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ABSTRACT

Large Language Models (LLMs) exhibit robust abilities but are still vulnerable to
factual hallucinations, unsafe responses, and adversarial attacks — issues hindering
deployment in safety-critical applications. Current benchmarks assess significant
but disjointed facets of risk and do not capture principled uncertainty quantifi-
cation or defense compositional analysis. We propose SAFE-LLM, a cohesive,
auditable evaluation framework for Reliability, Safety, and Security of LLMs.
SAFE-LLM offers: (i) a fine-grained taxonomy of risk situations; (ii) standard-
ized metrics (Hallucination Rate, Safety Compliance Index, Jailbreak Success
Rate, Prompt Injection Compromise Rate) with finite-sample and sequential con-
fidence guarantees; (iii) theoretical results on coverage, sequential error control,
sample complexity, defense composition, and adaptive adversary bounds; and (iv) a
defense-aware benchmarking protocol and reporting format. We demonstrate how
SAFE-LLM fills specific gaps in existing practice, outline the road to real-world
audits, and address the social impact of taking SAFE-LLM as a standard for reliable
LLM deployment.

Keywords: Large Language Models, Reliability, Hallucination Detection, Safety, Prompt Injection,
Statistical Guarantees, Robustness, Trustworthy AI

1 INTRODUCTION

Large Language Models (LLMs) — e.g., GPT-4 (1), Claude (2), LLaMA-2 (3) — are driving a wave
of automation across healthcare, education, law, and governance. Yet three recurring risks limit safe
adoption:

1. Reliability: factual hallucinations, logical inconsistencies, or incorrect tool outputs that can
mislead users.

2. Safety: generation of toxic, biased, or otherwise harmful content.
3. Security: jailbreaks, prompt injection, and adversarial strategies enabling policy-violating

or malicious behavior.

Current benchmarks (TruthfulQA, RealToxicityPrompts, JailbreakBench, HELM) are valuable but
fragmented: they examine individual risks, often report point estimates, and evaluate defenses in
isolation. This fragmentation hinders reproducible auditing, makes comparisons brittle, and leaves
open the question of how layered defenses interact.

What we solve. SAFE-LLM is designed to: (i) unify diverse risk axes into a single evaluation
language; (ii) attach statistical guarantees to reported metrics so audits are auditable and claims are
defensible; (iii) enable defense benchmarking that measures compositional effects; and (iv) provide a
reproducible pipeline for regulators, practitioners, and researchers.

Contributions. (i) Risk taxonomy and reporting format; (ii) standardized metrics with finite-sample
and sequential guarantees; (iii) theoretical results (5 theorems) including adaptive-adversary bounds;
(iv) defense-aware evaluation protocol and impact analysis demonstrating how SAFE-LLM improves
auditability and governance readiness.
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2 RELATED WORK

SAFE-LLM integrates threads from evaluation, safety, robustness, and statistical inference.

Evaluation and benchmarks. TruthfulQA (4), RealToxicityPrompts (5), HELM (6), BIG-bench (7),
MMLU (8), and MT-Bench (9) provide capability and narrow-risk evaluations.

Hallucination detection and grounding. SelfCheckGPT (10), semantic-entropy based detectors
(11), and retrieval-augmented generation (12) mitigate hallucinations but do not standardize risk
reporting with uncertainty.

Safety, alignment, and defenses. RLHF (13), Constitutional AI (14), DPO (15), and adversarial train-
ing (30) are primary defense strategies; judge-LLM ensembles and human-in-the-loop adjudication
have been proposed (31).

Security and Jailbreaks. AdvBench and AutoDAN (16; 17) show automated jailbreak generation;
JailbreakBench (18) provides systematic attack corpora.

Statistical inference for sequential/adaptive testing. Clopper–Pearson intervals (22), Pocock and
O’Brien–Fleming sequential boundaries (23; 24), and time-uniform martingale bounds (21) underpin
SAFE-LLM’s statistical layer.

3 GAPS IN PRACTICE

Current practice lacks:

• Holistic coverage — security and agentic risks are often excluded from multi-metric
leaderboards.

• Uncertainty quantification — point estimates without confidence intervals mislead audit
conclusions.

• Defense composition analysis — little is known about how layers interact.

• Reproducibility — missing pre-registration, prompt templates, and adjudication rubrics.

SAFE-LLM addresses these via taxonomy, metrics, theory, and protocol.

4 SAFE-LLM FRAMEWORK

We now describe the framework components with concrete definitions, diagrams, and tables.

4.1 DETAILED TAXONOMY

Table 1 expands the risk taxonomy to concrete test families, threat models, and examples.

4.2 METRICS AND STATISTICAL PROTOCOL

For each scenario, SAFE-LLM uses binary trial outcomes: violation (1) or non-violation (0). Let X
be the count of violations over n trials and let p̂ = X/n. SAFE-LLM reports:

• HR — Hallucination Rate (p̂halluc) with Clopper–Pearson CI.

• SCI — Safety Compliance Index (1− p̂safety).

• JSR — Jailbreak Success Rate (p̂jailbreak).

• PICR — Prompt Injection Compromise Rate (p̂injection).

SAFE-LLM mandates pre-registration of sampling plan and look schedules. For iterative red-teaming,
either preplanned group-sequential methods (Pocock/O’Brien–Fleming) or time-uniform martingale
bounds (when adaptivity is present) are used to maintain valid inference.
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Table 1: SAFE-LLM Detailed Taxonomy — representative scenarios (not exhaustive).

Category Threat model Representative scenarios / examples

Hallucination Non-adversarial, model-
internal

Unsupported facts, fabricated citations, erroneous
arithmetic, invented APIs; failure modes for re-
trieval grounding

Consistency Multi-turn escalation Contradictory responses to paraphrases, role-play
inconsistencies

Toxicity Non-adversarial or adversar-
ial prompts

Hate speech, slurs, encouragement of self-harm;
targeted demographic prompts

Bias Systematic demographic cor-
relations

Stereotype completion, unequal error across
groups

Jailbreak Adversarial prompt engineer-
ing

Instruction-following containment breach, bypass-
ing system prompts, social engineering payloads

Prompt injection Data-source based attacks Malicious content in retrieval results or web-
scraped contexts causing instruction hijack

Agentic exfiltration Tool-enabled attacks Agent uses tools/APIs to access and leak data or
take unauthorized actions

Data-poisoning (evalu-
ation)

Adaptive data manipulation Adversary crafts inputs to bias reported metrics or
judge LMs

4.3 DEFENSE STACK: DIAGRAM + EVALUATION

We present a defense-stack diagram that clarifies the architecture and measurement points.

User / Prompt

Input Filter
(classifiers / regex)

Retrieval Grounding
(RAG + verifier)

Alignment / Adversarial Training
(LLM update)

Judge Ensemble
(LLM judges + human fallback)

Final Output / Action

Measure: pre-filter JSR

Measure: post-RAG HR/SCI

Measure: post-judge residuals

Figure 1: Defense stack and measurement points. SAFE-LLM evaluates each stage and reports
compositions.

4.4 REPORTING AND ARTIFACTS

SAFE-LLM requires publishing: pre-registration, prompt templates, judge prompts, human adjudica-
tion rubrics, model versions, seeds, and compute logs.

5 THEORETICAL RESULTS

We now present formal theorems underpinning SAFE-LLM. Full proofs appear in the Appendix.
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5.1 SETUP

Assume independent trials per scenario where appropriate; for adaptive adversaries we adopt a
martingale framework.

Theorem 1 (Exact finite-sample coverage (Clopper–Pearson)). Let X ∼ Binomial(n, p). Then the
Clopper–Pearson two-sided interval at level α yields coverage Prp(L ≤ p ≤ U) ≥ 1 − α for all
n, p.

Theorem 2 (Group-sequential control). For K preplanned analyses with Pocock-spending boundaries
at global level α, the family-wise type-I error is at most α.

Theorem 3 (Defense composition under independence). If defenses k = 1, . . . ,K reject unsafe
outputs independently with conditional probabilities rk, and base violation p0, then final violation
pfinal = p0

∏K
k=1(1− rk).

Theorem 4 (Sample complexity for detection). To detect p ≥ ϵ with power 1− β at type-I error α, it
suffices to take n ≥ Cϵ−2 log(1/β) for constant C (Hoeffding/Chernoff bound based).

Theorem 5 (Adaptive control via time-uniform bounds). Assume trials generate a nonnegative
supermartingale Mt under the null. Then for any stopping time τ , Ville’s inequality gives Pr(∃t :
Mt ≥ 1/α) ≤ α, enabling time-uniform confidence sequences under adaptivity.

Remarks. These results provide a practical toolkit for auditors: exact intervals for reported propor-
tions, valid sequential inference when red-teaming/adaptive probing is used, composition formulas to
reason about layered defenses, and sample complexity guidance for audit budgets.

6 WHAT SAFE-LLM SOLVES — CLEAR STATEMENTS

To make the contribution explicit, we list concrete gaps and how SAFE-LLM addresses each:

Table 2: Problems in practice and SAFE-LLM remedies.

Practical problem SAFE-LLM remedy

Point estimates without uncertainty Mandated exact CIs and sequential adjustments (au-
ditable claims)

Defense-by-isolation Defense composition framework and measurement at
multiple pipeline points

Non-reproducible evaluations Pre-registration, prompt templates, and artifact release
requirements

Lack of audit sample size guidance Sample complexity bounds and audit budgeting guidance
No standard taxonomy across risk types Unified taxonomy spanning reliability, safety, security,

agent risks

7 IMPACT MATRIX: FUTURE SYSTEMS AND STAKEHOLDERS

We show how SAFE-LLM materially benefits stakeholders (developers, regulators, auditors, end-
users).
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Table 3: Impact matrix: what SAFE-LLM enables.

Stakeholder Capability enabled Concrete effect

Model developers Rigorous regression test-
ing

Confident release decisions with CI-
backed metrics

Deployers / Ops Defense effectiveness
metrics

Informed stacking of defenses and
monitoring thresholds

Regulators / Auditors Auditable reports Statistically defensible compliance
claims

Researchers Standardized benchmarks Comparable studies on defense com-
position and adaptivity

End users Safer apps Reduced catastrophic misbehavior risk
in critical domains

8 EVALUATION PROTOCOL (REPRODUCIBLE TEMPLATE)

SAFE-LLM provides a step-by-step recipe (to be filled by auditors):

1. Pre-registration. Provide sampling plan, threat models, look schedule.
2. Sampling. Stratified draws across topics, difficulty, languages.
3. Attack families. Predefine black/gray/white-box attacks.
4. Trials. Execute n trials per scenario; log outputs and metadata.
5. Adjudication. Use judge ensembles + human arbitration; publish rubrics.
6. Inference. Compute p̂ and Clopper–Pearson CI; if adaptive, use time-uniform bounds.
7. Release. Publish code, prompts, seeds, and logs.

9 DISCUSSION AND SOCIETAL IMPACT

SAFE-LLM aims to standardize how we trust LLMs in society. By imposing statistical rigor and
reproducibility, organizations can make defensible claims (or identify shortcomings) about safety
and security. SAFE-LLM also provides regulators with measurable auditables aligning with NIST
AI RMF and emerging policy (EU AI Act). Real-world adoption reduces the chance of deployment
surprises in healthcare, finance, and public services.

10 LIMITATIONS

SAFE-LLM is a framework and theoretical contribution; instantiated audits are future work. Some
theoretical assumptions (independence in defense composition) may not hold in practice — SAFE-
LLM recommends conservative bounds and robust adversary modeling to mitigate.

11 CONCLUSION

SAFE-LLM provides the first comprehensive, statistically principled, defense-aware framework for
auditing LLM reliability, safety, and security. It combines taxonomy, metrics with formal guarantees,
defense benchmarking, and reproducible protocols — a foundation for trustworthy LLM deployment.

REPRODUCIBILITY STATEMENT

Artifacts to be released: pre-registration templates, prompt families, adversarial suites, adjudication
rubrics, model versions, seeds, and hardware logs. SAFE-LLM prescribes an auditable folder layout
and metadata schema.
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LLM USAGE DISCLOSURE

We used LLM tools to assist in drafting and literature retrieval; all theorems, proofs, and framework
design were authored and verified by the human authors.

ETHICS STATEMENT

SAFE-LLM involves evaluating models on potentially harmful prompts; experiments following the
framework must be sandboxed; harmful outputs should be redacted and annotators protected.

We thank reviewers and colleagues for feedback on prior drafts. (Anonymous for submission.)
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A APPENDIX: FULL PROOFS

A.1 PROOF OF CLOPPER–PEARSON COVERAGE

(See classical derivation by Clopper and Pearson, Biometrika, 1934.) The CP interval inverts two
exact one-sided binomial tests and is conservative.

A.2 PROOF OF GROUP-SEQUENTIAL CONTROL

(See Pocock, Biometrika, 1977; O’Brien–Fleming, Biometrics, 1979.) Error spending functions
choose boundaries to allocate the overall α across looks.

A.3 PROOF OF DEFENSE COMPOSITION

Under conditional independence, pass-through probability multiplies. For dependencies, use union
bounds or empirical estimation via stratified trials.

A.4 PROOF OF SAMPLE COMPLEXITY

Applying Hoeffding’s inequality to Bernoulli trials yields the stated O(ϵ−2 log(1/β)) bound.

A.5 PROOF OF ADAPTIVE BOUNDS

Construct likelihood-martingale or betting process; apply Ville’s inequality to bound suprema and
derive time-uniform confidence sequences (21).

B APPENDIX: ADJUDICATION RUBRICS AND TEMPLATES

(Include factuality rubric, safety rubric, judge prompts, and example prompt families here in the real
artifact release.)
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