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Figure 1: Path of panic formation. The physical domain supplies an objective benchmark, while the information
domain dynamically adjusts cognitive inputs. The cognitive domain processes these inputs through individual
constraints and risk perception, triggering panic emotions that ultimately materialize as observable social media
behaviors through the social domain.

Abstract001

During sudden disaster events, accurately pre-002
dicting public panic sentiment on social media003
is crucial for proactive governance and crisis004
management. Current efforts on this problem005
face three main challenges: lack of finely an-006
notated data hinders emotion prediction stud-007
ies, unmodeled risk perception causes predic-008
tion inaccuracies, and insufficient interpretabil-009
ity of panic formation mechanisms. We ad-010
dress these issues by proposing a Psychology-011
driven generative Agent framework (PsychoA-012
gent) for explainable panic prediction based013
on emotion arousal theory. Specifically, we014
first construct a fine-grained open panic emo-015
tion dataset (namely COPE) via human-large016
language models (LLMs) collaboration to miti-017
gate semantic bias. Then, we develop a frame-018
work integrating cross-domain heterogeneous019
data grounded in psychological mechanisms020
to model risk perception and cognitive differ-021
ences in emotion generation. To enhance in-022
terpretability, we design an LLM-based role-023
playing agent that simulates individual psycho-024
logical chains through dedicatedly designed025
prompts. Experimental results on our annotated026
dataset show that PsychoAgent improves panic027
emotion prediction performance by 12.6% to028

21.7% compared to baseline models. Further- 029
more, the explainability and generalization of 030
our approach is validated. Crucially, this rep- 031
resents a paradigm shift from opaque "data- 032
driven fitting" to transparent "role-based sim- 033
ulation with mechanistic interpretation" for 034
panic emotion prediction during emergencies. 035
Our implementation is publicly available at: 036
https://anonymous.4open.science/r/Ps 037
ychoAgent-19DD. 038

1 Introduction 039

Social media accelerates the spread of extreme 040

emotions during sudden events (Organization et al., 041

2020), yet its real-time nature, rich information con- 042

tent, and spatiotemporal granularity offer unique 043

opportunities for emotion prediction and manage- 044

ment. Among various negative emotions, uncon- 045

trolled panic can exhaust emergency resources, 046

trigger secondary disasters, even escalate isolated 047

hazards into complex societal crises (Rune and 048

Keech, 2023). For instance, during the 2011 Japan 049

earthquake, panic-driven mass salt-buying in the 050

China exacerbated price surges and supply short- 051

ages (Pierson, 2011). Hence, timely prediction and 052

monitoring of panic enable proactive interventions 053
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to mitigate its spread and impact (Wu et al., 2025).054

Current research predominantly focuses on055

coarse-grained retrospective emotion classification056

using single-modality textual data (Mitrović et al.,057

2024; Weigang et al., 2024; Mitrovic and Kanji-058

rangat, 2022), while dedicated studies on panic059

emotion prediction remain scarce. Due to the limi-060

tations of dataset annotation quality and inherent061

methodological constraints, precisely predicting062

public panic remains significant challenges.063

Firstly, current panic emotion annotation064

methods have semantic deviations. Existing065

datasets rely on static annotations and lack normal-066

state behavioral data, impeding predictive model-067

ing of panic evolution and causing: (1) oversim-068

plified categorization of panic as fear (Yang et al.,069

2022), ignoring disaster-specific risk perception;070

(2) semantic drift in keyword-based detection due071

to variations in linguistic nuances and expressive072

conventions (Mitrović et al., 2024; Weigang et al.,073

2024), weakening cognition-semantics alignment.074

Secondly, current prediction models have075

cross-domain feature fusion and dynamic model-076

ing limitations. Psychological studies indicate that077

public emotions are influenced by multi-domain078

heterogeneous features. While current models at-079

tempt to incorporate such features (Regan et al.,080

2024), they remain limited to simplistic combina-081

tions of text with single factors. Moreover, existing082

models often use static temporal modeling, fail to083

capture evolving feature interactions, significantly084

reduce predictive efficacy (Mitrović et al., 2024).085

Lastly, current studies have explainability gap086

in panic formation mechanism. Current studies087

focus on surface emotion detection and statistical088

correlations (Mitrović et al., 2024), neglecting psy-089

chological drivers (Hariharan et al., 2017). Though090

cognitive-emotion interactions are validated in psy-091

chological studies, existing works fail to computa-092

tionally map the risk perception-to-arousal chain093

(Regan et al., 2024; Houlihan et al., 2023), leaving094

emotional evolution pathways unexplained.095

To address the above challenges, we propose a096

Psychology-driven generative Agent framework097

(PsychoAgent) for panic emotion prediction dur-098

ing sudden disasters. Specifically, we first adopt099

a human-LLM collaborative annotation method100

to construct a fine-grained panic emotion dataset101

(Collaborative Fine-grained Open Panic Emotions102

Dataset, COPE), resolving semantic deviation and103

cross-cultural annotation biases. Secondly, we de-104

velop a mental model to fuse multi-domain features105

through the psychological mechanisms of panic for- 106

mation (as illustrated in Figure 1). Finally, guided 107

by theoretical lenses of risk perception and emotion 108

arousal, we design a chain-of-thought (CoT)-driven 109

LLM-based agent to simulate the full psychological 110

chain of "disaster perception, risk cognition, panic 111

emotion arousal, and posting behavior responses". 112

Our work shows significant implications for devel- 113

oping explainable AI systems capable of providing 114

deeper insights into collective emotional dynamics 115

during sudden disaster events. More details are in 116

Appendix A.1. 117

Our contributions are summarized as: 118

• To support panic prediction, we pioneer a novel 119

dual-phase panic emotion annotation dataset. We 120

also fine-tune a discriminator to detect panic sig- 121

nals in generated texts. 122

• We innovatively propose a psychology-driven, 123

multi-domain fusion mental model for public 124

panic prediction during disasters. Our approach 125

integrates multi-domain data via an LLM-based 126

role-playing agent for interpretable psychologi- 127

cal modeling of panic formation mechanisms. 128

• Experimental results show that the proposed 129

framework achieves an accuracy of 86% (↑ at 130

least 13% versus SOTA) in panic emotion pre- 131

diction task. Moreover, scalability studies and 132

case studies further validate the explainability 133

and generalization of our approach. 134

2 Problem Definition and Dataset 135

Construction 136

In this section, we first formalize the problem defi- 137

nition, then detail the methods for building a fine- 138

grained panic emotion dataset and finally fine-tune 139

a BERT-based model for panic recognition. 140

2.1 Problem Definition 141

The sentiment prediction task can be defined as: 142

σit+1 = F
(
Iit
)
, (1) 143

where σit+1 is the sentiment label of user i at fu- 144

ture time t+ 1, and Iit is post contents that user i 145

publishes on social media at time t. 146

This study aims to predict users’ panic emotion 147

labels after disaster occurrence through deep fusion 148

of multi-domain features from their pre-disaster 149

social media posts, integrated with psychological 150

theories. Formally, this task can be formulated as: 151

σit+1 = F
(
Iit , Pt+1, C

i
t

)
, (2) 152
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where t + 1 is the time after the sudden disaster,153

t is the time before the disaster, σit+1 is the post-154

disaster sentiment label of user i, Pt+1 is the post-155

disaster physical features, and Ci
t is the personal156

traits of user i from pre-disaster analysis.157

2.2 COPE Dataset Benchmark158

To support panic prediction tasks, we construct159

the first fine-grained panic emotion dataset COPE,160

which across pre- and post-disaster phases, pro-161

vides a high-quality benchmark for emotion predic-162

tion tasks. Its core innovation is the standardized163

construction process based on the LLM-human col-164

laborative annotation process, structured as follows.165

More details can be found in Appendix A.2.166

• Multi-source data collection: Focusing on Hur-167

ricane Sandy (2012), we captured 52.25 mil-168

lion tweets from 13.75 million users (Oct. 15-169

Nov. 12) (Kryvasheyeu et al., 2015). After pre-170

processing (detailed in Appendix A.2.1), the171

dataset includes 9,065 users, including user IDs,172

follower/followee counts, timestamps, locations,173

and ternary emotion labels.174

• Panic annotation framework: Targeting post-175

disaster texts, we adopt a LLM-human hybrid176

annotation pipeline: (1) LLM generates initial la-177

bels via semantic parsing; (2) Multi-round human178

crowdsourced validation; (3) Fine-tuned BERT179

model automates remaining annotations.180
• User-level panic identification: We identify pan-181

icked users via a "one-veto" rule (≥1 panic text182

post-disaster).183

3 Psychology-Driven LLM Agent184

Framework185

This section first delineates the architecture of Psy-186

choAgent, followed by describing the methodology187

for individual feature extraction. Finally, we intro-188

duce the psychology-driven LLM-based agent for189

predictive text generation.190

3.1 Overview of PsycoAgent191

Based on the studies of risk perception and emotion192

arousal in psychology, we summarize the panic193

emotion formation pathway as follows (Figure 1):194
• In the physical domain, we transform spatiotem-195

poral disaster intensity into interpretable data196

through risk communication;197
• In the information domain, we amplify disaster198

severity through communication channels, mod-199

ulating risk perception and refining physical data200

interpretation, establishing via physical-cognitive201

bidirectional feedback loops;202

• In the cognitive domain, we utilize individual 203

traits to mediate risk interpretation biases, trigger- 204

ing panic through emotional arousal to achieve 205

the transformation from data to emotion; 206
• In the social domain, we materialize individual 207

panic into collective psychological states through 208

social media behavior patterns. 209
Based on this, we propose PsychoAgent (Fig. 2), 210

a multi-domain fusion-driven LLM agent frame- 211

work for panic emotion prediction, which com- 212

prises four main parts: (1) In the information 213

domain, we focus on collecting social media texts 214

and risk communication channel features; (2) In 215

the physical domain, we extract disaster charac- 216

teristics via geospatial platforms, gathering key 217

indicators to convert physical features into disas- 218

ter information; (3) In the cognitive domain, we 219

extract individual traits from pre-disaster social me- 220

dia posts. Then, we construct user profiles to drive 221

the LLM agents, aiming at simulating "disaster per- 222

ception, risk perception, panic arousal, and posting 223

behavior" psychological chain; (4) In the social do- 224

main, we use the fine-tuned BERT model to verify 225

the generated text. Then, we enforce a "one-vote" 226

veto rule for user-level prediction. Subsequent sec- 227

tions detail cognitive domain implementations. 228

3.2 Psychological and Behavioral Features 229

Extraction 230

Psychological studies establish that personality 231

traits, sentiment dynamics, topical concerns, and 232

linguistic patterns critically shape risk perception 233

and emotional responses (Gross and John, 2003; 234

Brosch et al., 2013; Syrdal and Briggs, 2018; Davis 235

et al., 2020). We accordingly extract four main 236

features from users’ pre-disaster posts. 237

Big Five Personality Traits We employ the pub- 238

licly available model bert-base-personality (Devlin 239

et al., 2019) to analyze the user’s personality traits. 240

This process can be formally expressed as: 241

ρi = ψpersonality(I
i
t), (3) 242

where ρi is the personality vector of the i-th user, 243

and ψpersonality is the model. More details are pro- 244

vided in Appendix A.3.1. 245

Sentiment Trend Features We use the 246

BERTweet model (Nguyen et al., 2020) to perform 247

ternary sentiment analysis on pre-disaster posts, 248

aggregating results to generate an emotional trend 249

profile. This is formalized as: 250

γi = ψsentiment(I
i
t), (4) 251
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Figure 2: Overview of the proposed panic emotion prediction framework——PsychoAgent.

where γi is the sentiment trend vector of the i-th252

user; ψsentiment is the sentiment model.253

Topic-Aware Characteristic Features Using254

LDA model clustering and LLM-guided merging,255

we extract topic features by analyzing users’ histor-256

ical posts. The process is expressed as:257

τ i = Γ ·Θi, (5)258

where Θi is the LDA-clustered topic vector of the259

i-th user; Γ is the membership relationships; τ i is260

the consolidated thematic focus vector summarized261

by LLM. Appendix A.3.2 offers additional details.262

Linguistic Features We design prompts to cap-263

ture users’ tone features via LLM. The process is264

formalized as:265

vi = LLMlanguage(I
i
t , pv), (6)266

where vi is the tone features of the i-th user;267

LLMlanguage is the tone feature extraction model;268

pν is the prompt for LLM to extract tone features.269

More details can be referred to Appendix A.3.3.270

3.3 Building LLM Agent with Psychological271

Theories272

We design a CoT-driven LLM-based agent to simu-273

late users’ perception and responsiveness through274

four stages, with key stages centering on risk per-275

ception and emotional arousal (see in Figure 3):276

• Disaster perception stage (physical-information277

domain): We integrate psychological knowledge,278

disaster features, and user profiles to form agent’s279

long-term memory;280

• Risk perception stage (cognitive domain): We281

prompt the agent to engage with the psycho-282

logical preparedness for disaster threats scale283

(PPDTS) (McLennan et al., 2020);284

• Panic arousal stage (cognitive domain): We 285

prompt the agent to quantify panic probability 286

through multi-dimensional analysis; 287

• Posting response stage (social domain): We gen- 288

erate tweets with MoE-based consistency verifi- 289

cation mechanism. 290

Disaster Perception Stage This stage equips the 291

agent with essential prior knowledge by integrating 292

psychological knowledge, disaster data, and user 293

features into its long-term memory via structured 294

prompts. The process is expressed as: 295

LLMi
U = LLMRP(K,D,U

i, pu) (7) 296

where LLMi
U denotes the user feature learning 297

agent for user i; LLMRP is the role-playing LLM- 298

based agent; K is psychological knowledge con- 299

straints; D is disaster data; U i is features of user 300

i, encompassing both static traits and risk commu- 301

nication patterns; pu is the initialization prompt. 302

Detailed implementation is in Appendix A.4.1. 303

Risk Perception Stage We construct a dynamic 304

risk perception framework using disaster per- 305

ception stage’s memory and PPDTS (see Ap- 306

pendix A.4.2), emulating users’ risk perception 307

processes via structured psychological assessment. 308

By leveraging LLM’s reasoning capabilities with 309

a stepwise CoT prompting mechanism: question 310

comprehension, memory retrieval, option mapping, 311

and summary judgment, we prompt the agent to 312

output risk perception scores (1-4 levels) for each 313

question, formalized as: 314

Si = LLMi
U (Q, pperception), (8) 315

where Si is the PPDTS evaluation scores for user 316

i; Q is the question set comprising the PPDTS; 317

pperception is the PPDTS assessment prompt. 318
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Panic Arousal Stage To bridge risk perception319

and emotion arousal, we reparameterize the dis-320

crete PPDTS scores into panic propensity drivers.321

Specifically, we prompt the agent to analyze four322

core factors (Risk awareness, coping effectiveness,323

event uncertainty, and situational novelty) through324

a cognitive chain reasoning mechanism, and in-325

fer the panic propensity probability based on prior326

outputs. This process can be represented as:327

Ci = LLMi
U (S

i, pc), (9)328
329

P i
panic = LLMi

U (S
i, Ci, ppanic), (10)330

where Ci is the summary of four factors for user331

i; P i
panic is the panic propensity probability; PC is332

the prompt directing the agent in summarizing the333

four factors; ppanic is the prompt guiding the agent334

to evaluate user’s panic probability.335

Posting Response Stage In this stage, we employ336

CoT to prompt the agent to integrate knowledge337

across stages (see Appendix A.4.3 for details) and338

predict the post content the user is most likely to339

generate under the disaster event’s impact. This340

process can be represented as:341

T i = LLMi
U (S

i, Ci, P i
panic, pT ), (11)342

where T i is the set of tweets most likely published343

by the i-th user; PT is the prompt guiding the agent344

to generate predictive texts.345

To mitigate subjective bias and randomness risks346

in evaluation, we introduce a MoE system with psy-347

chological, linguistic, factual consistency, and emo-348

tional alignment models, which assesses the gen-349

erated text’s multi-dimensional consistency. The350

details are provided in Appendix A.4.3. This pro-351

cess can be represented as:352

εik = LLMK(U i, D, P i
panic, T

i, pk), (12)353

where εik ∈ 0, 1 is the evaluation result of the k-th 354

expert for the i-th user’s generated text; LLMK is 355

the k-th expert model induced via prompt pk. 356

The final evaluation result is determined by all 357

expert models. The generated text T i is only vali- 358

dated if all expert models give a positive evaluation. 359

Otherwise, the system adjusts and retries based on 360

the experts’ feedback. Further details of prompts 361

and case demonstrations are in Appendix A.4.4. 362

4 Experiment 363

In this section, we conduct extensive experiments 364

on COPE to validate the proposed framework, in- 365

cluding performance comparison, ablation study, 366

scalability study and case study, with more experi- 367

mental details provided in Appendix A.5 and A.6. 368

4.1 Experimental Setup 369

Evaluation Metrics To address the class im- 370

balance in panic detection, we adopt five macro- 371

averaged metrics (accuracy, AUC, precision, recall, 372

F1-score) (Sokolova and Lapalme, 2009), which 373

compute scores per class and average them to miti- 374

gate majority-class bias. 375

Implementation Details The experiments are 376

driven by the DeepSeek-v3. During risk perception 377

and emotion arousal analysis, the temperature is set 378

to 0.4 for stable psychological reasoning; In tweet 379

generation, it rise to 0.7 (with a repetition penalty 380

of 0.4) for linguistic diversity; In text verification, 381

the temperature reset to 0.4 for rigorous checks, 382

with 3 adaptive retries. For baselines, we adapt 383

models to the psychology prediction task while 384

adhering to original technical specifications. All 385

models use the same input features, data split (8:2), 386

and evaluation metrics to ensure comparability. 387
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Baselines Although research on panic emotion388

prediction remains exploratory, affective comput-389

ing offers a robust methodological framework with390

extensive prior work. To validate our framework’s391

effectiveness, we choose three mainstream types of392

emotion analysis and prediction methods. Details393

of these baselines can be found in Appendix A.5.394

• Feature-engineered ML (machine learning) mod-395

els: We select classic ML methods like SVM396

(Cortes and Vapnik, 1995), Logistic Regres-397

sion (Hosmer Jr et al., 2013), Random For-398

est (Breiman, 2001), and XGBoost (Chen and399

Guestrin, 2016) as baselines. For each, we in-400

tegrate user features including big five person-401

ality traits, sentiment trend features, linguistic402

features, and topic-aware characteristic features.403

• End-to-end DL (deep learning) models: We se-404

lect classic DL models like Bi-LSTM (Graves405

and Schmidhuber, 2005), Transformer (Vaswani406

et al., 2017), and PredNet (Lotter et al., 2016) as407

baselines, with inputs similar to ML models.408

• Advanced pre-trained language models: We use409

few-shot prompting on DeepSeek-v3 (Liu et al.,410

2024) and ChatGPT-4o (Achiam et al., 2023)411

to directly generate panic prediction results as412

baselines. We also evaluate the THOR-ISA (Fei413

et al., 2023) three-step prompting framework for414

panic prediction and include it as a baseline.415

4.2 Performance Comparison with Baselines416

As shown in Table 1, our approach significantly out-417

performs the SOTA baselines across all evaluation418

metrics, demonstrating the following strengths:419

Psychological theory-driven framework de-420

sign: The PsychoAgent framework achieves an421

absolutely 7% AUC improvement (0.87 vs 0.80422

for Random Forest). Its core advantage lies in the423

task-specific design for emotion prediction, which424

integrates psychological priors to model cognitive-425

emotional chains. Unlike static feature-based ML426

models, PsychoAgent dynamically simulates user427

psychological states, enhancing minority-class de-428

tection under class imbalance.429

Temporal dynamic modeling of multi-domain430

fusion: The PsychoAgent framework demonstrates431

superior temporal dynamic modeling capabilities,432

surpasses Bi-LSTM (0.74), Transformer (0.71),433

and PredNet (0.68) by 12%− 18% AUC. The434

PsychoAgent overcoming Bi-LSTM’s fixed time435

window limitations for abrupt psychological shifts436

and PredNet’s static feature constraints which can’t437

integrate physical and cognitive features effec- 438

tively. Its phased memory-augmented architecture 439

enables precise capture of both disaster dynamics 440

and abrupt psychological mutations, validating ro- 441

bust multi-domain dynamic modeling. 442

Limitations of LLMs and PsychoAgent’s 443

strategy: Although LLMs exhibit strong seman- 444

tic understanding, their direct classification perfor- 445

mance suffer from negative-class overprediction 446

(precision: 0.66, recall: 0.50) due to mismatch 447

between generative probability outputs and classi- 448

fication’s hard decision boundaries. PsychoAgent 449

addresses this by decoupling LLM-based semantic 450

parsing and risk simulation from direct label gener- 451

ation, achieving balanced precision (0.84) and re- 452

call (0.87), validating this indirect utilization strat- 453

egy’s efficacy. 454

Overall, these results demonstrate the supe- 455

rior multi-domain dynamic modeling and minority 456

class recognition capabilities of PsychoAgent. 457

4.3 Ablation Studies 458

In this section, we conduct ablation studies to an- 459

alyze the contributions of key components in the 460

PsychoAgent framework. By progressively remov- 461

ing key components: risk sensing (RS), emotion 462

arousal (EA), and multi-expert assessment (MEA), 463

we evaluate their individual and synergistic impacts 464

on performance. The results are summarized in Ta- 465

ble 2, which demonstrate the full framework excels 466

across all metrics. Specifically: 467

The synergy of RS, EA, and MEA: Remov- 468

ing all three stages (w/o RS,EA,MEA) leads to 469

severe degradation (accuracy: 0.66, AUC: 0.51), in- 470

dicating their synergistic effects are critical, which 471

severely impairs the model’s ability to capture 472

users’ psychological traits and behavioral patterns. 473

The foundational role of RS: Removing EA 474

and MEA (w/o EA,MEA) yields similar declines 475

(accuracy: 0.66, AUC: 0.52), indicating RS’s foun- 476

dational role in initializing context-aware risk per- 477

ception to anchor psychological state recognition, 478

also provides critical input for subsequent stages. 479

The optimization role of MEA: When only 480

MEA component is removed (w/o MEA), the 481

smaller declines (accuracy: 0.71, AUC: 0.72) re- 482

veal MEA’s optimization role in refining predic- 483

tions, although its absence alone has a smaller im- 484

pact compared to the joint absence of RS and EA. 485

Overall, these results validate the effectiveness 486

of the PsychoAgent design. RS, EA and MEA work 487
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Category Method Accuracy AUC Precision Recall F1-score Support

Traditional ML Methods

SVM
Panic - - 0.56 0.70 0.62 630

No Panic - - 0.82 0.70 0.76 1183
Average 0.70 0.76 0.69 0.70 0.69 1813

Logistic Regression
Panic - - 0.55 0.73 0.63 630

No Panic - - 0.83 0.68 0.74 1183
Average 0.70 0.75 0.69 0.70 0.69 1813

Random Forest
Panic - - 0.61 0.62 0.62 630

No Panic - - 0.80 0.79 0.79 1183
Average 0.73 0.80 0.70 0.71 0.70 1813

XGBoost
Panic - - 0.60 0.61 0.61 630

No Panic - - 0.79 0.78 0.79 1183
Average 0.73 0.79 0.70 0.70 0.70 1813

Deep Learning Methods

Bi-LSTM
Panic - - 0.56 0.60 0.58 648

No Panic - - 0.77 0.73 0.75 1165
Average 0.69 0.74 0.66 0.67 0.67 1813

Transformer
Panic - - 0.58 0.73 0.65 648

No Panic - - 0.82 0.71 0.76 1165
Average 0.71 0.71 0.70 0.72 0.70 1813

PredNet
Panic - - 0.56 0.59 0.57 648

No Panic - - 0.76 0.74 0.75 1165
Average 0.69 0.68 0.66 0.67 0.66 1813

LLM-based Methods

Deepseek-v3
Panic - - 0.50 0.00 0.01 562

No Panic - - 0.65 1.00 0.79 1065
Average 0.65 0.50 0.60 0.65 0.52 1627

ChatGPT-4o
Panic - - 0.67 0.01 0.02 630

No Panic - - 0.65 1.00 0.79 1183
Average 0.65 0.50 0.66 0.50 0.40 1813

THOR-ISA
Panic - - 0.00 0.00 0.00 630

No Panic - - 0.65 1.00 0.79 1183
Average 0.65 0.50 0.33 0.50 0.39 1813

Our Method PsychoAgent
Panic - - 0.74 0.90 0.81 581

No Panic - - 0.94 0.84 0.89 1130
Average 0.86 0.87 0.84 0.87 0.85 1711

Note: (a) The Deepseek-v3 method ultimately predicts only 1,627 users due to sensitive content in user historical texts; (b) PsychoAgent successfully predicts 1,711
users after Stage 4 questionnaire validity screening, excluding cases with invalid questionnaires containing fewer than 18 responses (invalidity criterion: returned
questions < 18).

Table 1: The panic emotion prediction performance of PsychoAgent and the baselines, where the best performance
is shown in bold and the second best is underlined.

Method Acc. AUC Prec. Recall F1 supp.

Full Panic – – 0.74 0.90 0.81 581
No Panic – – 0.94 0.84 0.89 1130
Avg. 0.86 0.87 0.84 0.87 0.85 1711

w/o RS, EA, MEA Panic – – 0.77 0.03 0.05 630
No Panic – – 0.66 1 0.79 1183
Avg. 0.66 0.51 0.72 0.51 0.42 1813

w/o EA, MEA Panic – – 0.61 0.06 0.10 595
No Panic – – 0.66 0.98 0.79 1105
Avg. 0.66 0.52 0.63 0.52 0.44 1700

w/o MEA Panic – – 0.56 0.76 0.64 605
No Panic – – 0.85 0.69 0.76 1163
Avg. 0.71 0.72 0.70 0.72 0.70 1768

Table 2: Ablation study, where the best performance is
shown in bold. RS denotes Risk Sensing, EA denotes
Emotion Arousal, and MEA denotes Multi-Expert As-
sessment.

exhibit synergistic interactions, enabling compre-488

hensive psychological modeling.489

4.4 Scalability Studies490

In this section, we systematically investigate the491

interplay between model scale and performance492

under resource constraints by benchmarking four493

model sizes (14B, 32B, 72B, 671B) with/without494

the PsychoAgent framework. The experimental495

results are shown in Table 3, and our key findings496

are as follows.497

• Pure parameter scaling fails to address data im-498

balance. All direct-prediction models achieve 499

near-zero F1 on the Panic class (max 0.01 F1 for 500

671B), with macro-F1 stagnating at 0.39 from 501

14B to 72B, indicating inherent distributional 502

bias toward majority classes; 503

• PsychoAgent empowers small models to sur- 504

pass native large counterparts. The 14B model 505

achieves 0.76 accuracy (+18%) and 0.43 Panic 506

F1 (from zero), outperforming non-framework 507

32B/72B/671B models, demonstrating smaller 508

models can transcend parameter limitations via 509

task-driven reasoning under this framework; 510

• Framework efficacy exhibits scale-dependent 511

synergy. The 671B model achieves peak ac- 512

curacy (0.86, +21%), while the framework- 513

enhanced 72B model (0.81 accuracy achieves 514

124.6% efficiency over the 671B baseline (0.65) 515

at lower cost, proving mid-sized models offer 516

cost-efficient alternatives. Notably, the 32B 517

model underperforms 14B in Panic F1 (0.25 vs. 518

0.43), revealing framework benefits emerge only 519

when the model size exceeds a certain threshold. 520

Overall, the results indicate that model size and 521

performance lack a simple linear relationship. Psy- 522
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choAgent enables compact models to rival or ex-523

ceed larger counterparts in resource-constrained524

scenarios through psychological modeling.525

Model Scale Method Class Acc. AUC Prec. Recall F1

Qwen 2.5-
14B-Instruct 14B

Direct
Pred.

Panic - - 0.00 0.00 0.00
No Panic - - 0.65 0.98 0.78
Avg. 0.64 0.49 0.32 0.49 0.39

psycho-
Agent

Panic - - 0.95 0.28 0.43
No Panic - - 0.74 0.99 0.84
Avg. 0.76 0.64 0.84 0.64 0.64

Qwen 2.5-
32B-Instruct 32B

Direct
Pred.

Panic - - 0.00 0.00 0.00
No Panic - - 0.65 1.00 0.79
Avg. 0.65 0.50 0.33 0.50 0.39

psycho-
Agent

Panic - - 1.00 0.14 0.25
No Panic - - 0.68 1.00 0.81
Avg. 0.70 0.57 0.84 0.57 0.53

Qwen 2.5-
72B-Instruct 72B

Direct
Pred.

Panic - - 0.00 0.00 0.00
No Panic - - 0.65 1.00 0.79
Avg. 0.65 0.50 0.33 0.50 0.39

psycho-
Agent

Panic - - 0.86 0.31 0.45
No Panic - - 0.81 0.98 0.89
Avg. 0.81 0.64 0.83 0.65 0.67

DeepSeek
-V3 671B

Direct
Pred.

Panic - - 0.50 0.00 0.01
No Panic - - 0.65 1.00 0.79
Avg. 0.65 0.50 0.60 0.65 0.52

psycho-
Agent

Panic - - 0.74 0.90 0.81
No Panic - - 0.94 0.84 0.89
Avg. 0.86 0.87 0.84 0.87 0.85

Table 3: Performance Comparison of Different Model
Sizes, where the best performance is shown in bold and
the second best is underlined.

Additionally, to visually demonstrate our frame-526

work’s superior mechanistic interpretability com-527

pared to traditional data-fitting approaches, we528

present two representative prediction cases. De-529

tailed results are in Appendix A.6.530

5 RELATED WORK531

We discuss the related works from three aspects:532

panic arousal theory, current panic analysis meth-533

ods, and LLM-based role-playing approaches.534

Panic Emotion Arousal Theory. Psychological535

studies establish panic as an uncertainty-driven fear536

linked to risk perception (Weigang et al., 2024),537

shaped by event-individual trait interactions (Davis538

et al., 2020; Syrdal and Briggs, 2018). Tradi-539

tional methods (e.g., surveys) suffer from sub-540

jective bias and sampling limitations, failing to541

track real-time risk cognition in social media con-542

texts. Our work bridges this gap by integrating psy-543

chological arousal theory with multi-domain data544

modeling, advancing computational panic analysis545

through mechanism-driven frameworks.546

Panic Emotion Analysis. Current panic emotion547

research relies on event-driven static labeling and548

keyword filtering (Mitrović et al., 2024; Weigang549

et al., 2024), focusing on post-disaster data while550

lacking baseline behavioral data for prediction. Ex-551

isting models, constrained to single-domain text552

analysis (Mitrović et al., 2024; Hariharan et al.,553

2017), exhibit limited interpretability due to insuf-554

ficient multi-domain feature integration and inabil- 555

ity to deconstruct panic formation pathways. We 556

address these gaps via a dual-phase dataset and 557

psychology-anchored LLM agent framework for 558

interpretable panic pathway modeling. 559

LLM-Based Personalized Role-Playing. Per- 560

sonalized role simulation typically employs pa- 561

rameterized fine-tuning or prompt engineering. 562

Prior work employs data-intensive training for fic- 563

tional/historical role replication (Shanahan et al., 564

2023; Li et al., 2023; Wang et al., 2023; Ran et al., 565

2024), yet struggles with social media’s data spar- 566

sity and privacy constraints (Abbasiantaeb et al., 567

2024). Non-parametric prompting methods (Park 568

et al., 2024; Jiang et al., 2023) reduce data de- 569

pendency but produce semantically shallow re- 570

sponses lacking psychological depth. We propose 571

a CoT-driven LLM approach to simulate panic re- 572

sponse logic via risk-emotion causal chains, en- 573

abling lightweight, mechanism-driven role model- 574

ing for social media. 575

6 Conclusions 576

We introduce PsychoAgent, a novel framework 577

for predicting dynamic panic emotion in social 578

media users during disasters, grounded in psy- 579

chological emotion arousal theory. PsychoAgent 580

uniquely integrates a human-LLM collaboratively 581

annotated dataset for fine-grained emotion anal- 582

ysis, a psychology-driven feature fusion mecha- 583

nism to model public panic dynamics, and LLM- 584

based agent simulations to trace panic formation 585

pathways, moving beyond traditional reliance on 586

explicit features. Experiments demonstrate that 587

PsychoAgent significantly outperforms existing 588

baselines in both prediction accuracy and inter- 589

pretability. Our findings have important implica- 590

tions for developing explainable AI systems that 591

offer deeper insights into collective emotional dy- 592

namics during crises. Future work could expand 593

this framework to investigate panic propagation 594

dynamics across social networks and to develop 595

real-time intervention strategies to mitigate emo- 596

tional contagion during emergencies. 597
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7 Limitations598

This work primarily focus on individual-level panic599

prediction by simulating psychological mecha-600

nisms. While this approach effectively models601

cognitive-emotional chains and yields explainable602

predictions, it is not without limitations. First,603

LLM hallucinations may cause deviations from604

psychological priors in modeling risk perception605

and emotion arousal. Future work should integrate606

more robust self-correction mechanisms within the607

agents to mitigate these discrepancies. Second,608

stylistic differences between LLM-generated panic609

texts and authentic user posts can create semantic610

divergence, potentially leading to false negatives611

in our self-trained BERT classifier. Enhancing the612

linguistic realism of generated text to better align613

with human expression is an important next step.614

Furthermore, mainstream LLMs (e.g., Deepseek,615

GPT) often impose political correctness guardrails616

that suppress negative emotional expressions, po-617

tentially underdetecting panic users, suggesting our618

framework is better suited for models without such619

constraints.620

8 Ethics Statement621

The datasets used in this work are all publicly avail-622

able, so there is no ethical concern.623
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A Appendix820

A.1 Comparison of Current Emotion821

Prediction Works822

We summarize the research landscape of existing823

emotion prediction approaches and draw a compar-824

ison with our proposed framework by examining825

aspects including dataset construction, application826

scenarios, theoretical foundations, multi-domain827

feature fusion, generative model architectures, in-828

terpretability, and granularity of emotion prediction.829

The comparative results are presented in Table 5.830

A.2 Dataset Labeling and Self-trained BERT831

Model832

Focusing on panic prediction during sudden disas-833

ters, our dataset centers on post-disaster texts with834

panic emotion annotations. We develop a hybrid835

annotation framework combining LLM-assisted la-836

beling (1,065 entries), human crowdsourcing, EDA-837

based data augmentation, and BERT fine-tuning for838

automated tagging. Statistical details of the dataset839

is presented in Table 4. Specific implementation840

details are provided in subsequent sections.841

Category Quantity

Panic User Count 3,240
Non-Panic User Count 5,825

Total Users 9,065
Pre-Disaster Tweet Count 242,363
Post-Disaster Tweet Count 1,142,626

Total Tweets 1,384,989

Table 4: Details of the constructed dataset.

A.2.1 Data preprocessing procedures842

Our human-LLM collaboratively annotated Hurri-843

cane Sandy dataset innovatively integrates panic844

emotion labels across pre-disaster and post-disaster845

phases. Before annotation, we preprocessed the846

collected dataset as follows:847

1. Data Filtering: Removed malformed, highly re-848

dundant (cosine similarity >0.85), or invalid849

entries (posts with <5 meaningful tokens);850

2. Irrelevant Content Removal: Leveraged human-851

LLM collaboration to exclude non-Sandy-852

related texts from the keyword-crawled public853

dataset(similar to Section 3.2);854

3. User Selection: Retained users who posted in855

both phases, with ≥10 pre-disaster tweets;856

4. Text Sanitization: Stripped URLs, retweets ("RT857

@xxx:"), and non-alphanumeric characters;858

Prompt for LLM-assisted annotation
(Hurricane Related)

Question prompt: You are a helpful assistant that identifies text rele-
vance to Hurricane Sandy using specific keywords and related terms.
Evaluate the following text for relevance to Hurricane Sandy. Focus
only on the text provided and check for keywords such as "Sandy",
"fierce winds", "heavy rainfall", "flooding", "long power outages",
"population centers", "target area", "economic loss", "hurricane",
"storm", "superstorm", "tropical cyclone", and other disaster-related
terms. If you find any relevant keywords, respond with "Yes" and
provide an explanation. If not, respond with "No" and explain why
it’s not relevant. Input text is: Creepy clouds. Bad weather here in
Chi...See the face?? Go back!!!!

LLM answer: Yes, the text is relevant to Hurricane Sandy. It con-
tains the keyword "Hurricane" and specifically mentions "Sandy",
which directly relates to Hurricane Sandy itself. Additionally, it pro-
vides information about the hurricane’s location (26.3N 76.9W) and
its movement (NW at 11 mph), which are pertinent details regarding
the storm’s status and trajectory. This aligns well with the context of
discussing Hurricane Sandy and its impact.

Prompt for LLM-assisted annotation
(Panic Related)

Question prompt: You are a helpful assistant that evaluates text
for emotional content, particularly focusing on panic emotions. You
will analyze the input text based on the context and linguistic cues to
determine if it reflects panic emotions from the text’s author. If panic
emotions are present, respond with "Yes" and provide an explanation.
If panic emotions are not present, respond with "No" and explain
why. Input text is: Creepy clouds. Bad weather here in Chi...See the
face?? Go back!!!!

LLM answer: Yes. The text reflects panic emotions through several
linguistic cues. Phrases like "Creepy clouds" and "Bad weather"
indicate a sense of unease and fear about the current situation. The
exclamation "See the face??" suggests a heightened emotional re-
sponse, ponssibly idicating a perceived threat or danger. The com-
mand "Go back!!!!" further emphasizes urgency and panic, as it
implies a strong desire to escape or avoid a potentially harmful situa-
tion. Overall, the combination of unsettling descriptions and urgent
commands conveys a clear sense of panic from the author.

5. Temporal Stratification: Split the dataset into 859

pre-disaster and peri-disaster subsets based on 860

timestamps. 861

A.2.2 LLM-Assisted Annotation Prompts 862

The ChatGPT-4o assisted annotation prompts used 863

in our dataset labeling process are shown as fol- 864

lows. Since LLMs are trained on extensive cor- 865

pus data, they inherently contain general knowl- 866

edge about Hurricane Sandy and panic emotions. 867

Our approach simply required prompting the LLM 868

to leverage its existing knowledge to determine 869

whether input texts: (1) relate to Hurricane Sandy, 870

and (2) exhibit user panic emotions. 871

A.2.3 Human Crowdsourcing Verification 872

Rules 873

Based on psychological studies of panic emotions 874

and the specific context of Hurricane Sandy, we es- 875

tablish the crowdsourced validation rules for panic 876

12



Ref. Dataset Scenario Psychology Features Generative
Architecture Interpretability Granularity

(Yongsatianchot
et al., 2023) / Sports

competition / Contextual ChatGPT-4 Partial (Output) –

(Regan et al.,
2024) EmotionBench

Multi-
scenario
stories

Emotion
assessment Contextual GPT-3.5-Turbo Partial

(Context) Binary

(Mou et al.,
2024) / News / Cross-doc / / Ekman-6

(Li et al., 2020) / Text dialogues / / / / Ekman-6
/4-class

(Gao et al., 2024) / News / / RoBERTa+ChatGPT
Partial

(Explanation-
Assisted)

8-class

(Houlihan et al.,
2023) Game data "Split or

Steal"
Intuitive

psychology Preferences / Full-chain 20-class

(Alsaedi et al.,
2022) / Social media / / / / 5-class

Ours Disaster Emergencies

Risk
perception +
Emotional

arousal

Multi-
domain
fusion

LLM+MoE Full-chain Panic-
specific

Table 5: Comparative summary of emotion prediction research status. Dedicated dataset (whether creating task-
specific data), Scenario (application in specific contexts), Psychology (integration of psychological theories),
Features (multi-domain feature incorporation), Generative architecture (use of generative models), Interpretability
(model transparency), and Granularity (emotion classification specificity). Cells marked with a slash (/) indicate the
absence of specified design components.

emotion annotation as shown in Figure 4. The877

rules operationalize panic emotion manifestations878

through five key dimensions.879

Figure 4: Crowdsourced validation protocol for panic
emotion annotation.

A.2.4 BERT Model Training Effect880

We fine-tuned a BERT model on an augmented and881

balanced dataset for auto-labeling remaining data,882

which also provide a reliable benchmark tool for883

subsequent emotion discrimination in generated884

texts. To validate training efficacy, we tested the885

model on both the augmented dataset and the origi-886

nal human-verified dataset, with results (Table 6887

and Table 7) demonstrating robust performance888

even on non-augmented data, confirming the effec- 889

tiveness of our EDA enhanced training strategy. 890

Precision Recall F1-score Support

No Panic 1.00 0.99 0.99 513
Panic 0.99 1.00 0.99 497

Accuracy 0.99 1010

Macro Avg 0.99 0.99 0.99 1010
Weighted Avg 0.99 0.99 0.99 1010

Table 6: Training Effect of BERT Model on Augmented
Data.

Precision Recall F1-score Support

No Panic 1.00 0.99 1.00 1002
Panic 0.90 1.00 0.95 63

Accuracy 0.99 1065

Macro Avg 0.95 1.00 0.97 1065
Weighted Avg 0.99 0.99 0.99 1065

Table 7: Testing Effect of BERT Model on Original
Imbalanced Data.

A.3 Details of Individual Feature Extraction 891

A.3.1 Extraction of the Big Five Personality 892

Traits 893

The bert-base-personality model, fine-tuned on a 894

curated personality dataset from the BERT-BASE- 895

UNCASED backbone, predicts Big Five person- 896

ality traits (Openness, Extraversion, Neuroticism, 897

Agreeableness, Conscientiousness) via transfer 898

learning, outputting a dictionary of normalized 899

scores (0–1) for each dimension. While the model 900

lacks disclosed accuracy/F1 metrics, we validated 901

its consistency by testing it twice on 50% splits of 902
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Floating

range

User Count/Proportion Total

UsersConsistent Inconsistent

15% 8880 (97.96%) 185 (2.04%) 9065

20% 9032 (99.64%) 33 (0.36%) 9065

Table 8: Consistency Analysis of Bert-base-personality
Personality Detection Model.

users’ pre-disaster texts, observing > 95% intra-903

user trait alignment within acceptable variance904

thresholds, confirming its reliability for personality905

profiling. The personality consistency verification906

results are shown in the Table 8.907

A.3.2 Focused Topic Feature Extraction908

The LDA model, a generative Bayesian probabilis-909

tic algorithm with a three-layer structure (word,910

topic, corpus), includes two key parameters: the911

number of topics and keywords.912

In this study, we configure the LDA model to913

cluster all users’ pre-disaster posts into 25 distinct914

topics, with each topic characterized by 10 key-915

words. This process also identifies the most likely916

topic category for each post. This process is for-917

malized as follows:918

θk, ϕk = ψtopic(I
i
t , k = 25, n = 10), (13)919

where θk ∈ R25 is the 25 topics generated by LDA;920

ϕk is the keyword list for the k-th topic; ψtopic is921

the topic clustering model.922

Subsequently, we prompt ChatGPT-4o to merge923

similar topics based on their summarized keywords,924

ultimately consolidating them into 8 common the-925

matic categories (see Table 9 for more details).926

This process is formalized as:927

Γ = LLMtopic({ϕk}25k=1, pΓ), (14)928

where pΓ is the prompt used to instruct ChatGPT-929

4o for topic induction; LLMtopic is the ChatGPT-930

4o-based topic consolidation model, which outputs931

8 consolidated themes; Γ is the membership re-932

lationships from the original 25 topics to the 8933

consolidated themes.934

Then, we aggregate each user’s pre-disaster top-935

ical focuses based on the topic labels assigned to936

their historical posts prior to the disaster, which can937

be expressed as:938

τ i = Γ ·Θi, (15)939

where Θi is the topic vector of the i-th user on940

the LDA-clustered topics; Γ is the membership941

Topic Category Top Keywords

Politics & Elections debate, obama, presidential, governor, business
Natural Disasters & Weather weather, wind, rain, hurricane, storm
Energy & Environment power, solar, gas, energy, climate
Sports & Entertainment york, giants, jets, nfl, yankees
Economy & Business gas, prices, obama, economy, wall
Society & News news, governor, business, china, friends
Technology & Innovation power, solar, tech, play, technology
Miscellaneous hurricane, tropical, newyork, storm, east

Table 9: Social Media Users’ Event Topics of Interest
Before Disasters

Prompt for Tone Feature Extraction

Question prompt: You are a professional linguist expert who can
identify the tone of voice in social media texts. A social media
user has sent the following tweets: row["text"]. Describe this user’s
overall tone of voice on the social media with three words. Only
output in the exact format: xxx, xxx, xxx."

LLM answer: Casual, Humorous, Restless

relationships from the LDA-clustered topics to the 942

LLM-consolidated themes; τ i is the summarized 943

thematic focus vector of the same user on the 8 944

consolidated themes, represented as a list of theme 945

names. 946

A.3.3 Tone Feature Extraction 947

Leveraging the capabilities of LLM in natural lan- 948

guage processing (NLP) and text pattern recogni- 949

tion, we design a specialized prompt that extracts 950

and condenses each user’s linguistic tone features. 951

Specifically, we instruct ChatGPT-4o to analyze the 952

linguistic tone of each user’s posts under normal 953

conditions, returning three words to describe their 954

tone features, which ensuring efficient and inter- 955

pretable stylistic profiling. The prompt template 956

for tone feature induction is detailed as follows. 957

A.4 CoT-Driven LLM-Based Agent 958

A.4.1 Psychological Knowledge Injection 959

(1) Psychological knowledge comprehension: we 960

integrated a psychology knowledge system 961

with six core modules, which covers public 962

risk perception formation, personality traits 963

and risk response (with a focus on the Big 964

Five model), social media language style ef- 965

fects, content type emotional impacts, emo- 966

tional stability mechanisms, social media net- 967

work property roles, establishing the theoreti- 968

cal foundation and baseline cognitive judgment 969

for psychology-driven prediction in subsequent 970

phases (detailed in Table 10); 971

(2) Disaster event data analysis: Integrating real- 972

time meteorological data to form a dynamic 973
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Knowledge Category Content

Public Risk Perception Formation
• Risk perception is shaped by two factors and their interaction:

a) Characteristics of the risk event itself
b) Personal characteristics of the audience

Personality Traits and Risk Response
• High Psychoticism: Associated with overestimation of event controllability
• High Extraversion: Correlates with perceived understanding of emergencies (e.g., pandemic knowledge)
• High Neuroticism: Linked to lower emergency comprehension and higher fear levels
• Extraverts tend to adopt proactive measures
• Emotionally unstable individuals (high Neuroticism) prefer passive coping strategies

Social Media Language Style Effects
• Sarcasm/irony may amplify anxiety in crisis contexts

Content Type Emotional Impacts
• Disaster-related serious news increases situational awareness but may elevate stress

Emotional Stability Mechanisms
• Regular use of cognitive reappraisal strategies buffers acute stress during disasters

Social Media Network Property Roles
• Users with more follows/followers are more likely to be exposed to diverse and potentially conflicting informa-

tion, which can increase cognitive load and anxiety
• Dense social networks (many friends) can lead to group polarization and echo chamber effects, amplifying

panic through frequent interactions
• Social comparison on platforms with many users can weaken self-efficacy when others display superior coping

resources

Table 10: Psychological Knowledge Embedded Content.

risk perception of disasters, analyzing the phys-974

ical features and linking to the "risk event fea-975

tures" in psychology;976

(3) User profile initialization: Using dual mod-977

eling for the agent’s initialization. A basic978

profile combines user static traits (e.g., Big979

Five personality traits) with risk communica-980

tion analysis (e.g., geographical location, net-981

work topology, and behavioral frequency). Ad-982

ditionally, the Contriever model retrieves the983

top 5 hurricane-related posts from users’ pre-984

disaster posts as supplementary material, help-985

ing the agent infer latent behavioral tendencies986

for a more accurate individual simulation.987

A.4.2 Psychological Preparedness for Disaster988

Threats Scale (PPDTS)989

The Perceived Preparedness for Disaster Threat990

Scale (PPDTS) exhibits a two-factor struc-991

ture—Knowledge & Awareness (KA) and Antici-992

pation, Awareness & Management (AAM)—with993

strong inter-component correlations and high in-994

ternal consistency reliability for both the full scale995

and subscales. Its 18 scenario-based items align996

with specific theoretical constructs from psycho-997

logical knowledge modules (see Table 11). For998

instance, the item "I am confident that I know what999

to do and what actions to take in a severe weather1000

situation." activates the agent’s long-term memory1001

of the interplay between sense of control and user1002

extraversion, enabling dynamic psychological com- 1003

putation. 1004

A.4.3 Tweet generation and multi-expert 1005

evaluation 1006

To ensure generated tweets align with user person- 1007

ality traits while reflecting psychological dynamics 1008

in disaster events, we prompt the agent to perform 1009

the following reasoning steps in sequence, thus 1010

building a multi - source memory integration mech- 1011

anism. Specifically: 1012

(1) Extract psychological domain knowledge as 1013

constraints; 1014

(2) Inject key situational parameters from real- 1015

time hurricane data; 1016

(3) social network behavioral traits and personal 1017

traits from user profiles; 1018

(4) Integrate risk perception features derived from 1019

Phase 2 assessments; 1020

(5) Determine emotional tone via panic arousal 1021

probability values; 1022

(6) Generate the top 3 most probable posts the user 1023

would publish. 1024

To assess the generated text’s consistency and 1025

validity across psychological compatibility, linguis- 1026

tic coherence, factual reliability, and emotional 1027

rationality, we use prompt engineering to coordi- 1028

nate joint evaluation by four domain-specific expert 1029
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Knowledge & Awareness (KA) sub-scale

1 I am familiar with the natural hazard/disaster preparedness materials relevant to my area.
2 I know which household preparedness measures are needed to stay safe in a natural hazard/disaster.
3 I know how to adequately prepare my home for the forthcoming fire/flood/cyclone season.
4 I know what to look out for in my home and workplace if an emergency weather situation should develop.
5 I am familiar with the disaster warning system messages used for extreme weather events.
6 I am confident that I know what to do and what actions to take in a severe weather situation.
7 I would be able to locate the natural hazard/disaster preparedness materials in a warning situation easily.
8 I am knowledgeable about the impact that a natural hazard/disaster can have on my home.
9 I know what the difference is between a disaster warning and a disaster watch situation.
10 I am familiar with the weather signs of an approaching fire/flood/cyclone.

KA construct reliability
Anticipation, Awareness & Management (AAM) sub-scale

1 I think I am able to manage my feelings pretty well in difficult and challenging situations.
2 In a natural hazard/disaster situation I would be able to cope with my anxiety and fear.
3 I seem to be able to stay cool and calm in most difficult situations.
4 I feel reasonably confident in my own ability to deal with stressful situations that I might find myself in.
5 When necessary, I can talk myself through challenging situations.
6 If I found myself in a natural hazard/disaster situation I would know how to manage my own response to the situation.
7 I know which strategies I could use to calm myself in a natural hazard/disaster situation.
8 I have a good idea of how I would likely respond in an emergency situation.

Table 11: Psychological Preparedness for Disaster Threats Scale (PPDTS).

models:1030

(1) The psychology expert model: Verifies align-1031

ment between generated texts and user psycho-1032

logical profiles (particularly Big Five personal-1033

ity traits);1034

(2) The linguistic expert model: Analyzes linguis-1035

tic style coherence with historical posts;1036

(3) The factual consistency model: Ensures1037

disaster-event relevance and accuracy;1038

(4) The emotional alignment model: Maintains1039

dynamic alignment between textual emotional1040

intensity (via lexical analysis) and user panic1041

probability.1042

A.4.4 Prompts and Case Demonstrations in1043

Different Phases1044

Our proposed prompting methods are as shown1045

below. Using a user near Florida as an example,1046

we employ CoT to build an agent with long-term1047

memory. This agent simulates the same disaster1048

scenario for the target user, aiming to predict po-1049

tential panic emotion immediately before or during1050

a hurricane’s landfall.1051

A.5 Baselines1052

In our experiments, we systematically benchmark1053

our proposed framework against the SOTA main-1054

stream methods for sentiment analysis and predic-1055

tion. The baselines include:1056

• SVM: Constructs hyperplanes for classifica-1057

tion via kernel functions to handle nonlinear1058

separability;1059

• Logistic Regression: Maps linear outputs to1060

[0,1] probabilities using the sigmoid function;1061

• Random Forest: Ensemble of decision trees 1062

trained on random feature subsets for diver- 1063

sity; 1064

• XGBoost: A gradient boosted decision tree 1065

(GBDT) algorithm that iteratively adds trees 1066

to optimize prediction errors; 1067

• Bi-LSTM: Bidirectional LSTM with gated 1068

mechanisms to capture long-term dependen- 1069

cies in sequences; 1070

• Transformer: Models global feature depen- 1071

dencies via self-attention (Query-Key-Value 1072

interactions); 1073

• PredNet:Predictive coding network minimiz- 1074

ing prediction errors for dynamic feature 1075

learning; 1076

• DeepSeek-v3: MoE language model us- 1077

ing few-shot prompting with users’ top 5 1078

hurricane-related posts. 1079

• ChatGPT-4o: Similar to DeepSeek-v3, also 1080

generates panic predictions via contextual 1081

prompting; 1082

• THOR-ISA: Three-hop CoT framework simu- 1083

lating human reasoning for implicit sentiment 1084

analysis. 1085

A.6 Case Studies 1086

To visually demonstrate our framework’s superior 1087

mechanistic interpretability compared to traditional 1088

data-fitting approaches, we present two represen- 1089

tative prediction cases in Figure 5 and Figure 6. 1090

Notably, both cases were misclassified by the Ran- 1091

dom Forest method. 1092
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Stage 1: Disaster Perception Stage

Question prompt: You are a psychologist specializing in predicting public emotional trends during emergencies. Use these resources:
1. Psychological Principles: psychology
2. Hurricane monitoring data (Markdown): hurricane table
3. User Profile (JSON): user info)

Please always: 1. Directly output the final answer;
2. Disable any thought process;
3. Use plain text format.
LLM answer: Data understood.

Stage 2: Risk Perception Stage

Question prompt: Answer the following questions. For each question below, follow this reasoning chain:
1. Question Comprehension;
2. Memory Retrieval;
3. Option Mapping;
4. Synthesis Questions:questions

Response Requirements:
1. Response Format: "Q[number]: [score](reason)" 2. Use 1-4 rating scale

LLM answer:
1. Q1: 3 (User has interests in natural disasters and weather, indicating familiarity with preparedness materials, but emotional stability is not stable,
suggesting some uncertainty.);
2. Q2: 2 (User’s conscientiousness is above baseline, suggesting some preparedness knowledge, but agreeableness is below mean, indicating potential
skepticism about adequacy.);
3. Q3: x . . . . . .

Stage 3: Panic Arousal Stage

Question prompt: Based on the previous stages, silently analyze these panic factors and assign a score (1-5) to each:
1. Awareness of Danger;
2. Coping Efficacy and Sense of Control;
3. Uncertainty of Risk;
4. Novelty of Risk
Each factor contributes 25% weight. Calculate panic probability.

Response Format:
factors: [1-5]/5 (reason)
[panic probability (e.g., 50%)]

LLM answer:
Awareness: 4/5 (User has interests in natural disasters and weather, indicating deep awareness of hurricane dangers, but emotional stability is not stable,
suggesting some uncertainty.);
Coping: 3/5 (User’s extraversion and openness suggest moderate confidence in handling crises, but emotional stability is not stable, indicating some
difficulty in managing responses.);
Uncertainty: 3/5 (User’s openness and interests suggest some understanding of risks, but emotional stability is not stable, indicating partial uncertainty.);
Novelty: 3/5 (User’s interests in natural disasters and weather suggest some prior exposure, but no explicit indication of extensive experience.)
[55%]

Stage 4: Posting Response Stage
(Predictive Text Generation)

Question prompt: After answering all questions, what text post would this user most likely publish during a hurricane? Generate tweet STRICTLY
following these rules:
1. Generate EXACTLY 1 possible tweets;
2. [Response Format]: "[Tweet text with #hashtags]";
3. End with ### End;
4. Consider the user’s panic probability panic probability%;
5. If panic probability >51%, tweets should directly convey more panic, fear and anxiety, and tweets should include more emotional amplifiers, or more
EMPHATIC capitalized words, or more repeated punctuation marks, or sensory details;
6. If panic probability <49%, tweets should reflect more calmness and rationality, and tweets should show more composed language.

LLM answer: Stay safe everyone! The hurricane is getting stronger—winds up to 155 km/h now. I’m prepping supplies and staying informed. Let’s all
follow safety guidelines and look out for each other. #HurricaneAlert #StayPrepared #WeatherUpdate
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Stage 4: Posting Response Stage
(Multi-Expert Evaluation)

Question prompt: You are a professional consistency evaluator. Please assess the user’s newly generated text from the perspectives of psychology,
linguistics, accuracy and emotion expression.
The user’s new comment is: "tweet"
1. Generate EXACTLY 1 possible tweets;
2. Use exactly this format: "[Tweet text with #hashtags]";
3. Psychological Validation: Check if the tweet aligns with the user’s psychological profile;
4. Linguistic Validation: Verify if the tweet’s language style is consistent with the user’s historical style;
5. Factual Validation: Confirm if the tweet is relevant to Hurricane Sandy and factually accurate;
6. Panic Probability Alignment: Use the user’s panic probability value panic probability%
[Response Format]: Expert: YES/NO (reason)

LLM answer: Psychological: YES (The tweet aligns with the user’s psychological profile, as the user has an interest in natural disasters and a
conscientiousness score above the threshold, indicating a tendency to follow safety protocols.);
Linguistic: YES (The tweet’s language style is consistent with the user’s historical style, which includes informative and promotional tones.);
Factual: YES (The tweet is relevant to Hurricane Sandy and factually accurate, as the hurricane was indeed intensifying during the time period
referenced.);
Panic: YES (The tweet aligns with the user’s panic probability value of 55%, showing neutral concern without panic, which is appropriate for the given
probability range.)

We randomly select a non-panic user (ID1093

574718143), traditional methods misclassify panic1094

due to negative emotional fluctuations, while our1095

framework identifies weather/daily dialogue dom-1096

inance via cross-domain analysis. Additionally,1097

a coping capacity score (3/5) and dynamic sim-1098

ulations reveal stabilizing risk cognition → self-1099

regulation loops. Generated text (e.g., "Staying1100

cautious but hopeful") validate this mechanism,1101

whereas traditional models, lacking temporal psy-1102

chological modeling, overfit transient local fea-1103

tures.1104

We randomly select a panic user (ID 781886935),1105

despite superficial neutrality, our psychological em-1106

bedding uncovered latent vulnerability (neuroti-1107

cism: 0.548; conscientiousness: 0.301), indicating1108

weak emotional stability and inadequate crisis cop-1109

ing. Dynamic simulations highlight elevated uncer-1110

tainty (4/5) and intense expressions (e.g., "SCARY1111

AF"), exposing the cognitive-emotional chain: risk1112

misperception → resource scarcity → panic erup-1113

tion. Traditional models, constrained by static fea-1114

tures and lacking dynamic psychological modeling,1115

miss such implicit mechanisms.1116

Overall, our method offers superior mechanistic1117

interpretability by dynamically simulating users’1118

psychological processes, providing interpretable1119

criteria for panic detection.1120

User Personalized Profile
574718143User id
Non-Panic UsersPanic Emotion Label

Language FeaturesNeuroticismEvent Attitude
casual, conversational, weather-focused0.532422089negative, indifferent, resigned

[1, 1, -1, 1, 1, 1, 1, -1, -1, 0, -1, 1, -1, 1, -1, -1, 1, 0, 0, 1, 1, 1]Emotional Trend
Natural Disasters and Weather, Society and News etc.Topics of Interest

Panic Emotion Arousal Results
ReasonScoreInfluencing 

Factors
User shows basic risk recognition with weather-focused interests 
but lacks detailed understanding of specific hurricane dangers like 
flooding or wind damage.

3/5Awareness

User’s neuroticism suggests moderate confidence in handling 
stress, but emotional stability is fluctuating, indicating balanced but 
not strong crisis management.

3/5Coping

User has some understanding of risks due to weather awareness 
but lacks explicit knowledge of hurricane mechanisms or response 
strategies.

3/5Uncertainty

User’s weather-focused tone suggests limited prior exposure to 
hurricanes but not complete unfamiliarity.3/5Novelty

50%Probability of Panic Emotion Activation

Generate predictive text and predict panic user results
The wind is picking up and the rain is relentless. 
Staying cautious but hopeful. #WeatherUpdate 
#StaySafe

Generated Prediction Text

Non-Panic Emotion TextThe detection of Panic Emotion in 
prediction Text

The user is a non-panic user.Is the User a Panic User?

Figure 5: Non-panic User Prediction Case.

User Personalized Profile
781886935User id
Panic UsersPanic Emotion Label

Topics of InterestEmotional TrendEvent Attitude
Technology and Innovation, Sports and 
Entertainment, Society and News

[0, 0, -1, 0, 0, 0, 1, 1, 1, 
0, 0]

indifferent, unrelated, 
neutral

OpennessNeuroticismConscientiousness
0.5177330.547720210.301453

Panic Emotion Arousal Results
ReasonScoreInfluencing 

Factors
User has basic risk recognition but lacks deep awareness of specific 
hurricane dangers like flooding or wind damage.3/5Awareness

User's low conscientiousness and neuroticism above average 
suggest limited confidence and strategies for crisis management.2/5Coping

User's openness below norm and fluctuating emotional stability 
indicate partial understanding but significant confusion about risks 
and responses.

4/5Uncertainty

User has likely seen similar events before but lacks extensive prior 
hurricane experience.3/5Novelty

60%Probability of Panic Emotion Activation
Generate predictive text and predict panic user results

OMG the wind is HOWLING outside!! This hurricane 
is SCARY AF!!! Stay safe everyone #StormAlert 
#StaySafe #EmergencyPrep

Generated Prediction Text

Panic Emotion TextThe detection of Panic Emotion in 
prediction Text

The user is a panic user.Is the User a Panic User?

Figure 6: Panic User Prediction Case.
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