
Under review as a conference paper at ICLR 2024

TOWARDS EXPLAINABLE AND EFFICIENT MULTI-
MODALITY LEARNING: DOMAIN-AGNOSTIC
CONCEPT SPACE PAIRED WITH DOMAIN-SPECIFIC
PROJECTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In an effort to create a more explainable AI system, we introduce a new multi-
modality learning framework in this study. This framework leverages a domain-
agnostic concept space designed to be transparent and interpretable and a set of
domain-specific projection models tailored to process distinct modality inputs and
map them onto this concept space. This separation of the concept space and the
projection models brings versatility to our framework, allowing easy adaptations
to various modalities and downstream tasks. We evaluate our framework’s
performance in a zero-shot setting on two popular tasks: Image-Text Matching
and Visual Question Answering. Our framework achieves performance levels
on par with benchmark fine-tuned models for these tasks while maintaining an
explainable architecture.

1 INTRODUCTION

Recent exciting advancements introduced by Large Language Models (LLMs) and Generative
AI have sparked widespread interest in the field of Artificial Intelligence (AI). However, the
unpredictable nature of these models has also given rise to significant concerns regarding their safety
(Amodei et al., 2016; Kang & Metz, 2023; Lederer, 2023; Kang, 2023; Hao & Seetharaman, 2023).
Many previous works have focused on improving the trustworthiness of AI solutions (Floridi, 2019;
Kaur et al., 2022; Brunet et al., 2019; du Pin Calmon et al., 2017; Zafar et al., 2017; Zhang et al.,
2018) yet it still remains a challenging task mainly due to the opaqueness of black-box systems
(Adadi & Berrada, 2018). Apart from the negative views related to AI safety, the large amount
of resources consumed during training processes of large models has also drawn criticism from
the public (Saul & Bass, 2023; Magubane, 2023). Most of the current learning frameworks create
a clear barrier between different modalities and training processes for domain-specialized models
remain parallel. Model weights from a high-performance Computer Vision model already trained
on servers for months provide little information gain to a newly initialized Natural Language model
whose training needs to start from scratch. This inefficiency is in drastic contrast to human learning
where we excel in seamlessly connecting multiple modalities such as vision and language to create
a cohesive comprehension of concepts.

To overcome these limitations, in this work, we propose a mutli-modality learning framework
that consists of an abstract and explainable concept space and a set of domain-specific projection
models. Specifically, we build the domain-agnostic concept space upon prior works on geometric
embedding space (Vilnis et al., 2018; Li et al., 2018) and this concept space is optimized to reflect
real-world relations between concepts via entailment probabilities. Probing into this concept space
can be achieved through simple queries of interested concept pairs, bringing transparency into
this concept space. On the other end, a set of domain-specific projection models complement
the domain-agnostic concept space by processing distinct modality inputs and projecting them
onto the concept space. The decoupling of the concept space and projection models allows a
more efficient way of learning where knowledge is unified at one explainable embedding space.
Moreover, producing consistent outputs that follow the concept space’s rules is the only restriction
on projection models which can be customized to handle their own diverse modality inputs. This
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flexibility on projection models allows easy integration of diverse modalities. Finally, empowered
by the transparency brought by the concept space and the flexibility coming from the projection
models, this framework naturally supports various downstream tasks whose inference processes
are conducted on the concept space in an explainable fashion and we believe trustworthiness is
embedded in such design.

2 RELATED WORK

Multi-Modality Learning. Combining vision and language modalities remains as the focal point
of multi-modality learning research while a few works (Akbari et al., 2021; Shi et al., 2022) have
chosen other modalities such as audio as well. Among the works on vision-language topics, Radford
et al. (2021) propose CLIP, consisting of two modality-specific encoders that are tasked to learn a
joint representation of vision and language domains through image-text matching classification.
In a subsequent work (Ramesh et al., 2022), a text-to-image generation framework is introduced,
where a text encoder and an image decoder function in series to generate high-quality images based
on text descriptions. Since the introduction of Transformers (Vaswani et al., 2017), many works
(Singh et al., 2022; Bao et al., 2022; Kim et al., 2021) have experimented with transformer-based
architectures, utilizing the transformer’s attention mechanism to achieve cross-modality information
exchange and learning. There are also works focusing on other interesting topics such as multi-
modality few-shot learning (Alayrac et al., 2022; Li et al., 2021) and visual-textual pattern mining
(He & Peng, 2020). In addition to directly combining domain-specific knowledge, several works
(Jaegle et al., 2021; Baevski et al., 2022a;b) propose generalized learning frameworks that are
applicable to various domains. While these motivating works have demonstrated strong capabilities
on tasks such as text-to-image generation and visual language few-shot learning, our work is
addressing a fundamentally different and important issue in this area: creating a concept space
that is universal to various domains with abstract knowledge that truthfully reflects real-world
observation. Baevski et al. (2022b) have showcased an exemplary representation learning framework
that is applicable to multiple domains. However, modalities are still isolated under that framework,
which prevents cross-modality interactions. Whereas the proposed method in this work directly
combines information from vision and language modalities by projecting modality-specific inputs
onto a unified concept space, effectively eliminating the information barrier that still exists between
modalities.

Concept Learning. Early works on Concept Learning adopt Boolean logic to define concepts
based on their relationships with other concepts (Angluin, 1988) and their attributes (Mitchell,
1997). Lake et al. (2015) propose a Bayesian Program Learning framework where concepts are
represented as probabilistic programs. Shifting towards deep learning, nowadays, a common
approach is representing concepts in an organized embedding space. Marconato et al. (2022)
provide a clear definition of interpretability for learned concepts in an embedding space. Mao et al.
(2019) and Li et al. (2020b) propose concept learning frameworks that place similar concepts and
their corresponding visual representations close to each other. Another way of organizing concept
space is demonstrated by works from Vilnis et al. (2018) and Mei et al. (2022), where entailment
relationships between concepts are emphasized in learned concept spaces. Deviating from organized
concept spaces, in a recent work, Liu et al. (2023) propose a method to identify "concept neurons"
in a deep net that are responsible for the learning of specific concepts. We recognize some of these
motivating works have adopted a similar strategy of learning a concept embedding space, but we
believe our approach is novel for several reasons. The most significant distinction between the
proposed framework and the previous works such as the one from Mei et al. (2022) is our concept
space reflects real-world relations between concepts by providing meaningful numerical entailment
probabilities that truthfully replicate those indicated by real concepts. Additionally, there is no
barrier in our concept space that prevents concepts belonging to different families such as red in
color and cube in shape from interacting with each other. Moreover, instead of being fitted to
a specific domain, our concept space is designed to be abstract and domain-agnostic, which allows
interactions between multi-modality inputs.
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3 METHOD

Our proposed multi-modality learning framework consists of a domain-agnostic concept embedding
space that models underlying relationships between different concepts via entailment probabilities
and a set of domain-specific projection models that extract representation from single-domain inputs
and project them onto the concept embedding space.1 The learning of this concept space is achieved
by replicating real-world concept entailment probabilities as observed in training data. Modeling
abstract concept entailment probabilities allows effective and simple probing into the model through
queries of interested concept pairs, bringing transparency to the learned knowledge. Learning
abstract knowledge also ensures generality, making this embedding space a good landing place for
extracted representation from different modalities. Decoupled from the concept embedding space
and each other, domain-specific projection models can be tailored for adaptation to each unique
modality while domain-specific knowledge stays connected after the projection.

3.1 PRETRAINING

3.1.1 LEARNING CONCEPT SPACE

We adopt a box embedding based approach proposed by Li et al. (2018) to organize the abstract
concept space as it naturally describes entailment probabilities between concepts. Specifically, each
concept c is represented by a box, defined by a pair of vectors Ω = {(ωmin, ωmax) : ωmin, ωmax ∈
Rd}, corresponding to the minimum and maximum boundaries of the box in a d-dimension concept
space C. Additionally, a smoothing function is defined as:

mi
soft(ω) =

softplus(ωi)

softplus(Gi
max −Gi

min)
(1)

where the denominator is a normalization term with Gmax, Gmin being the global maximum and
minimum values at i dimension. This smoothing function is introduced so a valid joint probability
can be calculated even if two concepts/boxes are disjoint. Probabilities are calculated using:
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With a goal of driving this concept space to reflect real-world relationship between concepts via
entailment probabilities, the objective function for pretraining this concept space is defined as
the Kullback–Leibler divergence between predicted probabilities and true probabilities observed
in training dataset S = {(xi, ŷi)} where ŷi = {y1i , y2i , ..., ymi } is a collection of concept labels
that correspond to the domain-specific input xi. In addition to true concepts in ŷi, a set of negative
concepts is sampled and added to ŷi. Details of this negative sampling procedure can be found in
Sec. 4. For these negative concepts, their true entailment probabilities of original concepts are 0
which should also be reflected in a well-organized concept space. For each sample, we calculate an
entailment probability Q(c1|c2) indicated by the concept space for every possible combinations of
concept pairs (y1i , y

2
i ) in ŷi and compare them to the true entailment probabilities. We also add the

KL divergence for P (c1) and P (c2) to the calculation so the learned concept space can be a better
representation of real-world concepts. The loss function is formally described as the following:
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1∣∣∣(ŷi

2

)∣∣∣
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(c1,c2)∈(ŷi2 )
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(3)

1In the following discussion, modality is defined as medium such as vision and natural languages. Whereas
domain is defined as specific representation within one modality.
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3.1.2 LEARNING PROJECTION MODELS

Decoupled from the abstract concept space, each domain-specific projection model can be viewed
as a mapping function fA : A → C that generates a box representation for each input from its
domain A. Specifically, given a domain-specific input xA

i , its representation in the concept space
can be obtained by fA(x

A
i ; θ) = Ωi where Ωi follows the same definitions of concepts in C. With

this representation made available, the probability that an object is associated with a concept c can
be naturally described by an entailment probability of P (c|Ωi). Similar to training samples in the
concept space where concepts are related to each other, each domain-specific object can be also
associated with multiple concepts at the same time. So not only should the projection produced for
an input xA

i entail a single concept c, but it should also entail all other concepts that are related to
xA
i . In another word, the projection ΩA

i for xA
i should lie at the intersection of a set of concepts that

can describe xA
i . Extending the definition of the training dataset used in concept space to include

domain information, S is now defined as SA = {(xA
i , ŷi)} and the most optimal projection for xA

i

should maximize the entailment probability of P (y1i ∩ y2i ∩ ... ∩ ymi |ΩA
i ). P (y1i ∩ y2i ) follows the

same definition of joint probability P (y1i , y
2
i ) in the concept space as defined in Eq. 2. To prevent

projection models from learning a shortcut of producing unbounded projection boxes to maximize
P (y1i ∩ y2i ∩ ... ∩ ymi |ΩA

i ), we also randomly sample a set of negative labels ŷi′ and add a second
term P (y1i ′ ∩ y2i ′ ∩ ...∩ ymi ′|ΩA

i ) to the loss function. The final training objective for the projection
model at modality A is defined as:

LA = − logP (y1i ∩ y2i ∩ ... ∩ ymi |ΩA
i ) + λ logP (y1i ′ ∩ y2i ′ ∩ ... ∩ ymi ′|ΩA

i ) (4)

While this loss function and projection outputs stay consistent across different modalities, projection
models can be customized to accommodate unique domain-specific inputs, whether they are images,
sequences of texts, etc., bringing flexibility and versatility to the proposed framework.

3.1.3 CROSS DOMAIN JOINT TRAINING

To allow probabilistic analysis for cross modality/domain tasks, we introduce a joint training stage
which encourages projection models to produce projections that overlap with each other for the same
object. Specifically, take a system with two modalities A and B as an example, the training dataset
would become S = {(xA

i , x
B
i , ŷi)} and the loss function is defined as:

Ljoint = 0.5× P (ΩA
i |ΩB

i ) + 0.5× P (ΩB
i |ΩA

i ) (5)

Loverall = λ1LA + λ2LB + λ3Ljoint (6)

where λs are hyperparameters to provide a weighted overall loss.

3.2 ADAPTING TO DOWNSTREAM TASKS

With an abstract concept space and decoupled projection models, our proposed learning framework
naturally supports various downstream tasks whose domains can either be single-modality or multi-
modality. Regardless of specific downstream tasks, however, the inference process for them consists
of two stages: creating projections and relating them to learned knowledge, which we argue better
resembles human learning in comparison with traditional black-box models. During interactions
with objects in our surrounding environments, we process external stimuli such as vision and
create abstract entities for objects in our mind. We can then comprehend these entities using our
understanding of the world, or in another word, our concept space. In Sec. 4, we use image-
text matching and visual question answering tasks to demonstrate how the proposed framework
functions.

4 EXPERIMENTS

We base our evaluations on the CLEVR dataset proposed by Johnson et al. (2017a) which consists of
synthesized images paired with complicate questions that test a system’s visual reasoning capability.
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We choose to evaluate our framework on CLEVR not only because it is reorganized as a benchmark
for visual reasoning but also because it creates a highly controlled mini-world where concepts can
be easily drawn from visual objects and relationships between concepts can be clearly defined. More
specifically, each image in CLEVR displays a scene where a random number of objects are placed at
a surface and each object in this scene is described by four attributes: color, shape, material,
and size, producing 15 unique values in total such as blue, cube, etc. We consider these 15
values as concepts that are related to specific objects.

Since each image in CLEVR contains multiple objects, a preprossessing step is required to isolate
single objects from their surrounding neighbors, mirroring our learning process of a novel object
where we, as human, naturally focus our attention to this object and ignore its surrounding
environment in most situations. To transform visual inputs of CLEVR dataset to object-level, we use
MASK R-CNN (He et al., 2017) as an objection detection model fdetection and change all unrelated
pixels’ color to white for every object at each image as illustrated in Fig. 5, resulting in a new
dataset as shown in Table 1. We follow the same train and validation split in our experiments as
in the original dataset and the proposed framework is pretrained on the train set and tested on the
validation set.

In addition to the isolation of objects, we also generate a descriptive sentence for each object in
CLEVR so natural language is included as a new modality in the dataset. Specifically, each sentence
has a structure of "There is a" followed by sequence of values from color, size, and material
attribute families with random orders to ensure diversity. Values from shape are added last to this
sequence so the sentence sounds natural.

Count Original Transformed
Train 70000 455632

Validation 15000 97358

Table 1: Statistics of the original CLEVR dataset and our processed dataset.

Concept Space. To ensure that each concept box always has valid lower and upper boundaries, we
use two vectors, {ωmin, ω∆}, instead of {ωmin, ωmax} to represent a box in our actual experiments.
The boxes’ upper boundaries can be obtained as ωmax = ωmin + ω∆. The dimension of concept
boxes is set to 50. Initial values for {ωmin, ω∆} are sampled from two uniform distributions.
Ground-truth probabilities of single concepts and entailment probabilities of concept pairs are
calculated by P (c) = count(c)

count(total concepts) and P (c1|c2) = count(joint(c1,c2))
count(c2)

. As for the negative sampling
method, in CLEVR, the only negative concept pairs only come from combinations of concepts
residing in same-attribute families such as (red, blue). So a negative concept to pair with a true
concept c is randomly selected within the attribute family that c belongs to. The concept space is
trained for 2 epochs with a batch size of 128 using an AdamW optimizer by Loshchilov & Hutter
(2017) with a learning rate of 10−3. The training of this concept space can be finished quickly
as there are only 1500 parameters. A comparison between entailment probabilities indicated by
this trained concept space and those as observed in the training set is shown in Fig. 4. We apply
a SoftMax function on entailment probabilities of same-attribute concepts conditioned on a single
concept c so

∑
c′∈attri P (c′|c) = 1 is satisfied. Evaluated on the average KL divergence between

P (c1|c2) and Q(c1|c2) over all concept pairs, the concept space produces a metric of 2.45 × 10−5

with the SoftMax function applied.

Projection Models. To accommodate the vision and natural language modalities that exist in
our augmented CLEVR dataset, the framework adapted to CLEVR consists of a vision projection
model fvision based on a Vision Transformer encoder proposed by Dosovitskiy et al. (2020) and a
natural language projection model fNL based on a BERT encoder proposed by Devlin et al. (2018).
Both projection models use the encoders’ outputs on [CLS] tokens to generate projection boxes.
Specifically, the outputs e with a dimension of 768 are equally divided into two chunks hmin and h∆

with a dimension of 384 which are then fed into two fully connected layers to produce the ωmin and
ω∆ of their projection boxes. As ω∆ should always be a non-negative vector, an additional ReLU
layer is applied to ω∆ so this constraint is satisfied. The entire projection process is illustrated in
Eq. 7
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fvision : vision → C : fNL : NL → C :

evision = ViT(xvision) eNL = BERT(xNL)

hvision
min , hvision

∆ = split(evision) hNL
min, h

NL
∆ = split(eNL) (7)

ωvision
min = Linearvision

min (hmin) ωNL
min = LinearNL

min(hmin)

ωvision
∆ = ReLU(Linearvision

∆ (h∆)) ωNL
∆ = ReLU(LinearNL

∆ (h∆))

We use the joint training method to train fvision and fNL together for 2 epochs with a batch size of
128 using an AdamW optimizer with a learning rate of 10−4. All λs in Eq. 6 are set to 1. To evaluate
the projections boxes generated by fvision and fNL, we use their combined classification accuracy
and predicated labels for a specific attribute z can be obtained by:

ȳattr z
i = argmaxc∈attr zP (c|Ωi) (8)

The final pretraining accuracy is 99.82%.

This joint training stage concludes all steps required for pretraining and now we shift our focus onto
our proposed framework’s zero-shot performance on two popular cross-modality and reasoning
tasks: image-text matching and visual question answering.

4.1 ZERO-SHOT IMAGE-TEXT MATCHING

Image-text matching is a binary classification task on whether a natural language sentence
describes an image. Our framework can naturally adopt a common approach involving creating
representations for both sentences and images at a shared latent space. Specifically, given an image-
text pair {xvision

i , xNL
i }, their representations in the learned concept space C are generated by

fvision(x
vision
i ) = Ωvision

i and fNL(x
vision
i ) = ΩNL

i . The probability that {xvision
i , xNL

i } is a positive
pair can be determined by the cross entailment probability of Ωvision

i and ΩNL
i as shown in Eq. 9. This

inference process is demonstrated in Fig. 1. In contrast to aforementioned works, our latent space
is an explainable concept space, bringing transparency to the inference process of this image-text
matching task.

P (matched|{xvision
i , xNL

i }) = 0.5× P (Ωvision
i |ΩNL

i ) + 0.5× P (ΩNL
i |Ωvision

i ) (9)

In our experiment, to create negative pairs, we select half of the data points in train and validation
set as negative pairs whose attribute values are randomly changed. We use a threshold of 85% to
determine if a pair is matched. We perform no fine-tuning on this downstream task. The final
zero-shot accuracy on the validation set is 99.12%.

4.2 ZERO-SHOT VISUAL QUESTION ANSWERING

Visual Question Answering (VQA) is a task designed to test an AI system’s ability to reason
about images by answering questions in a natural language format that are related to those
images. In CLEVR, questions are specifically designed to include attribute identification, counting,
comparison, spatial relations, and logical operations. Recently, an increasing amount of works
(Johnson et al., 2017b; Yi et al., 2018; Mao et al., 2019; Li et al., 2020a; Mei et al., 2022) have
been focused on a neural-symbolic reasoning approach where chains of symbolic programs are used
to predict answers to those questions. Our framework’s adaptation to VQA consists of a similar set
of symbolic programs but these programs operate on the learned comprehensible concept space C
instead of high-dimensional latent spaces used by the previous works.

Problem Formulation. Given an image-question pair {Xvision
i , qi} where Xvision

i is an original
CLEVR image as shown in Fig. 5 and qi is a natural language question such as "Are there more
cubes than yellow things?", an AI system needs to generate an answer oi in the natural language
format such as "Yes".
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Figure 1: Application of the proposed framework on the Image-text matching task. An image xvision
i of a

yellow, large, rubber cylinder and two description sentences xNL
1 , xNL

2 are processed by their modality-specific
models fvision and fNL which project domain-specific inputs onto a learned abstract concept space C. We use
the cross-entailment probability between projections of an image and a sentence to determine if they form a
positive pair. While creating representations of images and sentences in a shared latent space is a common
approach for the image-text matching task, our shared representation space is a transparent and explainable
concept space which is in drastic contrast to the commonly used latent space with black-box structure.

Symbolic Programs. We design our symbolic programs as a set of deterministic functions that
operate on the concept space C. Specifically, we follow the same program definitions as proposed
by Johnson et al. (2017a).

Program Generator. An LSTM model π is used to process questions into sequences of programs:
ẑi = π(qi). We follow the same pretraining procedure as used by Johnson et al. (2017b) to train this
program generator. However, as there is no fine-tuning stage in our adaptation, the parameters in π
is frozen once pretraining is finished.

Object Detection and Projection. Similar to our pretraining process, we use fdetection to obtain a
set of single-object images x̂vision

i from Xvision
i which are then fed into fvision so their projections

Ω̂i at concept space C can be obtained. Additionally, each single object’s coordinates predicted by
fdetection are attached to its projection box so questions involving spatial relations can be inferred.

Inference Process. A correctly predicated program sequence ẑi starts with a Scene function that
returns all objects in an image and ends with a program that outputs the answer oi. Intermediate
programs takes output from previous programs as inputs, which is a reoccurring process until the
last function. Our concept space C is mainly involved in attribute identification which follows the
same rule as defined in Eq. 8. The complete inference process is also demonstrated in Fig. 2.

Results. We perform no fine-tuning on the concept space C and vision-modality projection model
fdetection for the VQA task and our zero-shot accuracy on the CLVER validation set is 94.8%. A
comparison to state-of-the-art models can be found in 2. It can be seen that our framework achieves
performance levels on par with those fine-tuned models while maintaining a transparent concept
space where the inference is conducted.

5 ABLATION STUDY

In this section, we discover the use of a pretrained abstract concept space and the joint training
method are beneficial to the overall learning from our proposed framework.
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Figure 2: Application of the proposed framework to Visual Question Answering task. We reuse the object
detection model fdetection from the pretraining stage which extracts a set of single objects x̂i from an original
CLEVR image Xi. The vision-modality projection model fvision then projects x̂i onto the abstract and
transparent concept space C. A program generator π is used to predict a sequence of symbolic programs
ẑi based on an input question qi in natural language format. Programs in ẑi operate on the concept space and
produce an answer oi to qi.

Method Accuracy Fine-tuned?
CNN+LSTM+SA+MLP (Johnson et al., 2017b) 73.2 ✓

Dependency Tree (Cao et al., 2018) 89.3 ✓
Human (Johnson et al., 2017b) 92.6 N/A

Ours 94.8 ✗
CNN+LSTM+RN (Santoro et al., 2017) 95.5 ✓

IEP (Johnson et al., 2017b) 96.9 ✓
MDETR* (Kamath et al., 2021) 99.7 ✓

NS-VQA (Yi et al., 2018) 99.8 ✓

Table 2: A comparison between our framework’s performance to state-of-the-art models. Even though our
framework is not fine-tuned for VQA and it utilizes a transparent concept space to make inference decisions,
it still achieves competitive performance when compared to fine-tuned black-box models. *indicates method
does not use program annotations.

Effects of a Pretrained Concept Space. In this ablation, we cut our framework’s access to
the pretrained abstract concept space C. Instead, the framework is only provided with a freshly
initialized concept space C′ and the loss function during pretraining is changed to Loverall = 0.5×
(Lvision +LNLP) + 0.5×Lconcept +Ljoint. Fig. 3a shows that the projection models in the original
framework are able to converge whereas those in the ablated version cannot produce better results
than guessing labels. Based on this evidence, we conclude that the abstract knowledge shared by the
pretrained concept space simplifies the learning process of modality-specific projection models.

Effects of Joint Training. During trails of experiments, we discover the joint training method
which emphasises on connecting projections from different domain inputs of same objects prevents
undesirable overfitting in projection models. To establish baselines, we train the projection models
fvision and fNLP separately and record their classification performance and volumes of their projection
boxes. Fig. 3 b and c show while standalone projection model is able to converge faster, joint-trained
projection models tend to produce larger projection boxes under the intersection of related concepts.
In another word, joint training prevents projection models from learning domain-overfitted ways of
representing objects in C.
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Figure 3: Ablation study on the pretrained concept space and the joint training method. In a, we cut our
projection models’ access to the pretrained concept space and the learning of this concept space is combined
into training processes of the projection models. Their classification accuracy is used to compare the ablated
version and the original framework. In b and c, the joint training method is replaced with seperate learning
processes of projection models. Their classification accuracy is plotted in b. c displays the average volumes of
their projection boxes normalized by the average volume of concept boxes.

6 DISCUSSION

Defining Concepts’ Relations. In our experiment, we use the entailment probabilities observed in
the CLEVR training set as the ground truth to determine the concept space. We believe our approach
of replicating the entailment probabilities in training sets can be adapted to datasets featuring a more
extensive array of concepts. The works by Vilnis et al. (2018); Li et al. (2018); Lai & Hockenmaier
(2017) have shown similar geometric embedding spaces are capable of learning highly accurate
entailment probabilities of concept pairs as observed in WordNet, a dataset consisting of 4000
possible concepts (WordNet). The increase in the number of concepts introduces a new challenge of
how to properly generate the ground truth of entailment probabilities. We argue the rich textual data
that is widely available today provides a viable path to extract concept relations including entailment
relation as shown in previous work by He & Peng (2020).

Addressing Bias. Hidden bias learned from datasets often hinders the trustworthiness of ML
systems. For example, NLP models often tend to associate the word "monarch" more with the word
"male" than "female" as shown in means such as producing a higher similarity score for embeddings
of "monarch" and "male". We think our proposed framework not only provides an effective probe
into the model’s learned knowledge but also offers the ability to fix such learned bias. In the same
example of monarch, bias can be easily eliminated by ensuring the ground truth concept relations
reflect same entailment probabilities between the concept pairs of "monarch-male" and "monarch-
female", which could be easily achieved from user interference.

Limitations and Future Works. Our experiments show the proposed framework can be adapted
to tasks involving cross modality and probabilistic reasoning and maintains a more transparent
inference process in the meantime. While these results are encouraging, we believe there are also
many places for improvement. We choose to base our experiments on CLEVR dataset because of
its isolated and clearly defined mini-world which is a significantly simplified version of our real
world. So we hope future iterations of this framework could incorporate more sophisticated datasets
such as the ones proposed by Zhang et al. (2016) and Wah et al. (2011). A challenge brought by
these datasets is how to properly organize the concept space to accommodate a greater number of
concepts with more complicated relations. Additionally, current results on Image-Text Matching
Task also motivates us to investigate if the proposed framework can be adapted to the Text-to-Image
Generation task (Ramesh et al., 2022). We believe a safer and biased-free generative process could
be achieved through our framework’s transparent and explainable inference process.

7 CONCLUSION

We introduce a new multi-modality learning framework consisting of an abstract concept space and
a set of modality-specific projection models and demonstrate it achieves competitive performance
on two popular tasks while maintaining transparency and trustworthiness.
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8 APPENDIX

8.1 CONCEPT SPACE TRAINING RESULTS
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Figure 4: A comparison between the learned concept space’s understanding of the CLEVR world and the
ground truth relations illustrated via entailment probabilities of concept pairs. Such comparison allows simple
probing into the knowledge learned by this abstract concept space, bringing transparency into a ML framework
which traditionally operates on black-box architectures.
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8.2 CLEVR TRAINING DETAILS

𝑓!"#"$#%&'

Original CLEVR Image

Figure 5: The segmentation masks generated by fdetection are applied to the original CLEVR images to isolate
each object from its surroundings envrionment. This preprocessing step enables our proposed framework to
replicate the way we, as humans, naturally focus our attention on novel objects during the learning process.
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