
Journal Pre-proof

Adaptive multi-channel Bayesian graph attention network for IoT transaction security

Zhaowei Liu, Dong Yang, Shenqiang Wang, Hang Su

PII: S2352-8648(22)00259-0

DOI: https://doi.org/10.1016/j.dcan.2022.11.018

Reference: DCAN 573

To appear in: Digital Communications and Networks

Received Date: 20 September 2022

Revised Date: 24 October 2022

Accepted Date: 29 November 2022

Please cite this article as: Z. Liu, D. Yang, S. Wang, H. Su, Adaptive multi-channel Bayesian graph
attention network for IoT transaction security, Digital Communications and Networks (2023), doi: https://
doi.org/10.1016/j.dcan.2022.11.018.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Chongqing University of Posts and Telecommunications. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co. Ltd.

https://doi.org/10.1016/j.dcan.2022.11.018
https://doi.org/10.1016/j.dcan.2022.11.018
https://doi.org/10.1016/j.dcan.2022.11.018

Digital Communications and Networks(DCN)

journal homepage: www.elsevier.com/locate/dcan

Adaptive Multi-channel Bayesian Graph
Attention Network for IoT Transaction
Security

Zhaowei Liu∗a, Dong Yanga, Shenqiang Wanga, Hang Sub

aSchool of Computer and Control Engineering, Yantai University, Yantai 264005, China
bDepartment of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy

Abstract

With the rapid advancement of 5G technology, the Internet of Things (IoT) has entered a new phase of application and is
rapidly becoming a significant force in promoting economic development. Due to the vast amounts of data created by numerous
5G IoT devices, the Ethereum platform has become a tool for the storage and sharing of IoT device data, thanks to its open
and tamper-resistant characteristics. So, Ethereum account security is necessary for the Internet of Things to grow quickly
and improve people’s lives. By modeling Ethereum transaction records as a transaction network, the account types are well
identified by the Ethereum account classification system established based on Graph Neural Networks (GNNs). This work first
investigates the Ethereum transaction network, Surprisingly, experimental metrics reveal that the Ethereum transaction network
is neither optimal nor even satisfactory in terms of accurately representing transactions per account. This flaw may significantly
impede the classification capability of GNNs, which is mostly governed by their attributes. This work proposes an Adaptive
Multi-channel Bayesian Graph Attention Network (AMBGAT) for Ethereum account classification to address this difficulty.
AMBGAT uses attention to enhance node features, estimate graph topology structure that conforms to the ground truth, and
efficiently extract node features pertinent to downstream tasks. An extensive experiment with actual Ethereum transaction
data demonstrates that AMBGAT obtains competitive performance in the classification of Ethereum accounts while accurately
anticipating the graph’s topology.

© 2022 Published by Elsevier Ltd.

KEYWORDS:
Internet of Things, Graph Representation Learning, Node classification, Security Mechanism.

1. Introduction

The Internet of Things (IoT) [1] is a network of
interconnected items that facilitates content retrieval
and service discovery. With the complete implemen-
tation of 5G technology, the Internet of Things data
volume is expanding at an unprecedented rate. With
the help of a large amount of IoT data, data mining
technology has played an important role in science and
technology, economics, energy, smart cities, and other
fields. In addition, as artificial intelligence technology

∗Zhaowei Liu (Corresponding author) (email:lzw@ytu.edu.cn).
1Dong Yang (email:yangdong@s.ytu.edu.cn).
2Shenqiang Wang(email:wsqaahh@foxmail.com).
3Hang Su(email:hang.su@polimi.it).

advances, the potential usefulness of IoT data will be
investigated further. Consequently, the transactional
value of IoT data has been acknowledged by an in-
creasing number of individuals and organizations. The
emergence of the IoT data transaction platform is a re-
sponse to the growing need for IoT transactions. Cur-
rently, the majority of the most popular IoT data trans-
action platforms store and exchange data via a rep-
utable third party [2]. This has a lot of problems, such
as ignoring data security, which could lead to private
information being shared [3], and relying on a third-
party platform, which will add to administrative costs
and charge too much for data transactions.

With the development of Blockchain [4], trustwor-
thy intermediary transactions can be conducted in an

Jo
urn

al
Pre-

pro
of

2 Zhaowei Liu et al.

anonymous setting, eliminating the requirement for
trusted third parties. All transaction records on the
blockchain are immutable and publicly visible, and
they are maintained via peer-to-peer networks em-
ploying novel consensus mechanisms. Therefore, an
increasing number of Internet of Things researchers
are utilizing blockchain technology to achieve point-
to-point value transfer across unknown nodes [5, 6, 7].
This opportunity has been seized by the new, trust-
worthy transaction platform, the Ethereum transac-
tion platform [8]. The Ethereum platform provides
a universal computing and Turing-complete language
to allow smart contracts, which significantly reduces
the difficulty of implementing blockchain technol-
ogy. In order to promote the use of smart con-
tracts, the Ethereum network developed the concept
of an account, which officially existed as an ad-
dress. In the sphere of the Internet of Things, more
and more researchers are utilizing Ethereum to facil-
itate transactions between untrusted nodes. Yutaka et
al.[9] utilize the Ethereum platform to store IoT data
and conduct peer-to-peer transactions. Raj et al.[10]
propose implementing smart contracts on a private
Ethereum Blockchain to enhance the security of IoT
data. Mehedi et al.[11] build the Ethereum Blockchain
system to provide access control to key resources for
the IoT. Sun et al.[12] use Ethereum to construct a re-
liable IoT system and to propose a refueling mecha-
nism for IoT devices. In other words, the Ethereum
platform has become a crucial platform for the secure
storage and exchange of IoT data.

Blockchain’s anonymity is also a double-edged
sword, as everything has two sides. Rampant cyber-
criminals, particularly on the Ethereum platform, use
the anonymity feature to commit a variety of cyber-
crimes [13], posing significant risks to legitimate users
and jeopardizing societal security. Numerous financial
crimes have been recorded on the Ethereum platform
in recent years, and more than 10% of Ethereum ac-
counts have been compromised in various ways, in-
cluding phishing [14], honeypot [15], money launder-
ing [16], Ponzi schemes [17], and so on. Specifically,
phishing scams and Ponzi schemes account for the
vast majority of Ethereum-related crimes, demonstrat-
ing that transaction security has become a key con-
cern in the Ethereum ecosystem. In order to ensure
the creation of a safe and harmonious community, it
is necessary to differentiate between different types
of anonymous accounts in Ethereum. This will help
identify abnormal transaction behaviors, provide more
hints for transaction tracking, improve the auditability
of the entire platform, and ultimately provide a guar-
antee for safe storage and transaction of IoT data.

The account-centric transaction model of the
Ethereum platform [18] allows each transaction to
be viewed as a trusted operation from one account
to another, like transfers and bills. The Ethereum
account classification issue can be turned into the

node classification problem in the Ethereum trans-
action network by representing Ethereum transaction
data as the Ethereum transaction network. Farrugia
et al.[19] build an Ethernet transaction network con-
taining both genuine and fraudulent accounts and pro-
pose a classifier for recognizing fraudulent accounts
in an Ethernet transaction network. Hu et al.[20]
offer a data slicing-based methodology to establish
an Ethernet smart contract network with features and
a transaction-based classification and detection ap-
proach for Ethernet smart contracts in order to classify
various sorts of accounts in the Ethernet transaction
network. Many researchers rely on network embed-
ding techniques to capture the interaction characteris-
tics of accounts in a network since machine learning
algorithms excel at processing well-defined and fixed-
length inputs and outputs. Chen et al.[21] suggest a
graph-based cascading feature extraction method for
retrieving rich information about transaction struc-
tures. Wang et al.[22] design a heterogeneous Ether-
net transaction network and propose a network embed-
ding algorithm based on the heterogeneous network
to mine the implicit information in Ethernet transac-
tions. GNNs are also an excellent model for handling
blockchain transaction networks.Chen et al.[14] first
used the GCN [23] method for blockchain transaction
networks to identify phishing accounts. However, they
did not update the classic GCN model to match the
blockchain transaction network’s peculiarities.

As an end-to-end learning framework, are GNN
models adequate for tackling the Ethereum transaction
network account classification task? This is a criti-
cal question since transaction networks possess some
special characteristics. A rational response to this is-
sue can assist us in gaining a fundamental knowledge
of the capabilities and limitations of GNNs on the
Ethereum transaction network. This immediately in-
spires our research.

This work analyzes key Ethereum transaction net-
work characteristics as the first contribution of this re-
search. Not only does our research aid in comprehend-
ing the distinctive properties of the Ethereum trans-
action network, but the network analysis results re-
veal that the Ethereum transaction network has low
homogeneity (i.e., the proportion of a node’s neigh-
bors that typically belong to the same class), which
makes it difficult for most GNNs to be directly gen-
eralized to the Ethereum transaction network. In the
current payment system, there exist transaction link-
ages between accounts of two distinct sorts. For in-
stance, exchange hot wallet accounts typically per-
form transactions with many services and users, caus-
ing the original transaction network’s topology to not
be qualitatively ideal. The inability to learn the most
relevant node embeddings for downstream tasks based
on the characteristics of the Ethereum transaction net-
work may severely hamper the account categorization
capability of GNNs due to this weakness.

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 3

Once the weaknesses of good GNNs on the Ether-
net trading network were identified, the question arose
naturally: “Can we remedy this weakness while de-
signing a new GNN that preserves the advantages of
neighborhood aggregation of GNNs while simultane-
ously estimating the ground truth network topology to
improve the node embedding capability of GNN?”

This work addresses this challenge and proposes a
classification model for Ethereum accounts. The main
idea behind the model is to first estimate the network
topology of the ground truth using the original trad-
ing network and node features, then use multiple at-
tention convolution modules to learn the node embed-
ding information from the original graph and the es-
timated graph , and then adaptively combine the in-
formation most relevant to the account classification
task from the two views to improve GNN’s ability to
embed nodes.

Technically, for the aggregation of node neighbor-
hood features, the importance of neighborhood fea-
tures is calculated by the convolution module with
an attention mechanism, which enables the creation
of more precise node embedding information. For
the production of the estimation graph, the stochastic
block model (SBM) [24] is used to reflect the underly-
ing structural generation of the estimation graph based
on the neighborhood aggregation property of GNNs
in order to provide it with community structure at-
tributes. Multiple kinds of information are retrieved
simultaneously as observations of the estimate graph
in order to minimise its bias, and the posterior distri-
bution of the graph structure is finally inferred using
Bayesian inference. The node features are propagated
across both the estimated graph and the original graph,
thereby extracting the specific embeddings of each
node in both channels. In the meantime, the common
features in both channels are retrieved via a shared-
parameter convolution module. An attention mecha-
nism automatically learns the important weights of the
two embeddings of the original and estimated graphs
in order to adaptively fuse them. Through iterative op-
timization, the estimate graph, adaptive weights, and
model parameters are ultimately mutually enhanced.

In summary, we summarize three contributions:

1. As for the transaction security of the Internet
of Things, this work is the first one based on
Bayesian inference to estimate the graph struc-
ture to adapt to the GNN learning mechanism,
and feature extraction is carried out on both the
original graph and the estimated graph to give the
most favorable embedding for downstream tasks.

2. This work proposes a new GNN model for the
Ethereum account classification task that gener-
ates meaningful graph structures by calculating
the posterior distribution of the original graph
structure via Bayesian inference. Then, the atten-
tion mechanism is then used to show how impor-
tant the original graph and the estimated graph

are to the Ethereum account classification task.
Finally, perform iterative optimization of the es-
timated graph, adaptive weights, and model pa-
rameters.

3. Through a large number of experiments on the
challenging Ethereum transaction data set, AMB-
GAT is demonstrated to have the expected perfor-
mance. In addition, AMBGAT is also analyzed
for other meaningful properties.

The remaining sections are organized as follows. In
Section 2, some related work is reviewed. The charac-
teristics of the Ethereum transaction network are ex-
amined in Section 3. In Section 4, the proposed AM-
BGAT model is qualitatively analyzed. In Section 5,
the proposed model is quantitatively analyzed by ex-
periments, and this work is concluded in Section 6.

2. Related work

In line with our research focus, the most rele-
vant work on both graph neural networks and graph
topology learning is briefly reviewed, and the fea-
ture engineering-based approach to classifying Ether-
net accounts is summarized.

2.1. Graph Neural Networks
Most of the current GNNs can be classified into

five categories, namely Graph Convolutional Network
(GCN), Graph Auto-encoder (GAE), Graph Gen-
erative Network (GGN), Graph Recurrent Network
(GRN), and Graph Attention Network (GAT). There
are two types of convolution operations performed by
graph convolution networks: one is graph convolu-
tion based on spectral decomposition, and the other
is spatial graph convolution based on spatial transfor-
mation. Specifically, [25] utilises the eigenvectors of
the Laplacian matrix of the graph to perform the graph
convolution operation in the Fourier domain. [26] ap-
plies Chebyshev polynomials to solve for the eigen-
matrices to improve efficiency. [23] proposes a semi-
supervised GCN node classification model and further
improves the accuracy and learning ability by deepen-
ing the depth of the network and reducing the neigh-
bourhood width. Spatial graph convolution learns the
representation of each node from the spatial features
of the graph data structure. [27] performs inductive
graph convolution by aggregating the neighbourhood
features generated from multiple iterations. [28] in-
terprets the graph convolution as an integral transfor-
mation of the embedding function under the probabil-
ity measure based on node importance sampling, re-
sulting in improved prediction accuracy. Graph Auto-
encoder (GAE) is an artificial neural network that
learns the representation of the input information on
graph data, including two parts: an encoder and a de-
coder. [29] proposes a Marginalized Graph Autoen-
coder (MGAE) algorithm. It uses a graph convolu-
tional network layer based on spectral decomposition

Jo
urn

al
Pre-

pro
of

4 Zhaowei Liu et al.

Fig. 1. A visualization of the network structure of sampled transactions, where color indicates the class of the node.

in the autoencoder to integrate node attribute features
and graph structure information, enabling data inter-
action between them. [30] proposes the Variational
Graph Auto-encoder (VGAE), which enables the en-
coder to learn the distribution of a low-dimensional
vector representation, constraining the intermediate
hidden variables in a distribution. A Graph Generative
Network (GGN) is a class of GNN used to generate
graph data. [31] proposes the Graphical Generative
Adversarial Network (Graphical-GAN), which learns
graph structure using a Bayesian network. Learning
is performed, and the generator and trainer are jointly
trained by an expectation propagation algorithm. The
literature [32] proposes a Graph Topology Interpola-
tor (GTI) based on GAN, which reconstructs the adja-
cency matrix based on edge weights. Graph Recurrent
Network (GRN) usually converts graph data into se-
quences, which evolve and change recursively during
the training process. In [33], a Gated Graph Sequence
Neural Network (GGS-NN) is proposed to generate a
vector of implicit representations by encoding graph
sequence features. The literature [34] proposes a
Spatio-temporal Attentive Recurrent Network (STAR)
capable of learning graph spatio-temporal contextual
information and extracting neighbourhood vector rep-
resentations by sampling and aggregating local neigh-
bourhood nodes. The graph attention network allows
the graph neural network to focus only on the informa-
tion needed for task learning by introducing an atten-
tion mechanism. The literature [35] assigns a weight
factor to each neighbor based on the characteristics of
the neighbouring nodes when aggregating them. The
literature [36] provides an unsupervised self-attentive
mechanism that can be used for inductive learning.
[37] proposes a Graph Attention Model for Multi-
Label Learning (GAML), which improves multi-label
classification performance and interpretability.

Currently, the majority of graph neural networks as-
sume that the original graph is true, which severely

limits their performance in downstream tasks.

2.2. Graph topology learning
Graph structure learning has been the subject of sev-

eral studies in graph neural networks [38] [39] [40].
In addition to these studies, a new graph structure
for learning has recently been proposed on undirected
graphs. Our work studies graph topology learning on
undirected graphs by inscribing Ethernet transaction
data as undirected graph transaction networks. The lit-
erature [41] proposes a minimally sufficient structural
model of the optimal graph structure. The literature
[42] obtains the ideal graph structure by adding some
constraints, such as low rank and feature smoothing.
On other graph types, literature [43] proposes a frame-
work for optimal graph structure learning on heteroge-
neous graphs. Literature [44] provides a GaN-based
directed graph generation method to generate source
and target nodes of nodes by joint learning. However,
these methods do not provide a framework for Ether-
net trading networks to determine which is the "op-
timal" structure for the downstream task of improv-
ing GNNs between the learned graph structure and the
original graph structure.

2.3. Ethereum account classification method
Malicious accounts on the Ethereum platform pose

a great threat to the health of the Ethereum trading
ecosystem. As a kind of structured data, graphs can
explain the precise relationships between data ele-
ments, so many scholars have modeled Ethernet trans-
action data as graph structures to implement Ethernet
account detection and classification [22], i.e., accounts
and transactions are represented as nodes and con-
nected edges in a graph, respectively. [45] proposes
a graph learning method based on random wandering
for feature extraction of phishing users on Ethernet by
learning the structural homogeneity and monetary ho-
mogeneity of the Ethernet transaction network. [14]

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 5

Table 1
Notations and Explanations.

Notations Explanations

G Graph depicted by Ethereum transaction data
A Symmetric adjacency matrix
X Node feature matrix
V Nodes in the graph
Y Labels of the nodes
h Initial node features
h′ Node features after mapping
Z The embedding of nodes
W Model parameters that can be learned
ϑ The convolution module parameters
S The generated graph by the SBM model
Q The estimated graph by the Bayesian inference

Table 2
Statistical information about the Ethereum dataset.

Nodes Edges Classes Features Labeled nodes

1,124,130 3,752,659 7 22 3,785

proposes a detection method based on graph convolu-
tional networks and auto-encoders to distinguish net-
work phishing accounts by representing GCNs as en-
coders and their output inner products as decoders to
approximate the adjacency matrix to obtain a repre-
sentation of nodes. [46] applies deep learning to a time
series prediction task for the ethereum cryptocurrency,
demonstrating the effectiveness of deep learning in
predicting the value of transactions. [47] proposes a
filtering-enhanced graph neural network to solve the
account classification task in Ether, aggregating neigh-
bors of importance by filtering components and using
higher-order neighborhood information to enhance the
node representation. [48] uses the network embedding
method node2ves to extract latent features of accounts,
followed by support vector machines for account clas-
sification. [49] further enriches the work of [48] by
proposing a network embedding algorithm that con-
siders timestamps and transaction volumes to extract
node features in the network. [50] proposes a graph-
based cascading feature extraction method to extract
transaction structure information and a double sam-
pling integration algorithm to classify data with cate-
gory imbalance. [51] proposes a feature engineering-
based phishing anomaly detection framework and pro-
vides a robustness testing algorithm for the phishing
detection framework. [52] uses an improved graph
embedding method to extract latent features of sub-
graphs, followed by a support vector machine to iden-
tify network fraud nodes.

In summary, the current approaches based on fea-
ture engineering to achieve Ethereum account classi-
fication mainly include network embedding methods
represented by random wandering [53] [54] and deep
learning methods represented by graph neural net-

3 %
2 %

2 8 %

2 3 %
8 %7 %

2 9 %

P h i s h T o k e n C o n t r a c t E x c h a n g e M i n e r
I C O W a l l e t I n v e s t m e n t P o n z i

Fig. 2. Our collection of seven typical ethereum accounts.

Table 3
Network metrics for the Ethereum dataset.

Average degree Average path length Clustering coefficient Homophily ratio

6.042 3.844 0.192 0.367

works [23]. However, there is little work to consider
the homogeneity of graphs and re-estimate the graph
structure to improve the performance of the model.

3. Problem Statement and Network Analysis

This section begins with a brief description of the
proposed problem, followed by information regarding
the source and collection of the Ethereum transaction
network dataset. Following this, the characteristics of
the Ethereum transaction network are elaborated and
compared to those of other networks. Finally, design
considerations for a new GNN based on the distinct
characteristics of the Ethereum transaction network
are presented.

3.1. Problem Statement
Ethereum transaction data can be depicted as graph

G = (A, X), where A ∈ Rn×n is the symmetric ad-
jacency matrix of n nodes and X =

[
x1, x2, ..., xN

]
∈

RN×D is the node feature matrix of d dimensions.
Specifically, each node represents the corresponding
Ethereum account, and the adjacency matrix defines
the Ethereum account’s transaction relationship. Ai j

equal to 1 or 0 indicates that there is a transaction rela-
tionship or no transaction relationship between nodes
i and j, respectively. We concentrate on the semi-
supervised node classification task in which only a
small percentage of nodes VL =

{
v1, v2, ..., vl

}
are asso-

ciated with matching labels YL =
{
y1, y2, ..., yl

}
, where

vi’s label is yi, and we assume that each node’s label
has C categories. Table 1 gives some notations and
explanations used throughout this paper.

3.2. Dataset and Network Analysis
Access to cryptocurrency transaction data is made

easier by the blockchain’s transparency. In this

Jo
urn

al
Pre-

pro
of

6 Zhaowei Liu et al.

Table 4
Statistics of homophily ratios for different networks.

Ethereum Citeseer1 Pubmed1 BlogCatalog1 Flickr1

Original graph 0.367 0.67 0.79 0.39 0.23
Feature graph2 0.56±0.01 0.60±0.036 0.74±0.012 0.83±0.027 0.81±0.035

1 Citeseer, pubmed [23] are citation networks, and BlogCatalog, Flickr [55] are social networks.
2 The k-NN algorithm is used to generate the feature graph, and the outcome is the mean and standard deviation
of k from 2 to 9.

work, the well-known Etherscan is used to collect
Ethereum account tags and transaction details. Fol-
lowing the collection methodology of previous re-
searchers [56], we first obtained 3785 account de-
tails with ground truth labels, then collected the first-
order neighborhood of each account and randomly
sampled some second-order neighborhoods, and lastly
removed transactions with ambiguous addresses and
duplicates. The final dataset consists of an undirected
Ethereum transaction network with 1,124,130 nodes
and 3,752,659 edges, as depicted in Table 2 and Fig-
ure 1. For each node in the Ethereum transaction
network, 22 distinguishing features are extracted, in-
cluding account balance, transaction frequency, trans-
action amount, and transaction data. In the nodes
with real labels, there are a total of 7 different cat-
egories, namely: ICO Wallet, Token Contract, Ex-
change, Miner, Investment, Phish/Hack, and Ponzi, as
shown in Figure 2.

Three of the most potent network topology metrics
of the Ethereum transaction network and one indica-
tor relating to GNN properties are analyzed in order
to design a graph embedding method appropriate for
the Ethereum transaction network. The average degree
metrics, clustering coefficients, average path lengths,
and homophily [57] of the Ethereum dataset are ana-
lyzed, as demonstrated in Table 3. The average degree
of all nodes in the proposed Ethereum dataset is 6.042,
and the degree distribution follows a power-law distri-
bution [58], showing that the majority of nodes have
low degrees. This network has a clustering coefficient
of 0.192, indicating that there are very few transac-
tion linkages between adjacent accounts of an account.
The average path length of this network is 3.844, indi-
cating that the network is comprised of small worlds
and that each account is connected to others over rel-
atively short paths. The maximum value of the ho-
mogeneity coefficient, which measures whether a net-
work node likes to connect with other nodes with the
same label, is 1. This network’s homogeneity coef-
ficient is 0.367, indicating that most nodes with the
same label do not tend to be connected to one an-
other, whereas the performance of GNNs may be sig-
nificantly impaired on graphs with poor homogeneity
[38]. Since this result is incongruous with the nature
of GNNs, we question the precision or optimality of
GNNs applied to the Ethereum transaction network.

Furthermore, in order to examine the topological
structure of the original Ethereum transaction dataset,
this section compares it with social networks and cita-
tion networks, and Table 4 displays the homogeneity
ratio coefficients of the original and feature graphs in
various networks. As can be seen, the homogeneity
of the Ethereum transaction network is far lower than
that of the citation network, and the feature graphs de-
rived from the node features are likewise significantly
lower than those of the four other common networks.
In terms of node features, this indicates that inter-
connected nodes in the Ethereum transaction network
have different features.

In conclusion, the Ethereum transaction network
features certain topological characteristics, including
a low average degree metric, a very low clustering co-
efficient, and a short average path length. Notably,
the Ethereum transaction network has a smaller homo-
geneity ratio and a greater feature distance than other
types of networks, indicating that labels and feature
information between accounts with transaction inter-
actions in the network may not be precisely the same.
This metric suggests that it is difficult to directly gen-
eralize the majority of GNNs to the Ethereum transac-
tion network due to its heterogeneity. If the original
Ethereum transaction network is used directly to ag-
gregate the feature information from the local neigh-
borhood, the feature information of the central node
could become confused by the feature information of
nodes from different labels. Consequently, the analyt-
ical results inspire us to estimate a new graph structure
for efficiently learning node embedding information.

4. THE PROPOSED MODEL

In this section, the proposed adaptive Multi-channel
Bayesian graph attention network , which can learn
the most pertinent feature information for downstream
tasks in networks with low homogeneity, is discussed.
Figure 3 displays the overall framework. The pro-
posed model first employs a convolution module with
an attention mechanism to compute the significance
of neighborhood features, thus producing more accu-
rate node embedding data. Then, the proposed model
estimates a novel graph structure using Bayesian in-
ference to address the poor homogeneity issue of the
Ethereum transaction network. Next, the proposed

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 7

(Original G, X)

(Feature G, X)

Estimated Graph Q
GAT Layer

Feature Propagation Node Representation

GAT Layer

Node RepresentationFeature Propagation

GAT Layer

Feature Propagation Node Representation

ZG

ZC

ZQ

A
ttention

Z

Bayesian Estimation

Random Block
Model

Observation
Model

Obs. 1

Obs. 2

K nearest
neighbor graph

Parameter
W Sharing

Observation Set O

Fig. 3. The general framework of our proposed AMBGAT.

model utilises an adaptive fusion technique for mining
multifaceted node feature information on two graph
structures to create the most relevant node features for
subsequent tasks. Finally, the process of joint iterative
optimization of graph structure estimation, attention
learning, and GNN parameter learning is illustrated.

4.1. Attentional convolution module
This subsection introduces the attention-based con-

volution module, the key module for learning node
embedding information. Contrary to the conven-
tional neighborhood feature aggregation model GCN
[23], the attention-based convolution module is able
to assign different importance to different nodes in
the neighborhood when learning different numbers of
neighborhood features of the target node without re-
quiring prior knowledge of the entire graph structure.

As the backbone of an attention-based neighbor-
hood feature aggregation model, the graph attention
network (GAT) [35] is typically selected. Given a col-
lection of node features

{
hl

i

}
i=1,...,N

, each hl
i ∈ RN×F ,

where N is the number of nodes and F is the num-
ber of node features, the attentional convolution mod-
ule translates them to the following layer, denoted by{
h′i

}
i=1,...,N

. To describe the correlation between neigh-
boring nodes vi and v j, the proposed model uses the
normalized attentional mechanism of the GAT model,
as shown below:

fi j =
exp

(
LeakyReLU

(̃
aT

(
Wl hl

i‖W
l hl

j

)))
∑

k∈Ni
exp

(
LeakyReLU

(̃
aT

(
Wl hl

i‖Wl hl
k

))) ,
(1)

where ã ∈ R2F′ is the parameter vector of the feed-
forward layer, ‖ represents the tandem operation, W ∈
RF′×F is the weight matrix applied to the linear trans-
formation of each node, andNi is the first-order neigh-
borhood of node i in the graph.

To stabilize the self-attentive learning procedure
utilizing K independent attention coefficients, the ag-
gregation rule of the convolution module in the hidden
layer is designated as follows:

h′i = ‖Kk=1σ

∑
j∈Ni

f k
i jW

kh j

 , (2)

where ‖ represents tandem, f k
i j is the attention co-

efficient normalized by the k-th, Wk is the trainable
weight matrix, and σ represents the nonlinear activa-
tion function.

On the basis of the GAT aggregation technique, the
proposed model develops two convolution modules:
the Personality Convolution Module and the Common
Convolution Module.

4.1.1. Personality Convolution Module
The personality convolution module can learn in-

formation from the original and estimated topological
graphs, respectively. Inputting the original topologi-
cal graph G, the predicted value of node i at the last
(prediction) layer is stated as:

zi = σ

 1
K

K∑
k=1

∑
j∈Ni

f k
i jW

kh j

 , (3)

where f k
i j is the attention coefficient normalized by the

k-th, Wk is the trainable weight matrix in the personal-
ity convolution module, and σ is the nonlinear activa-
tion function. The output features of the last layer of
the original topological graph G are expressed as ZG,
such that individualized information ZG can be learned
from the original topological graph G. To discover the
personalized information ZQ in the estimated graph Q,
the estimated graph Q is entered and the prediction in-
formation ZQ is calculated in the same way as for the
original topological graph.

Jo
urn

al
Pre-

pro
of

8 Zhaowei Liu et al.

4.1.2. Common Convolution Module
The common convolution module is able to extract

the common data from both graphs. It is difficult to
predict which portion of the original topological graph
G, the estimated graph Q, or the common portion of
both is most relevant to the downstream task. Conse-
quently, it is required to not only learn the personality
information in each graph structure but also introduce
the common convolution module. By gaining a deeper
understanding of the common features, it is possible to
determine with greater flexibility which aspect of the
features is the most essential. On the original topo-
logical graph G, the predicted value of the prediction
(final) layer of node i in the common convolution mod-
ule can be expressed as:

zi = σ

 1
K

K∑
k=1

∑
j∈Ni

f k
i jW

k
ch j

 , (4)

where f k
i j is the attention coefficient normalized by k-

th, Wk
c is the trainable weight matrix in the common

convolution module, and σ is the nonlinear activation
function. From the initial topological graph G, the fea-
tures ZCG are derived. The weight matrix Wc is shared
between the two graph structures in order to extract
the common information. The features ZCQ of the es-
timated graph Q are learned in the public convolution
module in the same manner as those on the original
topological graph G, and the predicted features Zc on
both graph structures are indicated as follows:

Zc =
(
ZCG + ZCQ

)
/2. (5)

In this section, the developed convolution module
can learn two personality features, ZG and ZQ, as well
as a single common feature, ZC . The method for com-
puting the correlation between each feature and the
node labels is provided in the following section.

4.2. Adaptive Mechanism

The final node features are produced using an adap-
tive node feature fusion technique based on an atten-
tion mechanism that considers which of the feature
information ZG, feature information ZQ, and feature
information ZC is most important for improving the
downstream tasks of GNN.

For the feature information [ZG,ZQ,ZC], learn the
attention coefficients [αG, αQ, αC] ∈ Rn×1 correspond-
ing to it. Zi

G ∈ Rh×1 represents the feature vector of
the node i in ZG. First apply a nonlinear transform to
the feature vector Zi

G and then multiply it by a shared
attention vector ω ∈ Rh′×1 to determine its attention
value αi

G, which is written as:

αi
G = ωT · tanh

(
W ·

(
zi

T

)T
+ b

)
, (6)

where, W ∈ Rh′×h represents the weight matrix, while
bω ∈ Rh′×1 represents the bias vector. To determine

the attention values αi
Q and αi

C for ZQ and ZC , uti-
lize the same method. Normalize the attention values
[αi

G, α
i
Q, α

i
C] with the softmax method to produce the

final weight coefficients ai
G associated with the labels

as follows:

ai
G = so f tmax

(
αi

G

)
=

exp
(
αi

G

)
exp

(
αi

G

)
+ exp

(
αi

Q

)
+ exp

(
αi

C

) .
(7)

Similarly, ai
Q = so f tmax

(
αi

Q

)
and ai

C =

so f tmax
(
αi

C

)
. Consequently, for all n nodes, the cor-

responding weight coefficients in the feature informa-
tion ZG, feature information ZQ, and feature informa-
tion ZC are aG = diag

([
ai

G

])
, aQ = diag

([
ai

Q

])
, and

aC = diag
([

ai
C

])
∈ Rn×1, respectively. These three

weight coefficients are then combined with the corre-
sponding feature information to produce the final pre-
diction feature Z:

Z = aG · ZG + aC · ZC + aQ · ZQ. (8)

4.3. Feature graph selection

To minimize bias and infer a reliable graph struc-
ture when estimating graph structure, multifaceted in-
formation must be compiled. After performing the
l-th neighborhood aggregation iteration, AMBGAT
provides local-to-global information about the nodes
by allowing us to capture the structural information
within the lth-order neighborhood of the nodes.

In particular, an observation set O ={
O(0),O(1), . . . ,O(l)

}
is constructed based on the

node feature matrix X =
{
H(0),H(1), . . . ,H(l)

}
gen-

erated by the l neighborhood aggregation of the
AGBGN model, where O(h) ∈ Rn×n is the adjacency
matrix of the kNN graph generated by the convolu-
tional feature H(h) at the h-th layer and describes the
neighborhood similarity at the h-th layer. For features
xi and x j corresponding to nodes i and j in layer h, the
expression for the similarity matrix is:

µi j =
xi · x j

|xi|
∣∣∣x j

∣∣∣ , (9)

where calculating the cosine similarity of two vectors
xi and x j yields the similarity matrix µi j, the first k
similar nodes are then selected evenly for each node
to build the concatenated edges, yielding a kNN graph
in each layer.

These observation graphs depict the optimal graph
structure from various vantage points, and the original
neighbor matrix A is also an observation, therefore the
observation set O =

{
A,O(0),O(1), . . . ,O(l)

}
. The ob-

servation set O, the predicted values Z, and the labels
YL are all put into the Bayesian estimator to infer a
good idea of the posterior distribution of the estimated
graphs. Explain in the subsection that follows how the
estimated graph was generated.

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 9

4.4. Graph Estimator

Until now, the generation of the observation set O
and the most pertinent predictions Z for the data la-
bels have been described. However, what is the es-
timated graph Q on the data set? Can the observa-
tion graphs in the results of an observation be directly
treated as optimal estimated graphs? Although the ob-
servations describe the optimal graph structure from
a variety of perspectives, they may be unreliable or
insufficient, and their accuracy cannot be predicted.
Therefore, it is assumed that an optimal symmetric ad-
jacency matrix with GNN properties has been gener-
ated, and the probability of mapping these observation
sets onto the symmetric adjacency matrix is computed
by Bayesian inference, so that a computational inver-
sion is achieved by computing the posterior distribu-
tion of the graph structure, allowing us to achieve our
goal.

In recent related literature [38, 39], the use of
stochastic block model (SBM) to generate symmetric
adjacency matrices with stronger community structure
[59] has been mentioned, where the homogeneity of
the generated graph structure can be restricted by fit-
ting the intra- and inter-community parameters in the
block model. The standard SBM is used, which is
typically effective for generating estimated graphs and
represents the estimated symmetric adjacency matrix
as the estimated graph S .

Specifically, the generation of the estimated graph
S employs a probability distribution P (S | Ω,Z,YL).
where Ω is a parameter of the SBM that represents the
probability of edges connecting nodes within and be-
tween communities. The community of nodes dictates
the probability of connecting edges between distinct
nodes. For instance, the probability of generating an
edge between nodes vi and v j belonging to commu-
nities ci and c j is Ωi j. Given the parameters Ω, pre-
diction Z, and label YL, it is possible to formalize the
computation of the estimated graph S as follows:

P (S | Ω,Z,YL) =
∏
i< j

Ω
S i j
cic j

(
1 −Ωcic j

)1−S i j
, (10)

where

ci =

yi if vi ∈ VL,

Zi otherwise.
(11)

In order to gain more accurate community identifi-
cation, the real labels are used to substitute the com-
munity categories of nodes in the training set when
calculating the node communities c. Consequently,
the estimated graph S is constructed by calculating the
probability Ωi j of linked edges between nodes vi and
v j.

Although the underlying structure of the estimated
graph S is consistent with the nature of the GNN, it is
unknown in what form the ideal graph structure exists.
Therefore, it is necessary to infer the graph structure

by combining as much external observation informa-
tion as possible. The following is an explanation of
how the estimated graph S relates to the set of obser-
vations O.

Possible observations are parameterized by two
variables: the true positive rate δ and the true neg-
ative rate ϕ. Where δ represents the probability of
detecting the genuine presence of an edge in an esti-
mated graph S and ϕ represents the probability of ob-
serving the absence of an edge in an estimated graph
S . The probability mapped to each observation is ex-
pressed through P(O | S , δ, ϕ), the condition expresses
the presence or absence of a contiguous edge in the es-
timated graph and assumes that the observations of the
edge are independent Bernoulli identically distributed
random variables, an assumption that proves to be fea-
sible [60]. We assume a total of M (i.e., |O|) observa-
tions and, on the basis of these observations, deter-
mine the presence of an edge Ei j times and no edge
M − Ei j times. On the basis of the preceding hypothe-
ses, the probability form is derived:

P(O | S , δ, ϕ) =
∏
i< j

[
δEi j (1 − δ)M−Ei j

]S i j
×

[
ϕEi j (1 − ϕ)M−Ei j

]1−S i j
,

(12)
if the estimated graph S contains an edge, then S i j =

1.
The procedure for obtaining the estimated graph S

and mapping it to the observation set O is outlined.
However, it is challenging to directly calculate the
posterior probability P (S ,Ω, δ, ϕ | O,Z,YL) of the es-
timated graph S . In the following part, the use of
Bayesian methods to determine the posterior prob-
ability of the estimated graph S is described. The
Bayesian inference is expressed as follows:

P (S ,Ω, δ, ϕ | O,Z,YL) =
P(O | S , δ, ϕ)P (S | Ω,Z,YL) P(Ω)P(δ)P(ϕ)

P (O,Z,YL)
, (13)

wherein the probability of each parameter is assumed
to be independent.

By summing all possible values of the estimated
graph S , equations for the posterior probabilities of
the parameters Ω, δ, and ϕ can be obtained:

P (Ω, δ, ϕ | O,Z,YL) =
∑

S

P (S ,Ω, δ, ϕ | O,Z,YL) . (14)

Maximizing the posterior probabilities of the pa-
rameters Ω, δ, and ϕ yields the maximum a posteri-
ori (MAP) estimations of these parameters. On this
basis, the symmetric adjacency matrix Q of the esti-
mated graph S can be computed.

Qi j =
∑

S

q(S)S i j, (15)

where the symmetric adjacency matrix Qi j represents
the posterior probability of the existence of an edge
between nodes i and j and the confidence level of this
edge.

4.5. Iterative optimization
The convolution module parameters ϑ and the pre-

dicted symmetric adjacency matrix Q are interdepen-
dent. Consequently, iterative optimization is challeng-
ing. The aforementioned issues are overcome by em-
ploying an alternate optimization of the parameters ϑ
and Q.

Jo
urn

al
Pre-

pro
of

10 Zhaowei Liu et al.

4.5.1. Update ϑ
The two output features ZCG and ZCQ are further

constrained to increase their commonality in order
to capture their shared information, and the similar-
ity matrix of the aforesaid two output features is ex-
pressed as:

LG = ‖ZCG‖2 · ‖ZCG‖
T
2 , (16)

LQ =
∥∥∥ZCQ

∥∥∥
2 ·

∥∥∥ZCQ

∥∥∥T
2 . (17)

To highlight their commonalities, the following
constraints are generated:

Lc =
∥∥∥LG − LQ

∥∥∥2
F . (18)

Since the two output features ZG and ZCG are
learned from the same graph (the original topological
graph G), the Hilbert-Schmidt Independence Criterion
(HSIC) [61] is applied, a compact and efficient inde-
pendence measure theory, to ensure that their different
information is captured. In machine learning-related
literature, the usefulness of the idea has been demon-
strated [62, 63]. Constraining the aforementioned two
output features by HSIC is stated as:

HS IC (ZG,ZCG) = (n − 1)−2 tr (RKGRKCG) , (19)

where KG and KCG are Gram matrices with kG,i j =

kG

(
zi

G, z
j
G

)
and kCG,i j = kCG

(
zi

CG, z
j
CG

)
characteristics,

respectively, and R = I −
[(

eeG
)
/n

]
, where I is a unit

matrix and e is a column vector consisting of a single
element. The inner product kernel functions of KG and
KCG are employed in the implementation.

The two output features ZQ and ZCQ are learned
in the same graph (estimation graph Q), and their
HS IC

(
ZQ,ZCQ

)
is identical to the approach applied

to the output features ZG and ZCG.
To capture personality information, the following

constraints are generated:

Lp = HS IC (ZG,ZCG) + HS IC
(
ZQ,ZCQ

)
. (20)

Next, the predicted features Z generated from Equa-
tion 8 are applied to the linear transform and so f tmax
function in order to express the predicted Ẑ of the
training node VL as follows:

Ẑ = so f tmax(W · Z + b). (21)

We concentrated on the semi-supervised node clas-
sification problem, evaluating the cross-entropy error
of prediction Ẑ on all training nodes VL:

Ll = −
∑
vi∈VL

Yi ln Ẑi. (22)

Finally, the model’s global objective function can
be obtained using the following equation:

Lϑ = Ll + µLc + τLp, (23)

where µ and τ represent the parameters for the two
constraint terms Lc and Lp. For the overall objective
function Lϑ, stochastic gradient descent can be used
to learn the model’s parameters ϑ.

4.5.2. Update Q
In recent studies, some researchers [64] have uti-

lized the expectation maximization (EM) algorithm
[65, 66] to efficiently train the joint distribution of ob-
ject labels in the field of GNNs, achieving satisfactory
results. In order to optimize the symmetric adjacency
matrix Q, the EM algorithm and maximized Equation
14 are also employed.

E-step (a.k.a., inference procedure). Direct maxi-
mization of Equation 14 is typically difficult to solve.
Hence, Equation 14 is solved using Jensen’s inequality
as follows:

log P (Ω, δ, ϕ | O,Z,YL) ≥
∑

S

q(S) log
P (S ,Ω, δ, ϕ | O,Z,YL)

q(S)
,

(24)
where q (S) is any nonnegative function of the esti-

mated graph S fulfilling
∑

S q(S) = 1 and is a proba-
bility distribution on the estimated graph S .

Maximizing the right side of equation 24 necessi-
tates that the equation hold true and can be derived as
follows:

q(S) =
P (S ,Ω, δ, ϕ | O,Z,YL)∑
S P (S ,Ω, δ, ϕ | O,Z,YL)

. (25)

By combining Equation 10 and Equation 12 into
Equation 25 and eliminating the constants from the
fraction, the following expression for q (S) is ob-
tained:

q(S) =

∏
i< j

[
Ωcic j δ

Ei j (1 − δ)M−Ei j
]S i j

[(
1 −Ωcic j

)
ϕEi j (1 − ϕ)M−Ei j

]1−S i j

∑
S
∏

i< j

[
Ωcic j δ

Ei j (1 − δ)M−Ei j
]S i j

[(
1 −Ωcic j

)
ϕEi j (1 − ϕ)M−Ei j

]1−S i j

=
∏
i< j

[
Ωcic j δ

Ei j (1 − δ)M−Ei j
]S i j

[(
1 −Ωcic j

)
ϕEi j (1 − ϕ)M−Ei j

]1−S i j

Ωcic j δ
Ei j (1 − δ)M−Ei j +

(
1 −Ωcic j

)
ϕEi j (1 − ϕ)M−Ei j

.

(26)

In the E-step, fix the parameters Ω, δ, ϕ to maximize
q (S). Then, further maximizing the right-hand side of
Equation 24 will provide us with an estimate of MAP.

M-step (a.k.a., learning procedure). Differentiation
yields the maximum of the parameters. Taking the
derivatives of the right-hand side of Equation 24 while
holding q (S) constant and assuming uniform prior
yields, the following is obtained:∑

S

q(S)
∑
i< j

(
S i j

Ωcic j

−
1 − S i j

1 −Ωcic j

)
= 0, (27)

∑
S

q(S)
∑
i< j

S i j

(
Ei j

δ
−

M − Ei j

1 − δ

)
= 0, (28)

∑
S

q(S)
∑
i< j

(
1 − S i j

) (Ei j

ϕ
−

M − Ei j

1 − ϕ

)
= 0, (29)

where Equations 27, 28 and 29 represent the greatest
a posteriori estimates of Ω, δ, and ϕ, respectively.

Specifically, with respect to the specific calculation,
the probability Ωab of the existence of an edge for
communities a and b is calculated by averaging the

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 11

probabilities of each edge between all nodes in these
two communities, denoted as:

Ωab =

 ψab
φaφb

if a , b,
2ψaa

φa(φa−1) otherwise,
(30)

where φa denotes the number of nodes in community
a, and ψab is the sum of the probability of the existence
of edges between nodes in communities a and b on the
neighbor matrix Q. For the specific calculation of δ
and ϕ, denoted as:

δ =

∑
i< j Qi jEi j

M
∑

i< j Qi j
, (31)

ϕ =

∑
i< j

(
1 − Qi j

)
Ei j

M
∑

i< j

(
1 − Qi j

) . (32)

To determine the value of the symmetric adjacency
matrix Q, substitute the equation 26 derived in E-step
into equation 15, denoted as follows:

Qi j =
Ωcic jδ

Ei j (1 − δ)M−Ei j

Ωcic jδ
Ei j (1 − δ)M−Ei j +

(
1 −Ωcic j

)
ϕEi j (1 − ϕ)M−Ei j

.

(33)

Calculating the posterior distribution q (S) can be
simplified by determining the value of the symmetric
adjacency matrix Qi j:

q(S) =
∏
i< j

Qsi j

i j

(
1 − Qi j

)1−si j
. (34)

In other words, the probability distribution on the
estimated graph is the product of the independent
Bernoulli distributions of the individual edges, where
the Bernoulli parameter Qi j represents the uncertainty
in both the structure of the graph and the structure it-
self.

In M-step, the parameters Ω, δ, ϕ are learned with
q (S) held constant. Consequently, it is natural to em-
ploy an EM algorithm to complete the alternating cal-
culation of parameter values Ω, δ, ϕ and the posterior
distribution q (S) on the graph structure, and to repeat
the iterative process until convergence.

Post-processing. The estimated symmetric adja-
cency matrix Q expresses the likelihood of edges link-
ing all nodes. To increase the quality of the generated
nodes’ edges, the sparse symmetric adjacency matrix
Qs is created by setting a threshold γ to mask off

smaller-than-threshold elements from Q. This matrix
is denoted as:

QS
i j =

{
Qi j if Qi j > γ,
0 otherwise . (35)

Algorithm 1 AMBGAT

Input: original topology graph GO, feature graph GF ,
feature matrix A, labels YL, threshold λ, γ, itera-
tions {ρI , ρL}, parameter µ, τ, k.

Output: estimated graph Qs, model parameters ϑ.
1: Initialization: initialize parameter δ, ϕ, ϑ,Ω and

update ϑ after initializing observation set O with
G and K;

2: for i = 1 to ρI do
3: while

∣∣∣δ − δold
∣∣∣ > λ or

∣∣∣ϕ − ϕold
∣∣∣ > λ do

4: % Graph Estimator Training
5: Ωold = Ω, δold = δ, ϕold = ϕ;
6: Calculate Ω, δ and ϕ by eq.(30), eq.(31),

eq.(32), respectively;
7: Update Q by eq.(33);
8: end while
9: Using the threshold γ to obtain Qs by eq.(35);

10: Replace the estimated graph by Qs;
11: for l = 1 to ρL do
12: % Classifiers Training
13: Calculating predictions by eq.(21);
14: Update ϑ by eq.(23);
15: end for
16: end for
17: return Qs and ϑ.

4.5.3. Algorithm description
Based on the preceding criteria for alternate itera-

tive optimization of parameters ϑ and Q, Algorithm
1 describes the resulting algorithm. Specifically, the
model first enters the preprocessing phase, which ini-
tializes all parameters at random before generating the
observation set O. For the first iteration optimization,
the estimation graph Q is not used, as the first itera-
tion cannot provide additional information that would
cause bias in the estimation graph Q. As the initial in-
put, a reliable feature graph (computed from the fea-
tures of the original nodes) and the original topology
graph are employed to initialize the observation set O.
Next, the symmetric adjacency matrix Qs is estimated
from the observation set O, which in turn helps the
optimization of the model parameters ϑ. More pre-
cise model parameters ϑ can produce more accurate
observations for graph estimation Qs. Finally, until
convergence is reached, this alternating iterative strat-
egy optimizes the model parameters ϑ and estimated
graph Qs positively.

5. Experiments

Extensive tests are conducted in this section to de-
termine the efficacy of AMBGAT for the account
classification task in an Ethernet transaction network.
First, the experimental setting is discussed, including
the dataset, baseline, and implementation particulars.
Then, AMBGAT is compared to previous approaches.
Next, multiple variants of AMBGAT are compared

Jo
urn

al
Pre-

pro
of

12 Zhaowei Liu et al.

Table 5
Node classification results. (index: ACC and Macro-F1; bold:
best)

Algorithm 10 labels/class 20 labels/class 40 labels/class
ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

Deepwalk 0.271 0.267 0.392 0.373 0.434 0.428
Chebyshev 0.265 0.263 0.427 0.402 0.438 0.422

GCN 0.397 0.374 0.435 0.413 0.478 0.451
GAT 0.417 0.406 0.502 0.468 0.581 0.505

MixHop 0.405 0.392 0.519 0.489 0.662 0.641
H2GCN 0.609 0.602 0.659 0.645 0.676 0.653

AM-GCN 0.709 0.703 0.748 0.747 0.796 0.769
GEN 0.715 0.718 0.734 0.726 0.835 0.813

CoGSL 0.742 0.726 0.805 0.769 0.842 0.837
kNN-GAT 0.545 0.537 0.584 0.561 0.628 0.586
AMBGAT 0.794 0.73 0.818 0.776 0.853 0.836

and the effectiveness of the adaptive mechanism is dis-
cussed, followed by an examination of the effects un-
der node attack. Finally, the hyperparameter experi-
ments of the model are deeply investigated.

5.1. Experimental setup

5.1.1. Dataset
Ethereum is now the leading platform for smart con-

tracts on the blockchain. Due to the anonymity of
Ethereum, the names of all users are concealed un-
der anonymous accounts, fostering illicit and crimi-
nal behavior. By embedding actual ethereum transac-
tion data into the ethereum transaction network, the
classification of ethereum accounts may be converted
into the classification of nodes in the ethereum trans-
action network. Classification of nodes in the Ether-
net transaction network can help us identify various
account kinds, hence enhancing the platform’s trans-
parency and auditability. The details of the Ethernet
dataset used to test the performance of our proposed
AMBGAT are detailed in Table 2. The experiments
focus on typical semi-supervised learning while divid-
ing multiple training sets, including specifying 10 la-
beled nodes, specifying 20 labeled nodes, and 40 la-
beled nodes for each category of the training set, and
always specifying 1000 labeled nodes for the test set.

5.1.2. Baselines
AMBGAT is compared with three exemplary

GNNs, including a network embedding algorithm, six
graph neural network-based algorithms, and two graph
structure learning algorithms.

• DeepWalk [53] is a traditional algorithm for net-
work embedding. It uses random walking to
gather context information and the co-occurrence
relationship between graph nodes to learn the
vector representation of nodes.

• Chebyshev [26] is a graph convolution network
employing the Chebyshev filter.

• GCN [23] is a semi-supervised graph embedding
method that learns the representation of nodes by
aggregating their neighbors.

Table 6
Node classification results. (index: Recall and Micro-F1; bold:
best)

Algorithm 10 labels/class 20 labels/class 40 labels/class
Recall Micro-F1 Recall Micro-F1 Recall Micro-F1

Deepwalk 0.315 0.279 0.446 0.398 0.457 0.493
Chebyshev 0.318 0.268 0.48 0.407 0.428 0.491

GCN 0.403 0.406 0.482 0.427 0.454 0.48
GAT 0.449 0.438 0.526 0.511 0.567 0.542

MixHop 0.445 0.405 0.524 0.52 0.702 0.719
H2GCN 0.634 0.655 0.712 0.66 0.706 0.716

AM-GCN 0.74 0.737 0.761 0.757 0.756 0.866
GEN 0.778 0.743 0.719 0.75 0.811 0.864

CoGSL 0.714 0.748 0.808 0.793 0.821 0.867
kNN-GAT 0.605 0.541 0.582 0.612 0.642 0.667
AMBGAT 0.788 0.754 0.851 0.797 0.857 0.871

• GAT [35] employs an attention mechanism to as-
sign different importance to different neighbors
of a node in the process of node feature aggrega-
tion.

• MixHop [67] is a high-order neighbor-focused
graph convolution neural network.

• H2GCN [57] is a graph neural network with
superior performance in networks with low ho-
mogeneity. Self-embedding and neighborhood-
embedding separation, with an emphasis on high-
order neighbors, comprise the key design.

• AM-GCN [62] is a graph convolution network
based on multi-views that learns node embedding
from node features and topology.

• GEN [38] is a GNN based on learning graph
structures. It adapts to the GNN mechanism
by constructing estimation graphs and estimat-
ing more precise graph structures by employing
a wide range of information.

• CoGSL [41] is a GNN based on graph structure
learning, which learns the minimally sufficient
graph structure to enhance GNN performance.

• kNN-GAT utilizes the kNN algorithm to build
the k-nearest neighbor graph of the dataset as the
adjacency matrix of the GAT to provide a more
exhaustive comparison.

5.1.3. Implementation details
The model’s implementation consists of two GAT

layers with the same three hidden layer dimensions
and output layer dimensions. Each layer contains
K = 4 attention-head computations. The model
employs a learning rate of 0.01, a weight attenua-
tion of 5e − 4, a dropout rate of 50% per layer, and
the Adam optimizer for training. In addition, select
the embedding dimension of the hidden layer from
{512, 768} and the embedding dimension of the out-
put layer from {16, 32, 128, 256} for the hyperpara-
metric option. The feature graph K ∈ {2, ..., 10},
threshold λ ∈ {0.1, 0.01, 0.001, 0.0001}, and threshold

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 13

1 0 2 0 4 00 . 7 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy
 A M B G A T - F
 A M B G A T - C
 A M B G A T - W O
 A M B G A T

(a) Accuracy

1 0 2 0 4 00 . 7 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

 A M B G A T - F
 A M B G A T - C
 A M B G A T - W O
 A M B G A T

(b) Macro-F1

1 0 2 0 4 0
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Re
cal

l

 A M B G A T - F
 A M B G A T - C
 A M B G A T - W O
 A M B G A T

(c) Recall

1 0 2 0 4 00 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Mi
cro

-F1

 A M B G A T - F
 A M B G A T - C
 A M B G A T - W O
 A M B G A T

(d) Micro-F1

Fig. 4. The results of AMGBAT and its three variants on the Ethereum transaction dataset.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

At
ten

tio
n V

alu
e

e p o c h s

 O r i g i n a l
 C o m m o n
 E s t i m a t e d

Fig. 5. The changing trend of attention during epochs.

γ ∈ {0.1 . . . 0.9}. Coefficient of consistency constraint
µ = {0.1, 0.001, 0.0001} and coefficient of indepen-
dence τ = {1e − 10, 5e − 9, 1e − 9, 5e − 8, 1e − 8}.
During the model training and testing, only the classi-
fication performance of 3785 labeled nodes is consid-
ered. The number of model optimization iterations is
set to 200, and the parameters with the highest veri-
fication accuracy are stored for testing. Five separate
trials with different random seeds were done for each
technique, and the average Accuracy (ACC), Macro-
F1 score, Recall and Micro-F1 score were reported to
evaluate the model’s performance.

5.2. Node classification

The performance of AMBGAT was evaluated for a
semi-supervised node classification task on the Ether-
net trading network, and the results are shown in Ta-
bles 5 and 6. The scenario of randomly assigning 10,
20, and 40 genuine labels to each class of the dataset
is examined. With 10 and 20 labels assigned to each
class, the training set is comprised of the top 10 and
20 labels in the case of 40 partitions, while the test set
remains unchanged.

Based on the configuration described above, the fol-
lowing observations can be made:

• The proposed AMBGAT outperforms other base-
line methods for various true label rates, indicat-
ing that the graph estimation model can improve
the aggregation capability of GNNs by learning

topologies that correspond to the ground truth,
thereby enhancing the robustness of node clas-
sification performance.

• The enormous performance advantage of AMB-
GAT over traditional GAT suggests a synergistic
optimization and mutual reinforcement between
the graph structure estimator and feature learn-
ing.

• Our performance is more noticeable compared to
kNN-GAT, indicating that Bayesian is superior
to k-NN in predicting the ground-truth-compliant
graph structure, hence demonstrating the need for
Bayesian inference to improve the classification
capacity of nodes.

• Compared to existing graph structure learn-
ing frameworks, our performance improvement
demonstrates that AMBGAT is effective on
Ethereum trade networks with low homogeneity
and is able to learn the most pertinent node fea-
ture information for the node classification task.

5.3. Ablation analysis
Examine AMBGAT and its three versions against

the Ethereum transaction dataset to validate the
model’s plausibility and validity.

• AMBGAT-F: Extract feature information from
the estimated graph using only the personality
convolution module.

• AMBGAT-C: Extract common features from the
original and estimated graphs using only the
common convolution module.

• AMBGAT-WO: The individual personality con-
volution modules are employed to extract the fea-
tures from the respective graphs, rather than the
common convolution module.

Figure 4 demonstrates: (1) AMBGAT outperforms
the other three examples on the Ethereum transaction
dataset, demonstrating the effectiveness of learning
both the personality and common convolution infor-
mation on the estimated graph. (2) AMBGAT outper-
forms AMBGAT-C, indicating that meaningful feature
information can be learned in both graph structures in-
dependently. (3) The performance of AMBGAT-F is

Jo
urn

al
Pre-

pro
of

14 Zhaowei Liu et al.

not ideal, indicating that the original graph structure
still contains useful information.

5.4. Analysis of adaptive mechanism

To determine the efficacy of the adaptive mecha-
nism described in subsection 4.2, which is used to ex-
tract the information most pertinent to the node labels,
the attention distribution trends of the original graph,
the estimated graph, and their common information
are analyzed.

Figure 5 depicts the analysis of the mean and stan-
dard deviation change process of attention values dur-
ing model training at 40 label rates on the Ethernet
transaction dataset. The X-axis represents the change
in epoch during the first iteration of model parameter
optimization, while the Y-axis represents the weight of
the attention values. As the training epoch advances,
the attention values of the original graph, the estimated
graph, and their combination diverge. The attention
value of the estimated graph continues to increase as
training progresses, while the attention value of the
real graph continues to decrease. This is compatible
with the experimental view of evaluating the Ether-
net transaction network, in which the original Ethernet
transaction network is less homogeneous and the esti-
mated graph structure is more homogeneous and better
suited to the classification task. In summary, this sec-
tion’s tests demonstrate that the proposed model may
adaptively assign a larger attention value to the em-
bedding on the estimated graph and the embedding on
the original graph based on their relative relevance.

5.5. Robustness analysis

In this subsection, the defensive performance of
several models against the Ethereum transaction
dataset is assessed. Specifically, according to the ap-
proach of [68], the edges of the Ethereum transac-
tion dataset are attacked, and random additions and
deletions are made to the edges. GNNs that support
structure learning are typically more robust than other
GNNs because they are able to learn graph structures
that are actually true. The poisoning attack [69] is se-
lected. First, an attacked Ethereum trading network is
constructed, and then it is utilized to train the model.
GAT is chosen as the representative of the conven-
tional GNN model, and GEN and CoGSL as the rep-
resentatives of the graph structure learning model.

For the addition of edges, the original Ethereum
transaction dataset is randomly added with 25%, 50%,
and 75% of the original number of edges (if there is
no such edge). For the deletion of edges, 5%, 10%,
and 15% of the edges in the original Ethereum trans-
action dataset are randomly deleted without adding ad-
ditional isolated nodes. In addition, since both CoGSL
and the proposed AMBGAT need two inputs at the be-
ginning of training, in order to ensure accurate evalua-
tion, both inputs are attacked by the same percentage.

All experiments were trained five times, and the aver-
age accuracy was reported, as shown in figures 6 and
7. Furthermore, AMBGAT-o and AMBGAT-f indicate
that the input of the original graph and the input of the
feature graph are attacked, respectively, while AMB-
GAT indicates that both inputs are attacked.

Compared with other models, the three cases of
AMBGAT achieved better results in both scenarios.
GAT performance is poor in the scene where edges
are added. It is speculated that simple graph neural
networks may not be able to better deal with mislead-
ing additional random noise. It is also found that with
the increase of disturbance, the performance gap be-
comes more obvious, which indicates that AMBGAT
is more effective in identifying accounts with camou-
flage ability in the Ethereum transaction network.

5.6. Sensitivity of hyper-parameters

In this subsection, the effects of hyperparameter
changes on the performance of the model on the
Ethereum transaction dataset are investigated, includ-
ing the coefficient k in the feature graph, the threshold
λ in the EM algorithm, the threshold γ in Equation 35,
the consistency coefficient µ, and the independence
coefficient τ in Equation 23, for label rates of 10, 20,
and 40, respectively. Adjusting k between 2 and 10,
the threshold λ between 1e − 5 and 0.1, the threshold
γ between 0.1 and 0.9, the coefficient µ between 0 and
10000, and the coefficient τ between 0 and 1e−4. The
experimental outcomes are depicted in Figures 8 and
9.

Coefficient k within a feature graph. The results
indicate that when k goes from 2 to 10, the model per-
formance increases and subsequently decreases. This
may be because a small value of k leads to informa-
tion loss, whereas a large value of k introduces noisier
edges.

Threshold λ is utilized by the EM algorithm. The
threshold value λ has an impact on the convergence
rate of the employed EM algorithm. The optimal per-
formance of the model is reached when the threshold
λ is approximately 0.01; any other value influences
model performance.

Threshold γ. The effect of the threshold γ is veri-
fied in Equation 35. If the threshold γ is set too high,
the estimated graph structure disregards more mean-
ingful edges, but if it is set too low, the estimated
graph structure includes more noisy edges. The op-
timal value of the curve with threshold γ may be ob-
served on the left side of the X-axis. This is typically
owing to the low homogeneity of the dataset, which
results in greater variations between observations and,
thus, lower edge confidence.

Consistency coefficient µ. The effect of the coef-
ficient µ is verified in Equation 23, and it is observed
that as the coefficient µ increases, the model perfor-
mance improves and then declines. The performance
of the model is ideal for the coefficient µ in the range

Jo
urn

al
Pre-

pro
of

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 15

0 2 5 5 0 7 50 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Ac
cur

acy

A d d i t i o n R a t e (%)

 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

(a) 10 labels

0 2 5 5 0 7 5
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

A d d i t i o n R a t e (%)
Ac

cur
acy

(b) 20 labels

0 2 5 5 0 7 50 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

A d d i t i o n R a t e (%)

Ac
cur

acy

(c) 40 labels

Fig. 6. Results from various models in scenarios where random edges are added.

0 5 1 0 1 50 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8
 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

D e l e t i o n R a t e (%)

Ac
cur

acy

(a) 10 labels

0 5 1 0 1 50 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

D e l e t i o n R a t e (%)

Ac
cur

acy

(b) 20 labels

0 5 1 0 1 50 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9
 G A T G E N C o G S L
 A M B G A T - o A M B G A T - f A M B G A T - a l l

D e l e t i o n R a t e (%)

Ac
cur

acy

(c) 40 labels

Fig. 7. Results from various models in scenarios where random edges are deleted.

2 4 6 8 1 0
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy

K

 1 0 2 0 4 0

(a) k in kNN

1 0 - 1 1 0 - 2 1 0 - 3 1 0 - 4 1 0 - 50 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy

T h r e s h o l d

 1 0 2 0 4 0

(b) Threshold π

0 . 2 0 . 4 0 . 6 0 . 8
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy

T h r e s h o l d

 1 0 2 0 4 0

(c) Threshold γ

0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy

 1 0 2 0 4 0

0 1 0 31 01 0 - 11 0 - 3
C o n s i s t e n c y c o e f f i c i e n t

(d) Coefficient µ

0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4
0 . 8 6

Ac
cur

acy

 1 0 2 0 4 0

0 1 0 - 9 1 0 - 7 1 0 - 5
C o n s i s t e n c y c o e f f i c i e n t

(e) Coefficient τ

Fig. 8. Hyper-parametric analysis of the Accuracy index.

2 4 6 8 1 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

K

 1 0 2 0 4 0

(a) k in kNN

1 0 - 1 1 0 - 2 1 0 - 3 1 0 - 4 1 0 - 5
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

T h r e s h o l d

 1 0 2 0 4 0

(b) Threshold π

0 . 2 0 . 4 0 . 6 0 . 8
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

T h r e s h o l d

 1 0 2 0 4 0

(c) Threshold γ

0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

C o n s i s t e n c y c o e f f i c i e n t

 1 0 2 0 4 0

1 0 - 30 1 0 - 1 1 0 1 0 3

(d) Coefficient µ

0 . 7 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0
0 . 8 2
0 . 8 4

Ma
cro

-F1

 1 0 2 0 4 0

1 0 - 51 0 - 71 0 - 90 C o n s i s t e n c y c o e f f i c i e n t

(e) Coefficient τ

Fig. 9. Hyper-parameter analysis of the Macro-F1 index.

Jo
urn

al
Pre-

pro
of

16 Zhaowei Liu et al.

of 1e − 4 to 1e + 4, while other values degrade its per-
formance.

Independence coefficient τ. The effect of coeffi-
cient τ is also verified in Equation 23, and experimen-
tal data indicates that the variation in model perfor-
mance is rather constant as coefficient τ varies.

6. Conclusion

In this work, a graph neural network is used to make
the Ethereum transaction platform safer and a better
place for Internet of Things devices to store and share
data. Specifically, an AMBGAT model based on graph
structure learning and multi-view ideas is proposed
to identify different types of accounts in Ethereum.
By analyzing the Ethereum transaction network, we
find that accounts with transaction relationships dif-
fer significantly from each other in terms of both label
and feature information. The analysis results motivate
the need to design a new graph structure to efficiently
learn node embedding information. Specifically, we
base our work on a node-level attentional convolution
module to learn to enhance features for nodes; esti-
mate the new graph structure based on Bayesian in-
ference while extracting specific and common embed-
ding information from the estimated graph, the origi-
nal topological graph, and their combinations; use the
attentional mechanism to learn the importance weights
of these three node embeddings; and finally fuse the
node feature information that is most beneficial to the
classification task. Numerous experiments confirm the
effectiveness of the proposed AMBGAT in the clas-
sification of Ethernet accounts and confirm that the
model possesses the ability to fuse out the node fea-
tures that are most beneficial for downstream tasks.
The Ethereum platform is intrinsically trustworthy and
tamper-proof. If platform fraud is eliminated, the
Ethereum trading platform will be recognized as a re-
liable platform for the storage and transaction of Inter-
net of Things data.

A future work should investigate the security of IoT
data interaction in greater depth and expand AMBGN
to the dynamic Ethereum transaction network contain-
ing timing information. However, it remains problem-
atic to learn the parameters of AMBGAT in a time-
series manner, so these considerations inspire a more
sophisticated training strategy for adaptation.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (62072391, 62066013),
Cooperation Project between School and Locality of
Yantai. The corresponding author is Zhaowei Liu.

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A sur-
vey, Computer networks 54 (15) (2010) 2787–2805.

[2] K. S. Mohamed, Iot cloud computing, storage, and data ana-
lytics, in: The Era of Internet of Things, Springer, 2019, pp.
71–91.

[3] Y. Wu, Y. Lyu, Y. Shi, Cloud storage security assessment
through equilibrium analysis, Tsinghua Science and Technol-
ogy 24 (6) (2019) 738–749.

[4] M. Iansiti, K. R. Lakhani, The truth about blockchain, Har-
vardbusiness review 95 (01) (2017) 118–127.

[5] C. Esposito, A. De Santis, G. Tortora, H. Chang, K.-K. R.
Choo, Blockchain: A panacea for healthcare cloud-based data
security and privacy?, IEEE Cloud Computing 5 (1) (2018)
31–37.

[6] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, L. Njilla,
Provchain: A blockchain-based data provenance architecture
in cloud environment with enhanced privacy and availability,
in: 2017 17th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, IEEE, 2017, pp. 468–477.

[7] H. Shafagh, L. Burkhalter, A. Hithnawi, S. Duquennoy, To-
wards blockchain-based auditable storage and sharing of iot
data, in: Proceedings of the 2017 on cloud computing security
workshop, 2017, pp. 45–50.

[8] G. Wood, et al., Ethereum: A secure decentralised generalised
transaction ledger, Ethereum project yellow paper 151 (2014)
(2014) 1–32.

[9] M. Yutaka, Y. Zhang, M. Sasabe, S. Kasahara, Using ethereum
blockchain for distributed attribute-based access control in the
internet of things, in: 2019 IEEE Global Communications
Conference, IEEE, 2019, pp. 1–6.

[10] A. Raj, K. Maji, S. D. Shetty, Ethereum for internet of things
security, Multimedia Tools and Applications 80 (12) (2021)
18901–18915.

[11] S. Mehedi, A. A. M. Shamim, M. B. A. Miah, Blockchain-
based security management of iot infrastructure with ethereum
transactions, Iran Journal of Computer Science 2 (3) (2019)
189–195.

[12] H. Sun, S. Hua, E. Zhou, B. Pi, J. Sun, K. Yamashita, Using
ethereum blockchain in internet of things: A solution for elec-
tric vehicle battery refueling, in: International Conference on
Blockchain, Springer, 2018, pp. 3–17.

[13] S. Lee, C. Yoon, H. Kang, Y. Kim, Y. Kim, D. Han, S. Son,
S. Shin, Cybercriminal minds: an investigative study of cryp-
tocurrency abuses in the dark web, in: 26TH ANNUAL NET-
WORK AND DISTRIBUTED SYSTEM SECURITY SYM-
POSIUM, Internet Society, 2019, pp. 1–15.

[14] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, Z. Zheng, Phish-
ing scams detection in ethereum transaction network, ACM
Transactions on Internet Technology 21 (1) (2020) 1–16.

[15] C. F. Torres, M. Steichen, et al., The art of the scam: De-
mystifying honeypots in ethereum smart contracts, in: 28th
USENIX Security Symposium (USENIX Security 19), 2019,
pp. 1591–1607.

[16] J. Wu, J. Liu, W. Chen, H. Huang, Z. Zheng, Y. Zhang, De-
tecting mixing services via mining bitcoin transaction net-
work with hybrid motifs, IEEE Transactions on Systems,
Man, and Cybernetics: Systems 52 (4) (2022) 2237–2249.
doi:10.1109/TSMC.2021.3049278.

[17] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, Y. Zhou, Detect-
ing ponzi schemes on ethereum: Towards healthier blockchain
technology, in: Proceedings of the 2018 world wide web con-
ference, 2018, pp. 1409–1418.

[18] H. Chen, M. Pendleton, L. Njilla, S. Xu, A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses, ACM
Computing Surveys (CSUR) 53 (3) (2020) 1–43.

[19] S. Farrugia, J. Ellul, G. Azzopardi, Detection of illicit ac-
counts over the ethereum blockchain, Expert Systems with
Applications 150 (2020) 113318.

[20] T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu,
K. Zhou, Y. Liu, Transaction-based classification and detec-
tion approach for ethereum smart contract, Information Pro-
cessing & Management 58 (2) (2021) 102462.

[21] W. Chen, X. Guo, Z. Chen, Z. Zheng, Y. Lu, Phishing
scam detection on ethereum: Towards financial security for
blockchain ecosystem., in: IJCAI, 2020, pp. 4506–4512.

Jo
urn

al
Pre-

pro
of

http://dx.doi.org/10.1109/TSMC.2021.3049278

Adaptive Multi-channel Bayesian Graph Attention Network for IoT Transaction Security 17

[22] Y. Wang, Z. Liu, J. Xu, W. Yan, Heterogeneous network rep-
resentation learning approach for ethereum identity identifica-
tion, IEEE Transactions on Computational Social Systems.

[23] T. N. Kipf, M. Welling, Semi-supervised classification with
graph convolutional networks, in: Proceedings of the Interna-
tional Conference on Learning Representations, 2017.

[24] P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic block-
models: First steps, Social networks 5 (2) (1983) 109–137.

[25] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks
and deep locally connected networks on graphs, in: Proceed-
ings of the International Conference on Learning Representa-
tions, 2014.

[26] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional
neural networks on graphs with fast localized spectral filter-
ing, Advances in Neural Information Processing Systems 29
(2016) 3844–3852.

[27] L. W. Hamilton, R. Ying, J. Leskovec, Inductive representa-
tion learning on large graphs, Advances in Neural Information
Processing Systems 30 (2017) 1024–1034.

[28] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with graph
convolutional networks via importance sampling, in: Proceed-
ings of the International Conference on Learning Representa-
tions, 2018.

[29] C. Wang, S. Pan, G. Long, X. Zhu, J. Jiang, Mgae: Marginal-
ized graph autoencoder for graph clustering, in: Proceedings
of the 2017 ACM on Conference on Information and Knowl-
edge Management, 2017, pp. 889–898.

[30] T. N. Kipf, M. Welling, Variational graph auto-encoders,
arXivpreprintarXiv : 1611.07308.

[31] C. Li, M. Welling, J. Zhu, B. Zhang, Graphical generative ad-
versarial networks, Advances in Neural Information Process-
ing Systems 31.

[32] W. Liu, P.-Y. Chen, F. Yu, T. Suzumura, G. Hu, Learning graph
topological features via gan, IEEE Access 7 (2019) 21834–
21843.

[33] Y. Li, R. Zemel, M. Brockschmidt, D. Tarlow, Gated graph se-
quence neural networks, in: Proceedings of International Con-
ference on Learning Representations, 2016.

[34] D. Xu, W. Cheng, D. Luo, X. Liu, X. Zhang, Spatio-temporal
attentive rnn for node classification in temporal attributed
graphs, in: International Joint Conference on Artificial Intelli-
gence, 2019, pp. 3947–3953.

[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
Y. Bengio, Graph attention networks, in: Proceedings of the
International Conference on Learning Representations, 2018.

[36] A. Salehi, H. Davulcu, Graph attention auto-encoders, in:
2020 IEEE 32nd International Conference on Tools with Arti-
ficial Intelligence, 2020, pp. 989–996.

[37] K. Do, T. Tran, T. Nguyen, S. Venkatesh, Attentional multil-
abel learning over graphs: a message passing approach, Ma-
chine Learning 108 (10) (2019) 1757–1781.

[38] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, X. Xie,
Graph structure estimation neural networks, in: Proceedings
of the Web Conference 2021, 2021, pp. 342–353.

[39] Y. Zhang, S. Pal, M. Coates, D. Ustebay, Bayesian graph con-
volutional neural networks for semi-supervised classification,
in: Proceedings of the AAAI Conference on Artificial Intelli-
gence, Vol. 33, 2019, pp. 5829–5836.

[40] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu,
H. Chen, W. Wang, Robust graph representation learning via
neural sparsification, in: International Conference on Machine
Learning, 2020, pp. 11458–11468.

[41] N. Liu, X. Wang, L. Wu, Y. Chen, X. Guo, C. Shi, Compact
graph structure learning via mutual information compression,
in: Proceedings of the ACM Web Conference 2022, 2022, pp.
1601–1610.

[42] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, J. Tang, Graph struc-
ture learning for robust graph neural networks, in: Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2020, pp. 66–74.

[43] J. You, R. Ying, J. Leskovec, Position-aware graph neural net-
works, in: International Conference on Machine Learning,
2019, pp. 7134–7143.

[44] S. Zhu, J. Li, H. Peng, S. Wang, L. He, Adversarial directed
graph embedding, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35, 2021, pp. 4741–4748.

[45] R. Li, Z. Liu, Y. Ma, D. Yang, S. Sun, Internet financial
fraud detection based on graph learning, IEEE Transactions
on Computational Social Systems.

[46] Z. Gu, D. Lin, J. Zheng, J. Wu, C. Hu, Deep learning-based
transaction prediction in ethereum, in: International Confer-
ence on Blockchain and Trustworthy Systems, Springer, 2021,
pp. 30–43.

[47] J. Liu, J. Zheng, J. Wu, Z. Zheng, Fa-gnn: Filter and augment
graph neural networks for account classification in ethereum,
IEEE Transactions on Network Science and Engineering.

[48] Q. Yuan, B. Huang, J. Zhang, J. Wu, H. Zhang, X. Zhang,
Detecting phishing scams on ethereum based on transaction
records, in: 2020 IEEE International Symposium on Circuits
and Systems, IEEE, 2020, pp. 1–5.

[49] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, Z. Zheng,
Who are the phishers? phishing scam detection on ethereum
via network embedding, IEEE Transactions on Systems, Man,
and Cybernetics: Systems.

[50] W. Chen, X. Guo, Z. Chen, Z. Zheng, Y. Lu, Phishing
scam detection on ethereum: towards financial security for
blockchain ecosystem, in: Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences
on Artificial Intelligence, 2021, pp. 4506–4512.

[51] H. Wen, J. Fang, J. Wu, Z. Zheng, Transaction-based hid-
den strategies against general phishing detection framework
on ethereum, in: 2021 IEEE International Symposium on Cir-
cuits and Systems, IEEE, 2021, pp. 1–5.

[52] Z. Yuan, Q. Yuan, J. Wu, Phishing detection on ethereum via
learning representation of transaction subgraphs, in: Interna-
tional Conference on Blockchain and Trustworthy Systems,
Springer, 2020, pp. 178–191.

[53] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning
of social representations, in: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2014, pp. 701–710.

[54] A. Grover, J. Leskovec, node2vec: Scalable feature learning
for networks, in: Proceedings of the 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and data min-
ing, 2016, pp. 855–864.

[55] Z. Meng, S. Liang, H. Bao, X. Zhang, Co-embedding at-
tributed networks, in: Proceedings of the twelfth ACM inter-
national conference on web search and data mining, 2019, pp.
393–401.

[56] T. Huang, Y. Zhang, J. Wu, J. Fang, Z. Zheng, Mg-
gcn: Fast and effective learning with mix-grained aggrega-
tors for training large graph convolutional networks, ArXiv
abs/2011.09900.

[57] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, D. Koutra,
Beyond homophily in graph neural networks: Current limita-
tions and effective designs, Advances in Neural Information
Processing Systems 33 (2020) 7793–7804.

[58] M. E. J. Newman, Networks: An Introduction, Oxford Uni-
versity Press, 2010.

[59] B. Karrer, M. E. Newman, Stochastic blockmodels and com-
munity structure in networks, Physical review E 83 (1) (2011)
016107.

[60] M. E. Newman, Network structure from rich but noisy data,
Nature Physics 14 (6) (2018) 542–545.

[61] L. Song, A. Smola, A. Gretton, K. M. Borgwardt, J. Bedo, Su-
pervised feature selection via dependence estimation, in: In-
ternational Conference on Machine Learning, 2007, pp. 823–
830.

[62] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, J. Pei, Am-
gcn: Adaptive multi-channel graph convolutional networks,
in: Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2020, pp.
1243–1253.

[63] D. Niu, J. G. Dy, M. I. Jordan, Multiple non-redundant spec-
tral clustering views, in: International Conference on Machine
Learning, 2010, pp. 831–838.

Jo
urn

al
Pre-

pro
of

18 Zhaowei Liu et al.

[64] M. Qu, Y. Bengio, J. Tang, Gmnn: Graph markov neural
networks, in: International conference on machine learning,
PMLR, 2019, pp. 5241–5250.

[65] R. M. Neal, G. E. Hinton, A view of the em algorithm that
justifies incremental, sparse, and other variants, in: Learning
in graphical models, Springer, 1998, pp. 355–368.

[66] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum like-
lihood from incomplete data via the em algorithm, Journal
of the Royal Statistical Society: Series B (Methodological)
39 (1) (1977) 1–22.

[67] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard,
K. Lerman, H. Harutyunyan, G. Ver Steeg, A. Galstyan, Mix-
hop: Higher-order graph convolutional architectures via spar-
sified neighborhood mixing, in: International Conference on
Machine Learning, 2019, pp. 21–29.

[68] Y. Chen, L. Wu, M. Zaki, Iterative deep graph learning
for graph neural networks: Better and robust node embed-
dings, Advances in Neural Information Processing Systems
33 (2020) 19314–19326.

[69] T. Wu, H. Ren, P. Li, J. Leskovec, Graph information bottle-
neck, Advances in Neural Information Processing Systems 33
(2020) 20437–20448.

Jo
urn

al
Pre-

pro
of

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Jo
urn

al
Pre-

pro
of

