
CRAB: Cross-environment Agent Benchmark for
Multimodal Language Model Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

The development of autonomous agents increasingly relies on Multimodal Lan-1

guage Models (MLMs) to perform tasks described in natural language with GUI2

environments, such as websites, desktop computers, or mobile phones. Existing3

benchmarks for MLM agents in interactive environments are limited by their focus4

on a single environment, lack of detailed and generalized evaluation methods,5

and the complexities of constructing tasks and evaluators. To overcome these6

limitations, we introduce CRAB, the first agent benchmark framework designed to7

support cross-environment tasks, incorporating a graph-based fine-grained evalua-8

tion method and an efficient mechanism for task and evaluator construction. Our9

framework supports multiple devices and can be easily extended to any environ-10

ment with a Python interface. Leveraging CRAB, we developed a cross-platform11

CRAB Benchmark-v0 comprising 100 tasks in computer desktop and mobile12

phone environments. We evaluated four advanced MLMs using different single and13

multi-agent system configurations on this benchmark. The experimental results14

demonstrate that the single agent with GPT-4o achieves the best completion ratio15

of 35.26%.16

1 Introduction17

The development of autonomous agents for human-centric interactive systems—such as desktop18

OS [51], websites [56, 15], smartphones [52, 47], and games [38, 39]—has long been an impor-19

tant goal of AI research, aiming to convert natural language instructions into concrete operations.20

Traditionally, these challenges have been addressed using reinforcement learning [27]. Recently,21

Large Language Models (LLMs) have demonstrated remarkable proficiency in natural language22

understanding and commonsense reasoning, making them vital tools for developing autonomous23

agents. This utility is further enhanced by Multimodal Language Models (MLMs), which improve24

the ability to interpret visual information from GUIs [5].25

To effectively develop MLM-based autonomous agents for real-world applications, it is essential to26

create suitable benchmarks for standardized performance evaluation. However, existing benchmarks27

still have limitations in terms of interaction methods, platform diversity, evaluation metrics, static28

task dataset that prevent them from closely mirroring complex real-world applications. First, existing29

benchmarks that interact with the environments through pre-collected observation data from system30

environments [36, 26, 6] fail to capture the dynamic nature of real-world scenarios without interactive31

exploration where data and conditions can change unpredictably. Second, existing benchmarks are32

typically evaluated on a single platform, either Web, Android, or Desktop OS [34, 47, 46]. However,33

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

Crab Framework

Environment

Agent System

Graph Evaluator

Benchmark
Dataset Ubuntu Task

InstructionEvaluator

Android Task
InstructionEvaluator

Environment

Cross-platform Task
InstructionEvaluator

Android
Agent

Ubuntu
Agent

Main Agent

Initialize Task

① Observe

② Plan & Instruct

③ Take Action

④ Update Evaluator

Completed Active Inactive

⑤ Output Metrics

Figure 1: Architecture of the Crab Framework demonstrating a benchmarking workflow for a
multi-agent system. A task is initialized by assigning instructions to the main agent and a graph
evaluator inside the benchmark system. The workflow progresses through a cycle where the main
agent observes, plans, and instructs the sub-agents, who then execute actions within their respective
environments. The graph evaluator monitors the status of tasks within the environments, continuously
updating and outputting the task completion metrics throughout the workflow.

the practical applications usually involve tasks that span multiple platforms. For example, using a34

smartphone to take a photo and sending it to a desktop for editing with a graphics editor is a common35

real-world task across multiple platforms. Third, existing evaluation methods are generally either36

goal-based or trajectory-based [34, 47]. Goal-based methods typically employ coarse-grained binary37

metrics, solely evaluating whether the final system state aligns with the task’s goal. In contrast,38

trajectory-based methods can offer more fine-grained metrics by assessing the agent’s action trajectory39

against a ground truth trajectory yet ignore the possibility of multiple valid pathways to complete a40

task, making the evaluation results less fair. Lastly, task creation within these complex systems are41

not static and extensible with fixed templates [36, 46], which limits the diversity and scope of tasks.42

We propose a benchmark that closely mirrors real-world situations and an evaluation method that more43

accurately reflects an agent’s performance on complex tasks. To this end, we introduce CRAB, a novel44

CRoss-environment Agent Benchmark framework. CRAB provides a comprehensive framework for45

evaluating cross-environment tasks in interactive environments, where the agent needs to operate46

simultaneously across various devices and platforms, adapting to varied system conditions to complete47

tasks efficiently. To the best of our knowledge, CRAB is the first autonomous agent benchmark48

framework that incorporates the cross-environment tasks. Moreover, we propose a novel evaluation49

method called graph evaluator. Unlike traditional goal-based and trajectory-based evaluation, our50

graph evaluator checks the intermediate procedures of completing a task by decomposing the task51

into multiple sub-goals. Each sub-goal is assigned a judge function to verify its completeness, and52

each is considered a node in the graph evaluator. The graph structure describes the sequential and53

parallel relationships between the sub-goals. Therefore, it offers fine-grained metrics similar to54

trajectory-based evaluations while accommodating multiple valid pathways to a solution, making it55

more suitable for evaluating tasks that involve various correct approaches. To solve the increasing56

complexity in cross-environment task construction. We also propose a highly extensible graph-based57

task construction method called sub-task composition. Combining multiple sub-tasks in a graph with58

task targets allows for efficient construction of various cross-environment tasks with corresponding59

graph evaluators. Table 1 compares CRAB with existing frameworks.60

Based on CRAB framework, we develop a benchmark CRAB Benchmark-v0 with two collabo-61

rated environments that include an Android emulator and an Ubuntu desktop virtual machine. We62

2

Table 1: Comparison of existing agent benchmark frameworks. The columns details key features
of each framework: Interactive Environment indicates the presence of either interactive environments
or static datasets; Multimodal Observation specifies the availability of vision-based observations;
Cross-platform denotes support for multiple platforms; Evaluation describes the evaluation metrics,
categorized as Goal-based (checking environment state according solely on the final goal), Trajectory-
based (comparing agent action trajectory with a gold actions sequence), Multiple (varied across
tasks), or Graph-based (a DAG with each node as an intermediate checkpoint); Task Construction
shows the task construction method, including Handmade (handcrafted by human), LLM-inspired
(using LLM to generate task drafts but still verified and annotated by human), Template (generated by
filling in the blanks in task templates), or Sub-task Composition (composing multiple sub-tasks to
construct tasks and evaluators).

Interactive
Environment

Multimodal
Observation

Cross-
platform Evaluation Task

Construction

MINIWOB++ [34] Web ✓ ✗ Goal-based Handmade
METAGUI [36] ✗ ✗ ✗ Trajectory-based Handmade
GAIA [26] ✗ ✗ ✗ Goal-based Handmade
MIND2WEB [6] ✗ ✗ ✗ Goal-based LLM-inspired
AGENTBENCH [23] Multi-isolated ✗ ✗ Multiple Handmade
INTERCODE [49] Code ✗ ✗ Goal-based Handmade
WEBARENA [56] Web ✓ ✗ Goal-based Template
WEBSHOP [50] Web ✓ ✗ Goal-based Template
OMNIACT [12] ✗ ✗ ✗ Trajectory-based Handmade
VWEBARENA [15] Web ✓ ✗ Goal-based Template
ANDROIDARENA [47] Android ✓ ✗ Trajectory-based LLM-inspired
OSWORLD [46] Desktop OS ✓ ✗ Goal-based Template

CRAB Desktop OS & Android ✓ ✓ Graph-based Sub-task Composition

have developed a total of 100 real-world tasks, encompassing both cross-environment and single-63

environment tasks across multiple levels of difficulty. These tasks address a wide array of common64

real-world applications and tools, including but not limited to calendars, email, maps, web browsers,65

and terminals, and facilitate common collaboration between smartphones and desktops. Considerable66

time has been invested in verifying the accuracy and comprehensiveness of the instructions for67

sub-tasks, as well as the generalization and correctness of their evaluators. Most tasks are constructed68

using a careful composition of sub-tasks, while some tasks are crafted manually to accommodate69

specific multi-environment collaboration scenarios. We test 4 popular MLMs, including GPT-4 Turbo,70

GPT-4o, Claude 3 Pro and Gemini 1.5 Pro, across different structures of single agent and multi-agent71

systems, totaling 9 different agent settings in our benchmarks. The experimental results show that72

the single agent with GPT-4o model achieves the best completion ratio of 35.26%, underscoring73

the necessity for ongoing development of more effective autonomous agents. Our proposed metrics74

successfully distinguish between different methods better than previous metrics. We further analyze75

the different termination reasons that reflect the problems inherent in the function calling feature of76

current models and communication within the multi-agent system.77

2 Related Work78

Leveraging LLMs as reasoning units has become an effective approach [42, 10, 45] for building79

autonomous agents, including embodied agents [39, 35, 4], social simulations [30, 20], web naviga-80

tion [24], game playing [16, 37], office assistants [18], and code generation [54], among others. With81

common knowledge of Graphical User Interfaces (GUI) and operating systems, GUI agents [44, 41,82

40, 55, 28] are becoming a productive research direction for developing autonomous agents capable83

of operating systems with GUI interfaces to accomplish complex tasks. GUI agents can typically84

operate multiple applications within a system, making them more versatile than the aforementioned85

agents, which are often limited to a single application. Various benchmarks have been developed to86

evaluate the performance of these GUI agents in interactive environments, which can generally be87

categorized into three types: web, mobile phone, and desktop.88

3

The web environment is one of the earliest environments used to benchmark agents due to its89

simplicity, ease of reproduction, straightforward construction, and ease of parsing by agents. One of90

the earliest examples is Miniwob++ [34], initially designed for evaluating reinforcement learning91

agents. It quickly became a foundational benchmark for evaluating GUI agents. However, its web92

page designs are overly simplistic and lack modern features, limiting its ability to assess agents’93

performance on real-world websites. With the rise of LLMs as agent reasoning engines, more94

complex web environments, such as WebShop [50] Mind2Web [6] and WebArena [56], have been95

introduced for benchmarking language model agents, offering realistic and reproducible environments96

and corresponding web-based tools to simulate sufficiently complex web tasks and cross-environment97

interactions. Building on these works, Visual WebArena [15] focuses on evaluating multimodal98

language model agents by incorporating tasks that require visual understanding. Although web99

environments contain various real world scenarios, it is impossible to replace native applications for100

complex tasks like multimedia editing, programming, etc.101

Intelligent assistants have long been a commercial feature in mobile operating systems, making the102

motivation to develop mobile agents clear. Additionally, mobile phone operations and observations103

are generally simpler than those on personal computers, which has made mobile devices a popular104

environment for benchmarking GUI agents. Several task datasets existed even before the rise of105

GUI agents. MetaGUI [36] introduced a dataset that focuses on GUI-based task-oriented dialogue106

systems (GUI-TOD), dividing mobile system control tasks into dialogues and GUI operation traces,107

while AITW [32] builds the operation traces of challenging multi-step tasks on involving apps and108

websites on mobile devices based on screenshots. Android Arena [47] underlines the collaboration109

among android applications and expands simple android tasks into cross-App and constrained tasks,110

which verifies the potential of LLM-based complicated android system control. AITZ [53] constructs111

datasets with Chain-of-Thought (CoT) considerations, adding semantic annotations based on visual112

models at each step and developing operational procedures for selected tasks. In addition, Mobile113

Agent Bench [43] collects app event signals via Android accessibility services, builds a benchmark114

with well-annotated operation trajectories, and organizes tasks into different levels of difficulty.115

Desktop environments typically have a more complex action space, observation space, and operational116

logic, making task creation and verification more difficult. Additionally, they are highly customizable117

and lack generalized tools that can serve as a bridge for agents to interact with the system, which118

complicates the creation of reproducible environments. OMNIACT [12] is a static benchmark that119

captures data from multiple desktop operating systems, incorporating visual information from the OS120

screen UI through segmentation and corresponding tagging. OSWorld [46] provides an interactive121

and reproducible environment based on XML and screenshots with a standard format. However, both122

of these works rely on the Python library PyAutoGUI1 and code generation for operation, which123

limits the generalizability.124

While these benchmarks aim to evaluate an agent’s capacity across a wide range of applications,125

they are built on human-annotated trajectories, which lack scalability. Most tasks are derived from126

question-and-answer platforms like Stack Overflow or based on annotators’ daily usage. While these127

resources are realistic, they may not effectively test the generalizability of the agent, as the texts128

are highly likely to appear in the training data. Furthermore, the evaluation methods of previous129

benchmarks often rely either on full task trajectories or only on the final goals, making it difficult to130

capture the entire process or to account for partially completed tasks.131

3 Definitions132

3.1 Problem Formulation133

Consider autonomous agents performing a task on a digital device (i.e. desktop computer). Such a134

device typically has input devices (i.e. mouse and keyboard) for human interaction and output devices135

(i.e. screen) to allow human observation of its state. In CRAB, we represent this type of device as an136

1https://github.com/asweigart/pyautogui

4

https://github.com/asweigart/pyautogui

environment. Formally, this environment is defined as a reward-free Partially Observable Markov137

Decision Process (POMDP), denoted by the tuple M ∶= (S,A, T ,O), where S represents the state138

space, A the action space, T ∶ S × A → S the transition function, and O the observation space.139

Considering the collaborative nature of multiple devices in real-world scenarios, we can combine140

multiple environments into a set M = M1,M2, ...,Mn, where n is the number of environments and141

each environment Mj = (Sj ,Aj , Tj ,Oj). We define a task that requires operations across multiple142

environments as a cross-environment task. This task is formalized as a tuple (M, I, R), in which143

M is the environment set, I is the task objective in the form of natural language instructions, and144

R is the reward function of the task. An agent system, designed to complete a task represented145

by an instruction I , can be modeled as a policy π((m, a) ∣ (I,H, o1, ..., on)), which defines146

the probability of taking action a in environment m when receiving observation (o1, ..., on) from147

environment (M1, ...,Mn) with a history action trajectory H . An agent within the agent system148

should have a fixed back-end MLM and system prompt, and retain its chat history. An agent system is149

composed of either a single agent responsible for planning, reasoning, and action-taking or multiple150

agents connected through a communication strategy to collaborate.151

3.2 Graph of Task Decomposition152

Decomposing a complex task into several simpler sub-tasks has been proved to be an effective153

prompting method for LLMs [13]. Some studies represent sub-tasks in a graph structure. For154

instance, PLaG [19] uses a graph-based structure to enhance plan reasoning within LLMs, while155

DyVal [57] employs directed acyclic graphs (DAGs) to facilitate dynamic evaluation of LLMs.156

Download the html file of the 1st item.

Put all files in the same folder.Open a web browser.

Open an online shopping website. Search for T-shirts. Download html files for the
top 10 items. Write a Python script to extract the relevant information in a CSV file.

Decompose Compose

Write a python script that parses html
files and saves the data in a CSV file.

Run the script.Enter an online shopping website.

Download the html file of the 10th item.

…

GDT

Figure 2: Graph of Decomposed Tasks.

By introducing this concept into cross-157

environment tasks, naturally, decompos-158

ing a cross-environment task into sub-tasks159

with in different environments that have160

both sequential and parallel connections161

forms a DAG. Therefore, we introduce162

the Graph of Decomposed Tasks (GDT),163

where each node in the DAG is a sub-task,164

formalized as a tuple (m, i, r), where m165

specifies the environment in which the sub-166

task is performed, i provides the subtask167

natural language instruction, and r repre-168

sents the reward function. The reward func-169

tion evaluates the state of m and returns a170

boolean value to determine if the sub-task171

is completed. The edges within GDT rep-172

resent the sequential relationship between173

sub-tasks. An example GDT is shown in Fig. 2.174

4 The Crab Framework175

4.1 Cross-environment Agent Interaction176

Compared to single-environment tasks, cross-environment tasks offer three main advantages for177

benchmarking agents. First, cross-environment tasks reflect real-world scenarios where humans178

use multiple devices simultaneously to accomplish tasks. Second, these tasks require sophisticated179

message processing and information transfer between environments. Such tasks demand that the agent180

plan actions, construct outputs for each environment, and remember what needs to be transferred,181

showcasing a high-level understanding of environments and tasks. Lastly, role-playing multi-agent182

systems have proven to be effective in executing complex tasks [17, 9]. The underlying principle183

of their effectiveness is the division of responsibilities. Cross-environment tasks are suited to multi-184

agent, as they can be divided by distinct observation spaces, action spaces, and specialized knowledge185

5

in each environment, as shown in Fig. 1. CRAB uses a unified interface for agents to operate in all186

environments. Implementation details are in the Appendix A.2.187

4.2 Graph Evaluator188

Inspired by the "decomposing" idea from GDT (Sec. 3.2), we propose a novel integrated approach,189

the Graph Evaluator, which provides fine-grained metrics and supports multiple valid paths. To build190

a graph evaluator for a given task, we begin by decomposing the task into a GDT, where each sub-task191

is associated with an intermediate environment state critical to completing the overall task. Nodes192

in the graph evaluator activate when they either have no incoming edges or after all their preceding193

tasks are completed, ensuring a sequential order of tasks. After an agent takes an action, the system194

checks these active nodes to verify if the target state of each node is reached. A node completion195

triggers successor nodes to activate and verify the state. This cycle repeats until no new nodes activate,196

showing that the system’s task sequence aligns with the current state of the environment. Unlike197

trajectory-based methods, which compare sequences of agent actions, the Graph Evaluator does not198

rely on the specific actions taken by the agent, allowing it the freedom to choose any path. Instead, it199

concentrates on the key intermediate states of the environment necessary for reaching the final goal.200

Given a Graph Evaluator synchronized with the environment state, it becomes possible to track201

agent progress through the current status of sub-task completions. Beyond the traditional Success202

Rate (SR), which marks a task as success only when all sub-tasks are completed, we introduce203

three metrics aiming at assessing both performance and efficiency of agents, leveraging the detailed204

sub-task status provided by the graph evaluator. Specifically, the Completion Ratio (CR) measures205

the proportion of completed sub-task nodes relative to the total nodes in the graph, calculated as206

C / N , where C is the number of completed nodes and N is the total number of nodes. This207

metric offers a straightforward measure of an agent’s progress on a given task. The Execution208

Efficiency (EE), calculated as CR /A, where A denotes the count of executed actions. It evaluates209

how efficiently actions are executed relative to the completion of nodes, reflecting the agent’s task210

execution efficiency. Lastly, the Cost Efficiency (CE), calculated as CR / T , where T is the total211

number of model tokens used, evaluates the efficiency of resource consuming by the agent.212

4.3 Task and Evaluator Construction213

Despite the graph evaluator offers detailed evaluations, one challenge is the complexity in creating214

each evaluator. Creating a graph evaluator requires: (1) adequately decomposing a task into multiple215

sub-tasks, each with a well-defined graph structure; and (2) engaging an expert of the target platform216

to carefully craft an evaluator for each sub-task. To efficiently create graph evalautors, we connect217

sub-tasks as GDTs to formulate new tasks. There are two primary challenges in constructing GDT:218

(1) Sub-tasks still require manual creation, necessitating a method to quickly generate them on a large219

scale; (2) Properly modeling the sequential and parallel relationships between sub-tasks, ensuring220

that the edges connecting sub-task nodes are semantically meaningful and systematically applicable.221

A template-based approach is commonly used to address the first issue by generating a large number222

of tasks efficiently. To tackle the second challenge, we employ the message transferring concept223

(Sec. 4.1). Specifically, if a sub-task α produces an output message that serves as an input for another224

sub-task β, then α can be considered a legitimate prerequisite of β, allowing us to connect α and β225

with an directed edge in the GDT. To further refine our approach, we introduce a sub-task template226

structure. Each sub-task is described using a natural language instruction template that includes227

several replaceable input attributes and an optional output, where each input attributes and output228

have a fixed type. To generate a GDT, input attributes can be filled with either a hand-crafted value229

corresponding to their type or linked to a task with the same output type as the input type. From the230

evaluator’s perspective, each sub-task template is linked to an evaluator generator that uses the input231

attribute value to generate evaluator subgraphs. Once a GDT is constructed, the graph evaluator is232

created by interlinking each subgraph. The description for the composed task is initially generated by233

GPT-4 using the sub-task descriptions as prompts and subsequently refined and polished by human234

reviewers.235

6

5 Experiments236

5.1 Benchmark237

We build an agent benchmark CRAB Benchmark-v0 featuring with cross-environment, graph evalua-238

tor, and task generation through CRAB framework, including an Android smartphone emulator and a239

Ubuntu Linux desktop virtual machine. Both environments are reproducible and standalone. Detailed240

environment implementation, observation space and action space are provided in Appendix A.1. we241

meticulously construct 16 sub-task templates for the Android environment and 19 sub-task templates242

for the Ubuntu environment. The Ubuntu templates encompass a variety of tasks such as Command243

Line Interface (CLI) operations, file system management, search engine usage, desktop configurations,244

and map navigation. Conversely, the Android sub-task templates are primarily focused on the storage245

and transmission of messages via various applications. Each sub-task template is linked to a graph246

evaluator consisting of one to four nodes. Each sub-task is verified by at least two related field experts.247

The dataset has 29 android tasks, 53 Ubuntu tasks and 18 cross-platform tasks. Besides, the sub-task248

pool has 19 in Ubuntu and 17 in Android.249

5.2 Baseline Agent System250

At the core of MLM Agents are back-end Multimodal Language Models that provide natural language251

and image understanding, basic device knowledge, task planning, and logical reasoning abilities. To252

run in CRAB Benchmark-v0, the back-end model needs to support: (1) Accept multimodal mixed253

input, as the system provides both screenshots and text instructions as prompts; (2) Handle multi-turn254

conversations, as most tasks require the agent to take multiple actions, necessitating the storage of255

history messages in its context; (3) Generate structured output through function calling, ensuring the256

proper use of provided actions with type-correct parameters. We selected four MLMs that meet these257

criteria for our experiments: GPT-4o (gpt-4o-2024-05-13) [29], GPT-4 Turbo (gpt-4-turbo-2024-04-258

09) [1], Gemini 1.5 Pro (May 2024 version) [33], Claude 3 Opus (claude-3-opus-20240229) [2]. To259

examine how different multi-agent structures impact performance, we design three agent system260

structures. In the single agent structure, one agent manages all responsibilities, including observation261

analysis, planning, reasoning, and format the output action. The multi-agent by functionality262

structure splits tasks between a main agent, responsible for analysis and planning, and a tool agent263

that translates instructions into actions without accessing environmental observations. This division264

allows the main agent to concentrate on high-level tasks without managing functional call formats.265

Meanwhile, in the multi-agent by environment setup, responsibilities are further distributed. A266

main agent processes all environmental observations for high-level planning, while each environment-267

specific sub-agent executes actions based on the main agent’s instructions, incorporating observations268

from their respective environments.269

For all agents, we utilized the default API parameters and retained two turns of historical messages.270

The interaction turns are limited to 15 and the task will terminated because reaching max turns. The271

agent can also terminate the task ahead if it thinks the task is completed. The screenshots do not272

descale and passed through PNG format with the highest quality that the APIs provide. Detailed agent273

and prompt designs are shown in Appendix B. In the experiment, we deployed four cloud machines274

cloned from the same disk image to ensure a consistent environment for all agents. Running a single275

agent setting in the benchmark requires at least 30 hours to complete on one machine. This duration276

depends on the API call times and the necessity for manual resets in certain tasks.277

5.3 Results278

The primary outcomes are detailed in Table 2. The GPT-4o and GPT-4 Turbo models, developed by279

OpenAI, achieve the highest average success rates and completion ratios among the tested models.280

Specifically, GPT-4o slightly outperforms GPT-4 Turbo. This result suggests a tiny difference in their281

underlying architectures or training data, but GPT-4o possibly be trained on more GUI data. Claude 3282

outperforms Gemini 1.5 in all settings, according to CR. The multi-agent structures’ performances on283

7

Table 2: Evaluation results on CRAB Benchmark-v0. The Model column identifies the backend
masked language models (MLMs) used. The Structure column describes the configuration of the
agent system: Single means single agent; By Func is multi-agent by functionality; By Env indicates
multi-agent by environment. We provide traditional metric of Success Rate (SR) alongside newly
introduced metrics: Completion Ratio (CR), Execution Efficiency (EE), and Cost Efficiency (CE).
Note that Gemini 1.5 Pro has an invalid CE because the Gemini API does not support retrieving
token counts at the start time of experiments. The Termination Reason shows the ratio of reasons
why the agent stops when it does not complete the task. False Completion (FC) indicates that the
agent believes it has completed the task, but it actually has not; Reach Step Limit (RSL) means the
agent has reached the step limit but has not completed the task; Invalid Action (IA) refers to the agent
producing outputs that do not follow instructions, which may include invalid formats, nonexistent
actions, or invalid action parameters.

Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 14.00 35.26 3.66 5.26 × 10
−4

7.00 59.00 20.00

GPT-4O By Func 13.00 32.48 3.29 5.20 × 10
−4

12.00 54.00 21.00

GPT-4O By Env 14.00 33.74 3.40 2.71 × 10
−4

8.00 49.00 29.00

GPT-4 TURBO Single 11.00 31.52 3.60 6.45 × 10-4
7.00 64.00 18.00

GPT-4 TURBO By Func 13.00 29.99 3.53 4.79 × 10
−4

11.00 41.00 35.00

GEMINI 1.5 PRO Single 6.00 17.19 1.69 \ 3.00 55.00 36.00
GEMINI 1.5 PRO By Func 6.00 14.53 1.50 \ 10.00 33.00 51.00

CLAUDE 3 OPUS Single 6.00 21.39 2.66 4.51 × 10
−4

7.00 53.00 34.00

CLAUDE 3 OPUS By Func 5.00 18.79 1.90 3.31 × 10
−4

29.00 32.00 34.00

all back-end MLMs are slightly lower than the single agent, indicating that current autonomous agents284

mainly rely on back-end model performance. Regarding termination reason, multi-agent structures285

have higher possibility to take invalid action and incorrectly complete the task, this can caused by286

the hallucination when main agent generating the instruction messages or misunderstanding of the287

sub-agents when receiving these messages. We analyze the reasons for the poorer performance of288

multi-agent structures in Appendix C.2. In terms of execution efficiency, the GPT-4 series show289

strong performance. However, when evaluating cost efficiency, GPT-4 Turbo exhibited a lower CE290

value compared to GPT-4o, suggesting that GPT-4 Turbo is more cost-effective.291

The completion ratio metric reveals a notable performance difference between models. For instance,292

even though Claude (single agent) and Gemini (multi-agent by functionality) have the same success293

rates, their completion ratios differ by up to 6.86%. This highlights the value of the completion294

ratio in assessing the effectiveness of different methods. We provide more detailed analyses and295

comparisons of agent configurations in Appendix C.296

6 Conclusion297

We propose the CRAB framework introducing cross-environment automatic task performing problem,298

featuring advanced graph-based task generation and evaluation methods, which reduce the manual299

effort in task step and provide a more dynamic and accurate agent assessments. Based on the300

framework, we propose CRAB Benchmark-v0, including a set of high quality cross-environment301

tasks for a smart phone and desktop, equipped with visual prompting strategy. We test various302

backend models and agent system structures on the dataset. The result reflects preference of different303

agent settings. Despite our work contributing to better cross-environment agent research, there are304

still some limitations. We build sub-tasks upon the original apps in the Ubuntu system and the305

Android system on Pixel, which cannot cover a wider range of applications. Moreover, the visual306

information is not used in the evaluation on the sub-tasks in Android System. Future works can focus307

on expanding datasets and environments and testing more models, prompts, structure of agents upon308

the benchmark.309

8

Acknowledgement310

We express our gratitude to Yuhui Wang for refining the expressions in our paper and providing311

invaluable advice on writing. We would like to also thank Beichen Huang for the helpful discussions312

on solving virtualization technology issues.313

References314

[1] Josh Achiam et al. GPT-4 Technical Report. Mar. 4, 2024. URL: http://arxiv.org/abs/315

2303.08774. preprint.316

[2] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. https : / / www - cdn .317

anthropic . com / de8ba9b01c9ab7cbabf5c33b80b7bbc618857627 / Model _ Card _318

Claude_3.pdf. Year.319

[3] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX annual technical320

conference, FREENIX Track. Vol. 41. 46. California, USA. 2005, pp. 10–5555.321

[4] Yongchao Chen et al. “Autotamp: Autoregressive task and motion planning with llms as322

translators and checkers”. In: arXiv preprint arXiv:2306.06531 (2023).323

[5] Kanzhi Cheng et al. SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents.324

Jan. 17, 2024. URL: http://arxiv.org/abs/2401.10935. preprint.325

[6] Xiang Deng et al. Mind2Web: Towards a Generalist Agent for the Web. 2023. arXiv: 2306.326

06070 [cs.CL].327

[7] Johan Edstedt et al. “RoMa: Robust Dense Feature Matching”. In: 2024.328

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure, Dynam-329

ics, and Function Using NetworkX”. In: Proceedings of the 7th Python in Science Conference.330

Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA USA, 2008, pp. 11–331

15.332

[9] Sirui Hong et al. “Metagpt: Meta programming for multi-agent collaborative framework”. In:333

arXiv preprint arXiv:2308.00352 (2023).334

[10] Wenlong Huang et al. “Language models as zero-shot planners: Extracting actionable knowl-335

edge for embodied agents”. In: International Conference on Machine Learning. PMLR. 2022,336

pp. 9118–9147.337

[11] Hanwen Jiang et al. “OmniGlue: Generalizable Feature Matching with Foundation Model338

Guidance”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern339

Recognition (CVPR). 2024.340

[12] Raghav Kapoor et al. OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist341

Autonomous Agents for Desktop and Web. Feb. 28, 2024. URL: http://arxiv.org/abs/342

2402.17553. preprint.343

[13] Tushar Khot et al. “Decomposed Prompting: A Modular Approach for Solving Complex344

Tasks”. In: The Eleventh International Conference on Learning Representations. 2023. URL:345

https://openreview.net/forum?id=_nGgzQjzaRy.346

[14] Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings of the Linux347

symposium. Vol. 1. 8. Dttawa, Dntorio, Canada. 2007, pp. 225–230.348

[15] Jing Yu Koh et al. VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web349

Tasks. Jan. 24, 2024. URL: http://arxiv.org/abs/2401.13649. preprint.350

[16] Yihuai Lan et al. “Llm-based agent society investigation: Collaboration and confrontation in351

avalon gameplay”. In: arXiv preprint arXiv:2310.14985 (2023).352

[17] Guohao Li et al. “Camel: Communicative agents for" mind" exploration of large scale language353

model society”. In: (2023).354

[18] Hongxin Li et al. “SheetCopilot: Bringing Software Productivity to the Next Level through355

Large Language Models”. In: Advances in Neural Information Processing Systems 36 (2024).356

[19] Fangru Lin et al. Graph-Enhanced Large Language Models in Asynchronous Plan Reasoning.357

Feb. 5, 2024. URL: http://arxiv.org/abs/2402.02805. preprint.358

[20] Jiaju Lin et al. “Agentsims: An open-source sandbox for large language model evaluation”. In:359

arXiv preprint arXiv:2308.04026 (2023).360

9

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
http://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
http://arxiv.org/abs/2402.17553
http://arxiv.org/abs/2402.17553
http://arxiv.org/abs/2402.17553
https://openreview.net/forum?id=_nGgzQjzaRy
http://arxiv.org/abs/2401.13649
http://arxiv.org/abs/2402.02805

[21] Nelson F. Liu et al. Lost in the Middle: How Language Models Use Long Contexts. Nov. 20,361

2023. URL: http://arxiv.org/abs/2307.03172. Pre-published.362

[22] Shilong Liu et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set363

Object Detection. arXiv.org. Mar. 9, 2023. URL: https://arxiv.org/abs/2303.05499v4.364

[23] Xiao Liu et al. “AgentBench: Evaluating LLMs as Agents”. In: The Twelfth International365

Conference on Learning Representations. 2024. URL: https://openreview.net/forum?366

id=zAdUB0aCTQ.367

[24] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-World Website Navigation368

with Multi-Turn Dialogue. arXiv.org. Feb. 8, 2024. URL: https://arxiv.org/abs/2402.369

05930v1.370

[25] Michael M. McKerns et al. Building a Framework for Predictive Science. Feb. 6, 2012. URL:371

http://arxiv.org/abs/1202.1056. preprint.372

[26] Grégoire Mialon et al. GAIA: A Benchmark for General AI Assistants. Nov. 21, 2023. URL:373

http://arxiv.org/abs/2311.12983. preprint.374

[27] Volodymyr Mnih et al. “Human-Level Control through Deep Reinforcement Learning”. In:375

Nature 518.7540 (Feb. 2015), pp. 529–533. ISSN: 1476-4687. URL: https://www.nature.376

com/articles/nature14236.377

[28] Runliang Niu et al. ScreenAgent: A Vision Language Model-Driven Computer Control Agent.378

Feb. 8, 2024. URL: http://arxiv.org/abs/2402.07945. preprint.379

[29] OpenAI. GPT-4 omni. https://openai.com/index/hello-gpt-4o/. 2024.380

[30] Joon Sung Park et al. “Generative agents: Interactive simulacra of human behavior”. In:381

Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology.382

2023, pp. 1–22.383

[31] Guilherme Potje et al. “XFeat: Accelerated Features for Lightweight Image Matching”. In:384

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024.385

[32] Christopher Rawles et al. Android in the Wild: A Large-Scale Dataset for Android Device386

Control. 2023. arXiv: 2307.10088 [cs.LG].387

[33] Machel Reid et al. Gemini 1.5: Unlocking Multimodal Understanding across Millions of388

Tokens of Context. Apr. 25, 2024. URL: http://arxiv.org/abs/2403.05530. preprint.389

[34] Tianlin Shi et al. “World of Bits: An Open-Domain Platform for Web-Based Agents”. In:390

Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup391

and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017,392

pp. 3135–3144. URL: https://proceedings.mlr.press/v70/shi17a.html.393

[35] Chan Hee Song et al. “Llm-planner: Few-shot grounded planning for embodied agents with394

large language models”. In: Proceedings of the IEEE/CVF International Conference on Com-395

puter Vision. 2023, pp. 2998–3009.396

[36] Liangtai Sun et al. META-GUI: Towards Multi-Modal Conversational Agents on Mobile GUI.397

Nov. 24, 2022. URL: http://arxiv.org/abs/2205.11029. preprint.398

[37] Weihao Tan et al. Towards General Computer Control: A Multimodal Agent for Red Dead399

Redemption II as a Case Study. 2024. arXiv: 2403.03186 [cs.AI].400

[38] Oriol Vinyals et al. “Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement401

Learning”. In: Nature 575.7782 (Nov. 2019), pp. 350–354. ISSN: 1476-4687. URL: https:402

//www.nature.com/articles/s41586-019-1724-z.403

[39] Guanzhi Wang et al. Voyager: An Open-Ended Embodied Agent with Large Language Models.404

May 25, 2023. URL: http://arxiv.org/abs/2305.16291. preprint.405

[40] Junyang Wang et al. Mobile-Agent-v2: Mobile Device Operation Assistant with Effective406

Navigation via Multi-Agent Collaboration. 2024. arXiv: 2406.01014 [cs.CL]. URL: https:407

//arxiv.org/abs/2406.01014.408

[41] Junyang Wang et al. Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual409

Perception. arXiv.org. Jan. 29, 2024. URL: https://arxiv.org/abs/2401.16158v2.410

[42] Lei Wang et al. “A survey on large language model based autonomous agents”. In: Frontiers411

of Computer Science 18.6 (2024), pp. 1–26.412

[43] Luyuan Wang et al. MobileAgentBench: An Efficient and User-Friendly Benchmark for Mobile413

LLM Agents. 2024. arXiv: 2406.08184 [cs.AI]. URL: https://arxiv.org/abs/2406.414

08184.415

10

http://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2303.05499v4
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2402.05930v1
https://arxiv.org/abs/2402.05930v1
https://arxiv.org/abs/2402.05930v1
http://arxiv.org/abs/1202.1056
http://arxiv.org/abs/2311.12983
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/2402.07945
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2307.10088
http://arxiv.org/abs/2403.05530
https://proceedings.mlr.press/v70/shi17a.html
http://arxiv.org/abs/2205.11029
https://arxiv.org/abs/2403.03186
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
http://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2401.16158v2
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184

[44] Zhiyong Wu et al. OS-Copilot: Towards Generalist Computer Agents with Self-Improvement.416

arXiv.org. Feb. 12, 2024. URL: https://arxiv.org/abs/2402.07456v2.417

[45] Zhiheng Xi et al. The Rise and Potential of Large Language Model Based Agents: A Survey.418

arXiv.org. Sept. 14, 2023. URL: https://arxiv.org/abs/2309.07864v3.419

[46] Tianbao Xie et al. OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in420

Real Computer Environments. Apr. 11, 2024. URL: http://arxiv.org/abs/2404.07972.421

preprint.422

[47] Mingzhe Xing et al. Understanding the Weakness of Large Language Model Agents within a423

Complex Android Environment. Feb. 9, 2024. URL: http://arxiv.org/abs/2402.06596.424

preprint.425

[48] Jianwei Yang et al. Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in426

GPT-4V. Nov. 6, 2023. URL: http://arxiv.org/abs/2310.11441. preprint.427

[49] John Yang et al. InterCode: Standardizing and Benchmarking Interactive Coding with Execu-428

tion Feedback. Oct. 30, 2023. URL: http://arxiv.org/abs/2306.14898. preprint.429

[50] Shunyu Yao et al. “Webshop: Towards scalable real-world web interaction with grounded lan-430

guage agents”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 20744–431

20757.432

[51] Chaoyun Zhang et al. UFO: A UI-Focused Agent for Windows OS Interaction. Mar. 1, 2024.433

URL: http://arxiv.org/abs/2402.07939. preprint.434

[52] Chi Zhang et al. AppAgent: Multimodal Agents as Smartphone Users. Dec. 21, 2023. URL:435

http://arxiv.org/abs/2312.13771. preprint.436

[53] Jiwen Zhang et al. Android in the Zoo: Chain-of-Action-Thought for GUI Agents. 2024. arXiv:437

2403.02713 [cs.CL].438

[54] Shun Zhang et al. “Planning with large language models for code generation”. In: arXiv439

preprint arXiv:2303.05510 (2023).440

[55] Longtao Zheng et al. “Synapse: Trajectory-as-Exemplar Prompting with Memory for Computer441

Control”. In: The Twelfth International Conference on Learning Representations. 2024. URL:442

https://openreview.net/forum?id=Pc8AU1aF5e.443

[56] Shuyan Zhou et al. WebArena: A Realistic Web Environment for Building Autonomous Agents.444

Oct. 24, 2023. URL: http://arxiv.org/abs/2307.13854. preprint.445

[57] Kaijie Zhu et al. “DyVal: Dynamic Evaluation of Large Language Models for Reasoning446

Tasks”. In: The Twelfth International Conference on Learning Representations. 2024. URL:447

https://openreview.net/forum?id=gjfOL9z5Xr.448

11

https://arxiv.org/abs/2402.07456v2
https://arxiv.org/abs/2309.07864v3
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2402.06596
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2306.14898
http://arxiv.org/abs/2402.07939
http://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2403.02713
https://openreview.net/forum?id=Pc8AU1aF5e
http://arxiv.org/abs/2307.13854
https://openreview.net/forum?id=gjfOL9z5Xr

A Benchmark Detail449

Section A.1 shows the system design and implementation strategies of environments and evaluators.450

Seciton A.2 is the crab framework implementation details at code level. Section A.3 describes the our451

experiment settings in detail. Section A.4 describes the specific data format defined in our framework.452

Fig. 3 shows the structure of modules inside CRAB Benchmark-v0.453

Crab Benchmark v0
Android Environment

Ubuntu Environment

Tasks

Name: "android" Description: "A Google Pixel smartphone
runs on the Android operating system..."

Observation Space

Screenshot

Prompt Space

Visual Prompt

Action Space

Tap

Press Key

Write Text

Swipe

Open App Drawer ...

Name: "ubuntu" Description: "An Ubuntu 22.04 Linux desktop
operating system..."

Observation Space

Screenshot

Prompt Space

Visual Prompt

Action Space

Click

Press Key

Write Text

Right Click

Seach Application ...

Sub-tasks

Sub-task Template 1Sub-task 1 Evaluator Generator 1 Ubuntu

Sub-task Template 2Sub-task 2 Evaluator Generator 2 Ubuntu

Sub-task Template 3Sub-task 3 Evaluator Generator 3 Android

...

Cross-platform Task Description Attributes Graph Evaluator

Android Task Description Attributes Graph Evaluator

Ubuntu Task Description Attributes Graph Evaluator

...

Figure 3: Module Structure of CRAB Benchmark-v0. The benchmark is divided into two primary
sections: the left section, highlighted with warm hues, features two environments, while the right
section, accentuated with cool hues, outlines various tasks. Each environment is defined by attributes
including name, description, observation space, prompt method, and action space. Blocks marked
in red denote actions. As for the tasks, they are composed of multiple sub-tasks and formulated
by combine multiple evaluator sub-graphs derived from the sub-task evaluator generators. Arrows
illustrate the compositional relationships between tasks and sub-tasks.

A.1 Overview454

The Ubuntu environment is launched on a QEMU/KVM [3, 14] Virtual Machine, and the Android455

environment employs the Google Android Emulator2. Both environments utilize snapshots to ensure456

a consistent state across all sessions. This allows each experiment to start from an identical state,457

providing a controlled setup for all test agents. Interaction with the Ubuntu environment is facilitated458

using PyAutoGUI3 and MSS4, which provide high-level commands for mouse and keyboard control459

and screen capture, respectively. For the Android environment, we use the Android Debug Bridge460

(ADB)5.461

Observation Space The observation space consists solely of the current system screen for both462

environments, captured in image format at each step of the agent’s interaction. We employ the463

2https://developer.android.com/studio/run/emulator
3https://github.com/asweigart/pyautogui
4https://github.com/BoboTiG/python-mss
5https://developer.android.com/tools/adb

12

https://developer.android.com/studio/run/emulator
https://github.com/asweigart/pyautogui
https://github.com/BoboTiG/python-mss
https://developer.android.com/tools/adb

Set-of-Marks visual prompt method [48] to label each interactive element on the screen. Interactive464

elements are identified using the GroundingDINO [22] with icon.logo. text prompt to locate all465

interactive icons. Additionally, Optical Character Recognition (OCR) is utilized through EasyOCR6
466

to detect and label interactive text elements. Each detected item is assigned a unique integer ID,467

facilitating reference within the action space.468

Action Space The action spaces for Ubuntu and Android are distinct and designed to be close to the469

common interactions in the real devices. For Ubuntu, we define the following actions: mouse-based470

actions, keyboard-based actions and a shortcut action to search for applications. For Android, the471

action set includes tapping actions, a text action, a physical button action, and an action to open the472

app drawer. Additionally, we introduce two environment-irrelevant actions: completing the task and473

submitting an answer. Detailed descriptions for all actions are shown in Table 3.474

Table 3: Action space of CRAB Benchmark-v0. The actions at the top of the table apply to the
Ubuntu environment, those in the middle to the Android environment, and those at the bottom are
relevant across all environments.

Action Name (Parameters) Description
click(elem) Click on elem.
right_click(elem) Right-click on elem.
write_text(text) Typing the specified text.
press(key) Press a keyboard key.
hotkey(keys) Press keyboard keys at the same time.
scroll(direction) Scrolls page up or down.
search_app(name) Search for application with name in the system.

tap(elem) Tap on elem.
long_tap(elem) Press and hold elem.
swipe(elem,dire,dist) Swipe from elem in a specified direction and distance.
write_text(text) Typing the specified text.
press(key) Press a key, can be home or back.
show_all_drawer() Show the app drawer to list installed applications.

submit(answer) Submit answer if needed.
complete() Tell system a task is completed.

Evaluator Design To assess the intermediate states of sub-tasks as described in Sec. 4.2, we have475

implemented a comprehensive suite of execution-based reward functions (evaluators) [46]. These476

evaluators retrieve and assess specific current states, such as the edited content of a file or a modified477

setting, thereby determining the successful completion of a sub-task. For each evaluator, input478

attributes are carefully selected to interpret software information or system settings relevant to the479

scenario defined for the sub-task. For instance, evaluators use file paths before and after edits as480

input parameters to verify the completion of file editing sub-tasks. Specifically, for sub-tasks on the481

Android platform, we incorporate XML-based evaluators [47]. We dump UI layout as XML path482

and verify whether the UI content matches the expected state. For the Ubuntu platform, we employ483

image matching techniques [31, 11, 7] and OCR to handle scenarios where acquiring necessary484

state information through conventional APIs is challenging. Image matching offers fine-grained485

visual correspondences by comparing keypoint features between images, allowing us to assess spatial486

relationships among visual elements. Using OCR and image matching, we can accurately evaluate487

tasks such as verifying whether an agent has successfully created a slide with specified images, text488

content, and layouts—tasks for which trivial evaluation methods are lacking. We utilize EasyOCR6
489

and XFeat7 as our primary tools for OCR and image matching. For tasks with real-time characteristics490

that may change over time, we implement crawler scripts to capture dynamic values at the moment491

6https://github.com/JaidedAI/EasyOCR
7https://github.com/verlab/accelerated_features

13

https://github.com/JaidedAI/EasyOCR
https://github.com/verlab/accelerated_features

of evaluation. These values are then compared with the results achieved by the agent upon task492

completion. We have a total of 59 evaluator functions.493

A.2 Framework Design494

CRAB offers a modular and extensible framework for evaluating agent performance in diverse tasks.495

At the heart of the framework lies the action, a unit operation representing the fundamental operation496

within the benchmark. The action is essentially an executable Python function that can be defined497

with explicit typed parameters and a clear description. actions serve not only as building blocks but498

also as interfaces through which agents interact with the environment. The evaluator is a specialized499

action restricted to returning boolean values, signifying the success or failure of an agent’s task. It500

enhances the actions by analyzing the state of the environment and the sequence of actions executed501

by the agent, providing a decisive metric of task accomplishment. Additionally, multiple evaluators502

can be interconnected to form a graph evaluator for complex tasks (Sec. 4.2).503

The benchmark is a key definition in the framework. A benchmark includes multiple environments504

and cross-environment tasks. The environment is formed by an action space and an observation505

space, which are both defined by a list of actions, and other essential parameters necessary for its506

configuration. This composite structure facilitates the execution and monitoring of actions, whether507

on local machines, remote servers, virtual machines, or physical devices networked together. A task508

encapsulates a natural language description and a graph evaluator.509

CRAB utilizes Python functions to define all actions and evaluators, embodying a "code as configura-510

tion" philosophy. Each function’s docstring outlines its description and parameter definitions, which511

are then presented to the agent as structured prompts. Compared to traditional methods using data512

interchange formats like JSON or YAML, Python code configurations provide a more structured513

approach and fits in modern IDE.514

By decoupling actions, environments, tasks, and evaluations, CRAB facilitates a plug-and-play archi-515

tecture that can adapt to various scenarios. Such a system is scalable, maintainable and expandable,516

allowing researchers and developers to introduce new tasks and environments without restructuring517

the entire framework. Our implementation uses networkx [8] for building graph and dill [25] for518

function serialization in our implementation.519

A.3 Configuration Format by Modules520

Building on the declarative and modular design of our framework, this section explains the configura-521

tion and potential extensibility of each module.522

Environment The environments in CRAB are a combination of multiple different uses of ac-523

tions with some environment metadata, such as name and natural language description. In CRAB524

Benchmark-v0, we use a computer desktop environment and a smartphone environment both based525

on virtual machine technology. The computer desktop environment, named Ubuntu, is installed526

from an ISO image of Ubuntu 22.04.4 LTS (Jammy Jellyfish) downloaded from the Ubuntu Official527

website8. Necessary applications such as the LibreOffice suite (Writer, Calc, and Impress) and Slack528

are installed later via snap and apt, according to the task dataset requirements. The smartphone529

environment, named Android, is installed using pre-defined devices (Google Pixel 8 Pro with release530

name R) provided in Google Android Studio9. We install additional required applications such as531

Keep Notes, Tasks, and Docs from Google Play. The descriptions of the two environments in CRAB532

Benchmark-v0, which are inserted in the agent prompts, are as follows:533

• Ubuntu: An Ubuntu 22.04 Linux desktop operating system. The interface displays a current534

screenshot at each step and primarily supports interaction via mouse and keyboard. You535

8https://releases.ubuntu.com/jammy/ubuntu-22.04.4-desktop-amd64.iso
9https://developer.android.com/studio

14

https://releases.ubuntu.com/jammy/ubuntu-22.04.4-desktop-amd64.iso
https://developer.android.com/studio

must use searching functionality to open any application in the system. This device includes536

system-related applications including Terminal, Files, Text Editor, Vim, and Settings. It also537

features Firefox as the web browser, and the LibreOffice suite—Writer, Calc, and Impress.538

For communication, Slack is available. The Google account is pre-logged in on Firefox,539

synchronized with the same account used in the Android environment.540

• Android: A Google Pixel smartphone runs on the Android operating system. The interface541

displays a current screenshot at each step and primarily supports interaction through tapping542

and typing. This device offers a suite of standard applications including Phone, Photos,543

Camera, Chrome, and Calendar, among others. Access the app drawer to view all installed544

applications on the device. The Google account is pre-logged in, synchronized with the545

same account used in the Ubuntu environment.546

Action Action implementation in CRAB Benchmark-v0 utilize the dynamic feature of Python. It547

provides an intuitive method to define actions through Python function. Here is an example of action548

search_application in the Ubuntu environment:549

@action550

def search_application(name: str) -> None:551

""" Search an application name.552

553

For exmaple , if you want to open an application named "slack",554

you can call search_application(name=" slack "). You MUST use this555

action to search for applications.556

557

Args:558

name: the application name.559

"""560

pyautogui.hotkey("win", "a")561

time.sleep (0.5)562

pyautogui.write(name)563

time.sleep (0.5)564

Listing 1: Define "search_application" action.

We extract key information from the function through the @action decorator as following:565

• Name: The action name serves as the identifier for backend models. It should semantically566

match the action’s behavior to improve the accuracy of the agent in executing the action.567

The function name is extracted as the action name. In this example, search_application568

is the assigned name.569

• Description: The description provides a natural language explanation of the action to assist570

the agent in understanding how to use it. The main body of the function’s docstring is used571

as the description. For example, in this instance, the description outlines the basic usage of572

the action: Search an application name, along with an example of its usage.573

• Parameters: The parameters are the arguments that the functions accept, offering flexibility574

for the agent to control the environment. Typically, a set of parameters is defined, each575

consisting of a name, type, and a natural language description. Parameters are extracted576

from the function’s parameters along with their type annotations. Additionally, parameter de-577

scriptions are extracted from the Args section in the docstring. In this example, there is only578

one parameter named name, with a type of str, and its description is the application579

name.580

• Entry: The entry represents the implementation of the function, defined within the function581

body to specify how the action is executed. When the agent invokes the function, the entry582

is executed with the provided parameters. In this example, we utilize the pyautogui package583

for keyboard control. Initially, it presses a hotkey to enter the application search panel in584

Ubuntu, then proceeds to type the application name provided by the parameters, finally585

displaying the search results.586

15

Observation The observation space is represented by a set of actions. These observation actions587

are designed to be parameter-free and return an observation result. For instance, within the Ubuntu588

environment, the sole observation action available is the screenshot function, defined as follows:589

@action590

def screenshot () -> str:591

""" Capture the current screen as a screenshot."""592

with mss() as sct:593

Capture raw pixels from the screen594

sct_img = sct.grab(sct.monitors [1])595

Convert to PNG format596

png = tools.to_png(sct_img.rgb , sct_img.size)597

Encode to Base64 format for easier transmission598

base64_img = base64.b64encode(png).decode("utf -8")599

return base64_img600

Listing 2: Define the "screenshot" observation action.

This action captures the screen’s current view and encodes it in Base64 format. Additionally, visual601

prompts are also defined by actions that utilize the output from an observation action as their input,602

further processing it to generate a visual prompt for the agent.603

Evaluator The evaluator in CRAB Benchmark-v0 is crafted to assess the outcome of ac-604

tions performed by the agent within the environment. The evaluator is defined as an action605

that outputs a boolean value. An example of an evaluator in the Ubuntu environment is the606

check_text_in_current_window_name function, outlined below:607

@evaluator(env_name="ubuntu")608

def check_text_in_current_window_name(text: str) -> bool:609

try:610

out = subprocess.check_output(611

["xdotool", "getwindowfocus", "getwindowname"], text=True612

).strip()613

except subprocess.CalledProcessError:614

return False615

return text in out616

Listing 3: Define "check_text_in_current_window_name" evaluator.

The evaluator function is denoted with an @evaluator decorator and specifies its operating envi-617

ronment. The function’s primary role is to execute a check within the system and return a boolean618

value indicating success or failure based on the condition being evaluated. Here, the function aims to619

verify whether a specified text appears in the title of the currently focused window. This is achieved620

through the use of the subprocess module to execute system commands that fetch the window’s621

title, checking if the provided text parameter is contained within it.622

Task Following a declarative programming paradigm, the task is defined as a data model. Here is623

an example of a cross-platform task in the dataset:624

Task(625

id="a3476778 -e512 -40ca-b1c0 -d7aab0c7f18b",626

description="Open \"Tasks\" app on Android , check the...",627

evaluator=path_graph(628

check_current_package_name("com.google.android.apps.tasks"),629

check_current_window_process("gnome -control -center"),630

check_color_scheme("prefer -dark"),631

),632

)633

Listing 4: Define a task.

16

In this model, each task is represented as an instance of the Task class, which is a subclass of634

BaseModel in Pydantic10 package. Each task is uniquely identified by an ID and described by a635

detailed description. The evaluator component is structured as a graph evaluator, which integrates636

multiple evaluative functions into a directed graph using the networkx11 package. Each evaluator637

within this graph must be appropriately parameterized to assess specific conditions relevant to the638

task. For example, the task demonstrated aims to open the "Tasks" app on Android and perform639

a series of verifications: it checks whether the correct Android app is opened, whether the current640

focused window’s process name is gnome-control-center, and whether the color scheme is set to641

dark.642

Sub-task The sub-task in CRAB is the unit component of in task construction. The following643

example is a sub-task template that we used to easily generate sub-tasks:644

SubTask(645

id="0f589bf9 -9b26 -4581 -8b78 -2961 b115ab49",646

description="Open \"{ file_path }\" using vim in a terminal , write647

\"{ content }\", then save and exit vim.",648

attribute_dict ={"file_path": "file_path", "content": "message"},649

output_type="file_path",650

evaluator_generator=lambda file_path , content: path_graph(651

check_current_window_process("gnome -terminal -server"),652

is_process_open("vim"),653

is_process_close("vim"),654

check_file_content(file_path , content),655

),656

),657

Listing 5: Define a task.

In this sub-task model, each sub-task is defined using a similar approach to the main task. The658

attributes of the sub-task are outlined in an attribute_dict, which details the types and roles of659

each attribute used in the sub-task’s operations. The output_type field specifies the expected type660

of output from the sub-task. The types reflected in attribute_dict and output_type, play a661

critical role in determining the compatibility and sequential logic of compose multiple sub-tasks.662

The evaluator for the sub-task is dynamically generated using a lambda function, which crafts an663

evaluator sub-graph based on the sub-task’s attributes.664

A.4 Task Dataset665

We use a JSON format to save the composed tasks, which includes the task ID, overall task description,666

sub-tasks with their attribute values, and a graph structure represented in an adjacency list. The entire667

task dataset is defined by the sub-task pool in Python code and the task composition JSON files668

categorized by task platform.669

B Agent system670

B.1 Agent Implementation671

In this section, we outline the implementation of the agents used in our experiments, which leverage672

advanced multimodal language models from OpenAI, Anthropic, and Google. Each agent is designed673

to function in multi-environment setups, interacting with various action spaces defined by different674

environments.675

General Framework All agents share a common architecture but are tailored to the specific APIs676

and capabilities of each language model provider.677

10https://pydantic.dev/
11https://networkx.org/

17

https://pydantic.dev/
https://networkx.org/

Initialization Each agent is initialized with several key parameters, including a description, an678

action space, the model type, maximum tokens, history message length, and an optional environment679

description. The initialization process involves:680

• Action Space Conversion: Actions defined for each environment are converted into a681

schema compatible with the respective API. This ensures that the actions can be correctly682

interpreted and executed by the language models.683

• System Message Setup: Depending on whether the agent is configured for single or multiple684

environments, a system message is formatted to provide the model with context about the685

tasks and environments.686

Interaction (Chat Method) The core functionality of each agent is encapsulated in its ability to687

interact with users through a chat method. This involves:688

• Content Parsing: Input content is parsed and formatted to match the requirements of689

the respective API. This includes structuring user messages and any necessary contextual690

information.691

• Request Construction: The request payload is constructed, incorporating the system692

message, chat history, and the newly parsed user input.693

• API Communication: The constructed request is sent to the appropriate API, which694

generates a response. The agents handle API-specific constraints such as rate limits and695

response formats.696

• Response Handling: The response from the API is processed to extract any tool calls697

suggested by the model. These are then appended to the chat history, maintaining a coherent698

conversation state.699

Multi-Environment Support For agents configured to operate in multiple environments, additional700

logic ensures that actions are correctly associated with their respective environments. This involves701

modifying action names and descriptions to reflect their environmental context and handling responses702

accordingly.703

Utilities and Shared Functions Several utility functions support the operation of these agents, facil-704

itating tasks such as content parsing, action prompt generation, and schema conversion. These shared705

functions ensure consistency and reduce redundancy across the different agent implementations.706

B.2 Inter-agent Communication Strategies707

In this section we introduce the details of two multi-agent communications methods, which are708

introduced in 5.2.709

Multi-agent Communication by Functionality This setting involves two agents: a main agent710

prompted with the task description and a tool agent with the entire action space. The main agent711

generates the instruction for the next step and sends it to the tool agent. The tool agent chooses the712

proper action with parameters and a target environment, then feeds it back to the system.713

Multi-agent Communication by Environment This setting involves four agents in our benchmark714

setting: a main agent prompted with the task description and three tool agents, each corresponding to715

the environments of Android, Ubuntu, and Root, with the respective action spaces. The main agent716

generates the instruction for the next step and sends it to the tool agents. Each sub-environment717

agent receives the message containing the instruction and environment observation information.718

The environment agents process the message using their specialized models and action schemas,719

performing the required actions within their environments.720

18

B.3 Agent Prompt721

B.3.1 Single Agent722

Prompt

You are a helpful assistant. Now you have to do a task as described below:
{task_description}. And this is the description of each given environment:
{env_description}. A unit operation you can perform is called action in a given envi-
ronment. For each environment, you are given a limited action space as function calls:
{action_descriptions}
You may receive a screenshot of the current system. The interactive UI elements on the
screenshot are labeled with numeric tags starting from 1. For each step, You must state what
actions to take, what the parameters are, and you MUST provide in which environment to
perform these actions. Your answer must be a least one function call. please do not output any
other information. You must make sure all function calls get their required parameters.

723

B.3.2 Multi-Agent by Functionality724

Main Agent Prompt

You are a helpful assistant. Now you have to do a task as described below:
{task_description}. And this is the description of each given environment:
{env_description}. A unit operation you can perform is called action in a given envi-
ronment. For each environment, you are given a limited action space as function calls:
{action_descriptions}
You may receive a screenshot of the current system. The interactive UI elements on the
screenshot are labeled with numeric tags starting from 1. For each step, You must state what
actions to take, what the parameters are, and you MUST provide in which environment to
perform these actions.

725

Tool Agent Prompt

You are a helpful assistant in generating function calls. I will give you a detailed description
of what actions to take next, you should translate it into function calls. please do not output
any other information.

726

B.3.3 Multi-Agent by Environment727

Main Agent Prompt

You are a main agent, and your goal is to plan and give instructions to sub-agents in each
environment to complete the final task. Now you have to do a task as described below:
{description}. The description of each given environment: {env_description}. For
each step, you are required to provide high-level instructions detailing the next actions to be
taken. Additionally, you must specify which sub-agent in the designated environment should
execute these instructions. If a sub-agent is not needed for a particular step, you may instruct
it to skip that step.

728

Root Environment Agent Prompt

You are a sub-agent responsible for the crab benchmark root environment. Your goal is
to assist the main agent in completing the whole task: "{description}". You can only
complete the task or submit the result when the main agent tells you the whole task has been
completed. Otherwise, you can only call SKIP.

729

19

Table 4: Evaluation results on Ubuntu tasks.

Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 10.34 26.64 2.72 4.68 × 10
−4

5.17 60.34 24.14

GPT-4O By Func 6.90 21.90 2.07 3.86 × 10
−4

6.90 60.34 25.86

GPT-4O By Env 8.62 20.60 2.06 2.01 × 10
−4

3.45 48.28 39.66

GPT-4 TURBO Single 12.07 28.36 3.82 8.79 × 10−4
1.72 63.79 22.41

GPT-4 TURBO By Func 10.34 24.45 3.10 4.74 × 10
−4

8.62 34.48 46.55

GEMINI 1.5 PRO Single 1.72 7.61 0.54 \ 0.00 46.55 51.72
GEMINI 1.5 PRO By Func 1.72 3.30 0.30 \ 0.00 20.69 77.59

CLAUDE 3 OPUS Single 1.72 9.54 1.41 3.42 × 10
−4

5.17 56.90 36.21

CLAUDE 3 OPUS By Func 1.72 6.75 0.65 2.81 × 10
−4

27.59 31.03 39.66

Table 5: Evaluation results on Android tasks.

Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 24.14 47.91 5.12 7.17 × 10
−4

13.79 58.62 3.45

GPT-4O By Func 24.14 48.74 5.77 9.19 × 10−4
24.14 37.93 13.79

GPT-4O By Env 27.59 53.34 5.93 4.58 × 10
−4

13.79 44.83 13.79

GPT-4 TURBO Single 10.34 30.53 2.84 3.36 × 10
−4

20.69 62.07 6.90

GPT-4 TURBO By Func 20.69 37.01 4.32 5.92 × 10
−4

13.79 51.72 13.79

GEMINI 1.5 PRO Single 17.24 34.52 4.09 \ 10.34 65.52 6.90
GEMINI 1.5 PRO By Func 17.24 35.99 3.88 \ 31.03 41.38 10.34

CLAUDE 3 OPUS Single 17.24 43.62 5.30 7.78 × 10
−4

13.79 51.72 17.24

CLAUDE 3 OPUS By Func 13.79 42.30 4.20 5.07 × 10
−4

44.83 31.03 10.34

Sub-environment Agent Prompt

You are a sub-agent responsible for the {environment} environment. The description
of the {environment} environment is: {env_description}. Your goal is to assist the
main agent in completing the final task by performing actions in the {environment} en-
vironment according to the instructions from the main agent. The final task is described
below: {task_description}. A unit operation you can perform is called action in a given
environment. You can only execute action in the {environment} environment. For the
{environment} environment, you are given a limited action space as function calls:
{action_descriptions}
The interactive UI elements on the screenshot are labeled with numeric tags starting from 1.
For each step, You will receive an instruction telling you what you need to do next. After
analyzing the instruction you received and the current {environment} system, if you think
you don’t need to do anything in the current {environment} system, you should choose
SKIP action. Otherwise, you must state what actions to take, what the parameters are, and you
MUST provide in which environment to perform these actions. Your answer must be function
calls. Please do not output any other information. You must make sure all function calls get
their required parameters.

730

C Further Result Analysis731

This section further discusses our experimental results in detail. Section C.1 categorizes the results into732

three types of tasks: Ubuntu, Android, and cross-platform, and provides further analysis. Section C.3733

examines three specific tasks and analyzes the performance of different agent settings on each.734

20

C.1 Result by Platforms735

Table 4, 5 and 6 show the experiment results on Ubuntu Tasks, Android Tasks, and cross-platform736

Tasks, respectively.737

We find that certain models demonstrate a distinct preference or better alignment with specific738

platforms. The GPT-4o, Gemini, and Claude models, for instance, show notably better outcomes on739

Android platforms. This suggests potential optimizations or intrinsic features within these models740

that cater effectively to the Android environment’s requirements. Conversely, the GPT-4 Turbo model741

exhibits superior performance on Ubuntu tasks, hinting at possible architectural or training aspects742

that are better suited for that specific environment.743

In multi-agent system organized by environment, consistently yields better results in both Android744

and cross-platform tasks. This configuration appears to enhance the agents’ ability to manage and745

adapt to diverse tasks more effectively, leveraging environmental specifics to optimize performance.746

This suggests that employing multiple agents that are either specialized or specifically configured to747

operate within the same environment can significantly improve task handling and overall adaptability.748

Cross-platform tasks present a greater challenge for all models, as evidenced by lower Success749

Rates and Completion Ratios. These tasks, which necessitate functionality across different operating750

systems or platforms, demand a broader capability range and more sophisticated agent coordination.751

The importance of CR is especially critical in such environments, where it serves as a more reliable752

metric for distinguishing between agent models than SR. Given the presence of all Gemini and753

Claude agents’ SR is 0.0, indicating that Completion Ratio more effectively captures an agent model’s754

capability, thereby better reflecting its robustness and adaptability to complex requirements.755

Furthermore, analyzing the reasons for task termination offers additional insights into the operational756

challenges these models encounter. False Completion is notably prevalent in Android tasks. Reach757

Step Limit remains the most frequent cause of termination, particularly in cross-platform tasks. The758

Claude model exhibits a significantly high Invalid Action ratio in cross-platform tasks, indicating its759

difficulties in managing multi-environment scenarios effectively.760

Overall, these findings underscore the necessity of selecting the appropriate agent model and con-761

figuration based on specific platform and task needs. The variability in model performance across762

different setups also highlights the ongoing need for development and refinement of multi-agent763

systems to enhance their versatility and efficacy in increasingly diverse and complex operational764

environments.765

C.2 Comparison between Single Agent and Multi-agent766

The experimental results indicate that multi-agent structures perform slightly worse than single-agent767

systems, which is somewhat unusual. We analyse the possible reasons here.768

First, comparing in False Completion Rate, we attribute the lower Success Rate (SR) of Multi-agent769

to a high False Completion Rate—where the agent incorrectly assumes that the task is complete. As770

observed in failure cases (e.g., the Cross-platform Task case study in Appendix C.3), Sub-agents771

often misinterpret the Main agent’s instructions. Despite being required to perform a final action,772

the instructions lead Sub-agents to prematurely conclude that the task is complete, resulting in773

incorrect “complete” actions. While this issue also occurs in Multi-Env, it happens less frequently.774

We believe this is due to information loss during inter-agent communication. Natural language, while775

effective for aligning with human understanding in LLM communication, is less suited for inter-agent776

communication, leading to information loss during compression and interpretation, which weakens777

the performance of multi-agent structures.778

Next, comparing in Invalid Action Rate, we observe that in single-platform tasks, both Multi-Env and779

Multi-Func suffer from similar inter-agent communication issues, as indicated by their high False780

Completion and Invalid Action rates (Table 4 and 5). However, in cross-platform tasks (Table 6), the781

Single agent’s Invalid Action rate is significantly higher than that of the Multi-agent structures. Cross-782

21

Table 6: Evaluation results on cross-platform tasks.

Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 7.69 45.53 4.54 3.57 × 10−4
0.00 53.85 38.46

GPT-4O By Func 15.38 43.41 3.19 2.25 × 10
−4

7.69 61.54 15.38

GPT-4O By Env 7.69 48.61 3.69 1.68 × 10
−4

15.38 61.54 15.38

GPT-4 TURBO Single 7.69 47.84 4.31 2.89 × 10
−4

0.00 69.23 23.08

GPT-4 TURBO By Func 7.69 39.05 3.73 2.51 × 10
−4

15.38 46.15 30.77

GEMINI 1.5 PRO Single 0.00 21.25 1.49 \ 0.00 69.23 30.77
GEMINI 1.5 PRO By Func 0.00 16.70 1.52 \ 7.69 69.23 23.08

CLAUDE 3 OPUS Single 0.00 24.69 2.33 1.62 × 10
−4

0.00 38.46 61.54

CLAUDE 3 OPUS By Func 0.00 20.07 2.32 1.49 × 10
−4

0.00 38.46 61.54

platform tasks require frequent environment changes with varying action spaces, and if the model’s783

performance output is inadequate, it often generates correct actions in the wrong environment, invalid784

actions in the correct environment, or correct actions in correct environment but in the wrong format.785

This phenomenon highlights the limitations of current general-purpose LLMs, where multi-agent786

structures can be advantageous. By assigning each agent a specific responsibility and a limited action787

space, multi-agent structures can mitigate these issues.788

Last, when comparing different types of tasks, we observe that the Multi-Env structure significantly789

outperforms the Single Agent in Android and cross-platform tasks but underperforms in Ubuntu tasks.790

The key difference between the Single Agent and Multi-Env lies in the average context length each791

agent processes. As demonstrated by Liu et al. [21], more context does not always lead to better792

performance. The Single Agent is burdened with extensive knowledge across different fields, making793

it challenging for the model to switch between multiple environments, particularly when managing794

long history chat messages. In contrast, the sub-agents in the Multi-Env structure handle part of the795

total prompt, which enhances their performance in more complex tasks. While different backend796

models show varying performance across environments, resulting in some instability, the general797

trend is that the more complex the task, the more advantageous the multi-agent approach becomes.798

In summary, the performance difference between multi-agent and single-agent structures largely799

depends on the task complexity. For tasks that are too complex for a single general-purpose agent, a800

multi-agent structure may perform better. Conversely, for simpler tasks, multi-agent structures tend801

to cause information loss during inter-agent communication, leading to misunderstandings among802

downstream agents.803

To improve multi-agent system performance, we suggest to follow two approaches: (1) Developing804

better multi-agent structures to minimize information loss during communication, and (2) Intro-805

ducing a critical agent to correct hallucinations or information loss during communication. These806

improvements, however, come with a trade-off, namely an increase in token costs within the agent807

system. Within our benchmark framework, users can utilize the error log we provide to analyze the808

bottlenecks of their agents and refine their designs.809

C.3 Case Study810

To better understand how different agents perform the same task and exhibit varied properties, we811

present visual results along with detailed metrics and logs for three cases by platform. The screenshots812

illustrate the progress of agents executing tasks according to specific natural language instructions.813

C.3.1 Cross-platform Task814

Task: Open the "Tasks" app on an Android device, check the first incomplete task, and then815

execute it as described. The first task, found incomplete in the "Tasks" app, involves switching the816

system to dark mode in Ubuntu via the "Settings" application.817

22

This task exemplifies message passing across different environments, where the "incomplete task"818

serves as the critical information that the agent must relay and apply in the Ubuntu setting. These819

two phases—retrieving the task details via the phone and executing the task on a computer—are820

inseparably linked and cannot be treated as distinct tasks. The agent can only proceed to the second821

stage after successfully acquiring information from the first.822

In this task, GPT-4o (single agent), GPT-4 Turbo (single agent), and GPT-4 Turbo (multi-agent by823

functionality) all successfully complete the task using the minimal steps necessary to locate and exe-824

cute the task, demonstrating their efficiency in managing multiple environments simultaneously. On825

the other hand, both GPT-4o (multi-agent by functionality) and GPT-4o (multi-agent by environment)826

also perform commendably, completing the task up until the final step. However, after incorrectly827

performing the last step, they both erroneously conclude the task is completed and exit. This indicates828

a communication breakdown, where the sub-agents misinterpret the instructions from the main agent.829

The remaining four agents fail to complete the task. Agents equipped with the Gemini model do830

not even manage to open the "Tasks" app within the allocated step limit, whereas agents with the831

Claude model quickly open the "Tasks" app to complete the first step but fail at the task execution.832

The performance disparity between single-agent and multi-agent configurations in both the Gemini833

and Claude models highlights the variance in capability across different models and devices.834

C.3.2 Ubuntu Task835

Task: Create a new directory "/home/crab/assets_copy" and copy all files with the specified836

"txt" extension from "/home/crab/assets" to the directory "/home/crab/assets_copy".837

This task can be approached through multiple methods. An agent may opt for a straightforward838

strategy first using the search_application command to find the Terminal, then using Linux839

commands to create the directory and copy the necessary files. Alternatively, the agent could employ840

a GUI-based approach, manually creating the folder and selecting files through actions like click841

and right_click. We evaluate various agent systems in a single-agent setting for this task. As842

illustrated in Table 7–10 , both GPT-4o and GPT-4 Turbo from OpenAI successfully interpret the task843

instructions and employ a simpler solution using Terminal commands. These agents also demonstrate844

superior capability in understanding the UI, selecting the correct commands, and accurately using the845

Terminal application to fulfill the task requirements.846

Conversely, the Gemini and Claude agents, despite attempting to solve the task with Terminal,847

ultimately fail in different ways. Both agents struggle with precise clicking and selecting the correct848

icons for the intended actions, even though they share the same visual prompting mechanism as849

GPT-4o and GPT-4 Turbo. For instance, the Claude agent mistakenly opens the Ubuntu Desktop850

Guide instead of the Terminal and continues executing commands in the wrong application without851

realizing the error. The Gemini agent, on the other hand, unexpectedly opens the Firefox browser852

before correctly navigating to the Terminal but still interacts incorrectly with unrelated applications853

and icons. Unlike Claude, Gemini does not type in commands in the wrong applications but persists854

in exploring alternative methods using the Files application’s UI. Despite taking significantly more855

steps than the GPT-4o and GPT-4 Turbo agents, neither the Claude nor the Gemini agents achieve the856

task’s goal.857

C.3.3 Android Task858

Task: In Android, using the "Contacts" app, find the email of the contact named John Lauphin,859

then using the "Gmail" app, send an email to that contact with the subject "Hello John."860

This task consists of sub-tasks across two different applications. Agents must sequentially open the861

two apps, retrieve the email address from the first app, and use it in the second app to send an email.862

This straightforward yet formal task can be completed using various methods. Agents may need to863

locate the contact in the Contacts app and then use the retrieved email address to send a message. We864

reports the performance of agents in a multi-agent setting for this challenging task. Following is the865

details of agents in operating the task.866

23

GPT-4o multi-agent by functionality In steps 1-11, the agent tries to open the Contacts app but867

mistakenly opens Google Assistant multiple times. In steps 12-14, the agent successfully enters the868

Contacts app and finds the contact information. The agent then returns to the home page, and the869

process is terminated due to the limitation of operation steps.870

GPT-4 Turbo multi-agent by functionality In steps 1-2, the agent tries to open the Contacts app871

but mistakenly opens Google Messages. In steps 3-5, the agent opens the Contacts app and obtains the872

corresponding information. In steps 6-14, the agent repeatedly opens Google Chrome and Messages873

apps, failing to find the Gmail app as planned.874

Gemini 1.5 Pro multi-agent by functionality In steps 1-2, the agent finds the Contacts app and875

enters it. However, the agent misunderstands the instruction, gets lost in creating a new contact with876

the given name, and cannot obtain the corresponding information.877

Claude 3 Opus multi-agent by functionality In steps 1-7, the agent tries to open the Contacts878

app but mistakenly opens Google Messages multiple times. In steps 7-11, the agent tries to open the879

Contacts app but mistakenly opens Google Assistant. In steps 12-14, the agent successfully enters880

the Contacts app and finds the contact information. The agent then returns to the home page, plans to881

open the Gmail app, and the process is terminated due to the limitation of operation steps.882

GPT-4o multi-agent by environment In steps 1-7, the agent plans to open the Contacts app, but883

the operation fails due to an error in opening the app drawer, which prevents the agent from finding884

and tapping the Contacts app. In steps 8-11, the agent successfully enters the Contacts app and885

obtains the information. In steps 12-14, the agent opens the Gmail app, navigates to the sending page,886

and tries to input the retrieved email address as the recipient.887

Analysis For the agents which are organized by functionality, Gemini 1.5 Pro struggles to complete888

the first operation. Although it recognizes and opens the Contacts app as instructed, it fails to proceed889

further. In contrast, Claude 3 Opus and GPT-4o successfully obtain the necessary information. In890

the initial phase, the multiple agents agree that opening the Contacts app is the first step. However,891

they often fail to find the correct position to tap, frequently opening incorrect apps such as Google892

Assistant and Messages. Once the agents do open the correct app, they usually find the email address893

of the contact quickly. Even when agents plan to go back home and open the Gmail app to send the894

message, due to the limitation of operations, the system ended. As shown in steps 3-5, GPT-4 Turbo895

quickly finishes the corresponding task after opening the correct app. However, similar to GPT-4o,896

GPT4-Turbo agents get stuck as they can not open the correct apps in the following steps. Besides,897

GPT-4o (multi-agent by environment) overcomes the issue encountered by GPT-4o (multi-agent by898

functionality). Even affected by not being able to access the app drawer, the system could still find899

and copy the corresponding information and change to the Gmail app for further operations.900

24

Table 7: Ubuntu task case with Gemini (Single): Create a new directory
"/home/crab/assets_copy" and copy all files with the specified "txt" exten-
sion from "/home/crab/assets" to the directory "/home/crab/assets_copy".

Step Agent Observation and Action

0 click(5)

1 click(1)
Continued on next page

25

Table 7 continued from previous page

2 click(4)

3 search_application("terminal")

4 click(9)
Continued on next page

26

Table 7 continued from previous page

5 click(3)

6 click(13)

7 search_application("terminal")
Continued on next page

27

Table 7 continued from previous page

8 click(10)

9 click(6)

10-14 The agent is stuck at this stage and keeps clicking useless elements.

Completed Nodes / Total Nodes: 0 / 2 Termination Reason: Reach Step Limit

28

Table 8: Ubuntu task case with Claude (Single): Create a new directory
"/home/crab/assets_copy" and copy all files with the specified "txt" exten-
sion from "/home/crab/assets" to the directory "/home/crab/assets_copy".

Step Agent Observation and Action

0 search_application("terminal")

1 click(13)
Continued on next page

29

Table 8 continued from previous page

2 write_text("mkdir /home/crab/assets_copy")

3 key_press("enter")

4 write_text("cd /home/crab/assets")
Continued on next page

30

Table 8 continued from previous page

5 key_press("enter")

6 write_text("mkdir assets_copy")

7-14 The agent is stuck at this stage and keeps pressing keys.

Completed Nodes / Total Nodes: 0 / 2 Termination Reason: Reach Step Limit

31

Table 9: Ubuntu task case with GPT-4o (Single): Create a new di-
rectory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 click(2)

1-2 click(2)
right_click(2)

Continued on next page

32

Table 9 continued from previous page

3 click(6)

4 write_text("mkdir -p /home/crab/assets_copy")

5-6
Continued on next page

33

Table 9 continued from previous page

5-6 key_press("enter")
write_text("cp /home/crab/assets/*.txt /home/crab/assets_copy/")

7 key_press("enter")

Completed Nodes / Total Nodes: 2 / 2 Termination Reason: Success

34

Table 10: Ubuntu task case with GPT-4 Turbo (Single): Create a new
directory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 search_application("terminal")

1 click(20)
Continued on next page

35

Table 10 continued from previous page

2 write_text("mkdir -p /home/crab/assets_copy")

3 key_press("enter")

4 write_text("cp /home/crab/assets/*.txt /home/crab/assets_copy")
Continued on next page

36

Table 10 continued from previous page

5 key_press("enter")

Completed Nodes / Total Nodes: 2 / 2 Termination Reason: Success

37

	Introduction
	Related Work
	Definitions
	Problem Formulation
	Graph of Task Decomposition

	The Crab Framework
	Cross-environment Agent Interaction
	Graph Evaluator
	Task and Evaluator Construction

	Experiments
	Benchmark
	Baseline Agent System
	Results

	Conclusion
	Benchmark Detail
	Overview
	Framework Design
	Configuration Format by Modules
	Task Dataset

	Agent system
	Agent Implementation
	Inter-agent Communication Strategies
	Agent Prompt
	Single Agent
	Multi-Agent by Functionality
	Multi-Agent by Environment

	Further Result Analysis
	Result by Platforms
	Comparison between Single Agent and Multi-agent
	Case Study
	Cross-platform Task
	Ubuntu Task
	Android Task

