptﬁgft
51)15 Ugft ’
&y denote the top-100 word pairs of the pre-

trained and tuned models. Figure 2 visualizes
1 — M over various layer groups. We also investi-
gate how these changed word pairs related to the
instruction-following capability, focusing on verbs.

intersection rate M = where &,; and
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Figure 2: Shift of word-word patterns for self-attention
after instruction tuning.

Table 3: Percentage of self-attention heads encoding
certain verbs after instruction tuning.

Layers Instruct General p-value
1-4 78.46+23.91 524543530  0.0005
5-8 66.89+23.82 484243271  0.0045
9-12 66.23+28.85 51.1543288  0.0420
13-16  64.39425.85 50.1143206 0.0285
17-20  58.25440.52 53.50+31.61 0.6181
21-24  51.03431.58 51.46+31.57 0.9531
25-28 39.19i3137 52.32i32.22 0.0960
29-32  50.49436.01 50.58+31.65 0.9919

Specifically, We identify 35 instruction verbs (e.g.,
“write”, “create”, and “classify”) based on (Wang
etal.,2022; Ouyang et al., 2022), and also assemble
a control set of 1000 frequent verbs (Speer, 2022).
For each verb, we calculate what proportion of the
self-attention head encodes more word pairs about
that verb after instruction tuning. We only con-
sider those self-attention heads that change in the
number of word pairs for the verb after instruction

tuning and report the results on Table 3.

Obs-4: Instruction tuning significantly modi-
fies self-attention heads. Figure 2 shows that as
layer depth increases, the differences between word
pair lists become more significant. Notably, we
could observe that over 35% of word pairs for the
same self-attention head are changed in the last
few layers. This result not only illustrates the sig-
nificant impact of instruction tuning on the self-
attention heads, but also demonstrates that the pro-
posed method can capture the diverse word-word
relationships encoded by the self-attention layer.

Obs-5: Enhanced Encoding of Instruction
Verbs through Instruction Tuning in Lower Self-
Attention Heads. Table 3 demonstrates that in-
struction tuning notably increases the propensity of
self-attention heads, particularly in lower (1-8) and
middle (9-20) layers, to encode word-word patterns
associated with instruction verbs. This enhance-
ment is statistically significant (p < 0.05) within



the first 16 layers. In contrast, approximately 50%
of self-attention heads exhibit a similar tendency
for general verbs, while 50% refers to a neutral
impact, signifying neither an increase nor decrease
in word relations for the given verbs. This differ-
ence indicates that instruction tuning teaches self-
attention to identify various detailed instructions.

5.2 Analyzing Feed-forward Networks

Method. We aim to interpret the knowledge of
feed-forward networks in the concept level. We
treat each feed-forward network o(XW, )W, as
key-value memories (Geva et al., 2020), where each
row vector of W, and W, stores a textual pattern.
However, these textual patterns (neurons) are usu-
ally polysemantic (Elhage et al., 2022; Bricken
et al., 2023a), causing each textual pattern not to be
interpreted within a concise meaning (Geva et al.,
2021). Thus, we propose to seek a set of orthog-
onal vectors that capture the major directions in
which these patterns spread. Formally, given pat-
terns W ,, we construct the covariance matrix as
C= W;,r Wp, where Wp is the centralized matrix
of W, with zero-mean columns. Then the orthog-
onal basis vectors V of these patterns satisfy:

CV =AV, ()

where each column vector of V € RP*D ig unit

length, A = diag([\1,...,Ap]), and A\; > ... >
Ap > 0. In this context, our primary focus lies on
the top- R values of A along with their correspond-
ing column vectors in V. This is due to the fact that
they show the principal directions of the encoded
patterns from W,. We then project each princi-
pal vector to the word embedding space E, and
find the top-K relevant words for interpretation:
E = argmazyiey |yi—k Ypey V' [11Eo[w],
where V T [r] is the r-th column vector of V, E,[w]
is the output word embedding of w. Since v, is a
unit vector, V ' [r]E,[w] measures the projection
length of the word vector in this direction. Thus,
it is natural to represent this vector with the words
having the largest projection length, and the word
list could be further summarized as a textual de-
scription by a human or a machine annotator.

Settings. We create a new vocabulary derived
from ShareGPT (RyokoAl, 2023) to make the can-
didate words ¥ more understandable compared
to a large number of sub-tokens from the built-
in LLaMA vocabulary. We then analyze the first
300 basis vectors of each feed-forward network

Table 4: Interpreting the last feed-forward network of
Vicuna with the proposed decomposition method.

Words

CBT, RTK, RT, RH, HRV, MT, ...
the, theological, theology, ...
one-of-a-kind, state-of-the-art, ...
sha256, tt, 8266, 768, 1986, ...

Description

medical abbreviation
starting with “the”
hyphenated terms
numbers

from LLaMA and Vicuna with their top 15 relevant
words. ChatGPT ? is considered our machine anno-
tator for this experiment. Table 4 provides sample
word lists and their descriptions. More cases are
available in Appendix E.2. The detailed settings
and statistics of concept descriptions are shown
in Appendix D.2. We discuss the results of the
principal components in Appendix E.1.

To study the evolution of pre-trained knowledge,
we condense tasks from previous research (Zheng
et al., 2023; Ouyang et al., 2022) to scenarios in-
cluding writing, math, coding, and translation. We
then identify which scenarios a concept could be
used for (see Appendix D). Note that some con-
cepts may fit multiple scenarios. Also, we sort con-
cepts into phonology ¢, morphology 7, syntax, or
semantics linguistic levels based on the disciplines
in the linguistic subject (Thomas, 2005). Table 5
displays the percentage of knowledge for different
scenarios and linguistic levels.

Obs-6: The principal vectors of the weights of
feed-forward networks provide concept-level un-
derstandings of the encoded knowledge. We se-
lect four representative principal components and
their explanations from the last feed-forward net-
work of Vicuna and display them in Table 4. More
cases are available in Tables 10 and 11. In Table 4,
the descriptions of the four principal vectors span
diverse topics, ranging from medical (“medical ab-
breviation™) to linguistic (“starting with the”). No-
tably, the concept of medical abbreviations stands
out, as it’s often difficult for human annotators to
discern their medical relevance. This indicates the
advantage of utilizing machine annotators for their
vast knowledge. Coincidentally, Appendix D.2
shows that around 60% of the first 300 princi-
pal components from the middle layers of Vicuna
could be interpreted by ChatGPT. This evidence
empirically verifies the rationale for analyzing feed-
forward networks with the proposed method.

>We employ ChatGPT-turbo-3.5-0613 in this work.

®Phonology studies sound systems, e.g. words with “le”
sound: brittle, tackle, chuckle, pickle.

"Morphology studies word structure, e.g. words with “sub-"
prefix: subarray, subculture, subway.



Table 5: Concept distribution over different user-
oriented scenarios and linguistic levels.

Category  Vicuna LLaMA p-value

Writing 53.50+ .46 51.471+ 92 0.0154

Coding 29.45+ 43 28.64+ 48 0.0350

Scenarios Math 521436 5.04+33 0.5193
Translation — 25.30+.39 26.27+ 70 0.0411

Phonology 1.18+.11 1.151 07 0.6251

Morphology  17.16+ .49 16.83+.60 0.4223

Linguistic Syntax 716431 7.524+.50 0.2551
Semantic 74.704 65 74.66+ 67 0.9394

Obs-7: Instruction tuning shifts the principal
vectors of feed-forward networks toward user-
oriented tasks without moving them across lin-
guistic levels. We observe from Table 5 that Vi-
cuna encodes more concepts than LLaMA for writ-
ing, coding, and math tasks, with the difference
in writing and coding being statistic significant
(p < 0.05), where the null-hypothesis is knowl-
edge proportions of a certain category for Vicuna
and LLaMA are equal. However, that of concepts
for translation is reduced after fine-tuning, indi-
cating that multi-linguistic knowledge is forgot-
ten. Although we could observe the changes over
the user view, from the linguistic view, it remains
the same. In particular, Vicuna and LLaMA show
nearly identical distributions across the four linguis-
tic levels. None of them are statistically significant
(p > 0.05). This observation suggests instruction
tuning does not alter the distribution of pre-trained
knowledge across linguistic levels.

Obs-8: The proportion of semantic knowledge
first increases then decreases from bottom to top
layers, while that of morphology knowledge does
the opposite. Figure 3 displays how concepts from
various linguistic levels are spread across layers.
First, there isn’t a noticeable distribution shift be-
tween Vicuna and LLaMA, which matches Obs-7.
One noteworthy observation is the opposite “U”-
shape trend of semantic knowledge, mirrored by
a regular “U”-shape of morphology. This pattern
is surprising, especially since previous studies in
computer vision suggest that basic features are ex-
tracted in the bottom layers, and compositional
knowledge is learned in the top layers (Zeiler and
Fergus, 2014; Selvaraju et al., 2016). However,
since LLaMA is a generative model, this unusual
pattern makes some sense. Specifically, we conjec-
ture that LLaMA learns more morphology knowl-
edge (e.g., prefix and suffix patterns) in the last
few layers to simulate a prefix-tree structure (Fred-
kin, 1960; Giancarlo, 1995; Paladhi and Bandy-
opadhyay, 2008; Shan et al., 2012). By doing so,

0.8
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Figure 3: Distribution of concepts at linguistic levels
over different model layers.

LLaMA could use fewer parameters to memorize
more phrases to complete the next-word prediction
task. We leave explorations as future work.

6 Discussion

Our findings provide a unique perspective to align
with recent studies. 1) The importance of prompt
diversity is highlighted by both us and (Zhou
et al., 2023; Wang et al., 2022). Since our three
findings suggest that instruction tuning links the
pre-trained model to user tasks, we could expect
a better alignment with human intentions if the
model is exposed to broader prompts. 2) The
efficacy of training self-attention with first prior-
ity (LoRA fine-tuning) (Taori et al., 2023; Juletx,
2023) is corroborated by Finding-1 and Finding-
2. Specifically, Finding-1 illustrates the capabil-
ity to distinguish instruction words is essential to
the instruction following, while Finding-2 high-
lights that self-attention heads directly learn instruc-
tion relations. 3) The advantage of training feed-
forward networks (fully fine-tuning) (Sun et al.,
2023) is evident from Finding-2 and Finding-3,
which demonstrate that feed-forward networks up-
date their knowledge toward user tasks.

7 Conclusion

This paper presents an inherently comprehensive
analysis of instruction tuning for user intention
alignment by quantitatively and qualitatively com-
paring the interpretations between pre-trained and
fine-tuned models. Our findings indicate that in-
struction tuning links the pre-trained model to user
intentions, including encoding more instruction
words’ knowledge within self-attention, and rotat-
ing general knowledge from feed-forward networks
towards user usage. It is worth mentioning that the
interpretability toolbox used in this study can also
support future general research on LLMs.



8 Limitations

This study aims to investigate the impact of instruc-
tion tuning on pre-trained language models in terms
of human alignment. A primary constraint of this
work is that the introduced explanation toolbox is
developed on the availability of model weights and
gradients, indicating a white-box approach. Con-
sequently, these tools may not be fully effective
for analyzing black-box instruction-tuned models,
like ChatGPT (Bai et al., 2022) and Claude (An-
thropic, 2023). We will seek to enhance our toolbox
by incorporating methods suitable for black-box
model analysis in the future. On the other hand,
another key technology related to human alignment
for LLMs is Reinforcement Learning with Human
Feedback (RLHF) (Stiennon et al., 2020; Bai et al.,
2022), which is another aspect not touched on in
this article. We encourage researchers to apply our
toolbox to study RLHF-tuned models and explore
the different roles of instruction tuning and RLHF
for human alignment.

9 Ethical Impact

This research employs the pre-trained models
LLaMA (Touvron et al., 2023) and its variant
Vicuna (Zheng et al., 2023), under their respec-
tive academic-use licenses. The utilization of
these models adheres to their specific terms, fo-
cusing exclusively on scholarly purposes. Ad-
ditionally, our study incorporates four datasets:
Self-Instruct (Wang et al., 2022), LIMA (Zhou
et al., 2023), MT-Bench (Zheng et al., 2023), and
ShareGPT (RyokoAl, 2023), each under its own
usage conditions. These conditions include compli-
ance with privacy and data protection standards. In
presenting our findings, we have rigorously ensured
that no personal identifiers are disclosed and that
the content remains free from offensive material,
aligning with ethical research practices.
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A Proof of Linearly Approximation to
Importance Scores

We prove that equation I, ,, = p(Ym|Zm) —
P(Ym!Zp,n) = %ﬁ?’) -Ei[r,]" with the first-
order Taylor extension. p(y,|Z,,) is written as
f(Ym|Zy,), where f is the language model, Z,, €
RNV+m=1)xd are the word embeddings of the input
token sequence Z,, = [T1,..., TN, YLy ey Ym—1)>
and the d-dimensional word embeddings of a token
w € Zy, is defined as E;[w]. Thus, we first have
Lnn = f(YmlZm) — f(Ym|Zm,, jn), Where we let
the n-th row vector of Z,,, /,, be zeros.

The first-order Taylor expansion of f(y,|Z)
around Z,, /,, is

Of (Ym|Zm
FmlZ) % (g i) + 222

m,/n

Lo in)

.(Zm_

m,/n

Since the difference between Z,,, /,, and Zy, is the
n-th row, the term Z,,, — Z,, ,, is just the vector
E;[x,]. Therefore, the above equation could be
simplified as:

Of (Ym|Zm)

S m|Zm) % S Wl 2o ) + =5

Bring this approximation to the definition of I, ,,

~ Of (Ym|Zm) . El[xn]—r

we have [, ., ~ OF, [o]

B Analyzing Importance Density

B.1 Experiment Settings

For each collected prompting text from the three
public datasets, we let Vicuna and LLaMA gener-
ate its corresponding response (Sec. 3.2); we then
manually identify the instruction sentences from
each input prompt and annotate whether the re-
sponse provides helpful information (“followed”)
or not (“unfollowed”). Regarding computational
efficiency, generating the importance density for
a single instance necessitated approximately 100
seconds, utilizing dual Nvidia A6000 GPUs.
Annotate instruction and context. Specifically,
the instruction usually describes the user intention
with some background (optional), which could be
both very long ® or very concise °. Note that we an-
notate the instruction words on the sentence level,
8A long instruction: “How do social media platforms influ-
ence the way people consume and share news, and what are

the potential implications for the spread of misinformation?”
°A short instruction: “to English:”
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and the template words as “Input:” and “Output:”
are not considered. For some prompts, the instruc-
tion words may be distributed in both the head and
tail of the input text, and we will consider them
together. Among these instruction sentences, we
define the rest of the input prompt as context words,
which is unnecessary to the input prompting text.

Annotate Followed or Unfollowed Response We
consider the helpfulness of the response as the abil-
ity of instruction following described by (Ouyang
et al., 2022). Therefore, if a response is helpful to
the user, then we label it with “followed”. Specif-
ically, we consider four levels of helpfulness: L1
- the model is randomly saying something or just
repeating itself; L2 - the model provides some in-
formation that could be used to answer the ques-
tion, but the model fails to organize it well; L3 -
the model generates a response that generally fol-
lows the prompts, but missing some detailed in-
structions; L4 - the response is perfect as a human
response. In our study, we consider the responses
from L2 to L4 as “followed”. Note that we are not
concerned about hallucination issues in our study.

B.2 Case Study on Outliers

T Instruction fine-tuned models may pretend to fol-

low the instructions. Figure 4 visualizes a salient
map of an instance related to writing enhancement
(please see the caption for details). Vicuna’s re-
sponse addresses grammatical errors and modifies
sentence structures for improved clarity. A key
observation from the figure is that only the first
three instruction tokens guide the response genera-
tion (Red Box). Specifically, the first three words
are “The sentence you”, which seems to be not
the key instruction verbs like “Rewrite” from the
second sentence. Also, some words from the con-
text part are acted as instruction words (Blue Box),
which are “\nlnput:” and “\nOutput:” from the
prompt template. These are the words that should
be considered as the instruction words since they
do not provide the user’s intentions. Additionally,
a distinctive diagonal line spans the context sec-
tion, hinting at the model’s predisposition to echo
context from preceding content. This figure sug-
gests that the model is leveraging inherent language
modeling ability rather than identifying and acting
upon the given instructions. Thus, we point out
that assessing instruction-following abilities based
solely on the correlation between input prompts
and output responses might not provide an accurate
reflection of the model’s internal behaviors, while
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Vicuna Response

Flgure 4: CaselID: Self-Instruct-1 Prompt: The sentence you are given

might be too wordy, complicated, or unclear. Rewrite the sentence and

make your writing clearer by keeping it concise. Whenever possible,
break complex sentences into multiple sentences and eliminate unnecessary
words.\n\nInput: If you have any questions about my rate or if you find it
necessary to increase or decrease the scope for this project, please let
me know.\n\nOutput: Vicuna: Do you have any questions about my rate or do

you need to adjust the project scope? Please let me know.

Figure 5: caseID: LIMA-144 Prompt: In a world where automation is
becoming increasingly prevalent, is it more important to prioritize job
creation or technological progress? Vicuna: In a world where automation
is becoming increasingly prevalent, it is more important to prioritize job
creation.\n\nIn a world where automation is becoming increasingly prevalent,
it is more important to prioritize technological progress.\n\nIn a world
where automation is becoming increasingly prevalent, it is important to
prioritize both job creation and technological progress.\n\nIn a world
where automation is becoming increasingly prevalent, it is not necessary

to prioritize either job creation or technological progress.

14

it is still a common strategy to develop the Reward
model for RLHF process (Ouyang et al., 2022).

However, we have identified certain instances
where our importance density fails. This is pre-
dominantly due to our density function’s lack of
positional awareness. For instance, in Figure 5,
the entire user input comprises instruction words.
The map suggests that these words play a crucial
role in guiding the generation, even towards the
latter part of the responses. Under our hypothe-
sis, it would appear the model is following user
instructions. Yet, Vicuna seems to merely reiterate
the input prompt repetitively, resulting in recurring
diagonal patterns. We recommend future research
to address this shortcoming, either by adopting a
density function that’s positionally aware or by in-
tegrating a step to identify and handle repetitive
responses early on.

B.3 Exploring Prompt Position with
Importance Density

Settings. Each input prompting text from our
datasets is divided into individual sentences, with
each sentence further split into four same-length
segments. We normalize the density scores for a
sentence by dividing by their sum and then accu-
mulating them for each segment. The averaged
attribution proportions for each segment within the
input sentences are depicted in Figure 6.

Results. Figure 6 shows the importance density
distributed on different segments of input sentences.
Both pre-trained and tuned models reveal a notable
“U”-shape across all datasets. This is also known
as “lost in the middle” (Liu et al., 2023), where
they show that SOTA models can overlook central
inputs. Unlike their focus on a single task, our
analysis is grounded on our importance density
score on diverse prompting texts, suggesting that
this issue commonly and intrinsically exists. When
comparing pre-trained to fine-tuned models, we
spot a sharper “U” in the former, which becomes
less obvious after instruction tuning.

C Visualizing Salient Maps

C.1 Experiment Settings

Contrary to the examples shown in the primary
content, which utilize golden responses, our focus
here is on the connections between user inputs and
model outputs. To achieve this, we generate re-
sponses from LLaMA and Vicuna, following the
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Figure 6: Distribution of importance density over different parts of prompt tokens.

protocol laid out in Sec.3.2. Subsequently, we de-
rive the salient maps as per the technique intro-
duced in Sec.4.1.

To ensure the maps provide an accurate depic-
tion of the generation process, we set L = 10 and
b = 0. Each map’s vertical axis denotes the prompt-
ing texts, whereas the horizontal axis symbolizes
the generated responses. The intensity of each data
point corresponds to the association strength be-
tween the respective input and output tokens, with
brighter points indicating stronger relationships (vi-
sualizing with the best colors).

C.2 Experiment Results

Figure 9-14 validate our qualitative assessment that
instruction words in user inputs are critical in guid-
ing the generation process. It’s evident that each
context word typically has limited influence on the
response. Collectively, these salient maps under-
score the validity of input attribution, achieved by
gauging the density of the sparse and normalized
importance scores.

D Scaling up with Automated Tools

We build upon recent advancements in automated
interpretation, using cutting-edge large language
models (Taori et al., 2023; Peng et al., 2023; Steven
et al., 2022) to emulate human annotators in gen-
erating high-level interpretations. By leveraging
machine annotators, we could easily scale up our
methods to analysis the entire model, providing a
more solid results to our findings.

D.1 Experiment Settings

Generating Configuration. We employ Chat-
GPT '° as our machine annotator. Our experiments
utilize the gpt-3.5-turbo-0613 model with a hyper-
parameter top-p=0.9 for nuclear sampling. To miti-
gate the variability in language model outputs, we
repeat the experiment five times. In each iteration,
we first condense the top- /K words of a specific ba-
sis vector into a distinct concept, then pinpoint the
user-oriented tasks and linguistic levels associated

Yhttps://platform.openai.com/docs/guides/gpt

with these concepts. For our initial interaction with
ChatGPT, the temperature is set to 0—signifying
a greedy search strategy. In subsequent interac-
tions, we set the temperature to 1. Nevertheless,
when identifying tasks and levels, we consistently
maintain the temperature at 0.0.

Prompt Design. Effective automated interpreta-
tion hinges on well-crafted prompts. We meticu-
lously design these prompts using three strategies:
role-play, in-context conversational examples, and
exclusively high-quality examples.

Template-1: Describing words with concise con-
cepts. The top-15 most activated words coming
from the method presented in Sec. 5.2 will be di-
rectly appended to this template.

(System: You are a neuron interpreter for
neural networks. Each neuron looks for
one particular concept/topic/theme/beha
vior/pattern. Look at some words the
neuron activates for and summarize in a
single concept/topic/theme/behavior/pat
tern what the neuron is looking for.
Don't list examples of words and keep
your summary as concise as possible.

If you cannot summarize more than half
of the given words within one clear
concept/topic/theme/behavior/pattern,
you should say 'Cannot Tell'.

User: Words: January, terday, cember,
April, July, September, December,
Thursday, quished, November, Tuesday.
Agent: dates.

User: Words: B., M., e., R., C., OK., A.,
H., D., S., J., al., p., T., N.,

wW., G., a.C., or, St., K., a.m., L..
Agent: abbrevations and acronyms.

User: Words: actual, literal, real,
optical, Physical, REAL, virtual,
Agent: perception of reality.

Real ,
visual.

User: Words: Go, Python, C++, Java, c#,
python3, cuda, java, javascript, basic.
Agent: programing languages.

User: Words: 1850
, 1980, 1960,
Agent: years.

1950,
1940,

1980,
1984,

1985,
1948,

1958,

User: Words:

Template-2: Identifying applicable user-oriented
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tasks. Summarized concepts are concatenated to
this template. We check the writing task into three
tasks because ChatGPT often deems nearly every
concept suitable for writing. We regard any of these
detailed tasks as the primary purpose of writing.

System: Which of the following assistant
tasks can the given concept is used for?
\n\nTasks: daily writing, literary writ
ing, professional writing, solving math
problems, coding, translation. Return
'None' if it cannot be used for any of
the above tasks. If it could be used for
multiple tasks, list all of them and

seperate with ';

User: Concept: Words are social media
post tags.

Agent: daily writing

User: Concept: Words are Latex code for

drawing a grouped barchart.

Agent: professional writing

User: Concept: Words are foreign words
or names.

Agent: translation

User: Concept: Words are URLs.

Agent: None

User: Concept: Words are Words related

to configuration files and
web addresses.

Agent: coding

User: Concept: Words are rhyming words.
Agent: literary writing

User: Concept: Words are programming
commands and terms.

Agent: coding

User: Concept: Words are

Template-3: ldentifying linguistic level. Any
automated summarized concept will be directly
concatenated to this template.

System: You are a linguist.
the provided concept into
one of the following categories:

Classify

Phonology, Morphology, Syntax,

and Semantic.

User: Concept: Words are dates.
Agent: semantic

User: Concept: Words are perception
of reality.

Agent: Semantic

User: Concept: Words are abbrevations
and acronyms.

Agent: Morphology

User: Concept: Words are related to

actions or activities.
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Figure 7: % of represented word lists from top-ranked
basis vectors with a concise description.

Agent: Syntax

User: Concept: Words are medical
abbrivations.

Agent: Semantic

User: Concept: Words are URLs.
Agent: Morphology

User: Concept: Words are verbs.
Agent: Syntax

User: Concept: Words are adjective.
Agent: Syntax

User: Concept: Words are rhyming words.
Agent: Phonology

User: Concept: Words are programming
languages.

Agent: Semantic

User: Concept: Words are

D.2 Experiment Results

Figure 7 illustrates the proportion of word lists that
can be induced to a concise concept by our machine
annotator. According to our template, if “Cannot
Tell” exists in the word list descriptions, we con-
sider that this concept has failed to be interpreted.
We have observed that the Vicuna and LLaMA
models display comparable levels of interpretabil-
ity, with no significant distinctions between them.
A noticeable trend emerges as the number of layers
increases: the ability to explain their encoded con-
cepts improves. Specifically, within layers 24-28,
the average interpretability rate for the first 30 con-
cepts peaks at 91.67%. This high interpretability
rate underscores the effectiveness of our proposed
method. It can aptly convey in clear, concise text
the knowledge encoded by these models. However,
there’s a caveat: knowledge encoded closer to the
output layer, specifically between layers 28-32, be-
comes more challenging to elucidate. Interestingly,
this particular challenge wasn’t present when apply-
ing automated interpretation tools to GPT-2 (Mil-




lidge and Black, 2022), indicating the behaviors
between small and large models are different. Addi-
tionally, our findings indicate a decreasing trend in
interpretability for concepts that are ranked further
back. Overall, these results validate the efficacy of
our proposed method in analyzing the knowledge
encoded within models.

Table 6-9 enumerates the words that experienced
the most significant changes in frequency after in-
struction tuning, we also show the change of rank
following. These words are meaningful words
(at least four characters and not a stopword) ex-
tracted from the concept descriptions generated by
our machine annotator. From the tables, certain
words, notably "language", "programming", and
"process", displayed significant shifts in frequency
after instruction tuning. Linguistic terms (“Span-
ish”, “translation”) and technical terms (“method”,
“programming” and “software’) exhibited notice-
able changes in various layers. Interestingly, “lan-
guage” consistently surfaced in almost every layer
group, with its frequency both rising and drop-
ping. This observation indicates that different lay-
ers are responsible for encoding different categories
of knowledge. Specifically, the bottom layers
are responsible for storing more basic knowledge
(“behavior”, “operation”, “adjective”), the middle
layers are responsible for learning more abstract
knowledge (‘“functions/methods”, “programming”,
“software development”), and the higher layers are
responsible for learning more knowledge for ef-
ficient text generation (‘“start with”, “rhyming”,
“sound”, “letter”,). Broadly, the increased men-
tion of words pertinent to user scenarios after fine-
tuning underscores the model’s refined focus on
user-centric tasks and applications.

E Interpreting Feed-Forward Networks

E.1 Details of the PCA Results

Figure 8 displays the averaging accumulated ex-
plained variance of decomposed principal com-
ponents across the 32 layers, where the translu-
cent area indicates their standard deviations. Since
LLaMA and vicuna show almost exactly the same
line, we omit LLaMA from this figure. From the
figure, we have several observations. Firstly, we
find that the accumulated explained variance in-
creases smoothly, where almost half of the basis
vectors could explain around 80% of the variances.
This observation demonstrates that these neurons
do not focus on expressing a few certain features,
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Figure 8: Accumulated explained variance of feed-
forward networks from Vicuna.

emphasizing the diversity of the learned hidden fea-
tures. In addition, the black arrow points out that
the accumulated explained variance of the 300 ba-
sis vector is about 22.49%, where 300 is the number
of basis vectors we studied in this research. It vali-
dates that the top 300 parameters are expected to
be interpretable since their accumulated explained
variance is only 22.49%.

E.2 Qualitative Analysis to Interpretability of
Principal Components

Table 10 and Table 11 list cases that are well in-
terpreted by ChatGPT-turbo-3.5-0613. From these
cases, we found that the concept descriptions gen-
erally reflect what is behind the word lists well.

F Interpreting Self-Attention Heads

Table 12 and Table 13 list more word pairs for
the self-attention heads from the first and the last
layers. Typically, these cases are evidence that the
extracted word pairs show some insightful relations
when we read each one individually. However,
when we read them together, it cannot reflect such
a concise concept as the feed-forward networks.
Instruction tuning may distill the behav-
iors of neurons. For example, neuron-pair
(Layer 31, Head 24, Dim 62)
capture relations in computers (such as
backend=authentication, icon=keyboard, gi-
ant=cardboard, GPU=PS, git=curl, and so on).
After instruction tuning, the model finds more
computer-related word pairs (GPU=motherboard,
VM=motherboard, tab=keyboard, mongo=staat,
mongo=orden) and overlooks some un-related
word pairs (dense=bright, convinced=confused),
though the new relations may be not valid.
This case is also evidence that the instruction
tuning does not make a significant change in the
pre-trained knowledge across concepts.



Table 6: Frequency [rank] shift of words from concept description after instruction tuning.

Layers 1-4 Layers 5-8
Frequency?t Frequency] Frequencyt Frequency|
language[3] quality[-3] programming[0] foreign-language[0]
behavior[83] describing|[-2] describing[38] technology[-19]
English[79] characteristic[-1] computer[11] Spanish[-33]
process[4] communication[-22] operation[11] technical[-32]
software-development[8] something[-18] computer-science[66] multilingual[-8]
multilingual[64] start[-43] development[53] something[-8]
analysis[67] adjective[1] language[0] process[0]
operation[33] foreign-language[-1] syntax[17] characteristic[-1]
attribute[5] various[-12] manipulation[14] variation[-9]
Spanish[14] concepts/functions[-19] terminology([22] functions/methods[-7]

Table 7: Frequency [rank] shift of words from concept description after instruction tuning. (continued)

Layers 9-12 Layers 13-16
Frequency? Frequency| Frequency? Frequencyl
method[89] translation[0] programming[0] process|[-1]
french[13] operation[-31] software-development[8] expression[-45]
understand[34] software-development[-17] language-proficiency[10] syntax[-5]
communication[10] process[0] concepts/keys[29] variation[-15]
concepts/functions[41] foreign-language([0] terminology[119] language-related[-24]
language-agnostic[23] programming[0] language-independent[52] ambiguity[-49]

German([31] concepts/methods/functions[-61] concepts/functions[16] handling[-32]
comparison[50] multilingual[-5] French[51] language[0]

variety[35] property[-75] communication[4] cultural[-93]
technology[28] language[0] localization[96] attribute[-14]

Table 8: Frequency [rank] shift of words from concept description after instruction tuning. (continued)

Layers 17-20 Layers 21-24
Frequency? Frequency] Frequencyt Frequency
programming|[0] foreign-language[-2] | manipulation[50] programming[-2]
language[1] translation[-1] adjective[9] state[-12]
syntax[78] variation[-20] specific[81] translation[-5]
process|[2] expression[-15] object[42] quality[-7]
language-related[-24] interaction[24] adjective[-27] value[48]
time-related[14] feature[-30] location[48] difficulty[-77]
language-proficiency[5] characteristic[-5] variation[9] action[0]
terminology[123] duration[-33] language[1] prefix[-1]
technology[121] choice[-135] relationship[121] start[1]
programming-language[-70] quality personal[72] activity[-2]

Table 9: Frequency [rank] shift of words from concept description after instruction tuning. (continued)

Layers 25-28

Layers 29-32

Frequency? Frequency| Frequency? Frequency|
language[4] start with[0] start with [0] foreign-language[-10]
interaction[117] sound[-1] sound[4] language[-3]
combination[2] programming|[-1] rhyming[15] suffix[-4]
variation[1] action[-2] combination[9] abbreviation[-2]
software number[0] letter[0] numerical[-5]
event[66] alphanumeric[-23] process|8] abbreviations/acronyms[-8]
manipulating[53]  abbreviations/acronyms|[0] French[7] Spanish[-7]
operation[28] pattern[-3] number|[1] programming[-2]
measurement[60] suffix[-45] similarity[53] Indonesian[-18]
spell[55] string[-56] measurement[43] sequence[-34]
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Figure 9: Prompt:Analyze the word choice, phrasing, punctuation, and capitalization in the given email.
How may the writer of this email sound to the reader? These tones include Disheartening, Accusatory,
Worried, Curious, Surprised, Disapproving, Unassuming, Formal, Assertive, Confident, Appreciative,
Concerned, Sad, Informal, Regretful, Encouraging, Egocentric, Joyful, Optimistic, and Excited.\n\nInput:
Hi Jen, \nI hope you’re well. Can we catch up today? I’d appreciate your input on my presentation for
tomorrow’s meeting. I’d especially love it if you could double-check the sales numbers with me. There’s
a coffee in it for you!\n\nOutput: Vicuna: Hi Jen,\nI hope you’re doing well. Can we catch up today? I
would appreciate your input on my presentation for tomorrow’s meeting. I would especially love it if
you could double-check the sales numbers with me. There’s a coffee in it for you!\n\nAnalysis: The word
choice in this email is informal and conversational, which may convey a friendly and approachable tone
to the reader. The phrasing is straightforward and direct, which may convey a confident and assertive
tone. The punctuation is appropriate for an email, with a mix of sentence-level punctuation and no
capitalization for the salutation or closing. The capitalization is consistent with standard email
conventions. Overall, the tone of this email is likely to be friendly and approachable, with a hint of
assertiveness.
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Figure 10: Prompt: What are the steps to using random (yet coherent) text as filler content within your
Word document? Vicuna: Do you have any questions about my rate or do you need to adjust the project
scope? Please let me know.
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Figure 11: Prompt: Desk jobs require writing a lot of emails, so it isn’t surprising we get tired of
repeating ourselves. Come up with several synonyms for the given word.\n\nInput: Sincerely\n\nOutput:
Vicuna: 1. Dearly\n2. Most sincerely\n3. Truly\n4. Very sincerely\n5. Most truly\n6. Very dearly\n7.
Very truly\n8. Most dearly\n9. Very truly\n10. Most sincerely.
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Figure 12: Prompt: Find sentences from reliable sources such as the Guardian or Forbes that contain
the exact match for the given sentence or phrase. Also, mention the source of each sentence.\n\nInput:

There are great options\n\nOutput: Vicuna: * "There are great options available for you."” (Forbes)/n*
"There are many great options to choose from."” (The Guardian).
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Figure 13: Prompt: During writing, we added an asterisk for the word that did not come to mind. You
will need to provide several examples to demonstrate all the words that can be used in the sentence
instead of the asterisk.\n\nInput: we * to know\n\nOutput: Vicuna: we * to know\n\nInput: I * to go to
the store\n\nOutput: I * to go to the store\n\nInput: I * to go to the store *\n\nOutput: I * to go to
the store *\n\nInput: I * to go to the store * *\n\nOutput: I * to go to the store * *\n\nInput: I *
to go to the store * * *\n\nOutput: I * to go to the store * * *\n\nInput: I * to go to the store * *
* *\n\nOutput: I * to go to the store * * x x\n\nInput: I * to go to the store * x * * x\n\nOutput: I
* to go to the store
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Figure 14: Prompt: Write a review based on the given information.\n\nInput: - Product: Persil Discs
Laundry Detergent Pacs, Original Scent, High Efficiency (HE) Compatible, Laundry Soap, 62 Count/n-
Sentiment: Positive\n\nOutput: Vicuna: “Persil Discs Laundry Detergent Pacs are a great option for
those looking for a high-quality, HE compatible laundry detergent. The Original Scent is fresh and
invigorating, and the 62-count pack provides plenty of detergent for multiple loads. The pacs are easy
to use and can be added directly to the washing machine, making them a convenient choice for busy
families. Overall, we highly recommend Persil Discs Laundry Detergent Pacs for their effectiveness,
affordability, and positive sentiment.”
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