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Abstract001

With the advancement of deep neural net-002
works, machine translation has greatly im-003
proved. Nowadays, people widely use ma-004
chine translation tools to facilitate tasks such005
as reviewing foreign documents. However, due006
to the complexity of neural networks, trans-007
lation errors can occur, leading to misunder-008
standings or conflicts. Existing machine trans-009
lation systems often focus on sentence coher-010
ence, neglecting phrase translation accuracy,011
and most testing methods concentrate on the012
sentence hierarchy. This paper investigates013
multi-word expressions, a specific form of014
phrases prone to errors, and proposes Differ-015
ential Multi-Word Expression testing method016
for machine translation (DMWE). We evalu-017
ated multi-word expressions by comparing their018
translation similarity across different transla-019
tion software, based on the idea that phrase020
translations within the same sentence should021
be similar. Using three common types of multi-022
word expressions—Noun + Noun, Adjective +023
Noun, and Verb + Noun—we tested 1498, 1372,024
and 1525 sentences with Google Translate, Mi-025
crosoft Bing Translator, and Baidu Translate.026
The results show that DMWE performs well in027
detecting translation errors with high precision.028

1 Introduction029

Machine Translation (MT) is a core technology in030

the field of Natural Language Processing (NLP),031

aimed at automatically translating text from one032

natural language to another through computer sys-033

tems (Hazelwood et al., 2018). The goal is to break034

down language barriers and promote cross-cultural035

communication by enabling automatic translation036

between languages. In recent years, Neural Ma-037

chine Translation (NMT) has seen significant break-038

throughs, especially with the introduction of the039

Transformer model by Google in 2017 (Yang et al.,040

2013). As NMT technology continues to advance041

and mature, some advanced machine translation042

systems have achieved human-level performance 043

in both quality scores and human evaluations, and 044

their application scope has expanded widely (Has- 045

san et al., 2018). Machine translation now plays 046

a critical role not only in cross-lingual commu- 047

nication but also in various industries and fields 048

(Bahdanau et al., 2015; Gehring et al., 2017; De- 049

vlin et al., 2019; Zhang et al., 2018), such as e- 050

commerce (Tan et al., 2020), linguistic research, 051

language education (Lee, 2023), and healthcare 052

(Manchanda and Grunin, 2020). 053

Despite the significant progress in NMT tech- 054

nology, translation errors still occur. Research has 055

shown that while current machine translation sys- 056

tems have improved fluency and naturalness, they 057

often prioritize sentence coherence over the accu- 058

rate translation of certain sentence components, 059

particularly phrases with specific cultural or con- 060

textual meanings. This excessive focus on fluency 061

and grammatical structure can lead to the loss or 062

distortion of information, affecting both transla- 063

tion accuracy and semantic clarity. For example, 064

as shown in Table 1, both Microsoft Bing Trans- 065

lator and Baidu Translate fail to correctly trans- 066

late the idiomatic expression “kick the bucket” as 067

“to die”, resulting in inaccurate translations. Sim- 068

ilarly, as illustrated in Table 2, the sentence “She 069

bought a new designer brand handbag” was trans- 070

lated by Microsoft Bing Translator as “设计师品” 071

(designer brand), which, although not entirely in- 072

correct, sounds unnatural within the context of the 073

sentence. 074

Currently, most machine translation testing 075

methods focus on sentence-hierarchy translations 076

and do not effectively assess the accuracy of phrase 077

translations. To address the shortcomings of cur- 078

rent machine translation software in translating 079

phrases, we propose DMWE and test it on Google 080

Translate, Microsoft Bing Translator, and Baidu 081

Translate. Using differential testing, we eval- 082

uate machine translation results by comparing 083
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Table 1: Mis-translation of Google Translate and Mi-
crosoft Bing Translator

Software Source Language Target Language

Google She kicked the
bucket yesterday,
but she had a lot of
friends who helped
her throughout her
illness.

她昨天去世了，
但是她有很多朋
友在她患病期间
给予了她帮助。

Bing

她昨天踢了水
桶，但她有很多
朋友在她生病期
间帮助过她。

Baidu

她昨天放弃了，
但她有很多朋友
在她生病期间帮
助了她。

Table 2: Inaccuracy Translate of Microsoft Bing Trans-
lator

Translation
Software Source Language Target Language

Google She bought a new
designer brand
handbag.

她买了一个新
的名牌手提包。

Bing
她买了一个新
的设计师品牌手

袋。

Baidu 她买了一个新
的名牌手提包。

phrase translations at different software and hier-084

archies, assessing the accuracy of machine trans-085

lation. Compared to existing testing methods, our086

approach identifies more errors and demonstrates087

improved precision. This is the first application088

of differential testing to phrase-hierarchy machine089

translation testing.090

In summary, the main contributions of this pa-091

per are as follows: (1)We introduce DMWE, a092

method for machine translation testing, which ad-093

dresses existing gaps in phrase translation evalu-094

ation. (2)We implement and experimentally eval-095

uate DMWE, demonstrating that it achieves high096

accuracy in machine translation testing. (3)We097

provide three commonly used multi-word expres-098

sion types—Noun + Noun, Adjective + Noun, and099

Verb + Noun—along with datasets containing 1498,100

1372, and 1525 sentences, respectively, thereby en-101

riching the multi-word expression datasets.102

2 Background103

2.1 Differential Testing104

Differential testing is a commonly used software105

testing technique designed to identify potential er-106

rors or inconsistencies by comparing the output107

results of two or more programs, modules, or ver-108

sions under the same input conditions. The core 109

idea of this method is to examine output differences 110

based on input variations, which effectively uncov- 111

ers latent defects, especially in complex algorithms 112

or when comparing multiple implementations. In 113

the context of machine translation, differential test- 114

ing is primarily used to identify potential trans- 115

lation errors, inconsistencies, or performance is- 116

sues by comparing the outputs of different machine 117

translation systems or the same system across vary- 118

ing versions, configurations, or training conditions. 119

Unlike traditional software testing methods, differ- 120

ential testing is particularly important in machine 121

translation due to the diverse and semantically rich 122

nature of translation outputs, making it difficult to 123

define a single, absolute “correct” output. Differ- 124

ential testing offers a novel approach to evaluating 125

translation quality, particularly for verifying con- 126

sistency between different translation systems or 127

conducting regression testing. 128

2.2 Word Alignment 129

Word alignment is a critical task in machine transla- 130

tion (Yang et al., 2013), aimed at establishing corre- 131

spondences between words in the source and target 132

languages within bilingual parallel corpora. It is an 133

active area of research in natural language process- 134

ing (NLP), and accurate alignment is essential for 135

improving machine translation performance. Word 136

alignment ensures that the translation system cor- 137

rectly interprets the source language and maintains 138

semantic consistency between the source and target 139

languages. Effective word alignment helps trans- 140

lation models handle lexical transformations more 141

efficiently, thereby enhancing translation quality 142

and accuracy. Early word alignment methods were 143

primarily based on statistical models (Brown et al., 144

1990), such as the IBM Model Series (Brown et al., 145

1993). These models assumed a probabilistic rela- 146

tionship between source and target language words 147

and used the Expectation-Maximization (EM) algo- 148

rithm for parameter estimation. While these meth- 149

ods laid the theoretical foundation for early ma- 150

chine translation systems, they faced data sparsity 151

issues when handling low-frequency vocabulary 152

or long sentences. With the advent of deep learn- 153

ing, neural network-based word alignment methods 154

have gradually become mainstream. The Seq2Seq 155

model (Sutskever et al., 2014) employs an encoder- 156

decoder architecture to encode source language 157

sentences into fixed-length vectors, and the atten- 158

tion mechanism improves alignment accuracy. This 159
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mechanism assigns weights to each word in the160

input sequence, allowing the model to focus on161

relevant parts, thereby enhancing translation perfor-162

mance. Currently, various word alignment models163

have been developed (Sabet et al., 2020; Liu et al.,164

2019). In this paper, we use AWESOME (Dou165

and Neubig, 2021), a deep learning-based model166

that combines the Transformer architecture and167

self-attention mechanism, supporting five language168

pairs. As an open-source tool, AWESOME per-169

forms well on large-scale datasets, marking a shift170

from statistical models to more flexible and effi-171

cient neural network-based approaches for word172

alignment.173

2.3 Multi-word Expressions174

Multi-word expressions (MWEs) are phrases com-175

posed of multiple lexical units combined through176

specific grammatical and semantic rules. MWEs177

are common across many languages and present178

significant challenges for language modeling and179

automated processing (Sag et al., 2002; Kim, 2008).180

The primary difficulty lies in their semantic non-181

compositionality, meaning that the overall mean-182

ing of an MWE cannot be inferred solely from its183

syntactic structure or the meanings of its individ-184

ual components. For example, the phrase “go the185

extra mile” literally means “walk farther”, but its186

actual meaning is “make an extra effort”. Thus,187

correctly identifying and understanding MWEs is188

critical for handling such expressions. In NLP, one189

of the key tasks for effectively processing MWEs190

is their automatic identification. Solutions for auto-191

matic MWE recognition have been proposed in the192

PARSEME shared tasks (Savary et al., 2017, 2023),193

which have laid the foundation for further advance-194

ments in language modeling and NLP applications.195

Understanding and handling MWEs—along with196

their structural and semantic properties—are es-197

sential not only for language learning but also for198

the development of machine translation and NLP199

systems.200

3 Methodology201

The overall framework of DMWE is illustrated in202

Fig. 1. It consists of five major steps designed to203

evaluate the accuracy of translation systems in han-204

dling multi-word expressions (MWEs). To ensure205

consistency within the same translation software,206

DMWE pairs MWEs with sentences containing207

these expressions to form source language groups.208

These groups are then used to generate test inputs, 209

which are verified using a differential testing ap- 210

proach. 211

The input to DMWE is a list of unannotated 212

source language groups, and the output is a list 213

of suspicious groups. The detailed workflow is as 214

follows: 215

Figure 1: Flowchart of DMWE

3.1 Multi-word Expression Extraction 216

In the Multi-word Expression (MWE) extraction 217

phase, the process of identifying and extracting 218

MWEs involves several steps, with the core being 219

the effective preprocessing of the sentences in the 220

corpus and the use of specialized tools to identify 221

MWEs. 222

To accurately identify MWEs, the first step is to 223

preprocess the sentences in the corpus and convert 224

them into a standardized CoNLL format. The spe- 225

cific process is as follows:(1) Tokenization: The 226

sentences are split into words or subwords using 227

a tokenization tool. (2) Part-of-Speech Tagging: 228

A part-of-speech tagging model is used to assign 229

corresponding part-of-speech labels (e.g., noun, 230

verb, adjective) to each word. (3) Dependency Pars- 231

ing: A dependency parsing tool is used to annotate 232

the syntactic dependencies between each word and 233

others in the sentence. After completing the pre- 234

processing steps, all information is organized and 235

output in CoNLL format. The advantage of the 236

CoNLL format is its structured representation of 237

each word’s basic information. 238

Once the CoNLL format file is generated, 239

MWEs can be extracted using the tool mwetoolkit3. 240

mwetoolkit3 is specifically designed for processing 241

MWEs and is capable of automatically identifying, 242

analyzing, and handling MWEs in the CoNLL for- 243

mat. By combining the CoNLL format with mwe- 244

toolkit3, it becomes possible to efficiently identify 245

and extract multi-word expressions from the cor- 246

pus. This tool enhances the process by leveraging 247
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the structured information in the CoNLL format,248

enabling precise and reliable extraction of MWEs249

for further analysis.250

3.2 Test Data Generation251

In the test data generation phase, it is necessary252

to extract target multi-word expressions by type253

from sentences containing these expressions and254

pair them with the complete sentence that includes255

the expression to form a source language group,256

thus constructing the test dataset. The source lan-257

guage group consists of both sentence-hierarchy258

and phrase-hierarchy components. For example,259

the sentence “She bought a new designer brand260

handbag” represents the sentence-hierarchy com-261

ponent, while the multi-word expression “designer262

brand” constitutes the phrase-hierarchy component.263

This forms a noun + noun type source language264

group.265

3.3 Differential Testing Execution266

In the differential testing phase, multi-word ex-267

pressions are evaluated using the differential test-268

ing method. Specifically, the translation results269

from different translation software are compared to270

assess how they handle multi-word expressions,271

and the strengths and weaknesses of each soft-272

ware are analyzed. This study selects three main-273

stream machine translation tools: Google Translate,274

Microsoft Bing Translator, and Baidu Translate.275

These translation tools are widely used in various276

practical scenarios and represent the current main-277

stream level of machine translation technology.278

As shown in Figure 2, the source language279

groups generated in the previous phase are input280

sequentially into each of the translation software281

being tested. The results from each software are282

then combined to form the corresponding target lan-283

guage groups. In the figure, the sentence-hierarchy284

“She bought a new designer brand handbag” and the285

phrase-hierarchy “designer brand” from the source286

language group serve as input, and all three trans-287

lation tools output translations at both hierarchies.288

Each translation software corresponds to one target289

language group, resulting in three target language290

groups generated by the three software systems.291

3.4 Control Group Generation292

In the reference group generation phase, the align-293

ment tool AWESOME (Dou and Neubig, 2021) is294

used to align the multi-word expressions between295

Figure 2: Differential Testing Execution
the source language sentence and the target lan- 296

guage sentence, obtaining the corresponding trans- 297

lations of the multi-word expressions within the 298

sentences. Each of the three translation tools gen- 299

erates a target language group, and after alignment, 300

a total of six translation results for the multi-word 301

expressions are obtained. These translation results 302

form the reference group. 303

3.5 Error Detection 304

In the error detection phase, the translation accu- 305

racy of multi-word expressions by each translation 306

software is further analyzed through similarity cal- 307

culations. Each set of translation results includes 308

translations at both the sentence and phrase hier- 309

archies. To assess translation accuracy, DMWE 310

employs two types of comparison: within-group 311

comparison and between-group comparison. The 312

within-group comparison measures the similarity 313

of multi-word expression translations at different 314

hierarchies by the same translation software, while 315

the between-group comparison compares the simi- 316

larity of translations of the same multi-word expres- 317

sion at the same hierarchy by different translation 318

software. 319

This method uses BertScore (Zhang et al., 2020) 320

for similarity calculations. BertScore is a text simi- 321

larity evaluation method based on the BERT model, 322

which is particularly effective for assessing the sim- 323

ilarity of Chinese texts and can compute and return 324

similarity scores between two phrases. DMWE 325

sets a threshold to evaluate translation accuracy: if 326

the similarity score is below the threshold t, the 327

translation result is flagged as “suspicious”. 328[
∀s′ ̸= s,Bs(s, s

′) < t
]

(1) 329[
W (s) < t ∧ ∀s′ ̸= s,Bp(s, s

′) < t
]

(2) 330

Suspicious group identification is divided into 331

two types. At the sentence hierarchy, if the trans- 332

lation of a multi-word expression by the selected 333

software has a similarity lower than the threshold t 334

when compared to the translations from the other 335
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two software systems, it is considered suspicious.336

At the phrase hierarchy, where context is limited,337

if the similarity between the translation of a multi-338

word expression and the other two translations is339

below the threshold t, and the similarity with the340

same software at the sentence hierarchy is also be-341

low t, it is considered suspicious. A multi-word342

expression is deemed a suspicious group if it satis-343

fies any of these conditions.344

4 Experiments345

This section addresses three aspects: precision, de-346

tection diversity and method effectiveness. Empiri-347

cal evaluation of DMWE is conducted on the three348

translation software systems using the compiled349

dataset, with the experimental results analyzed to350

answer the research questions.351

RQ1: What is the precision of DMWE in detect-352

ing errors in different types of multi-word expres-353

sions? The objective of this question is to assess354

the applicability of DMWE to different types of355

multi-word expressions and perform a precision356

analysis.357

RQ2: What types of multi-word expression er-358

rors are detected by DMWE?The objective of this359

question is to evaluate the practicality of DMWE360

by analyzing the types of multi-word expression361

translation errors it can detect. The test results will362

be classified, and the corresponding error types and363

quantities will be counted.364

RQ3: What are the advantages of DMWE? The365

objective of this question is to evaluate the effective-366

ness of DMWE by comparing it with other similar367

testing methods.368

4.1 Datasets369

This study extracted the relevant datasets from UM-370

Corpus (Tian et al., 2014), selecting three common371

types: Noun + Noun, Adjective + Noun, and Verb +372

Noun. To minimize false positives, sentence length373

was restricted to between 10 and 30 words. As a374

result, 1498, 1372, and 1525 sentences were ex-375

tracted for each type, respectively.376

4.2 Evaluation Metrics377

This method uses BERTScore to calculate the sim-378

ilarity between two words, which is a standard379

cosine similarity formula to measure the similarity380

between two embedding vectors, ci and rj . Here, ci381

represents the candidate translation’s word vector,382

and rj represents the reference translation’s word383

vector.384

sim (rj , ci) =
ci, rj

∥ci∥ ∥rj∥ (3) 385

The precision of the results is calculated as fol- 386

lows: TP represents the number of groups that 387

actually contain translation errors among all the 388

error groups. FP represents the number of groups 389

that were incorrectly identified as errors among all 390

the error groups. 391

Precision =
TP

TP + FP
(4) 392

4.3 Experimental Results and Analysis 393

4.3.1 Analysis Results for RQ1 394

Experiment 1 aims to evaluate the precision 395

of DMWE. Using differential testing, a custom 396

dataset was applied to assess the translation per- 397

formance of three different machine translation 398

software systems on multi-word expressions. The 399

experiment involved manually verifying suspicious 400

translations, with a translation being marked as an 401

error only when both authors unanimously con- 402

firmed the mistake, ensuring the reliability of the 403

results. 404

Before the experiment, 1,000 sentences were 405

randomly selected for multi-word expression iden- 406

tification. The results showed that Noun + Noun, 407

Adjective + Noun, and Verb + Noun were common 408

types of multi-word expressions. These three types 409

were tested separately, with a threshold range set 410

between 0.6 and 0.75 for analysis. For the two 411

hierarchies of translation content in the same trans- 412

lation software, a translation was considered prob- 413

lematic if there was an error in any hierarchy. The 414

testing results are shown in Table 3, which displays 415

the precision of the three translation software sys- 416

tems under different thresholds. For example, when 417

testing the Noun + Noun type with a threshold of 418

0.7, the precision for Google Translate was 83.3%, 419

for Microsoft Bing Translator was 85.1%, and for 420

Baidu Translate was 80.6%. 421

We selected the Noun + Noun type of multi- 422

word expression and created Figure 3 to show 423

the relationship between threshold, precision, and 424

true positives. The figure demonstrates that as the 425

threshold decreases, the number of translation er- 426

rors detected by DMWE decreases, while precision 427

increases. This is expected, as lower thresholds 428

make the translation software more conservative 429

in processing translations, thereby reducing errors. 430

However, excessively low thresholds may result in 431
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Table 3: DMWE Precision

Type Threshold Google Bing Baidu

Noun+Noun

0.75 73.1%（49/67） 72.6%（53/73） 71.4%（36/49）
0.7 83.3%（35/42） 85.1%（40/47） 80.6%（25/31）
0.65 89.3%（25/28） 88.9%（24/27） 87.5%（14/16）
0.6 90.1%（20/22） 93.0%（14/15） 91.6%（11/12）

Adjective + Noun

0.75 72.7%（101/139） 71.3%（97/136） 70.7%（70/99）
0.7 82.1%（78/95） 80.2%（73/91） 79.3%（46/58）
0.65 91.0%（51/56） 89.9%（62/69） 85.7%（30/35）
0.6 92.9%（26/28） 92.1%（35/38） 94.4%（17/18）

Verb + Noun

0.75 70.7%（152/215） 71.7%（160/223） 72.3%（115/159）
0.7 81.4%（114/140） 80.8%（126/156） 81.8%（85/104）

0.65 90.4%（85/94） 90.6%（96/106） 88.5%（54/61）
0.6 94.1%（48/51） 91.8%（45/49） 94.9%（37/39）

missing some true errors. Therefore, in practical432

applications, it is necessary to find the optimal bal-433

ance between precision and the number of errors.434

The data in the figure shows that setting the default435

threshold to 0.7 allows for the detection of more436

translation errors while maintaining high precision.437

Figure 3: Threshold, Precision, and Quantity Chart for
Different Types of Multi-word Expressions

This experiment demonstrates that DMWE is438

applicable to different types of multi-word expres-439

sions and helps identify the most suitable thresh-440

old during the testing process. At this threshold,441

DMWE can detect more translation errors while442

maintaining high precision, thereby improving the443

comprehensiveness and practicality of the testing.444

4.3.2 Analysis Results for RQ2445

Experiment 2 conducts an in-depth analysis of the446

translation errors detected by DMWE to identify447

their types. The experiment categorizes each er-448

roneous result and examines the root causes, re-449

vealing specific issues encountered by different450

translation software when handling multi-word ex-451

pressions, thus guiding future software improve-452

ments. Experiment 1 has already demonstrated that453

DMWE can effectively detect translation errors in454

multi-word expressions. During the evaluation pro-455

cess, DMWE successfully identified three main456

types of translation errors: mistranslation, omis-457

sion, and non-translation.To gain a more compre-458

hensive understanding of the detected error types, 459

this experiment will provide a detailed description 460

of each error type, aiming to uncover the differ- 461

ences in performance and potential issues among 462

translation software when handling multi-word ex- 463

pressions. 464

Mis-translation: This occurs when a phrase in 465

the source language is incorrectly translated into 466

the target language. For example, in Table 4, the 467

multi-word expression “lip service”, which means 468

“superficial support or commitment that is not fol- 469

lowed by actual action”, is mistranslated by Mi- 470

crosoft Bing Translator. The software’s translation 471

is incorrect. 472

Table 4: Mis-translation

Software English Chinese
Google lip service 口头承诺

Bing lip service 唇部服务

Baidu lip service 口头承诺

Under-Translation: Under-Translation errors 473

occur when a phrase in the source language is not 474

translated into the target language. For example, in 475

Table 5, “key points” means “关键点” in Chinese, 476

but Microsoft Bing Translator failed to translate it, 477

resulting in an omission error. 478

Non-Translation: Non-translation errors oc- 479

cur when the source language phrase remains un- 480

changed in the target language after translation. 481

For instance, as shown in Table 6, Microsoft Bing 482

Translator translated “let bygones be bygones” as 483

“让bygones成为bygones”, which is considered a 484

non-translation error because “bygone” remains 485

untranslated. 486

Under the default threshold t=0.7, the perfor- 487

mance of Google Translate, Microsoft Bing Trans- 488
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Table 5: Under-translation

Translation
software Microsoft Bing Translator

English

Some key points are suggested for
designing recycled asphalt mixture as

blacktop, which may be referable to the
design and construction of utilizing

recycled asphalt mixture.

Chinese
建议将再生沥青混合料设计为黑顶，
这可能与利用再生沥青混合料的设计

和施工有关。

Table 6: Non-translation

Translation
software Microsoft Bing Translator

English Honey, I’ve made mistakes, too. Let’s just
let bygones be bygones, and start over.

Chinese
亲爱的，我也犯过错误。让我

们让bygones成为bygones，然后重新开
始。

lator, and Baidu Translate in detecting transla-489

tion error types and their quantities was manu-490

ally recorded. The statistical results are shown491

in Table 7. For example, in the case of Noun +492

Noun type multi-word expressions, Microsoft Bing493

Translator identified 34 mis-translations, 4 under-494

translations, and 2 non-translations.495

Table 7: Number of Translation Error Types by Software
for DMWE

Type Software Mis Under Non

Noun+Noun
Google 33 2 0
Bing 34 4 2
Baidu 23 2 0

Adjective + Noun
Google 72 6 0
Bing 61 7 5
Baidu 42 3 1

Verb + Noun
Google 106 8 0
Bing 104 13 12
Baidu 75 10 0

Experiment 2 analyzes the translation error496

types of different software on datasets containing497

various types of multi-word expressions, demon-498

strating that DMWE is effective in identifying these499

issues and provides a comprehensive evaluation ap-500

proach.501

4.3.3 Analysis Results for RQ3502

Experiment 3 compares DMWE with existing trans-503

lation error detection methods to evaluate its effec-504

tiveness. For comparison, we selected the differ-505

ential testing-based DCS, which has been shown506

to outperform metamorphic testing methods like507

CIT and CAT. Additionally, the availability of 508

DCS’s code implementation facilitates straightfor- 509

ward comparative experiments. 510

DMWE is specifically designed for testing 511

multi-word expressions (MWEs). Since there is no 512

existing dataset exclusively for MWEs, this experi- 513

ment uses a custom dataset based on the three types 514

of MWEs mentioned earlier. The translation soft- 515

ware tested includes Google Translate, Microsoft 516

Bing Translator, and Baidu Translate. The results 517

are shown in Table 8. For example, when testing 518

Google Translate with a threshold of t=0.7 and fo- 519

cusing on Noun + Noun MWEs, DMWE detected 520

42 suspicious groups, 35 of which were confirmed 521

as errors, yielding an precision of 83.3%. When the 522

threshold was lowered to t=0.65, DMWE detected 523

28 suspicious groups, of which 25 were identified 524

as errors, increasing the precision to 89.3%. These 525

results indicate that, under the default threshold, 526

DMWE is slightly more accurate than DCS in most 527

cases. 528

The primary difference between the two meth- 529

ods lies in their focus: DMWE targets the transla- 530

tion of multi-word expressions, while DCS takes a 531

broader approach, analyzing overall sentence struc- 532

ture. As a result, the two methods complement each 533

other, enabling the identification of more transla- 534

tion errors and improving the overall precision and 535

comprehensiveness of the testing process. 536

5 Related Work 537

In machine translation testing, various attributes, 538

such as accuracy and robustness, are typically 539

considered. Some methods primarily focus on 540

the robustness of machine translation, examining 541

whether the system is affected by minor errors or 542

noise in the input sentences. Other methods em- 543

phasize testing the accuracy of machine translation. 544

Methods for testing the accuracy of machine trans- 545

lation can be divided into two categories: metamor- 546

phic testing-based methods and differential testing- 547

based methods. 548

Metamorphic testing-based approaches define 549

metamorphic relations to describe the dependen- 550

cies between changes in system inputs and their 551

corresponding outputs. In recent years, Pesu et 552

al. (Pesu et al., 2018) introduced the first meta- 553

morphic testing-based method for machine trans- 554

lation, using English as the source language and 555

covering eight target languages. Since then, several 556

metamorphic testing methods for machine trans- 557

7



Table 8: Precision Comparison between DMWE and DCS

Type
Method DMWE DCS

Threshold t=0.7 t=0.65 /

Noun+Noun
Google 83.3%（35/42） 89.3%（25/28） 79.4%（228/287）
Bing 85.1%（40/47） 88.9%）24/27） 66.7%（265/335）

Baidu 80.6%（25/31） 87.5%（14/16） 66.2%（319/401）

Adjective + Noun
Google 82.1%（78/95） 91.0%（51/56） 79.6%（214/269）
Bing 80.2%（73/91） 89.9%（62/69） 80.2%（251/313）

Baidu 79.3%（46/58） 85.7%（30/35） 80.7%（292/362）

Verb + Noun
Google 81.4%（114/140） 90.4%（85/94） 80.1%（233/291）
Bing 80.8%（126/156） 90.6%（96/106） 78.6%（250/318）

Baidu 81.8%（85/104） 88.5%（54/61） 79.0%（286/362）

lation have been developed. For example, He et558

al. (He et al., 2020) proposed a novel technique559

called Structural Invariance Testing (SIT), based560

on the premise that translations of similar source561

sentences should exhibit similar sentence struc-562

tures. Furthermore, He et al. (He et al., 2021)563

introduced the concept of Relative Translation In-564

variance (RTI), which posits that translations of565

a text in different contexts should remain simi-566

lar. By evaluating translations of text pairs sharing567

the same RTI, they assessed translation similar-568

ity to verify accuracy. Ji et al. (Ji et al., 2021)569

presented Constituent Invariance Testing (CIT), a570

technique that employs constituent parsing trees to571

represent sentence structures. Through an efficient572

data augmentation approach, CIT generates multi-573

ple new sentences from a single sentence. Gupta et574

al. (Gupta, 2020) proposed a testing method called575

PatInv, based on the principle that sentences with576

distinct meanings should not yield identical trans-577

lations. If two sentences with different meanings578

produce the same translation, this could indicate579

an error. Cao et al. (Cao et al., 2022) introduced580

SemMT, an automated testing approach that relies581

on semantic similarity checking. SemMT performs582

back-translation and captures semantic similarity583

using a set of regular expression-based metrics to584

detect potential issues. Sun et al. (Sun et al., 2020)585

developed TransRepair, a novel method that com-586

bines mutation testing with metamorphic testing587

to identify inconsistent defects. TransRepair gen-588

erates mutated sentences by replacing words with589

contextually similar ones, expecting the transla-590

tions of the original and mutated sentences to re-591

main consistent despite the word changes. Addi-592

tionally, Sun et al. (Sun et al., 2022) introduced593

CAT, a method focused on identifying word sub-594

stitutions with controlled effects. Finally, Zhang595

et al. (Zhang et al., 2024) proposed a syntax tree596

pruning-based metamorphic testing method, hy- 597

pothesizing that pruned sentences should maintain 598

similar important semantics compared to the origi- 599

nal sentences. 600

Differential testing-based methods (McKeeman, 601

1998) detect errors by determining whether the out- 602

puts for the same input are consistent across imple- 603

mentations based on the same specification. The 604

latest approach in this category is DCS, which intro- 605

duces a compositional semantics-based differential 606

testing method for evaluating and detecting trans- 607

lation defects and semantic deviations in machine 608

translation. DCS works by decomposing sentences 609

into core and adjunct parts, translating them sep- 610

arately, and identifying errors in the translation 611

process. 612

6 Conclusion 613

We propose a Differential Testing Method for 614

Machine Translation of Multi-word Expres- 615

sions(DMWE). This method targets multi-word ex- 616

pressions, evaluating the accuracy of phrase trans- 617

lations in machine translation through differential 618

testing, thereby enabling more precise identifica- 619

tion of translation issues. The experiments assessed 620

DMWE’s accuracy, its ability to identify transla- 621

tion errors, its false-positive rate, and its overall 622

effectiveness. The results demonstrate that DMWE 623

offers significant advantages in testing multi-word 624

expressions, providing an innovative approach and 625

methodology for phrase-hierarchy machine transla- 626

tion testing. 627

Limitations 628

This method focuses on multi-word expressions as 629

the research target to study phrase translation and 630

identify translation issues. However, multi-word 631

expressions are only a specific form of phrases. To 632

8



assess the translation of all types of phrases, the633

method needs further improvement.634

The method has only been tested on English-635

Chinese translation pairs and does not yet cover636

other language pairs. As research progresses,637

DMWE needs to be extended to include additional638

language pairs.639

The accuracy of the method’s results is affected640

by polysemy and word alignment issues. To im-641

prove the accuracy further, optimization is required642

for these two problems, such as enhancing seman-643

tic similarity calculations and word alignment al-644

gorithms to reduce misjudgments caused by these645

factors.646
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A Appendix870

A.1 Experiment Setup871

Table 9: Multi-word expression datasets

Type
# of words/ Average # of # of words

sentence words/sentence Total Distinct

Noun+Noun 10-30 20.99 31449 9018
Adjective +

Noun
10-30 21.16 32267 8904

Verb + Noun 10-30 20.17 27669 7086

The detailed information of the dataset is shown872

in Table 9. For example, the average number of873

words in sentences containing Noun + Noun type874

multi-word expressions is 20.99, with a total of875

31,449 words and 9,018 unique words. To avoid re-876

peated testing, each multi-word expression appears877

only once in the dataset.878

A.2 False Positive879

False positives are an inevitable phenomenon in880

machine translation. During the experiment, sev-881

eral false positive cases were encountered. The882

causes of false positives are as follows: (1) Word883

Polysemy: Multi-word expressions may have mul-884

tiple meanings or their translations may have dif-885

ferent ways of expression. BERTScore was used in886

similarity judgment, but it still has limitations and887

cannot perfectly match all synonyms. If the simi-888

larity between two translation results is low, they889

may be mistakenly judged as incorrect translations.890

(2) Word Alignment: AWESOME was used in the891

word alignment process, which generally performs892

well, but still has some shortcomings. If the multi-893

word expression is not correctly aligned with its894

corresponding position in the target language, the895

translation result may be mistakenly judged as an896

error.897
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