
Under review as a conference paper at ICLR 2023

LEARN THE TIME TO LEARN: REPLAY SCHEDULING
IN CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Replay methods are known to be successful at mitigating catastrophic forgetting in
continual learning scenarios despite having limited access to historical data. How-
ever, storing historical data is cheap in many real-world settings, yet replaying all
historical data is often prohibited due to processing time constraints. In such set-
tings, we propose that continual learning systems should learn the time to learn
and schedule which tasks to replay at different time steps. We first demonstrate
the benefits of our proposal by using Monte Carlo tree search to find a proper
replay schedule, and show that the found replay schedules can outperform fixed
scheduling policies when combined with multiple replay methods in various con-
tinual learning settings. Additionally, we propose a framework for learning replay
scheduling policies with reinforcement learning. We show that the learned poli-
cies can generalize better in new continual learning scenarios compared to equally
replaying all seen tasks, without added computational cost. Our study reveals the
importance of learning the time to learn in continual learning, which brings current
research closer to real-world needs.

1 INTRODUCTION

Many organizations deploying machine learning systems receive large volumes of data daily (Bailis
et al., 2017; Hazelwood et al., 2018). Although all historical data are stored in the cloud in practice,
retraining machine learning systems on a daily basis is prohibitive both in time and cost. In this
setting, the systems often need to continuously adapt to new tasks while retaining the previously
learned abilities. Continual learning (CL) methods (Delange et al., 2021; Parisi et al., 2019) address
this challenge where, in particular, replay methods (Chaudhry et al., 2019; Hayes et al., 2020) have
shown to be effective in achieving great prediction performance. Replay methods mitigate catas-
trophic forgetting by revisiting a small set of samples, which is feasible to process compared to
the size of the historical data. In the traditional CL literature, replay memories are limited due to
the assumption that historical data are not available. In real-world settings where historical data are
always available, the requirement of small memories remains due to processing time and cost issues.

Recent research on replay-based CL has focused on the quality of memory samples (Aljundi et al.,
2019b; Borsos et al., 2020; Chaudhry et al., 2019; Nguyen et al., 2017; Rebuffi et al., 2017; Yoon
et al., 2021) or data compression to increase the memory capacity (Hayes et al., 2020; Iscen et al.,
2020; Pellegrini et al., 2019). Most previous methods allocate equal memory storage space for
samples from old tasks, and replay the whole memory to mitigate catastrophic forgetting. However,
in life-long learning settings, this simple strategy would be inefficient as the memory must store
a large number of tasks. Furthermore, the commonly used uniform selection policy of samples to
revisit ignores the time of which tasks to learn again. This stands in contrast to human learning where
education methods focus on scheduling of learning and rehearsal of previous learned knowledge. For
example, spaced repetition (Dempster, 1989; Ebbinghaus, 2013; Landauer & Bjork, 1977), where
the time interval between rehearsal increases, has been shown to enhance memory retention.

We argue that finding the proper schedule of which tasks to replay in fixed memory settings is critical
for CL. To demonstrate our claim, we perform a simple experiment on the Split MNIST (Zenke et al.,
2017) dataset where each task consists of learning the digits 0/1, 2/3, etc. arriving in sequence. The
replay memory contains 10 samples from task 1 and can only be replayed while learning one of the
tasks. Figure 1 shows how the task performances progress over time when the memory is replayed at

1



Under review as a conference paper at ICLR 2023

1 2 3 4 5
70

80

90

100

Task

A
cc

ur
ac

y(
%

) ACC: 89.66%

1 2 3 4 5
70

80

90

100

Task

ACC: 93.85%

1 2 3 4 5
70

80

90

100

Task

ACC: 93.17%

1 2 3 4 5
70

80

90

100

Task

ACC: 94.49%
Task 1 Task 2
Task 3 Task 4
Task 5 Replay

Figure 1: Task accuracies on Split MNIST (Zenke et al., 2017) when replaying only 10 samples of
classes 0/1 at a single time step. The black vertical line indicates when replay is used. ACC denotes
the average accuracy over all tasks after learning Task 5. Results are averaged over 5 seeds. These
results show that the time to replay the previous task is critical for the final performance.

different tasks. In this example, the best average performance is achieved when the memory is used
when learning task 5. Note that choosing different time points to replay the same memory leads to
noticeably different classification performance. These results indicate that scheduling the time when
to apply replay can influence the final performance significantly of a CL system.

In this paper, we propose learning the time to learn for CL systems, in which we learn replay sched-
ules of which tasks to replay at different times inspired from human learning (Dempster, 1989). To
demonstrate the benefits of replay scheduling, we perform experiments in an ideal CL environment
where multiple trials are allowed to enable searching for the optimal replay schedule. We use Monte
Carlo tree search (MCTS) (Coulom, 2006) to find proper replay schedules, which are evaluated
by measuring the task performances of a network trained in a CL scenario in where the sched-
uled replay samples are used for reducing catastrophic forgetting. Furthermore, as using MCTS in
real-world large scale CL tasks is infeasible, we propose a framework using reinforcement learning
(RL) (Sutton & Barto, 2018) for learning replay scheduling policies. Our goal is to learn a general
policy that has implicitly explored task relationships during training, such that the policy can be
applied to mitigate catastrophic forgetting in new CL scenarios without additional training at test
time. We evaluate the learned policy by comparing its ability to schedule the replay tasks against
fixed scheduling policies, such as equally replaying all tasks. In summary, our contributions are:

• We propose a new CL setting where historical data is available while the processing time is limited,
in order to adjust current CL research closer to real-world needs (Section 3.1). In this new setting,
we introduce replay scheduling where we learn the time of which tasks to replay (Section 3.2).

• To demonstrate the benefits of replay scheduling, we apply MCTS in an ideal CL environment
where MCTS searches over a finite set of replay memories at every task (Section 3.2). We show
that the found replay schedules efficiently mitigate catastrophic forgetting across multiple bench-
marks for various memory selection and replay methods in various CL scenarios (Section 4.1).

• To enable replay scheduling in real-world CL scenarios, propose an RL-based framework for
learning policies that can mitigate catastrophic forgetting across different CL environments (Sec-
tion 3.3). We show that the learned policies can outperform equally replaying all tasks in CL
scenarios with new task orders and datasets unseen during training (Section 4.2).

2 RELATED WORK

In this section, we give a brief overview of various approaches in CL, especially replay methods.
We provide more details on the related work, including spaced repetition in human CL (Dempster,
1989; Hawley et al., 2008; Landauer & Bjork, 1977) and generalization in RL (Igl et al., 2019; Kirk
et al., 2021; Zhang et al., 2018a), in Appendix A. Traditional CL can be divided into three main ar-
eas, namely regularization-based, architecture-based, and replay-based approaches. Regularization-
based methods protect parameters influencing the performance on known tasks from wide changes
and use the other parameters for learning new tasks (Adel et al., 2019; Kao et al., 2021; Kirkpatrick
et al., 2017; Li & Hoiem, 2017; Nguyen et al., 2017; Schwarz et al., 2018). Architecture-based
methods mitigate catastrophic forgetting by maintaining task-specific parameters (Ebrahimi et al.,
2020; Mallya & Lazebnik, 2018; Rusu et al., 2016; Serra et al., 2018; Xu & Zhu, 2018; Yoon et al.,
2017). Replay methods mix samples from old tasks with the current dataset to mitigate catastrophic
forgetting, where the replay samples are stored in an external memory (Aljundi et al., 2019a;b; Bor-
sos et al., 2020; Chaudhry et al., 2019; Chrysakis & Moens, 2020; Hayes et al., 2019; 2020; Jin
et al., 2020; Lopez-Paz & Ranzato, 2017; Pellegrini et al., 2019; Rolnick et al., 2018; Verwimp

2



Under review as a conference paper at ICLR 2023

et al., 2021; Yoon et al., 2021). Selecting the time to replay old tasks has mostly been ignored in
the literature, with an exception in Aljundi et al. (2019a) which replays memory samples that would
most interfere with a foreseen parameter update. Our replay scheduling approach differs from the
above mentioned works since we focus on learning to select which tasks to replay. Nevertheless, our
scheduling can be combined with any selection strategy and replay method.

3 METHOD

Here, we describe our new problem setting of CL where historical data are available while the
processing time is limited when learning new tasks. In Section 3.1 and 3.2, we present the considered
problem setting, as well as our idea of learning schedules over which tasks to replay at different time
steps to mitigate catastrophic forgetting. Section 3.2 also describes how we use MCTS (Coulom,
2006) to study the benefits of replay scheduling in CL. In Section 3.3, we present an RL-based
framework for learning replay scheduling policies that can generalize to different CL scenarios.

3.1 PROBLEM SETTING

We focus on a slightly new setting in CL, where we assume that all historical data is available
for mitigating catastrophic forgetting since data storage is cheap. However, as this data volume is
typically huge, retraining on all historical data whenever the CL system must adapt to new tasks is
impractical. Therefore, we assume there are processing time constraints which limits the system to
sample a small replay memory from the historical data only once when adapting to new tasks. The
challenge becomes how to select which old tasks to fill the replay memory with, such that the CL
system achieves the best possible accuracy and minimize forgetting across all tasks.

The notation of our problem setting resembles the traditional CL setting for image classification. We
let the network fϕ, parameterized by ϕ, learn T tasks sequentially from the datasets D1, . . . ,DT

arriving one at a time. The t-th dataset Dt = {(x(i)
t , y

(i)
t )}Nt

i=1 consists of Nt samples where x
(i)
t

and y
(i)
t are the i-th data point and class label respectively. Furthermore, each dataset is split into a

training, validation, and test set, i.e., Dt = {D(train)
t ,D(val)

t ,D(test)
t }. The objective at task t is to

minimize the loss ℓ(fϕ(xt), yt) where ℓ(·) is the cross-entropy loss in our case.

We assume that historical data from old tasks are accessible at any task t. However, due to processing
time constraints, we can only use a small replay memory M of M historical samples for replay when
learning a new task. The challenge then becomes how to select the M replay samples to efficiently
retain knowledge of old tasks. We focus on selecting the samples on task-level by deciding on the
task proportion (p1, . . . , pt−1) of samples to fetch from each task, where pi ≥ 0 is the proportion of
M samples from task i to place in M and

∑t−1
i=1 pi = 1. To simplify the selection of which tasks to

replay, we construct a discrete set of possible task proportions that can be used for constructing M.

3.2 REPLAY SCHEDULING IN CONTINUAL LEARNING

In this section, we describe our setup for enabling the scheduling for selecting replay memories at
different time steps. We define a replay schedule as a sequence S = (p1, . . . ,pT−1), where the task
proportions pi = (p1, . . . , pT−1) for 1 ≤ i ≤ T − 1 are used for determining how many samples
from seen tasks with which to fill the replay memory at task i. We construct an action space with a
discrete number of choices of task proportions that can be selected at each task: At task t, we have
t − 1 historical tasks that we can choose samples from. We create t − 1 bins bt = [b1, . . . , bt−1]
and sample a task index for each bin bi ∈ {1, . . . , t − 1}. The bins are treated as interchangeable
and we only keep the unique choices. For example, at task 3, we have seen task 1 and 2, so the
unique choices of vectors are [1, 1], [1, 2], [2, 2], where [1, 1] indicates that all memory samples are
from task 1, [1, 2] indicates that half memory is from task 1 and the other half are from task etc.
We count the number of occurrences of each task index in bt and divide by t − 1 to obtain the task
proportion, i.e., pt = bincount(bt)/(t− 1). We round the number of replay samples from task i,
i.e., pi ·M , up or down accordingly to keep the memory size M fixed when filling the memory. From
this specification, we can build a tree of different replay schedules to evaluate with the network.

3



Under review as a conference paper at ICLR 2023

Task 1
∅

Task 2

Task 3

Task 4
· · · · · · · · · · · ·

Task 5
· · · · · · · · · · · · · · · · · · · · · · · ·

Figure 2: Tree-shaped action space of possible replay memories
of size M = 8 at every task for Split MNIST.

Figure 2 shows an example of
a replay schedule tree with Split
MNISTwhere the memory size
is M = 8. Each level corre-
sponds to a CL task, and we show
some examples of possible replay
memories in the tree that can be
evaluated at each task. A replay
schedule is represented as a path
traversal of different replay mem-
ory compositions from task 1 to
task 5. At task 1, the memory
M1 = ∅ is empty, while M2

is filled with samples from task
1 at task 2. The memory M3

can be composed with samples
from either task 1 or 2, or equally
fill M3 with samples from both
tasks. All possible paths in the
tree are valid replay schedules. We show three examples of possible schedules in Figure 2 for
illustration: the blue path represents a replay schedule where only task 1 samples are replayed. The
red path represents using memories with equally distributed tasks, and the purple path represents a
schedule where the memory is only filled with samples from the most previous task.

Monte Carlo Tree Search for Replay Schedules. The tree-shaped action space of task proportions
grows fast with the number of tasks. This complicates studying replay scheduling in datasets with
long task-horizons, where the action space is too large for using exhaustive searches. We propose
to use MCTS since it has been successful in applications with large action spaces (Browne et al.,
2012; Chaudhry & Lee, 2018; Silver et al., 2016). We apply MCTS in an ideal setting with multiple
rollouts allowed to demonstrate that replay scheduling can be essential for the final CL performance,
where MCTS concentrates the search in directions with promising outcomes in the CL environment.

Each replay memory composition in the action space corresponds to a node that MCTS can visit, as
can be seen in Figure 2. At level t, the node vt is related to a task proportion pt used for retrieving
a replay memory composition from the historical data at task t. One MCTS rollout corresponds
to traversing through all tree levels 1, ..., T to select the replay schedule S to use during the CL
training. Each task proportion pt from every visited node is stored in S during the rollout. When
reaching level T , we start the CL training and use S for constructing the replay memories at each
task. Next, we briefly outline the MCTS steps for performing the search (details in Appendix B.1):

• Selection. During a rollout, the current node vt either moves randomly to an unvisited child,
or selects the next child node vt+1 by evaluating the Upper Confidence Tree (UCT) (Kocsis &
Szepesvári, 2006) with the function from Chaudhry & Lee (2018):

UCT (vt, vt+1) = max(q(vt+1)) + C

√
2 log(n(vt))

n(vt+1)
, (1)

where q(·) is the reward function, C the exploration constant, and n(·) the number of node visits.
• Expansion. Whenever the current node vt has unvisited child nodes, the search tree is expanded

with one of the unvisited child nodes vt+1 selected with uniform sampling.
• Simulation and Reward. After expansion, the succeeding nodes are selected randomly until

reaching a terminal node vT . The task proportions from the visited rollout nodes constitutes the
replay schedule S. After training the network using S for replay, we calculate the reward for the
rollout given by r = 1

T

∑T
i=1 A

(val)
T,i , where A

(val)
T,i is the validation accuracy of task i at task T .

• Backpropagation. Reward r is backpropagated from the expanded node vt to the root v1, where
the reward function q(·) and number of visits n(·) are updated at each node.

3.3 POLICY LEARNING FRAMEWORK FOR REPLAY SCHEDULING

In this section, we present an RL-based framework for learning replay scheduling policies. We
focus on learning a general policy that can be applied in any CL scenario to mitigate catastrophic

4



Under review as a conference paper at ICLR 2023

forgetting to avoid re-training the policy for every new CL dataset, which would be useful in user
personalization applications. Our intuition is that there may exist general patterns regarding replay
scheduling, e.g., that tasks that are harder or have been forgotten should be replayed more often. We
aim to implicitly explore such task properties by using the task performances of the CL network as
states for the policy to select which tasks to replay. Representing the states with task performances
also enables transferring the learned policy to reduce forgetting in unseen CL environments. Next,
we present our modeling approach for learning the replay scheduling policies using RL.

CL Environment. We model the CL environments as Markov Decision Processes (Bellman, 1957)
(MDPs) where each MDP is represented as a tuple Ei = (Si,A, Pi, Ri, µi, γ) consisting of the
state space Si, action space A, state transition probability Pi(s

′|s, a), reward function Ri(s, a),
initial state distribution µi(s1), and discount factor γ. Each environment Ei contains a network
fϕ and task datasets D1:T where the t-th dataset is learned at time step t. The state st is defined
as the task accuracies At,1:t evaluated at task t, such that st = [At,1, ..., At,t, 0, ..., 0] where zero-
padding is used on future tasks. We obtain the states by evaluating the classifier on the validation
datasets to avoid overfitting the policy to the training data. We use the same action space as for
MCTS (see Section 3.2), such that at ∈ A corresponds to a task proportion pt used for sampling
the replay memory Mt. The state transition distribution Pi(s

′|s, a) represents the dynamics of the
environment, which depend on the initialization of fϕ and the task order in D1:T . We use a dense
reward defined as the average validation accuracies at task t, i.e., rt = 1

t

∑t
i=1 A

(val)
t,i , to ease

exploration in the action space. The goal for the agent is to maximize the rewards during an episode.

Policy Training and Evaluation. The policy interacts with the CL environments by selecting which
tasks the network fϕ should replay to mitigate catastrophic forgetting. The state st is obtained by
evaluating fϕ on the validation sets D(val)

1:t after learning task t. The action at is selected under the
policy πθ(a|st), parameterized by θ, which is converted into the task proportion pt for sampling the
replay memory Mt from the historical datasets. The network fϕ is trained on task t+1 while replay-
ing Mt, and we obtain the reward rt+1 and the next state st+1 by evaluating fϕ on the validation
sets D(val)

1:t+1. The collected transitions (st, at, rt+1, st+1) are used for updating the policy, and a new
episode starts after fϕ has learned the final task T . We let the policy interact with multiple training
environments E(train) = {Ei}Ki=1 sampled from a distribution of CL environments, i.e., Ei ∼ p(E).
To generate diverse CL environments, we let each Ei have different network initializations of fϕ and
task orders in the datasets. Our goal is to learn a general replay scheduling policy that can be applied
in new CL environments to mitigate catastrophic forgetting. Hence, in Section 4.2, we evaluate the
policy in CL environments with new task orders or datasets unseen during training. The policy is
applied for only a single CL episode without additional training in the test environment.

4 EXPERIMENTS

In this section, we present the experimental results to show the importance of replay scheduling in
CL. First, we demonstrate the benefits with replay scheduling by using MCTS for finding replay
schedules in Section 4.1. Thereafter, we evaluate our RL-based framework using DQN (Mnih et al.,
2013) and A2C (Mnih et al., 2016) for learning policies that generalize to new CL scenarios in
Section 4.2. Full details on experimental settings and additional results are in Appendix D and E.

4.1 RESULTS ON REPLAY SCHEDULING WITH MONTE CARLO TREE SEARCH

In this section, we show the benefits of replay scheduling in single CL environments using MCTS.
We perform extensive evaluation where we apply MCTS with different memory selection and replay
methods, varying memory sizes in different CL settings (Van de Ven & Tolias, 2019), and show the
potential efficiency of replay scheduling in a tiny memory setting.

Experimental Setup. We conduct experiments on several CL benchmark datasets: Split
MNIST (LeCun et al., 1998; Zenke et al., 2017), FashionMNIST (Xiao et al., 2017), Split notM-
NIST (Bulatov, 2011), Permuted MNIST (Goodfellow et al., 2013), and CIFAR-100 (Krizhevsky &
Hinton, 2009), and Split miniImagenet (Vinyals et al., 2016). We use a 2-layer MLP with 256 hidden
units for Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. F We apply

5



Under review as a conference paper at ICLR 2023

Table 1: Performance comparison between MCTS (Ours) and the baselines with various memory
selection methods, namely uniform sampling, k-means, and Mean-of-Features (MoF).

Split MNIST Split FashionMNIST Split notMNIST
Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 99.75 ± 0.06 0.01 ± 0.06 99.34 ± 0.08 -0.01 ± 0.14 96.12 ± 0.57 -0.21 ± 0.71

Uniform

Random 94.91 ± 2.52 -6.13 ± 3.16 95.89 ± 2.03 -4.33 ± 2.55 91.84 ± 1.48 -5.37 ± 2.12
ETS 94.02 ± 4.25 -7.22 ± 5.33 95.81 ± 3.53 -4.45 ± 4.34 91.01 ± 1.39 -6.16 ± 1.82
Heur-GD 96.02 ± 2.32 -4.64 ± 2.90 97.09 ± 0.62 -2.82 ± 0.84 91.26 ± 3.99 -6.06 ± 4.70
MCTS 97.93 ± 0.56 -2.27 ± 0.71 98.27 ± 0.17 -1.29 ± 0.20 94.64 ± 0.39 -1.47 ± 0.79

k-means

Random 92.65 ± 1.38 -8.96 ± 1.74 93.11 ± 2.75 -7.76 ± 3.42 93.11 ± 1.01 -3.78 ± 1.43
ETS 92.89 ± 3.53 -8.66 ± 4.42 96.47 ± 0.85 -3.55 ± 1.07 93.80 ± 0.82 -2.84 ± 0.81
Heur-GD 96.28 ± 1.68 -4.32 ± 2.11 95.78 ± 1.50 -4.46 ± 1.87 91.75 ± 0.94 -5.60 ± 2.07
MCTS 98.20 ± 0.16 -1.94 ± 0.22 98.48 ± 0.26 -1.04 ± 0.31 93.61 ± 0.71 -3.11 ± 0.55

MoF

Random 96.96 ± 1.34 -3.57 ± 1.69 96.39 ± 1.69 -3.66 ± 2.17 93.09 ± 1.40 -3.70 ± 1.76
ETS 97.04 ± 1.23 -3.46 ± 1.50 96.48 ± 1.33 -3.55 ± 1.73 92.64 ± 0.87 -4.57 ± 1.59
Heur-GD 96.46 ± 2.41 -4.09 ± 3.01 95.84 ± 0.89 -4.39 ± 1.15 93.24 ± 0.77 -3.48 ± 1.37
MCTS 98.37 ± 0.24 -1.70 ± 0.28 97.84 ± 0.32 -1.81 ± 0.39 94.62 ± 0.42 -1.80 ± 0.56

Permuted MNIST Split CIFAR-100 Split miniImagenet
Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 95.34 ± 0.13 0.17 ± 0.18 84.73 ± 0.81 -1.06 ± 0.81 74.03 ± 0.83 9.70 ± 0.68

Uniform

Random 72.59 ± 1.52 -25.71 ± 1.76 53.76 ± 1.80 -35.11 ± 1.93 49.89 ± 1.03 -14.79 ± 1.14
ETS 71.09 ± 2.31 -27.39 ± 2.59 47.70 ± 2.16 -41.69 ± 2.37 46.97 ± 1.24 -18.32 ± 1.34
Heur-GD 76.68 ± 2.13 -20.82 ± 2.41 57.31 ± 1.21 -30.76 ± 1.45 49.66 ± 1.10 -12.04 ± 0.59
MCTS 76.34 ± 0.98 -21.21 ± 1.16 56.60 ± 1.13 -31.39 ± 1.11 50.20 ± 0.72 -13.46 ± 1.22

k-means

Random 71.91 ± 1.24 -26.45 ± 1.34 53.20 ± 1.44 -35.77 ± 1.31 49.96 ± 1.46 -14.81 ± 1.18
ETS 69.40 ± 1.32 -29.23 ± 1.47 47.51 ± 1.14 -41.77 ± 1.30 45.82 ± 0.92 -19.53 ± 1.10
Heur-GD 75.57 ± 1.18 -22.11 ± 1.22 54.31 ± 3.94 -33.80 ± 4.24 49.25 ± 1.00 -12.92 ± 1.22
MCTS 77.74 ± 0.80 -19.66 ± 0.95 56.95 ± 0.92 -30.92 ± 0.83 50.47 ± 0.85 -13.31 ± 1.24

MoF

Random 78.80 ± 1.07 -18.79 ± 1.16 62.35 ± 1.24 -26.33 ± 1.25 56.02 ± 1.11 -7.99 ± 1.13
ETS 77.62 ± 1.12 -20.10 ± 1.26 60.43 ± 1.17 -28.22 ± 1.26 56.12 ± 1.12 -8.93 ± 0.83
Heur-GD 77.27 ± 1.45 -20.15 ± 1.63 55.60 ± 2.70 -32.57 ± 2.77 52.30 ± 0.59 -9.61 ± 0.67
MCTS 81.58 ± 0.75 -15.41 ± 0.86 64.22 ± 0.65 -23.48 ± 1.02 57.70 ± 0.51 -5.31 ± 0.55

the ConvNet from Schwarz et al. (2018); Vinyals et al. (2016) for Split CIFAR-100, and the reduced
ResNet-18 from Lopez-Paz & Ranzato (2017) for Split miniImagenet. We use multi-head output
layers and assume task labels are available at test time unless stated otherwise, except for Permuted
MNIST where single-head output layer is used. We measure the CL performances using ACC as the
average test accuracy across tasks and BWT for forgetting (Lopez-Paz & Ranzato, 2017), i.e.,

ACC =
1

T

T∑
i=1

AT,i, BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i, (2)

where At,i is the test accuracy for task i after learning task t. We compare MCTS to the baselines:
• Random. Random policy that randomly selects task proportions from the action space on how to

structure the replay memory at every task.
• Equal Task Schedule (ETS). Policy that selects equal task proportion such that the replay mem-

ory aims to fill the memory with an equal number of samples from every seen task.
• Heuristic Global Drop (Heur-GD). Heuristic policy that replays tasks with validation accuracy

below a certain threshold proportional to the best achieved validation accuracy on the task.
Heur-GD is based on the intuition that forgotten tasks should be replayed. The replay memory is
filled with M/k samples per task, where k is the number of selected tasks, but skips replay if k = 0.
MCTS and Heur-GD randomly sample 15% of the training data of each task to use for validation.
For MCTS, reported results are evaluated on the test set by using replay schedules selected from the
validation sets. Memory sizes are set to M = 10 for Split MNIST, Split FashionMNIST, and Split
notMNIST, and M = 100 for Permuted MNIST, Split CIFAR-100, and Split miniImagenet, unless
stated otherwise. We report means and standard deviations using 5 seeds on all datasets.

Combine with Different Memory Selection Methods. We show that our method can be combined
with any memory selection method for storing replay samples. In addition to uniform sampling,
we apply various memory selection methods commonly used in the CL literature, namely k-means
clustering and Mean-of-Features (MoF) (Rebuffi et al., 2017). Table 1 shows the results across all
datasets. We note that using the replay schedule from MCTS outperforms the baselines when using
the alternative selection methods, where MoF performs the best on most datasets.

Applying Scheduling to Recent Replay Methods. In this experiment, we show that replay schedul-
ing can be combined with any replay method to enhance the CL performance. We combine

6



Under review as a conference paper at ICLR 2023

Table 2: Performance comparison between scheduling methods MCTS (Ours), Random, ETS, and
Heuristic combined with replay methods HAL, MER, and DER.

Split MNIST Split CIFAR-100 Split miniImagenet
Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 96.32 ± 1.77 -3.90 ± 2.28 35.90 ± 2.47 -17.37 ± 3.76 40.86 ± 1.86 -5.12 ± 2.23
ETS 97.21 ± 1.25 -2.80 ± 1.59 34.90 ± 2.02 -18.92 ± 0.91 38.13 ± 1.18 -8.19 ± 1.73
Heur-GD 97.69 ± 0.19 -2.22 ± 0.24 35.07 ± 1.29 -24.76 ± 2.41 39.51 ± 1.49 -5.65 ± 0.77
MCTS 97.96 ± 0.15 -1.85 ± 0.18 40.22 ± 1.57 -12.77 ± 1.30 41.39 ± 1.15 -3.69 ± 1.86

MER

Random 93.00 ± 3.22 -7.96 ± 4.15 42.68 ± 0.86 -35.56 ± 1.39 32.86 ± 0.95 -7.71 ± 0.45
ETS 92.97 ± 1.73 -8.52 ± 2.15 43.38 ± 1.81 -34.84 ± 1.98 33.58 ± 1.53 -6.80 ± 1.46
Heur-GD 94.30 ± 2.79 -6.46 ± 3.50 40.90 ± 1.70 -44.10 ± 2.03 34.22 ± 1.93 -7.57 ± 1.63
MCTS 96.44 ± 0.72 -4.14 ± 0.94 44.29 ± 0.69 -32.73 ± 0.88 32.74 ± 1.29 -5.77 ± 1.04

DER

Random 95.91 ± 2.18 -4.40 ± 2.46 56.17 ± 1.30 -29.03 ± 1.38 35.13 ± 4.11 -10.85 ± 2.92
ETS 98.17 ± 0.35 -2.00 ± 0.42 52.58 ± 1.49 -32.93 ± 2.04 35.50 ± 2.84 -10.94 ± 2.21
Heur-GD 94.57 ± 1.71 -6.08 ± 2.09 55.75 ± 1.08 -31.27 ± 1.02 43.62 ± 0.88 -8.18 ± 1.16
MCTS 99.02 ± 0.10 -0.91 ± 0.13 58.99 ± 0.98 -24.95 ± 0.64 43.46 ± 0.95 -9.32 ± 1.37

8 24 80 12
0

20
0

40
0

80
0

94
95
96
97
98
99

A
C

C
(%

)

Split MNIST

8 24 80 12
0

20
0

40
0

80
0

90
92
94
96
98

Split FashionMNIST

8 24 80 12
0

20
0

40
0

80
0

90

92

94

96

Split notMNIST

90 27
0

45
0

90
0

22
50

70
75
80
85
90

Memory size M

A
C

C
(%

)

Permuted MNIST

95 28
5

47
5

95
0

19
00

50
55
60
65
70
75
80

Memory size M

Split CIFAR-100

95 28
5

47
5

95
0

19
00

50

55

60

65

Memory size M

Split miniImagenet

(a) Task/Domain-IL

10 20 40 10
0

20
0

30
40
50
60
70
80

A
C

C
(%

)

Split MNIST

Random
ETS
Heur-GD
MCTS

10 20 40 10
0

20
0

30
40
50
60
70

Split FashionMNIST

10 20 40 10
0

20
0

30
40
50
60
70
80

Split notMNIST

10
0

20
0

40
0

80
0

16
00

5

10

15

Memory size M

A
C

C
(%

)
Split CIFAR-100

10
0

20
0

40
0

80
0

16
00

5

10

15

Memory size M

Split miniImagenet

(b) Class-IL
Figure 4: Performance comparison over various memory sizes for the methods, where (a) shows
results in the Task- and Domain-Incremental Learning (IL) settings, and (b) in the Class-IL setting.

MCTS with Hindsight Anchor Learning (HAL) (Chaudhry et al., 2021), Meta-Experience Replay
(MER) (Riemer et al., 2018), Dark Experience Replay (DER) (Buzzega et al., 2020). Table 2 shows
the performance comparison between our the MCTS scheduling against using Random, ETS, and
Heuristic schedules for each method. The results confirm that replay scheduling is important for the
final performance given the same memory constraints and it can benefit any existing CL framework.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Current Task

R
ep

la
ye

d
Ta

sk

Figure 3: Replay schedule from MCTS on
Split CIFAR-100 visualized as bubble plot.

Replay Schedule Visualization. We visualize a re-
play schedule from Split CIFAR-100 with memory
size M = 100 to gain insights into the behavior of the
scheduling policy from MCTS. Figure 3 shows a bub-
ble plot of the selected task proportions used for fill-
ing the replay memory at every task. Each circle color
corresponds to a replay task, and its size represents the
proportion of replay samples at the current task. The
sum of points in all circles at each column is fixed at
all current tasks. The task proportions vary dynami-
cally over time in a sophisticated nonlinear way which
would be hard to replace by a heuristic method. More-
over, we can observe space repetition-style scheduling
on many tasks, e.g., task 1-3 are replayed with similar
proportion at the initial tasks but eventually starts varying the time interval between replay. Also,
task 4 and 6 need less replay in their early stages, which could potentially be that they are simpler or
correlated with other tasks. We provide a similar visualization for Split MNIST in Appendix D.3.

Varying Memory Size. We show that our method can improve the CL performance across varying
memory sizes in different CL scenarios. Figure 4a shows the results in the Task- and Domain-
Incremental Learning (IL) scenarios, where we observe that MCTS generally obtains better task
accuracies than ETS, especially for small memory sizes. Both MCTS and ETS perform better

7



Under review as a conference paper at ICLR 2023

Table 3: Performance comparison in memory setting where only 1 sample/class is available from the
historical data for replay. The baselines replay all available samples, while MCTS selects 2 samples
for Split MNIST and 50 samples for Permuted MNIST and Split miniImagenet.

Split MNIST Permuted MNIST Split miniImagenet
Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Random 92.56 ± 2.90 -8.97 ± 3.62 70.02 ± 1.76 -28.22 ± 1.92 48.85 ± 1.38 -14.55 ± 1.86
A-GEM 94.97 ± 1.50 -6.03 ± 1.87 64.71 ± 1.78 -34.41 ± 2.05 32.06 ± 1.83 -30.81 ± 1.79
ER-Ring 94.94 ± 1.56 -6.07 ± 1.92 69.73 ± 1.13 -28.87 ± 1.29 49.82 ± 1.69 -14.38 ± 1.57
Uniform 95.77 ± 1.12 -5.02 ± 1.39 69.85 ± 1.01 -28.74 ± 1.17 50.56 ± 1.07 -13.52 ± 1.34
MCTS 96.07 ± 1.60 -4.59 ± 2.01 72.52 ± 0.54 -25.43 ± 0.65 50.70 ± 0.54 -12.60 ± 1.13

than Heur-GD as M increases, which shows that Heur-GD requires careful tuning of the validation
thresholds. We also performed experiments in the Class-IL scenario where task labels are absent.
Here, the replay memory is always filled with at least 1 sample/class to avoid fully forgetting non-
replayed tasks. Each scheduling method then selects which tasks to replay out of the remaining
samples. Figure 4b shows that ETS approaches MCTS when M increases on the 5-task datasets.
However, on the more challenging Split CIFAR-100 and Split miniImagenet, MCTS outperforms
ETS clearly as M increases. These results show that selecting the proper replay schedule is essen-
tial in various CL scenarios with both small and large datasets across different backbone choices.

Efficiency of Replay Scheduling. We illustrate the efficiency of replay scheduling in a setting where
only 1 sample/class is available from the historical data for replay. We consider the scenario where
the replay memory size is smaller than the number of classes. The replay memory size for MCTS
is set to M = 2 for the 5-task datasets, such that only 2 samples can be selected for replay from
the seen tasks. For the larger CL datasets, we set M = 50. We then compare against the memory
efficient CL baselines A-GEM (Chaudhry et al., 2018b) and ER-Ring (Chaudhry et al., 2019), as
well as uniform memory selection. Table 3 shows that MCTS, despite using significantly fewer
samples for replay, performs mostly on par with the baselines and outperforms them on Permuted
MNIST. These results indicate that replay scheduling is an important research direction in CL, since
storing every seen class in the memory could be inefficient in settings with large number of tasks.

4.2 POLICY GENERALIZATION TO NEW CONTINUAL LEARNING SCENARIOS

In this section, we evaluate how well the learned replay scheduling policies can mitigate catastrophic
forgetting in new CL environments. We employ DQN and A2C for policy learning and evaluate their
ability to generalize in CL environments with new task orders and datasets unseen during training.

Experimental Setup. We conduct experiments on Split MNIST, Split FashionMNIST, Split notM-
NIST, and Split CIFAR-10 (Krizhevsky & Hinton, 2009). The CL setting is in general the same as in
Section 4.1. We evaluate all methods on 10 different test environments, and assess the generalization
capability by ranking all methods by comparing their measured ACC per seed in each test environ-
ment, since the performance between environments can vary significantly (details in Appendix E.2).
The policy is applied for only a single pass over the CL tasks at test time. We add two baselines:
• Heuristic Local Drop (Heur-LD). Heuristic policy that replays tasks with validation accuracy

below a threshold proportional to the previous achieved validation accuracy on the task.
• Heuristic Accuracy Threshold (Heur-AT). Heuristic policy that replays tasks with validation

accuracy below a fixed threshold.
Memory sizes are set to M = 10, and we average the results over 5 seeds.

Generalization to New Task Orders. We show that the learned replay scheduling policies can
generalize to CL environments with previously unseen task orders. The training and test environ-
ments are generated with unique task orders of the CL datasets. The columns New Task Order
in Table 4 shows the average ranking for the DQN, A2C, and the baselines when being applied in
the 10 test environments. Our learned policies obtain the best average ranking across most datasets,
where A2C performs better than DQN. To provide further insights, Figure 5 shows the task accu-
racy progress and the corresponding replay schedule from A2C and ETS from one Split CIFAR-10
test environment. in Figure 5. The replay schedules are visualized with bubble plots showing the
selected task proportion to use for composing the replay memories at each task. In Figure 5a, we
observe that A2C decides to replay task 2 more than task 1 as the performance on task 2 decreases,

8



Under review as a conference paper at ICLR 2023

Table 4: Average ranking (lower is better) across methods in the policy generalization experiments.
The best and second-best ranks are colored in green and orange respectively.

New Task Order New Dataset
Method S-MNIST S-FashionMNIST S-notMNIST S-CIFAR-10 S-FashionMNIST S-notMNIST

Random 3.98 3.44 3.68 4.91 3.99 3.94
ETS 3.82 4.56 4.44 5.38 3.68 4.06
Heur-GD 4.53 4.23 3.44 4.03 2.86 4.61
Heur-LD 4.67 3.63 3.96 3.63 5.08 4.96
Heur-AT 4.38 3.96 5.5 3.43 3.75 4.29

DQN (Ours) 3.46 3.65 3.51 3.83 4.42 3.4
A2C (Ours) 3.16 4.53 3.47 2.79 4.22 2.74

1 2 3 4 5
70

80

90

100

Task

A
cc

ur
ac

y
(%

)

2 3 4 5

1
2
3
4

Current Task

R
ep

la
ye

d
Ta

sk

(a) A2C - ACC: 89.75%

1 2 3 4 5
70

80

90

100

Task

A
cc

ur
ac

y
(%

)

T1
T2
T3
T4
T5

2 3 4 5

1
2
3
4

Current Task

R
ep

la
ye

d
Ta

sk

(b) ETS - ACC: 88.32%

Figure 5: Task accuracies and replay schedules for A2C and ETS for a Split CIFAR-10 environment.

which results in a slightly better ACC metric achieved by A2C than ETS. These results show that
the learned policy can flexibly consider replaying forgotten tasks to enhance the CL performance.

Generalization to New Datasets. We show that the learned replay scheduling policies are ca-
pable of generalizing to CL environments with new datasets unseen in the training environments.
We perform two sets of experiments, 1) train with environments generated with Split MNIST and
FashionMNIST and test on environments generated with Split notMNIST, and 2) train with environ-
ments generated with Split MNIST and notMNIST and test on environments generated with Split
FashionMNIST. The columns New Dataset in Table 4 shows the average ranking for DQN, A2C,
and the baselines when generalization to test environments with the new datasets. We observe that
both A2C and DQN successfully generalize to Split notMNIST compared tothe baselines. However,
the learned RL policies have difficulties generalizing to Split FashionMNIST environments, which
could be due to high variations in the state transition dynamics between training and test environ-
ments. This shows that learning the replay scheduling policies using RL inherits common challenges
with generalization in RL, such as robustness to domain shifts. Potentially, the performance could
be improved by generating more training environments for the agent to exhibit more variations of
CL scenarios, or by using other advanced RL methods which may generalize better (Igl et al., 2019).

5 CONCLUSIONS

We proposed learning the time to learn, i.e., in a real-world CL context, learning schedules of which
tasks to replay at different times. To the best of our knowledge, we are the first to consider the time
to learn in CL inspired by human learning techniques. We demonstrated the benefits with replay
scheduling in CL by showing on several CL benchmarks that replay schedules found with MCTS
can outperform replaying all tasks equally or relying on heuristic scheduling rules. Furthermore, we
proposed an RL-based framework for learning scheduling policies to enable replay scheduling for
real-world CL scenarios. The learned policies are agnostic to the CL dataset, and can be applied
to reduce catastrophic forgetting in new CL scenarios without additional training, which would be
useful in user personalization applications. Our replay scheduling approach brings current research
closer to tackling real-world CL challenges where the number of tasks exceeds the memory size.

Limitations and Future Work. Generalization in RL is a challenging research topic by itself. With
the current method, large amounts of diverse data and training time is required to enable the learned
policy to generalize well. This can be costly since generating the CL environments is expensive
as each state transition involves training the network on a CL task. Moreover, we are currently
considering a discrete action space which is hard to construct, especially in large-scale CL scenarios.
Thus, in future work, we would explore more advanced RL methods which can handle continuous
actions and generalize well.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Tameem Adel, Han Zhao, and Richard E Turner. Continual learning with adaptive weights (claw).
arXiv preprint arXiv:1911.09514, 2019.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. Advances
in neural information processing systems, 32, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. arXiv preprint arXiv:1903.08671, 2019b.

Hadi Amiri, Timothy Miller, and Guergana Savova. Repeat before forgetting: Spaced repetition
for efficient and effective training of neural networks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 2401–2410, 2017.

Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sahaana Suri.
Macrobase: Prioritizing attention in fast data. In Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 541–556, 2017.

Philip J Ball, Yingzhen Li, Angus Lamb, and Cheng Zhang. A study on efficiency in continual
learning inspired by human learning. arXiv preprint arXiv:2010.15187, 2020.

Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models fa-
cilitate zero-shot dynamics generalization from a single offline environment. In International
Conference on Machine Learning, pp. 619–629. PMLR, 2021.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957.

Zalán Borsos, Mojmı́r Mutnỳ, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. arXiv preprint arXiv:2006.03875, 2020.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Yaroslav Bulatov. The notMNIST dataset. http://yaroslavvb.com/upload/
notMNIST/, 2011.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark expe-
rience for general continual learning: a strong, simple baseline. arXiv preprint arXiv:2004.07211,
2020.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learn-
ing, pp. 941–950. PMLR, 2019.

Yash Chandak, Georgios Theocharous, Chris Nota, and Philip Thomas. Lifelong learning with a
changing action set. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 3373–3380, 2020.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

10

http://yaroslavvb.com/upload/notMNIST/
http://yaroslavvb.com/upload/notMNIST/


Under review as a conference paper at ICLR 2023

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hind-
sight to anchor past knowledge in continual learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 6993–7001, 2021.

Muhammad Umar Chaudhry and Jee-Hyong Lee. Feature selection for high dimensional data using
monte carlo tree search. IEEE Access, 6:76036–76048, 2018.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
In ICML, 2020.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International Conference on Machine Learning, pp. 1282–1289.
PMLR, 2019.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Frank N Dempster. Spacing effects and their implications for theory and practice. Educational
Psychology Review, 1(4):309–330, 1989.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:
Pooled outputs distillation for small-tasks incremental learning. In Computer Vision – ECCV
2020, pp. 86–102. Springer International Publishing, 2020.

John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan, and Daniel T. Will-
ingham. Improving students’ learning with effective learning techniques: Promising directions
from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1):
4–58, 2013. ISSN 15291006. URL http://www.jstor.org/stable/23484712.

Hermann Ebbinghaus. Memory: A contribution to experimental psychology. Annals of neuro-
sciences, 20(4):155, 2013.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. arXiv preprint arXiv:2003.09553, 2020.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Kanyin Feng, Xiao Zhao, Jing Liu, Ying Cai, Zhifang Ye, Chuansheng Chen, and Gui Xue. Spaced
learning enhances episodic memory by increasing neural pattern similarity across repetitions.
Journal of Neuroscience, 39(27):5351–5360, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Karri S Hawley, Katie E Cherry, Emily O Boudreaux, and Erin M Jackson. A comparison of ad-
justed spaced retrieval versus a uniform expanded retrieval schedule for learning a name–face
association in older adults with probable alzheimer’s disease. Journal of Clinical and Experimen-
tal Neuropsychology, 30(6):639–649, 2008.

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. In 2019 International Conference on Robotics and Automation (ICRA), pp.
9769–9776. IEEE, 2019.

11

https://github.com/openai/baselines
https://github.com/openai/baselines
http://www.jstor.org/stable/23484712


Under review as a conference paper at ICLR 2023

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind
your neural network to prevent catastrophic forgetting. In European Conference on Computer
Vision, pp. 466–483. Springer, 2020.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied machine learning at face-
book: A datacenter infrastructure perspective. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 620–629. IEEE, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In International Conference on Machine Learning, pp. 1480–1490.
PMLR, 2017.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. Advances in neural information processing systems, 32, 2019.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient incre-
mental learning through feature adaptation. In European Conference on Computer Vision, pp.
699–715. Springer, 2020.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Ayush Jain, Andrew Szot, and Joseph J Lim. Generalization to new actions in reinforcement learn-
ing. arXiv preprint arXiv:2011.01928, 2020.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient based memory editing for task-free
continual learning. arXiv preprint arXiv:2006.15294, 2020.

KJ Joseph and Vineeth N Balasubramanian. Meta-consolidation for continual learning. arXiv
preprint arXiv:2010.00352, 2020.

Ta-Chu Kao, Kristopher Jensen, Gido van de Ven, Alberto Bernacchia, and Guillaume Hennequin.
Natural continual learning: success is a journey, not (just) a destination. Advances in Neural
Information Processing Systems, 34, 2021.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same
state, different task: Continual reinforcement learning without interference. arXiv preprint
arXiv:2106.02940, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

12



Under review as a conference paper at ICLR 2023

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

T. Landauer and Robert Bjork. Optimum rehearsal patterns and name learning. Practical aspects of
memory, 1, 11 1977.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
arXiv preprint arXiv:1706.08840, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Seyed Iman Mirzadeh and Hassan Ghasemzadeh. Cl-gym: Full-featured pytorch library for con-
tinual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 3621–3627, June 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning. arXiv preprint
arXiv:2010.04495, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E Turner, and Mo-
hammad Emtiyaz Khan. Continual deep learning by functional regularisation of memorable past.
arXiv preprint arXiv:2004.14070, 2020.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for
real-time continual learning. arXiv preprint arXiv:1912.01100, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

13

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail


Under review as a conference paper at ICLR 2023

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience
replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. arXiv preprint arXiv:1705.08690, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Paul Smolen, Yili Zhang, and John H Byrne. The right time to learn: mechanisms and optimization
of spaced learning. Nature Reviews Neuroscience, 17(2):77, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections as a general
strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature communications, 11(1):1–14, 2020.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and mer-
its of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9385–9394, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
learning with mixture regularization. Advances in Neural Information Processing Systems, 33:
7968–7978, 2020.

Judy Willis. Review of research: Brain-based teaching strategies for improving students’ memory,
learning, and test-taking success. Childhood Education, 83(5):310–315, 2007.

14



Under review as a conference paper at ICLR 2023

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information Process-
ing Systems, 31, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432, 2019.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. arXiv preprint arXiv:2106.01085, 2021.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M Hospedales. Investigating generalisa-
tion in continuous deep reinforcement learning. arXiv preprint arXiv:1902.07015, 2019.

APPENDIX

This supplementary material is structured as follows:

• Appendix A: Extended related work.
• Appendix B: Additional information on the methodology of MCTS for finding replay schedules

and our RL-based framework for policy learning.
• Appendix C: Additional information on the heuristic scheduling baselines and hyperparameters.
• Appendix D: Additional experimental settings and results for Section 4.1.
• Appendix E: Additional experimental settings and results for Section 4.2.
• Our code is provided in a zip-file code.zip as part of the supplementary material. The code will

be made publicly available upon acceptance.

A EXTENDED RELATED WORK

In this section, we give a brief overview of various approaches in CL, especially replay methods as
well as spaced repetition techniques for human CL and generalization in RL.

Continual Learning. Traditional CL can be divided into three main areas, namely regularization-
based, architecture-based, and replay-based approaches. Regularization-based methods protect pa-
rameters influencing the performance on known tasks from wide changes and use the other parame-
ters for learning new tasks (Adel et al., 2019; Kao et al., 2021; Kirkpatrick et al., 2017; Li & Hoiem,
2017; Nguyen et al., 2017; Schwarz et al., 2018; Zenke et al., 2017). Architecture-based meth-
ods mitigate catastrophic forgetting by maintaining task-specific parameters (Ebrahimi et al., 2020;
Mallya & Lazebnik, 2018; Rusu et al., 2016; Serra et al., 2018; Xu & Zhu, 2018; Yoon et al., 2019;
2017). Replay methods mix samples from old tasks with the current dataset to mitigate catastrophic
forgetting, where the replay samples are either stored in an external memory (Aljundi et al., 2019a;b;

15



Under review as a conference paper at ICLR 2023

Borsos et al., 2020; Chaudhry et al., 2019; Chrysakis & Moens, 2020; Hayes et al., 2019; 2020; Is-
cen et al., 2020; Isele & Cosgun, 2018; Jin et al., 2020; Lopez-Paz & Ranzato, 2017; Nguyen et al.,
2017; Pellegrini et al., 2019; Rebuffi et al., 2017; Rolnick et al., 2018; Verwimp et al., 2021; Yoon
et al., 2021) or generated using a generative model (Shin et al., 2017; van de Ven & Tolias, 2018).
Regularization-based approaches and dynamic architectures have been combined with replay-based
approaches to methods to overcome their limitations (Buzzega et al., 2020; Chaudhry et al., 2018a;b;
2021; Douillard et al., 2020; Ebrahimi et al., 2020; Joseph & Balasubramanian, 2020; Mirzadeh
et al., 2020; Nguyen et al., 2017; Pan et al., 2020; Pellegrini et al., 2019; Rolnick et al., 2018; von
Oswald et al., 2019). Our work relates most to replay-based methods with external memory which
we spend more time on describing in the next paragraph.

Replay-based Continual Learning. Much research effort in replay- or memory-based CL has
focused on selecting higher quality samples to store in memory (Aljundi et al., 2019b; Borsos
et al., 2020; Chaudhry et al., 2019; Chrysakis & Moens, 2020; Hayes et al., 2019; Isele & Cos-
gun, 2018; Lopez-Paz & Ranzato, 2017; Nguyen et al., 2017; Rebuffi et al., 2017; Yoon et al.,
2021). In Chaudhry et al. (2019), several selection strategies are reviewed in scenarios with tiny
memory capacity, such as reservoir sampling (Vitter, 1985), first-in first-out buffer (Lopez-Paz &
Ranzato, 2017), k-Means, and Mean-of-Features (Rebuffi et al., 2017). However, elaborate selec-
tion strategies have been shown to give little benefit over random selection for image classification
problems (Chaudhry et al., 2018a; Hayes et al., 2020). More recently, there has been work on
compressing raw images to feature representations to increase the number of memory examples for
replay (Hayes et al., 2020; Iscen et al., 2020; Pellegrini et al., 2019). Selecting the time to replay old
tasks has mostly been ignored in the literature, with an exception in (Aljundi et al., 2019a) which
replays memory samples that would most interfere with a foreseen parameter update. Our replay
scheduling approach differs from the above mentioned works since we focus on learning to select
which tasks to replay. Nevertheless, our scheduling can be combined with any selection strategy and
replay-based method.

Human Continual Learning. Humans are CL systems in the sense of learning tasks and con-
cepts sequentially. The timing of learning and rehearsal is essential for humans to memorize bet-
ter (Dempster, 1989; Dunlosky et al., 2013; Willis, 2007). An example technique is spaced repeti-
tion where time intervals between rehearsal are gradually increased to improve long-term memory
retention (Dempster, 1989; Ebbinghaus, 2013), which has been shown to improve memory retention
better uniformly spaced rehearsal times (Hawley et al., 2008; Landauer & Bjork, 1977). Several
works in CL with neural networks are inspired by human learning techniques, including spaced rep-
etition (Amiri et al., 2017; Feng et al., 2019; Smolen et al., 2016), sleep mechanisms (Ball et al.,
2020; Mallya & Lazebnik, 2018; Schwarz et al., 2018), and memory reactivation (Hayes et al., 2020;
van de Ven et al., 2020). Replay scheduling is also inspired by spaced repetition, where we learn
schedules of which tasks to replay at different times.

Generalization in Reinforcement Learning. Generalization is an active research topic in
RL (Kirk et al., 2021) as RL agents tend to overfit to their training environments (Henderson et al.,
2018; Zhang et al., 2018a; Zhao et al., 2019; Zhang et al., 2018b). The goal is often to transfer
learned policies to environments with new tasks (Finn et al., 2017; Kessler et al., 2021; Higgins et al.,
2017) and action spaces (Chandak et al., 2019; Jain et al., 2020; Chandak et al., 2020). Some ap-
proaches aim to improve generalization capabilities by generating more diverse training data (Cobbe
et al., 2019; Tobin et al., 2017; Wang et al., 2020; Zhang et al., 2018a), using network regularization
or inductive biases (Farebrother et al., 2018; Igl et al., 2019; Zambaldi et al., 2018), or learning
dynamics models (Ball et al., 2021; Nagabandi et al., 2018). In this paper, we use RL for learning
policies for selecting which tasks a CL network should replay. The goal is to learn policies that can
be applied in new CL environments for replay scheduling on unseen task orders and datasets without
additional computational cost.

B ADDITIONAL METHODOLOGY

In this section, we provide pseudo-code for MCTS to search for replay schedules in single CL
environments in Section B.1 as well as pseudo-code for the RL-based framework for learning the
replay scheduling policies in Section B.2.

16



Under review as a conference paper at ICLR 2023

B.1 MONTE CARLO TREE SEARCH ALGORITHM FOR REPLAY SCHEDULING

Algorithm 1 Monte Carlo Tree Search for Replay Scheduling
Require: Tree nodes v1:T , Datasets D1:T , Learning rate η
Require: Replay memory size M
1: ACCbest ← 0, Sbest ← ()
2: while within computational budget do
3: S ← ()
4: vt, S ← TREEPOLICY(v1, S)
5: vT , S ← DEFAULTPOLICY(vt, S)
6: ACC← EVALUATEREPLAYSCHEDULE(D1:T , S,M)
7: BACKPROPAGATE(vt,ACC)
8: if ACC > ACCbest then
9: ACCbest ← ACC

10: Sbest ← S
11: return ACCbest, Sbest

12: function TREEPOLICY(vt, S)
13: while vt is non-terminal do
14: if vt not fully expanded then
15: return EXPANSION(vt, S)
16: else
17: vt ← BESTCHILD(vt)
18: S.append(pt), where pt ← GETTASKPROPORTION(vt)

19: return vt, S

20: function EXPANSION(vt, S)
21: Sample vt+1 uniformly among unvisited children of vt
22: S.append(pt+1), where pt+1 ← GETTASKPROPORTION(vt+1)
23: Add new child vt+1 to node vt
24: return vt+1, S

25: function BESTCHILD(vt)
26: vt+1 = argmax

vt+1∈ children of v
max(Q(vt+1)) + C

√
2 log(N(vt))
N(vt+1)

27: return vt+1

28: function DEFAULTPOLICY(vt, S)
29: while vt is non-terminal do
30: Sample vt+1 unIFormly among children of vt
31: S.append(pt+1), where pt+1 ← GETTASKPROPORTION(vt+1)
32: Update vt ← vt+1

33: return vt, S

34: function EVALUATEREPLAYSCHEDULE(D1:T , S,M )
35: Initialize neural network fθ
36: for t = 1, . . . , T do
37: p← S[t− 1]

38: M← GETREPLAYMEMORY(D(train)
1:t−1 ,p,M)

39: for B ∼ D(train)
t do

40: θ ← SGD(B ∪M,θ, η)

41: A
(val)
1:T ← EVALUATEACCURACY(fθ,D(val)

1:T )

42: ACC← 1
T

∑T
i=1 A

(val)
T,i

43: return ACC

44: function BACKPROPAGATE(vt, R)
45: while vt is not root do
46: N(vt)← N(vt) + 1
47: Q(vt)← R
48: vt ← parent of vt

17



Under review as a conference paper at ICLR 2023

We provide pseudo-code in Algorithm 1 outlining the steps for our method using Monte Carlo tree
search (MCTS) to find replay schedules described in the main paper (Section 3.2). The MCTS
procedure selects actions over which task proportions to fill the replay memory with at every task,
where the selected task proportions are stored in the replay schedule S. The schedule is then passed
to EVALUATEREPLAYSCHEDULE(·) where the continual learning part executes the training with
replay memories filled according to the schedule. The reward for the schedule S is the average
validation accuracy over all tasks after learning task T , i.e., ACC, which is backpropagated through
the tree to update the statistics of the selected nodes. The schedule Sbest yielding the best ACC score
is returned to be used for evaluation on the held-out test sets.

The function GETREPLAYMEMORY(·) is the policy for retrieving the replay memory M from the
historical data given the task proportion p. The number of samples per task determined by the task
proportions are rounded up or down accordingly to fill M with M replay samples in total. The
function GETTASKPROPORTION(·) simply returns the task proportion that is related to given node.

The following steps are performed during one MCTS rollout (or iteration):

1. Selection involves either selecting an unvisited node randomly, or selecting the next node by
evaluating the UCT score (see Equation 1) if all children has been visited already. In Algorithm
1, TREEPOLICY(·) appends the task proportions pt to the replay schedule S at every selected
node.

2. Expansion involves expanding the search tree with one of the unvisited child nodes vt+1 selected
with uniform sampling. EXPANSION(·) in Algorithm 1 appends the task proportions pt to the
replay schedule S of the expanded node.

3. Simulation involves selecting the next nodes randomly until a terminal node vT is reached. In
Algorithm 1, DEFAULTPOLICY(·) appends the task proportions pt to the replay schedule S at
every randomly selected node until reaching the terminal node.

4. Reward The reward for the rollout is given by the ACC of the validation sets for each task.
In Algorithm 1, EVALUATEREPLAYSCHEDULE(·) involves learning the tasks t = 1, . . . , T se-
quentially and using the replay schedule to sample the replay memories to use for mitigating
catastrophic forgetting when learning a new task. The reward r for the rollout is calculated after
task T has been learnt.

5. Backpropagation involves updating the reward function q(·) and number of visits n(·) from the
expansion node up to the root node. See BACKRPROPAGATE(·) in Algorithm 1.

B.2 RL FRAMEWORK ALGORITHM

We provide pseudo-code for the RL-based framework for learning the replay scheduling policy
with either DQN (Mnih et al., 2013) or A2C (Mnih et al., 2016) in Algorithm 2. The procedure
collects experience from all training environments in E(train) at every time step t. The datasets and
classifiers are specific for each environment Ei ∈ E(train). At t = 1, we obtain the initial state
s
(i)
1 by evaluating the classifier on the validation set D(val)

1 after training the classifier on the task 1.
Next, we get the replay memory for mitigating catastrophic forgetting when learning the next task
t+ 1 by 1) taking action a

(i)
t under policy πθ, 2) converting action a

(i)
t into the task proportion pt,

and 3) sampling the replay memory Mt from the historical datasets given the selected proportion.
We then obtain the reward rt and the next state st+1 by evaluating the classifier on the validation
sets D(val)

1:t+1 after learning task t + 1. The collected experience from each time step is stored in
the experience buffer B for both DQN and A2C. In UPDATEPOLICY(·), we outline the steps for
updating the policy parameters θ with either DQN or A2C.

18



Under review as a conference paper at ICLR 2023

Algorithm 2 RL Framework for Learning Replay Scheduling Policy

Require: E(train): Training environments, θ: Policy parameters, γ: Discount factor
Require: η: Learning rate, nepisodes: Number of episodes, M : Replay memory size
Require: nsteps: Number of steps for A2C

1: B = {} ▷ Initialize experience buffer
2: for i = 1, . . . , nepisodes do
3: for t = 1, . . . , T − 1 do
4: for Ei ∈ E(train) do
5: D1:t+1 = GETDATASETS(Ei, t) ▷ Get datasets from environment Ei

6: f
(i)
ϕ = GETCLASSIFIER(Ei) ▷ Get classifier from environment Ei

7: if t == 1 then
8: TRAIN(f

(i)
ϕ ,D(train)

t ▷ Train classifier f (i)
ϕ on task 1

9: A
(val)
1:t = EVAL(f

(i)
ϕ ,D(val)

1:t ) ▷ Evaluate classifier f (i)
ϕ on task 1

10: s
(i)
t = A

(val)
1:t = [A

(val)
1,1 , 0, ..., 0] ▷ Get initial state

11: a
(i)
t ∼ πθ(a, s

(i)
t ) ▷ Take action under policy πθ

12: pt = GETTASKPROPORTION(a
(i)
t )

13: Mt ∼ GETREPLAYMEMORY(D(train)
1:t ,pt,M)

14: TRAIN(f
(i)
ϕ ,D(train)

t+1 ∪Mt) ▷ Train classifier f (i)
ϕ

15: A
(val)
1:t+1 = EVAL(f

(i)
ϕ ,D(val)

1:t+1) ▷ Evaluate classifier f (i)
ϕ

16: s
(i)
t+1 = A

(val)
1:t+1 = [A

(val)
t+1,1, ..., A

(val)
t+1,t+1, 0, ..., 0] ▷ Get next state

17: r
(i)
t = 1

t+1

∑t+1
j=1 A

(val)
1:t+1 ▷ Compute reward

18: B = B ∪ {(s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1)} ▷ Store transition in buffer

19: if time to update policy then
20: θ,B = UPDATEPOLICY(θ,B, γ, η, nsteps) ▷ Update policy with experience
21: return θ ▷ Return policy

22: function UPDATEPOLICY(θ,B, γ, η, nsteps)
23: if DQN then
24: (sj , aj , rj , s

′
j) ∼ B ▷ Sample mini-batch from buffer

25: yj =

{
rj if s′j is terminal
rj + γmaxa Qθ−(s′j , a) else

▷ Compute yj with target net θ−

26: θ = θ − η∇θ(yj −Qθ(sj , aj))
2 ▷ Update Q-function

27: else if A2C then
28: st = B[nsteps] ▷ Get last state in buffer

29: R =

{
0 if st is terminal
Vθv

(st) else
▷ Bootstrap from last state

30: for j = nsteps − 1, ..., 0 do
31: sj , aj , rj = B[j] ▷ Get state, action, and reward at step j
32: R = rj + γR
33: θ = θ − η∇θ log πθ(aj , sj)(R− Vθv (sj)) ▷ Update policy
34: θv = θv − η∇θv

(R− Vθv
(sj))

2 ▷ Update value function
35: B = {} ▷ Reset experience buffer
36: return θ,B

19



Under review as a conference paper at ICLR 2023

C HEURISTIC SCHEDULING BASELINES

We implemented three heuristic scheduling baselines to compare against our proposed methods.
These heuristics are based on the intuition of re-learning tasks when they have been forgotten. We
keep a validation set for each task to determine whether any task should be replayed by comparing
the validation accuracy against a hand-tuned threshold. If the validation accuracy is below the
threshold, then the corresponding task is replayed. Let A(val)

t,i be the validation accuracy for task
t evaluated at time step i. The threshold is set differently in each of the baselines:

• Heuristic Global Drop (Heur-GD). Heuristic policy that replays tasks with validation accuracy
below a certain threshold proportional to the best achieved validation accuracy on the task. The
best achieved validation accuracy for task i is given by A

(best)
t,i = max{(A(val)

1,i , . . . , A
(val)
t,i )}.

Task i is replayed if A
(val)
t,i < τA

(best)
t,i where τ ∈ [0, 1] is a ratio representing the degree of

how much the validation accuracy of a task is allowed to drop. Note that Heur-GD (denoted
as Heuristic) is the only one used in the experiments with MCTS in single CL environments in
Section 4.1.

• Heuristic Local Drop (Heur-LD). Heuristic policy that replays tasks with validation accuracy
below a threshold proportional to the previous achieved validation accuracy on the task. Task i

is replayed if A(val)
t,i < τA

(val)
t−1,i where τ again represents the degree of how much the validation

accuracy of a task is allowed to drop.

• Heuristic Accuracy Threshold (Heur-AT). Heuristic policy that replays tasks with validation
accuracy below a fixed threshold. Task i is replayed if if A(val)

t,i < τ where τ ∈ [0, 1] represents
the least tolerated accuracy before we need to replay the task.

The replay memory is filled with M/k samples from each selected task, where k is the number of
tasks that need to be replayed according to their decrease in validation accuracy. We skip replaying
any tasks if no tasks are selected for replay, i.e., k = 0.

Grid search for τ in Single CL Environments. We performed a coarse-to-fine grid search for
the parameter τ on each dataset with Heur-GD to compare against the MCTS replay schedules. The
best value for τ is selected according to the highest mean accuracy on the validation set averaged
over 5 seeds. The validation set consists of 15% of the training data and is the same for MCTS.
We use the same experimental settings as described in Appendix D. The memory sizes are set to
M = 10 and M = 100 for the 5-task datasets and the 10/20-task datasets respectively, and we apply
uniform sampling as the memory selection method. We provide the ranges for τ that was used on
each dataset and put the best value in bold:

• Split MNIST: τ = {0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99}
• Split FashionMNIST: τ = {0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99}
• Split notMNIST: τ = {0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99}
• Permuted MNIST: τ = {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.97, 0.99}
• Split CIFAR-100: τ = {0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 0.95, 0.97, 0.99}
• Split miniImagenet: τ = {0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99}

Note that we use these values for τ on all experiments with Heur-GD for the corresponding datasets.
The performance for the heuristics highly depends on careful tuning for the ratio τ when the memory
size or memory selection method changes, as can be seen in Figure 4 and Table 6. We also provide
the ranges for τ that was used on each dataset in the Class Incremental Learning setting and put the
best value in bold:

• Split MNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
• Split FashionMNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
• Split notMNIST: τ = {0.2, 0.3, 0.5, 0.75, 0.9}
• Split CIFAR-100: τ = {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}
• Split miniImagenet: τ = {0.01, 0.025, 0.05, 0.1, 0.25, 0.5}

20



Under review as a conference paper at ICLR 2023

Table 5: The threshold parameter τ used in the heuristic scheudling baselines Heuristic Global Drop
(Heur-GD), Heuristic Local Drop (Heur-LD), and Heuristic Accuracy Threshold (Heur-AT). The
search range is τ ∈ {0.90, 0.95, 0.999} for all methods and we display the number of environments
used for selecting the parameter used at test time.

New Task Order New Dataset
S-MNIST S-FashionMNIST S-CIFAR-10 S-notMNIST S-FashionMNIST

Method τ #Envs τ #Envs τ #Envs τ #Envs τ #Envs

Heur-GD 0.9 10 0.95 20 0.9 10 0.9 10 0.9 10
Heur-LD 0.9 10 0.999 20 0.999 10 0.95 10 0.999 10
Heur-AT 0.9 10 0.999 20 0.9 10 0.9 10 0.95 10

Grid search for τ in Multiple CL Environments. We performed a grid search for the parameter
τ for the three heuristic scheduling baselines for each experiment to compare against the learned
replay scheduling policies. We select the parameter based on ACC scores achieved in the same
number of training environments used by either DQN or A2C. The search range we use is τ ∈
{0.90, 0.95, 0.999}. In Table 5, we show the selected parameter value of τ and the number of
environments used for selecting the value for each method and experiment in Section 4.2. The same
parameters are used to generate the results on the heuristics in Table 4.

D ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS FOR REPLAY
SCHEDULING USING MCTS

This section is structured as follows:

• Appendix D.1: Full details on the experimental settings.
• Appendix D.2: Performance progress of MCTS as sanity check.
• Appendix D.3: Visualization of replay schedule from MCTS on Split MNIST.
• Appendix D.4: Additional results on Memory Selection Methods experiment.
• Appendix D.5: Additional results on Applying Replay Scheduling to Recent Replay Methods

experiment.
• Appendix D.6: Additional results on Efficiency of Replay Scheduling experiment.
• Appendix D.7: Additional results on Varying Memory Size experiment.

The additional results appendices provide Welch’s t-tests for statistical significance between MCTS
and the baselines.

D.1 EXPERIMENTAL SETTINGS FOR MCTS IN SINGLE CL ENVIRONMENTS

Here, we provide details on the experimental settings for the experiments with MCTS in single CL
environments.

Datasets. We conduct experiments on six datasets commonly used in the CL literature. Split
MNIST (Zenke et al., 2017) is a variant of the MNIST (LeCun et al., 1998) dataset where the classes
have been divided into 5 tasks incoming in the order 0/1, 2/3, 4/5, 6/7, and 8/9. Split FashionM-
NIST (Xiao et al., 2017) is of similar size to MNIST and consists of grayscale images of differ-
ent clothes, where the classes have been divided into the 5 tasks T-shirt/Trouser, Pullover/Dress,
Coat/Sandals, Shirt/Sneaker, and Bag/Ankle boots. Similar to MNIST, Split notMNIST (Bulatov,
2011) consists of 10 classes of the letters A-J with various fonts, where the classes are divided
into the 5 tasks A/B, C/D, E/F, G/H, and I/J. We use training/test split provided by Ebrahimi et al.
(2020) for Split notMNIST. Permuted MNIST (Goodfellow et al., 2013) dataset consists of applying
a unique random permutation of the pixels of the images in original MNIST to create each task,
except for the first task that is to learn the original MNIST dataset. We reduce the original MNIST
dataset to 10k samples and create 9 unique random permutations to get a 10-task version of Per-
muted MNIST. In Split CIFAR-100 (Krizhevsky & Hinton, 2009), the 100 classes are divided into

21



Under review as a conference paper at ICLR 2023

20 tasks with 5 classes for each task (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017). Similarly,
Split miniImagenet (Vinyals et al., 2016) consists of 100 classes randomly chosen from the original
Imagenet dataset where the 100 classes are divided into 20 tasks with 5 classes per task.

CL Network Architectures. We use a 2-layer MLP with 256 hidden units and ReLU activation
for Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. We use a multi-
head output layer for each dataset except Permuted MNIST where the network uses single-head
output layer. For Split CIFAR-100, we use a multi-head CNN architecture built according to the
CNN in Adel et al. (2019); Schwarz et al. (2018); Vinyals et al. (2016), which consists of four 3x3
convolutional blocks, i.e. convolutional layer followed by batch normalization (Ioffe & Szegedy,
2015), with 64 filters, ReLU activations, and 2x2 Max-pooling. For Split miniImagenet, we use the
reduced ResNet-18 from Lopez-Paz & Ranzato (2017) with multi-head output layer.

CL Hyperparameters. We train all networks with the Adam optimizer (Kingma & Ba, 2014)
with learning rate η = 0.001 and hyperparameters β1 = 0.9 and β2 = 0.999. Note that the learning
rate for Adam is not reset before training on a new task. Next, we give details on number of training
epochs and batch sizes specific for each dataset:

• Split MNIST: 10 epochs/task, batch size 128.

• Split FashionMNIST: 30 epochs/task, batch size 128.

• Split notMNIST: 50 epochs/task, batch size 128.

• Permuted MNIST: 20 epochs/task, batch size 128.

• Split CIFAR-100: 25 epochs/task, batch size 256.

• Split miniImagenet: 1 epoch/task (task 1 trained for 5 epochs as warm up), batch size 32.

Monte Carlo Tree Search. We run RS-MCTS for 100 iterations in all experiments. The replay
schedules used in the reported results on the held-out test sets are from the replay schedule that gave
the highest reward on the validation sets. The exploration constant for UCT in Equation 1 is set to
C = 0.1 in all experiments (Chaudhry & Lee, 2018).

Computational Cost. All experiments were performed on one NVIDIA GeForce RTW 2080Ti
on an internal GPU cluster. The wall clock time for ETS on Split MNIST was around 1.5 minutes,
and RS-MCTS and BFS takes 40 seconds on average to run one iteration, where BFS runs 1050
iterations in total for Split MNIST.

Implementations. We adapted the implementation released by Borsos et al. (2020) for the mem-
ory selection strategies Uniform sampling, k-means clustering, k-center clustering (Nguyen et al.,
2017), and Mean-of-Features (Rebuffi et al., 2017). For HAL (Chaudhry et al., 2021), MER (Riemer
et al., 2018), DER (Buzzega et al., 2020), and DER++, we follow the implementations released by
Buzzega et al. (2020) for each method to apply them to our replay scheduling methods. Furthermore,
we follow the implementations released by Chaudhry et al. (2019) and Mirzadeh & Ghasemzadeh
(2021) for A-GEM (Chaudhry et al., 2018b) and ER-Ring (Chaudhry et al., 2019). For MCTS, we
adapted the implementation from https://github.com/int8/monte-carlo-tree-search
to search for replay schedules.

Experimental Settings for Single Task Replay Memory Experiment. We motivated the need
for replay scheduling in CL with Figure 1 in Section 1. This simple experiment was performed on
Split MNIST where the replay memory only contains samples from the first task, i.e., learning the
classes 0/1. Furthermore, the memory can only be replayed at one point in time and we show the
performance on each task when the memory is replayed at different time steps. We set the memory
size to M = 10 samples such that the memory holds 5 samples from both classes. We use the same
network architecture and hyperparameters as described above for Split MNIST. The ACC metric
above each subfigure corresponds to the ACC for training a network with the single task memory
replay at different tasks. We observe that choosing different time points to replay the same memory
leads to noticeably different results in the final performance, and in this example, the best final
performance is achieved when the memory is used when learning task 5. Therefore, we argue that
finding the proper schedule of what tasks to replay at what time in the fixed memory situation can
be critical for CL.

22

https://github.com/int8/monte-carlo-tree-search


Under review as a conference paper at ICLR 2023

0 50 100
94

96

98

100

Iteration
A

C
C

(%
)

S-MNIST

Random
ETS
Heuristic
Ours
BFS
Joint0 50 100

96
97
98
99

100

Iteration

S-FashionMNIST

0 50 100
90

92

94

96

Iteration

S-notMNIST

0 50 100
71

73

75

77

Iteration

A
C

C
(%

)

P-MNIST

0 50 100

50

54

58

Iteration

S-CIFAR-100

0 50 100
47

48

49

50

Iteration

S-miniImagenet

Figure 6: Average test accuracies over tasks after learning the final task (ACC) over the MCTS
simulations for all datasets, where ’S’ and ’P’ are used as short for ’Split’ and ’Permuted’. We
compare performance for MCTS (Ours) against random replay schedules (Random), Equal Task
Schedule (ETS), and Heuristic Global Drop (Heuristic) baselines. For the first three datasets, we
show the best ACC found from a breadth-first search (BFS) as well as the ACC achieved by training
on all seen datasets jointly at every task (Joint). All results have been averaged over 5 seeds. These
results show that replay scheduling can improve over ETS and outperform or perform on par with
Heuristic across different datasets and network architectures.

D.2 PERFORMANCE PROGRESS OF MCTS

In the first experiments, we show that the replay schedules from MCTS yield better performance
than replaying an equal amount of samples per task. The replay memory size is fixed to M = 10 for
Split MNIST, FashionMNIST, and notMNIST, and M = 100 for Permuted MNIST, Split CIFAR-
100, and Split miniImagenet. Uniform sampling is used as the memory selection method for all
methods in this experiment. For the 5-task datasets, we provide the optimal replay schedule found
from a breadth-first search (BFS) over all 1050 possible replay schedules in our action space (which
corresponds to a tree with depth of 4) as an upper bound for MCTS. As the search space grows fast
with the number of tasks, BFS becomes computationally infeasible when we have 10 or more tasks.

Figure 6 shows the progress of ACC over iterations by MCTS for all datasets. We also show the best
ACC metrics for Random, ETS, Heuristic, and BFS (where appropriate) as straight lines. Further-
more, we include the ACC achieved by training on all seen datasets jointly at every task (Joint) for
the 5-task datasets. We observe that MCTS outperforms ETS successively with more iterations. Fur-
thermore, MCTS approaches the upper limit of BFS on the 5-task datasets. For Permuted MNIST
and Split CIFAR-100, the Heuristic baseline and MCTS perform on par after 50 iterations. This
shows that Heuristic with careful tuning of the validation accuracy threshold can be a strong base-
line when comparing replay scheduling methods. The top row of Table 1 shows the ACC for each
method for this experiment. We note that MCTS outperforms ETS significantly on most datasets
and performs on par with Heuristic.

D.3 REPLAY SCHEDULE VISUALIZATION FOR SPLIT MNIST

In Figure 7, we show the progress in test classification performance for each task when using ETS
and MCTS with memory size M = 10 on Split MNIST. For comparison, we also show the per-
formance from a network that is fine-tuning on the current task without using replay. Both ETS
and MCTS overcome catastrophic forgetting to a large degree compared to the fine-tuning network.
Our method MCTS further improves the performance compared to ETS with the same memory,
which indicates that learning the time to learn can be more efficient against catastrophic forgetting.
Especially, Task 1 and 2 seems to be the most difficult task to remember since it has the lowest
final performance using the fine-tuning network. Both ETS and MCTS manage to retain their per-
formance on Task 1 using replay, however, MCTS remembers Task 2 better than ETS by around
5%.

23



Under review as a conference paper at ICLR 2023

1 2 3 4 5
50
60
70
80
90

100

Task

A
cc

ur
ac

y

Fine-tuning (ACC: 89.84%)
Task 1
Task 2
Task 3
Task 4
Task 5

1 2 3 4 5
50
60
70
80
90

100

Task

A
cc

ur
ac

y

ETS (ACC: 96.13%)

1 2 3 4 5
50
60
70
80
90

100

Task

A
cc

ur
ac

y

RS-MCTS (ACC: 98.24%)

2 3 4 5

1

2

3

4

Current Task

R
ep

la
ye

d
Ta

sk

Replay Schedule

Figure 7: Comparison of test classification accuracies for Task 1-5 on Split MNIST from a network
trained without replay (Fine-tuning), ETS, and MCTS. The ACC metric for each method is shown
on top of each figure. We also visualize the replay schedule found by MCTS as a bubble plot to
the right. The memory size is set to M = 10 with uniform memory selection for ETS and MCTS.
Results are shown for 1 seed.

To bring more insights to this behavior, we have visualized the task proportions of the replay exam-
ples using a bubble plot showing the corresponding replay schedule from MCTS in Figure 7(right).
At Task 3 and 4, we see that the schedule fills the memory with data from Task 2 and discards
replaying Task 1. This helps the network to retain knowledge about Task 2 better than ETS at the
cost of forgetting Task 3 slightly when learning Task 4. This shows that the learned policy has
considered the difficulty level of different tasks. At the next task, the MCTS schedule has decided
to rehearse Task 3 and reduces replaying Task 2 when learning Task 5. This behavior is similar to
spaced repetition, where increasing the time interval between rehearsals helps memory retention.
We emphasize that even on datasets with few tasks, using learned replay schedules can overcome
catastrophic forgetting better than standard ETS approaches.

D.4 ALTERNATIVE MEMORY SELECTION METHODS

We show that our method can be combined with any memory selection method for storing replay
samples. In addition to uniform sampling, we apply various memory selection methods commonly
used in the CL literature, namely k-means clustering, k-center clustering (Nguyen et al., 2017), and
Mean-of-Features (MoF) (Rebuffi et al., 2017). The replay memory sizes are M = 10 for the 5-task
datasets and M = 100 for the 10- and 20-task datasets. Table 6 shows the results across all datasets,
and present the statistical significance tests between MCTS and the baselines in Table 7. We note
that our method in general achieves significantly higher ACC comparing to the baselines showing
that learning the time to learn is important.

D.5 APPLYING SCHEDULING TO RECENT REPLAY METHODS

In Section 4.1, we showed that MCTS can be applied to any replay method. We combined MCTS
together with four recent replay methods, namely Hindsight Anchor Learning (HAL) (Chaudhry
et al., 2021), Meta Experience Replay (MER) (Riemer et al., 2018), and Dark Experience Replay
(DER) (Buzzega et al., 2020). We present the hyperparameters used for each method in Table 8.
The hyperparameters for each method are denoted as

• HAL. η: learning rate, λ: regularization, γ: mean embedding strength, β: decay rate, k: gradient
steps on anchors

• MER. γ: across batch meta-learning rate, β: within batch meta-learning rate
• DER. α: loss coefficient for memory logits
• DER++. α: loss coefficient for memory logits, β: loss coefficient for memory labels

For the experiments, we used the same architectures and hyperparameters as described in Appendix
D.1 for all datasets if not mentioned otherwise. We used the Adam optimizer with learning rate η =
0.001 for MER, DER, and DER++. For HAL, we used the SGD optimizer since using Adam made
the model diverge in our experiments. Table 9 shows the ACC and BWT for all methods combined
with the scheduling from Random, ETS, Heuristic, and MCTS. We observe that MCTS can further
improve the performance for each of the replay methods across the different datasets. Table 10
shows statistical significance tests between MCTS and the baselines for every considered replay
method, where we note that our method in general achieves significantly higher ACC comparing to
the baselines.

24



Under review as a conference paper at ICLR 2023

Table 6: Performance comparison with ACC and BWT metrics for all datasets between MCTS
(Ours) and the baselines with various memory selection methods. We provide the metrics for training
on all seen task datasets jointly (Joint) as an upper bound. Furthermore, we include the results from
a breadth-first search (BFS) with Uniform memory selection for the 5-task datasets. The memory
size is set to M = 10 and M = 100 for the 5-task and 10/20-task datasets respectively. We report
the means and standard deviations averaged over 5 seeds.

Split MNIST Split FashionMNIST Split notMNIST
Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 99.75 ± 0.06 0.01 ± 0.06 99.34 ± 0.08 -0.01 ± 0.14 96.12 ± 0.57 -0.21 ± 0.71
Uniform BFS 98.28 ± 0.49 -1.84 ± 0.63 98.51 ± 0.23 -1.03 ± 0.28 95.54 ± 0.67 -1.04 ± 0.87

Uniform

Random 94.91 ± 2.52 -6.13 ± 3.16 95.89 ± 2.03 -4.33 ± 2.55 91.84 ± 1.48 -5.37 ± 2.12
ETS 94.02 ± 4.25 -7.22 ± 5.33 95.81 ± 3.53 -4.45 ± 4.34 91.01 ± 1.39 -6.16 ± 1.82
Heur-GD 96.02 ± 2.32 -4.64 ± 2.90 97.09 ± 0.62 -2.82 ± 0.84 91.26 ± 3.99 -6.06 ± 4.70
MCTS 97.93 ± 0.56 -2.27 ± 0.71 98.27 ± 0.17 -1.29 ± 0.20 94.64 ± 0.39 -1.47 ± 0.79

k-means

Random 92.65 ± 1.38 -8.96 ± 1.74 93.11 ± 2.75 -7.76 ± 3.42 93.11 ± 1.01 -3.78 ± 1.43
ETS 92.89 ± 3.53 -8.66 ± 4.42 96.47 ± 0.85 -3.55 ± 1.07 93.80 ± 0.82 -2.84 ± 0.81
Heur-GD 96.28 ± 1.68 -4.32 ± 2.11 95.78 ± 1.50 -4.46 ± 1.87 91.75 ± 0.94 -5.60 ± 2.07
MCTS 98.20 ± 0.16 -1.94 ± 0.22 98.48 ± 0.26 -1.04 ± 0.31 93.61 ± 0.71 -3.11 ± 0.55

k-center

Random 95.48 ± 0.82 -5.40 ± 1.05 93.24 ± 2.84 -7.64 ± 3.51 91.70 ± 1.94 -5.33 ± 2.80
ETS 94.84 ± 1.40 -6.20 ± 1.77 97.28 ± 0.50 -2.58 ± 0.66 91.08 ± 2.48 -6.39 ± 3.46
Heur-GD 94.55 ± 2.79 -6.47 ± 3.50 94.08 ± 3.72 -6.59 ± 4.57 92.06 ± 1.20 -4.70 ± 2.09
MCTS 98.24 ± 0.36 -1.93 ± 0.44 98.06 ± 0.35 -1.59 ± 0.45 94.26 ± 0.37 -1.97 ± 1.02

MoF

Random 96.96 ± 1.34 -3.57 ± 1.69 96.39 ± 1.69 -3.66 ± 2.17 93.09 ± 1.40 -3.70 ± 1.76
ETS 97.04 ± 1.23 -3.46 ± 1.50 96.48 ± 1.33 -3.55 ± 1.73 92.64 ± 0.87 -4.57 ± 1.59
Heur-GD 96.46 ± 2.41 -4.09 ± 3.01 95.84 ± 0.89 -4.39 ± 1.15 93.24 ± 0.77 -3.48 ± 1.37
MCTS 98.37 ± 0.24 -1.70 ± 0.28 97.84 ± 0.32 -1.81 ± 0.39 94.62 ± 0.42 -1.80 ± 0.56

Permuted MNIST Split CIFAR-100 Split miniImagenet
Memory Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Offline Joint 95.34 ± 0.13 0.17 ± 0.18 84.73 ± 0.81 -1.06 ± 0.81 74.03 ± 0.83 9.70 ± 0.68

Uniform

Random 72.59 ± 1.52 -25.71 ± 1.76 53.76 ± 1.80 -35.11 ± 1.93 49.89 ± 1.03 -14.79 ± 1.14
ETS 71.09 ± 2.31 -27.39 ± 2.59 47.70 ± 2.16 -41.69 ± 2.37 46.97 ± 1.24 -18.32 ± 1.34
Heur-GD 76.68 ± 2.13 -20.82 ± 2.41 57.31 ± 1.21 -30.76 ± 1.45 49.66 ± 1.10 -12.04 ± 0.59
MCTS 76.34 ± 0.98 -21.21 ± 1.16 56.60 ± 1.13 -31.39 ± 1.11 50.20 ± 0.72 -13.46 ± 1.22

k-means

Random 71.91 ± 1.24 -26.45 ± 1.34 53.20 ± 1.44 -35.77 ± 1.31 49.96 ± 1.46 -14.81 ± 1.18
ETS 69.40 ± 1.32 -29.23 ± 1.47 47.51 ± 1.14 -41.77 ± 1.30 45.82 ± 0.92 -19.53 ± 1.10
Heur-GD 75.57 ± 1.18 -22.11 ± 1.22 54.31 ± 3.94 -33.80 ± 4.24 49.25 ± 1.00 -12.92 ± 1.22
MCTS 77.74 ± 0.80 -19.66 ± 0.95 56.95 ± 0.92 -30.92 ± 0.83 50.47 ± 0.85 -13.31 ± 1.24

k-center

Random 71.39 ± 1.87 -27.04 ± 2.05 48.29 ± 2.11 -40.88 ± 2.28 44.40 ± 1.35 -20.03 ± 1.31
ETS 69.11 ± 1.69 -29.58 ± 1.81 44.13 ± 1.06 -45.28 ± 1.04 41.35 ± 1.23 -23.71 ± 1.45
Heur-GD 74.33 ± 2.00 -23.45 ± 2.27 50.32 ± 1.97 -37.99 ± 2.14 44.13 ± 0.95 -18.26 ± 1.05
MCTS 76.55 ± 1.16 -21.06 ± 1.32 51.37 ± 1.63 -37.01 ± 1.62 46.76 ± 0.96 -16.56 ± 0.90

MoF

Random 78.80 ± 1.07 -18.79 ± 1.16 62.35 ± 1.24 -26.33 ± 1.25 56.02 ± 1.11 -7.99 ± 1.13
ETS 77.62 ± 1.12 -20.10 ± 1.26 60.43 ± 1.17 -28.22 ± 1.26 56.12 ± 1.12 -8.93 ± 0.83
Heur-GD 77.27 ± 1.45 -20.15 ± 1.63 55.60 ± 2.70 -32.57 ± 2.77 52.30 ± 0.59 -9.61 ± 0.67
MCTS 81.58 ± 0.75 -15.41 ± 0.86 64.22 ± 0.65 -23.48 ± 1.02 57.70 ± 0.51 -5.31 ± 0.55

25



Under review as a conference paper at ICLR 2023

Table 7: Two-tailed Welch’s t-test results for the various memory selection methods presented in
Table 6.

Split MNIST Split FashionMNIST Split notMNIST
Memory Schedule t p t p t p

Uniform
MCTS vs Random 2.34 0.074 2.34 0.078 3.66 0.017
MCTS vs ETS 1.82 0.140 1.39 0.236 5.04 0.005
MCTS vs Heur-GD 1.60 0.178 3.64 0.017 1.69 0.166

k-means
MCTS vs Random 7.97 0.001 3.90 0.017 0.81 0.445
MCTS vs ETS 3.00 0.040 4.54 0.007 -0.36 0.732
MCTS vs Heur-GD 2.27 0.085 3.55 0.022 3.15 0.015

k-center
MCTS vs Random 6.15 0.001 3.37 0.027 2.59 0.057
MCTS vs ETS 4.71 0.007 2.56 0.037 2.53 0.062
MCTS vs Heur-GD 2.62 0.057 2.13 0.099 3.51 0.019

MoF
MCTS vs Random 2.07 0.103 1.68 0.163 2.10 0.093
MCTS vs ETS 2.13 0.095 1.99 0.110 4.11 0.007
MCTS vs Heur-GD 1.58 0.188 4.21 0.008 3.15 0.019

Permuted MNIST Split CIFAR-100 Split miniImagenet
Memory Schedule t p t p t p

Uniform
MCTS vs Random 4.14 0.005 2.67 0.033 0.49 0.636
MCTS vs ETS 4.18 0.007 7.30 0.000 4.52 0.003
MCTS vs Heur-GD -0.29 0.780 -0.87 0.412 0.82 0.441

k-means
MCTS vs Random 7.91 0.000 4.39 0.003 0.61 0.565
MCTS vs ETS 10.83 0.000 12.93 0.000 7.42 0.000
MCTS vs Heur-GD 3.05 0.019 1.31 0.255 1.87 0.099

k-center
MCTS vs Random 4.70 0.003 2.32 0.051 2.85 0.024
MCTS vs ETS 7.25 0.000 7.46 0.000 6.94 0.000
MCTS vs Heur-GD 1.92 0.100 0.82 0.437 3.89 0.005

MoF
MCTS vs Random 4.26 0.004 2.67 0.037 2.75 0.036
MCTS vs ETS 5.86 0.001 5.69 0.001 2.57 0.045
MCTS vs Heur-GD 5.26 0.002 6.22 0.002 13.90 0.000

Table 8: Hyperparameters for replay-based methods HAL, MER, DER and DER++ used in experi-
ments on applying MCTS to recent replay-based methods in Section 4.1.

5-task Datasets 10- and 20-task Datasets
Method Hyperparam. S-MNIST S-FashionMNIST S-notMNIST P-MNIST S-CIFAR-100 S-miniImagenet

HAL

η 0.1 0.1 0.1 0.1 0.03 0.03
λ 0.1 0.1 0.1 0.1 1.0 0.03
γ 0.5 0.1 0.1 0.1 0.1 0.1
β 0.7 0.5 0.5 0.5 0.5 0.5
k 100 100 100 100 100 100

MER γ 1.0 1.0 1.0 1.0 1.0 1.0
β 1.0 0.01 1.0 1.0 0.1 0.1

DER α 0.2 0.2 0.1 1.0 1.0 0.1

DER++ α 0.2 0.2 0.1 1.0 1.0 0.1
β 1.0 1.0 1.0 1.0 1.0 1.0

26



Under review as a conference paper at ICLR 2023

Table 9: Performance comparison with ACC and BWT metrics between scheduling methods MCTS
(Ours), Random, ETS, and Heuristic when combining them with replay-based methods Hindsight
Anchor Learning (HAL), Meta Experience Replay (MER), Dark Experience Replay (DER), and
DER++. Replay memory sizes are M = 10 and M = 100 for the 5-task and 10/20-task datasets
respectively. We report the mean and standard deviation averaged over 5 seeds. Results on Heuristic
where some seed did not converge is denoted by ∗. Applying MCTS to each method can enhance
the performance compared to using the baseline schedules.

Split MNIST Split FashionMNIST Split notMNIST
Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 96.32 ± 1.77 -3.90 ± 2.28 90.42 ± 4.26 -10.75 ± 5.45 93.50 ± 1.10 -3.14 ± 1.56
ETS 97.21 ± 1.25 -2.80 ± 1.59 96.75 ± 0.50 -2.84 ± 0.75 92.16 ± 1.82 -5.04 ± 2.24
Heur-GD 97.69 ± 0.19 -2.22 ± 0.24 ∗74.16 ± 11.19 ∗-31.26 ± 14.00 93.64 ± 0.93 -2.80 ± 1.20
MCTS 97.96 ± 0.15 -1.85 ± 0.18 97.56 ± 0.51 -2.02 ± 0.63 94.47 ± 0.82 -1.67 ± 0.64

MER

Random 93.00 ± 3.22 -7.96 ± 4.15 96.20 ± 2.10 -2.31 ± 2.59 89.10 ± 2.57 -8.82 ± 3.26
ETS 92.97 ± 1.73 -8.52 ± 2.15 84.88 ± 3.85 -3.34 ± 5.59 90.56 ± 0.83 -6.11 ± 1.06
Heur-GD 94.30 ± 2.79 -6.46 ± 3.50 96.91 ± 0.62 -1.34 ± 0.76 90.90 ± 1.30 -6.24 ± 1.96
MCTS 96.44 ± 0.72 -4.14 ± 0.94 86.67 ± 4.09 0.85 ± 3.85 92.44 ± 0.77 -3.63 ± 1.06

DER

Random 95.91 ± 2.18 -4.40 ± 2.46 50.00 ± 0.00 -12.20 ± 0.07 78.76 ± 12.73 -11.91 ± 4.45
ETS 98.17 ± 0.35 -2.00 ± 0.42 97.69 ± 0.58 -2.05 ± 0.71 94.74 ± 1.05 -1.94 ± 1.17
Heur-GD 94.57 ± 1.71 -6.08 ± 2.09 ∗72.49 ± 19.32 ∗-20.88 ± 11.46 ∗77.88 ± 12.58 ∗-12.66 ± 4.17
MCTS 99.02 ± 0.10 -0.91 ± 0.13 98.33 ± 0.51 -1.26 ± 0.63 95.02 ± 0.33 -0.97 ± 0.81

DER++

Random 90.09 ± 10.02 -11.73 ± 12.38 ∗50.00 ± 0.00 ∗-12.20 ± 0.07 61.83 ± 9.84 -14.40 ± 10.67
ETS 97.98 ± 0.52 -2.24 ± 0.66 98.12 ± 0.40 -1.59 ± 0.52 94.53 ± 1.02 -1.82 ± 1.02
Heur-GD 92.35 ± 2.42 -8.83 ± 2.99 ∗67.31 ± 21.20 ∗-24.86 ± 16.34 93.88 ± 1.33 -2.86 ± 1.49
MCTS 98.84 ± 0.21 -1.14 ± 0.26 98.38 ± 0.43 -1.17 ± 0.51 94.73 ± 0.20 -1.21 ± 1.12

Permuted MNIST Split CIFAR-100 Split miniImagenet
Method Schedule ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

HAL

Random 88.93 ± 0.53 -6.77 ± 0.64 35.90 ± 2.47 -17.37 ± 3.76 40.86 ± 1.86 -5.12 ± 2.23
ETS 88.46 ± 0.86 -7.26 ± 0.90 34.90 ± 2.02 -18.92 ± 0.91 38.13 ± 1.18 -8.19 ± 1.73
Heur-GD ∗66.63 ± 28.50 ∗-29.68 ± 27.90 35.07 ± 1.29 -24.76 ± 2.41 39.51 ± 1.49 -5.65 ± 0.77
MCTS 89.14 ± 0.74 -6.29 ± 0.74 40.22 ± 1.57 -12.77 ± 1.30 41.39 ± 1.15 -3.69 ± 1.86

MER

Random 87.25 ± 0.47 -8.77 ± 0.59 42.68 ± 0.86 -35.56 ± 1.39 32.86 ± 0.95 -7.71 ± 0.45
ETS 73.01 ± 0.96 -25.19 ± 1.10 43.38 ± 1.81 -34.84 ± 1.98 33.58 ± 1.53 -6.80 ± 1.46
Heur-GD 83.86 ± 3.19 -12.48 ± 3.60 40.90 ± 1.70 -44.10 ± 2.03 34.22 ± 1.93 -7.57 ± 1.63
MCTS 79.72 ± 0.71 -17.42 ± 0.78 44.29 ± 0.69 -32.73 ± 0.88 32.74 ± 1.29 -5.77 ± 1.04

DER

Random 90.67 ± 0.31 -5.20 ± 0.30 56.17 ± 1.30 -29.03 ± 1.38 35.13 ± 4.11 -10.85 ± 2.92
ETS 85.71 ± 0.75 -11.15 ± 0.87 52.58 ± 1.49 -32.93 ± 2.04 35.50 ± 2.84 -10.94 ± 2.21
Heur-GD 81.56 ± 2.28 -15.06 ± 2.51 55.75 ± 1.08 -31.27 ± 1.02 43.62 ± 0.88 -8.18 ± 1.16
MCTS 90.11 ± 0.18 -5.89 ± 0.23 58.99 ± 0.98 -24.95 ± 0.64 43.46 ± 0.95 -9.32 ± 1.37

DER++

Random 89.83 ± 0.92 -6.03 ± 0.98 60.90 ± 0.89 -23.45 ± 1.34 46.78 ± 1.96 3.28 ± 1.35
ETS 85.25 ± 0.88 -11.60 ± 1.03 52.54 ± 1.06 -33.22 ± 1.51 41.36 ± 2.90 -4.07 ± 2.28
Heur-GD 79.17 ± 2.44 -17.68 ± 2.68 56.70 ± 1.27 -30.33 ± 1.41 45.73 ± 0.84 -6.09 ± 1.24
MCTS 89.84 ± 0.22 -6.13 ± 0.29 59.23 ± 0.83 -24.61 ± 0.91 49.45 ± 0.68 -3.12 ± 0.89

27



Under review as a conference paper at ICLR 2023

Table 10: Two-tailed Welch’s t-test results for the alternative replay methods results presented in
Table 9.

Split MNIST Split FashionMNIST Split notMNIST
Memory Schedule t p t p t p

HAL
MCTS vs Random 1.84 0.139 3.33 0.028 1.41 0.198
MCTS vs ETS 1.20 0.295 2.27 0.053 2.31 0.064
MCTS vs Heur-GD 2.26 0.056 4.18 0.014 1.34 0.218

MER
MCTS vs Random 2.08 0.099 -4.15 0.006 2.48 0.059
MCTS vs ETS 3.71 0.012 0.64 0.542 3.32 0.011
MCTS vs Heur-GD 1.48 0.204 -4.96 0.007 2.04 0.084

DER
MCTS vs Random 2.85 0.046 190.21 0.000 2.56 0.063
MCTS vs ETS 4.64 0.007 1.64 0.139 0.51 0.635
MCTS vs Heur-GD 5.21 0.006 2.67 0.055 2.73 0.053

DER++
MCTS vs Random 1.75 0.156 227.62 0.000 6.68 0.003
MCTS vs ETS 3.09 0.026 0.89 0.397 0.39 0.712
MCTS vs Heur-GD 5.36 0.006 2.93 0.043 1.26 0.272

Permuted MNIST Split CIFAR-100 Split miniImagenet
Memory Schedule t p t p t p

HAL
MCTS vs Random 0.46 0.657 2.96 0.022 0.49 0.640
MCTS vs ETS 1.20 0.266 4.16 0.004 3.97 0.004
MCTS vs Heur-GD 1.58 0.189 5.07 0.001 2.01 0.082

MER
MCTS vs Random -17.61 0.000 2.92 0.020 -0.14 0.889
MCTS vs ETS 11.24 0.000 0.95 0.386 -0.84 0.425
MCTS vs Heur-GD -2.54 0.059 3.70 0.013 -1.27 0.244

DER
MCTS vs Random -3.12 0.019 3.46 0.010 3.96 0.014
MCTS vs ETS 11.36 0.000 7.18 0.000 5.31 0.003
MCTS vs Heur-GD 7.47 0.002 4.44 0.002 -0.25 0.809

DER++
MCTS vs Random 0.03 0.981 -2.75 0.025 2.57 0.051
MCTS vs ETS 10.17 0.000 9.94 0.000 5.43 0.004
MCTS vs Heur-GD 8.72 0.001 3.34 0.013 6.89 0.000

D.6 EFFICIENCY OF REPLAY SCHEDULING

We illustrate the efficiency of replay scheduling in a setting where only 1 sample/class is available
from the historical data for replay. Table 11 shows that MCTS, despite using significantly fewer
samples for replay, performs mostly on par with the baselines and outperforms them on Permuted
MNIST. Table 12 shows statistical significance tests between MCTS and the baselines for the corre-
sponding results. Our method mostly performs on par with the baselines, but is significantly better
than the baselines on Permuted MNIST.

2 3 4 5
0
2
4
6
8

Task

#S
am

pl
es

Ours Baselines

Figure 8: Number of re-
played samples per task for
the 5-task datasets in the
tiny memory setting.

We visualize the memory usage in the experiment on efficiency of
replay scheduling in Section 4.1. For the 5-task datasets, the replay
memory size for MCTS is set to M = 2, such that only 2 samples
can be selected for replay at all times. Similarly, we set M = 50 for
the 10- and 20-task datasets which have 100 classes to learn in total.
The baselines A-GEM (Chaudhry et al., 2018b), ER-Ring (Chaudhry
et al., 2019), and Uniform use an incremental memory in order to re-
play 1 sample/class at all tasks. We visualize the memory usage for
our method and the baselines for the 5-task datasets in Figure 8. Here,
the memory capacity is reached at task 2, while the baselines must
increment their memory size. Figure 9 shows the memory usage for
Permuted MNIST and the 20-task datasets Split CIFAR-100 and Split
miniImagenet.

28



Under review as a conference paper at ICLR 2023

Table 11: Performance comparison with ACC and BWT metrics for all datasets between MCTS and
the baselines in the setting where only 1 sample per class can be replayed. The memory sizes are
set to M = 10 and M = 100 for the 5-task and 10/20-task datasets respectively. MCTS (Ours) and
Random uses M = 2 and M = 50 for the 5-task and 10/20-task datasets respectively. We report
the means and standard deviations averaged over 5 seeds. MCTS performs on par with the best
baselines for both metrics on all datasets, except on Permuted MNIST where MCTS outperforms
the baselines.

Split MNIST Split FashionMNIST Split notMNIST
Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Random 92.56 +/- 2.90 -8.97 +/- 3.62 92.70 +/- 3.78 -8.24 +/- 4.75 89.53 +/- 3.96 -8.13 +/- 5.02
A-GEM 94.97 +/- 1.50 -6.03 +/- 1.87 94.81 +/- 0.86 -5.65 +/- 1.06 92.27 +/- 1.16 -4.17 +/- 1.39
ER-Ring 94.94 +/- 1.56 -6.07 +/- 1.92 95.83 +/- 2.15 -4.38 +/- 2.59 91.10 +/- 1.89 -6.27 +/- 2.35
ER-Uniform 95.77 +/- 1.12 -5.02 +/- 1.39 97.12 +/- 1.57 -2.79 +/- 1.98 92.14 +/- 1.45 -4.90 +/- 1.41
MCTS 96.07 +/- 1.60 -4.59 +/- 2.01 97.17 +/- 0.78 -2.64 +/- 0.99 93.41 +/- 1.11 -3.36 +/- 1.56

Permuted MNIST Split CIFAR-100 Split miniImagenet
Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Random 70.02 +/- 1.76 -28.22 +/- 1.92 48.62 +/- 1.02 -39.95 +/- 1.10 48.85 +/- 1.38 -14.55 +/- 1.86
A-GEM 64.71 +/- 1.78 -34.41 +/- 2.05 42.22 +/- 2.13 -46.90 +/- 2.21 32.06 +/- 1.83 -30.81 +/- 1.79
ER-Ring 69.73 +/- 1.13 -28.87 +/- 1.29 53.93 +/- 1.13 -34.91 +/- 1.18 49.82 +/- 1.69 -14.38 +/- 1.57
ER-Uniform 69.85 +/- 1.01 -28.74 +/- 1.17 52.63 +/- 1.62 -36.43 +/- 1.81 50.56 +/- 1.07 -13.52 +/- 1.34
MCTS 72.52 +/- 0.54 -25.43 +/- 0.65 51.50 +/- 1.19 -37.01 +/- 1.08 50.70 +/- 0.54 -12.60 +/- 1.13

Table 12: Two-tailed Welch’s t-test results for efficiency of replay scheduling presented in Table 11.

Split MNIST Split FashionMNIST Split notMNIST
Methods t p t p t p

MCTS vs Random 2.12 0.077 2.32 0.076 1.89 0.122
MCTS vs A-GEM 1.00 0.347 4.08 0.004 1.41 0.195
MCTS vs ER-Ring 1.01 0.342 1.18 0.292 2.11 0.076
MCTS vs Uniform 0.30 0.770 0.07 0.950 1.39 0.203

Permuted MNIST Split CIFAR-100 Split miniImagenet
Methods t p t p t p

MCTS vs Random 2.72 0.044 3.67 0.007 2.48 0.054
MCTS vs A-GEM 8.40 0.001 7.60 0.000 19.52 0.000
MCTS vs ER-Ring 4.46 0.005 -2.96 0.018 0.99 0.369
MCTS vs Uniform 4.68 0.003 -1.13 0.296 0.23 0.824

2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

Task

#R
ep

la
ye

d
Sa

m
pl

es

Memory Usage for 10-task Permuted MNIST

Ours Baselines

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10
20
30
40
50
60
70
80
90

100

Task

#R
ep

la
ye

d
Sa

m
pl

es

Memory Usage for the 20-task Datasets

Ours Baselines

Figure 9: Number of replayed samples per task for 10-task Permuted MNIST (top) and the 20-task
datasets in the experiment in Section 4.1. The fixed memory size M = 50 for our method is reached
after learning task 6 and task 11 on the Permuted MNIST and the 20-task datasets respectively, while
the baselines continue incrementing their number of replay samples per task.

29



Under review as a conference paper at ICLR 2023

D.7 VARYING MEMORY SIZE IN DIFFERENT CONTINUAL LEARNING SETTING

Here, we provide the ACC and BWT metrics from the varying memory size experiments from figure
4 in Section 4.1. We also provide the p-values from Welch’s t-tests to show the statistical significance
between the methods.

• Domain-IL, 10-task Permuted MNIST: Metrics in Table 13, t-tests in Table 14.
• Task-IL, 5-task Split MNIST/FashionMNIST/notMNIST: Metrics in Table 15, t-tests in Table

16.
• Task-IL, 20-task Split CIFAR-100/miniImagenet: Metrics in Table 17, t-tests in Table 18.
• Class-IL, 5-task Split MNIST/FashionMNIST/notMNIST: Metrics in Table 19, t-tests in Table

20.
• Class-IL, 20-task Split CIFAR-100/miniImagenet: Metrics in Table 21, t-tests in Table 22.
We note that MCTS mostly performs significantly better than the baselines on the 10-task Permuted
MNIST and, interestingly, on the 20-task Split CIFAR-100 and Split miniImagenet in both Task-IL
and Clas-IL settings, which shows the importance of replay scheduling for CL datasets with long
task horizons.

Table 13: Performance comparison in the Domain Incremental Learning setting over various mem-
ory sizes for the methods on Permuted MNIST.

Permuted MNIST
Memory Size Method ACC (%) BWT (%)

M=90

Random 72.63 ± 1.06 -25.62 ± 1.20
ETS 71.49 ± 1.15 -26.92 ± 1.26
Heur-GD 75.50 ± 1.64 -22.14 ± 1.93
MCTS 71.66 ± 0.67 -28.70 ± 0.81

M=270

Random 82.01 ± 0.79 -15.24 ± 0.86
ETS 80.68 ± 0.66 -16.72 ± 0.77
Heur-GD 78.32 ± 1.58 -19.01 ± 1.83
MCTS 82.08 ± 0.35 -17.18 ± 0.38

M=450

Random 84.72 ± 1.39 -12.16 ± 1.53
ETS 84.38 ± 1.12 -12.54 ± 1.20
Heur-GD 81.66 ± 2.30 -15.27 ± 2.48
MCTS 85.53 ± 0.42 -13.34 ± 0.49

M=900

Random 88.02 ± 1.03 -8.51 ± 1.09
ETS 88.02 ± 0.46 -8.52 ± 0.47
Heur-GD 80.27 ± 3.26 -16.77 ± 3.76
MCTS 88.94 ± 0.43 -9.55 ± 0.47

M=2250

Random 90.94 ± 0.46 -5.26 ± 0.43
ETS 91.07 ± 0.23 -5.11 ± 0.21
Heur-GD 81.28 ± 3.79 -15.68 ± 4.32
MCTS 92.45 ± 0.34 -5.63 ± 0.41

Table 14: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 15 in the Domain Incremental Learning setting on Permuted MNIST.

Permuted MNIST
Memory size Methods t p

M=90
MCTS vs Random -1.55 0.166
MCTS vs ETS 0.26 0.806
MCTS vs Heur-GD -4.32 0.007

M=270
MCTS vs Random 0.17 0.872
MCTS vs ETS 3.75 0.009
MCTS vs Heur-GD 4.66 0.008

M=450
MCTS vs Random 1.13 0.313
MCTS vs ETS 1.93 0.111
MCTS vs Heur-GD 3.31 0.027

M=900
MCTS vs Random 1.66 0.153
MCTS vs ETS 2.92 0.019
MCTS vs Heur-GD 5.28 0.006

M=2250
MCTS vs Random 5.31 0.001
MCTS vs ETS 6.74 0.000
MCTS vs Heur-GD 5.88 0.004

30



Under review as a conference paper at ICLR 2023

Table 15: Performance comparison in the Task Incremental Learning setting over various memory
sizes for the methods on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST
Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

M=8

Random 95.50 ± 1.92 -5.38 ± 2.38 95.04 ± 2.43 -5.42 ± 3.06 91.36 ± 1.76 -6.15 ± 1.98
ETS 95.83 ± 1.23 -4.96 ± 1.53 97.25 ± 0.68 -2.66 ± 0.82 92.10 ± 1.53 -5.10 ± 1.97
Heur-GD 96.16 ± 0.83 -4.45 ± 1.05 96.29 ± 0.79 -3.83 ± 1.05 93.68 ± 1.11 -3.06 ± 1.54
MCTS 98.17 ± 0.48 -1.99 ± 0.61 98.33 ± 0.11 -1.27 ± 0.11 94.53 ± 0.62 -1.67 ± 1.03

M=24

Random 97.21 ± 1.70 -3.24 ± 2.14 97.20 ± 0.71 -2.72 ± 0.92 92.31 ± 1.50 -4.88 ± 1.75
ETS 97.87 ± 0.58 -2.41 ± 0.74 97.84 ± 0.55 -1.91 ± 0.64 93.19 ± 1.41 -3.84 ± 1.48
Heur-GD 97.82 ± 1.17 -2.40 ± 1.46 95.76 ± 2.84 -4.48 ± 3.52 92.97 ± 2.55 -3.54 ± 3.07
MCTS 98.58 ± 0.32 -1.47 ± 0.41 98.48 ± 0.24 -1.06 ± 0.32 95.23 ± 0.66 -1.08 ± 1.72

M=80

Random 97.57 ± 2.03 -2.78 ± 2.53 96.85 ± 1.58 -3.10 ± 2.05 94.14 ± 0.95 -2.50 ± 1.59
ETS 98.47 ± 0.40 -1.65 ± 0.49 97.93 ± 0.85 -1.76 ± 0.98 94.63 ± 0.67 -1.82 ± 0.74
Heur-GD 98.36 ± 0.40 -1.72 ± 0.50 96.22 ± 1.96 -3.92 ± 2.45 93.24 ± 2.56 -3.73 ± 2.71
MCTS 99.06 ± 0.16 -0.89 ± 0.21 98.60 ± 0.24 -0.87 ± 0.34 94.84 ± 0.58 -0.97 ± 1.28

M=120

Random 97.82 ± 2.29 -2.47 ± 2.88 98.29 ± 0.44 -1.26 ± 0.56 94.91 ± 1.03 -1.65 ± 1.04
ETS 98.82 ± 0.18 -1.22 ± 0.26 98.53 ± 0.28 -0.96 ± 0.36 95.32 ± 0.66 -1.21 ± 1.30
Heur-GD 98.37 ± 0.38 -1.71 ± 0.48 95.26 ± 3.14 -5.12 ± 3.98 93.42 ± 1.78 -3.47 ± 2.22
MCTS 99.05 ± 0.11 -0.88 ± 0.15 98.75 ± 0.19 -0.77 ± 0.25 94.16 ± 1.08 -1.99 ± 1.69

M=200

Random 97.99 ± 1.59 -2.25 ± 2.00 96.68 ± 3.33 -3.38 ± 4.19 93.94 ± 1.40 -2.12 ± 1.70
ETS 98.83 ± 0.23 -1.19 ± 0.28 98.60 ± 0.25 -0.99 ± 0.29 94.79 ± 0.50 -1.58 ± 1.03
Heur-GD 98.15 ± 0.64 -1.97 ± 0.81 95.83 ± 2.00 -4.40 ± 2.52 93.88 ± 1.63 -2.71 ± 1.69
MCTS 99.09 ± 0.08 -0.83 ± 0.11 98.83 ± 0.11 -0.65 ± 0.15 95.19 ± 0.53 -0.49 ± 0.47

M=400

Random 97.98 ± 2.23 -2.28 ± 2.80 98.00 ± 1.59 -1.74 ± 2.00 94.68 ± 1.11 -1.77 ± 1.09
ETS 99.18 ± 0.10 -0.78 ± 0.13 98.83 ± 0.09 -0.71 ± 0.12 95.41 ± 0.56 -0.20 ± 1.07
Heur-GD 98.44 ± 0.60 -1.64 ± 0.77 95.41 ± 3.77 -4.93 ± 4.69 92.84 ± 1.88 -3.95 ± 2.05
MCTS 99.25 ± 0.05 -0.63 ± 0.09 98.80 ± 0.11 -0.62 ± 0.17 95.25 ± 0.44 -0.97 ± 1.20

M=800

Random 98.60 ± 1.42 -1.51 ± 1.77 97.00 ± 3.93 -2.98 ± 4.94 94.97 ± 0.73 -1.86 ± 0.77
ETS 99.34 ± 0.06 -0.57 ± 0.04 98.97 ± 0.06 -0.51 ± 0.10 95.52 ± 0.74 -0.61 ± 1.21
Heur-GD 98.76 ± 0.41 -1.23 ± 0.55 93.32 ± 3.67 -7.54 ± 4.65 95.06 ± 1.44 -1.17 ± 1.30
MCTS 99.38 ± 0.08 -0.45 ± 0.10 98.96 ± 0.12 -0.45 ± 0.18 95.46 ± 0.70 -0.48 ± 0.81

Table 16: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 15 in the Task Incremental Learning setting on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST
Memory size Methods t p t p t p

M=8
MCTS vs Random 2.70 0.048 2.70 0.054 3.41 0.019
MCTS vs ETS 3.53 0.016 3.13 0.033 2.94 0.030
MCTS vs Heur-GD 4.18 0.005 5.12 0.006 1.34 0.227

M=24
MCTS vs Random 1.59 0.183 3.39 0.020 3.55 0.014
MCTS vs ETS 2.15 0.074 2.14 0.080 2.63 0.041
MCTS vs Heur-GD 1.26 0.268 1.90 0.128 1.72 0.153

M=80
MCTS vs Random 1.47 0.215 2.18 0.091 1.26 0.251
MCTS vs ETS 2.76 0.038 1.53 0.191 0.48 0.645
MCTS vs Heur-GD 3.26 0.021 2.41 0.072 1.22 0.285

M=120
MCTS vs Random 1.07 0.344 1.95 0.105 -1.01 0.343
MCTS vs ETS 2.12 0.073 1.31 0.231 -1.83 0.112
MCTS vs Heur-GD 3.45 0.020 2.22 0.090 0.70 0.507

M=200
MCTS vs Random 1.38 0.240 1.29 0.266 1.67 0.154
MCTS vs ETS 2.06 0.094 1.69 0.146 1.11 0.301
MCTS vs Heur-GD 2.91 0.042 3.00 0.040 1.53 0.190

M=400
MCTS vs Random 1.14 0.318 1.00 0.373 0.94 0.389
MCTS vs ETS 1.25 0.258 -0.42 0.684 -0.47 0.655
MCTS vs Heur-GD 2.69 0.054 1.80 0.146 2.49 0.061

M=800
MCTS vs Random 1.10 0.332 1.00 0.373 0.96 0.364
MCTS vs ETS 0.82 0.435 -0.06 0.955 -0.11 0.912
MCTS vs Heur-GD 3.05 0.035 3.08 0.037 0.50 0.636

31



Under review as a conference paper at ICLR 2023

Table 17: Performance comparison in the Task Incremental Learning setting over various memory
sizes for the methods on the 20-task datasets.

Split CIFAR-100 Split miniImagenet
Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%)

M=95

Random 56.92 ± 0.72 -31.98 ± 0.69 52.06 ± 0.94 -12.49 ± 1.41
ETS 55.19 ± 0.77 -33.70 ± 0.82 51.33 ± 2.01 -13.32 ± 2.15
Heur-GD 53.86 ± 3.89 -34.51 ± 4.25 50.66 ± 1.36 -10.99 ± 1.39
MCTS 60.46 ± 1.05 -27.67 ± 1.23 53.59 ± 0.24 -9.49 ± 0.51

M=285

Random 67.79 ± 1.19 -20.31 ± 1.12 57.85 ± 1.09 -6.33 ± 1.30
ETS 65.02 ± 0.98 -23.36 ± 1.10 56.18 ± 0.83 -8.43 ± 1.37
Heur-GD 60.26 ± 2.88 -27.44 ± 2.87 53.33 ± 2.21 -7.96 ± 2.18
MCTS 68.85 ± 0.56 -18.41 ± 0.63 57.91 ± 0.09 -5.18 ± 0.54

M=475

Random 70.86 ± 1.24 -17.19 ± 1.26 59.54 ± 1.25 -4.22 ± 1.96
ETS 69.40 ± 0.73 -18.68 ± 0.82 59.60 ± 0.98 -4.75 ± 1.31
Heur-GD 65.00 ± 3.08 -22.58 ± 3.20 50.12 ± 4.60 -11.79 ± 5.08
MCTS 72.93 ± 0.54 -14.15 ± 0.78 60.00 ± 0.48 -2.85 ± 0.34

M=950

Random 75.39 ± 0.46 -12.24 ± 0.46 61.87 ± 0.85 -2.32 ± 1.06
ETS 74.24 ± 0.61 -13.49 ± 0.44 60.51 ± 0.95 -4.01 ± 1.28
Heur-GD 65.97 ± 5.51 -21.40 ± 5.58 50.99 ± 4.64 -11.21 ± 4.62
MCTS 76.65 ± 0.62 -10.31 ± 0.84 61.82 ± 0.69 -1.38 ± 0.55

M=1900

Random 78.86 ± 0.38 -8.64 ± 0.37 62.95 ± 0.69 -1.56 ± 0.99
ETS 77.66 ± 0.38 -9.72 ± 0.36 62.38 ± 0.68 -1.55 ± 0.90
Heur-GD 63.70 ± 6.12 -24.07 ± 6.60 56.42 ± 3.15 -5.43 ± 3.63
MCTS 79.24 ± 0.59 -7.43 ± 0.64 63.83 ± 1.04 0.41 ± 1.10

Table 18: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 17 in the Task Incremental Learning setting on the 20-task datasets.

Split CIFAR-100 Split miniImagenet
Memory size Methods t p t p

M=95
MCTS vs Random 5.56 0.001 3.15 0.029
MCTS vs ETS 8.11 0.000 2.23 0.088
MCTS vs Heur-GD 3.27 0.025 4.24 0.012

M=285
MCTS vs Random 1.62 0.159 0.11 0.918
MCTS vs ETS 6.76 0.000 4.14 0.014
MCTS vs Heur-GD 5.87 0.003 4.13 0.014

M=475
MCTS vs Random 3.05 0.025 0.68 0.525
MCTS vs ETS 7.78 0.000 0.73 0.496
MCTS vs Heur-GD 5.07 0.006 4.28 0.012

M=950
MCTS vs Random 3.25 0.013 -0.09 0.929
MCTS vs ETS 5.51 0.001 2.25 0.058
MCTS vs Heur-GD 3.85 0.017 4.62 0.009

M=1900
MCTS vs Random 1.08 0.317 1.41 0.203
MCTS vs ETS 4.53 0.003 2.34 0.052
MCTS vs Heur-GD 5.05 0.007 4.47 0.007

32



Under review as a conference paper at ICLR 2023

Table 19: Performance comparison in the Class Incremental Learning setting over various memory
sizes for the methods on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST
Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

M=10

Random 25.53 ± 1.57 -92.74 ± 1.99 30.78 ± 2.74 -85.70 ± 3.47 30.48 ± 5.16 -81.80 ± 6.18
ETS 25.10 ± 1.04 -93.27 ± 1.32 30.67 ± 2.36 -85.83 ± 3.03 31.67 ± 6.03 -80.22 ± 7.36
Heur-GD 25.05 ± 1.51 -93.27 ± 1.85 31.81 ± 3.17 -84.33 ± 3.96 29.86 ± 3.49 -82.07 ± 4.26
MCTS 28.19 ± 2.18 -89.34 ± 2.71 33.77 ± 2.71 -81.91 ± 3.45 37.23 ± 3.53 -73.93 ± 3.89

M=20

Random 34.13 ± 2.04 -81.98 ± 2.57 37.80 ± 2.92 -76.83 ± 3.62 42.78 ± 1.24 -65.75 ± 1.92
ETS 35.17 ± 2.06 -80.65 ± 2.54 38.76 ± 1.58 -75.63 ± 1.93 45.21 ± 5.92 -63.10 ± 7.33
Heur-GD 33.87 ± 2.15 -82.20 ± 2.65 42.52 ± 1.98 -70.94 ± 2.47 45.13 ± 3.68 -63.32 ± 4.31
MCTS 39.62 ± 0.73 -75.05 ± 0.92 44.27 ± 2.19 -68.71 ± 2.74 47.83 ± 0.82 -59.91 ± 1.11

M=40

Random 45.34 ± 3.71 -67.96 ± 4.64 45.78 ± 2.96 -66.84 ± 3.72 55.70 ± 2.96 -49.58 ± 3.36
ETS 48.57 ± 1.90 -63.93 ± 2.37 45.54 ± 1.21 -67.15 ± 1.48 58.07 ± 3.88 -46.85 ± 4.92
Heur-GD 45.22 ± 4.54 -68.05 ± 5.65 51.67 ± 1.59 -59.43 ± 2.02 53.90 ± 6.10 -52.09 ± 7.73
MCTS 50.79 ± 2.45 -61.07 ± 3.08 51.33 ± 2.96 -59.87 ± 3.70 62.55 ± 3.23 -41.20 ± 4.81

M=100

Random 59.53 ± 6.37 -50.12 ± 7.96 55.96 ± 3.31 -53.98 ± 4.17 65.06 ± 3.48 -37.86 ± 4.30
ETS 68.09 ± 1.06 -39.49 ± 1.33 59.26 ± 0.95 -49.92 ± 1.14 72.55 ± 1.65 -28.88 ± 2.31
Heur-GD 49.81 ± 1.58 -62.17 ± 1.95 58.14 ± 2.96 -51.24 ± 3.71 58.28 ± 2.02 -46.70 ± 2.63
MCTS 66.86 ± 2.21 -40.96 ± 2.75 60.97 ± 2.43 -47.63 ± 2.99 71.18 ± 3.58 -30.27 ± 4.15

M=200

Random 65.82 ± 7.50 -42.27 ± 9.36 61.11 ± 5.19 -47.26 ± 6.48 67.07 ± 5.65 -35.36 ± 6.96
ETS 77.73 ± 1.31 -27.42 ± 1.63 66.51 ± 0.75 -40.60 ± 0.99 77.15 ± 0.24 -22.61 ± 0.89
Heur-GD 53.85 ± 0.88 -57.05 ± 1.11 54.69 ± 0.32 -55.42 ± 0.43 57.05 ± 3.28 -47.66 ± 4.09
MCTS 78.14 ± 1.67 -26.81 ± 2.00 67.38 ± 2.60 -39.41 ± 3.26 75.91 ± 4.88 -24.15 ± 5.98

Table 20: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 19 in the Class Incremental Learning setting on the 5-task datasets.

Split MNIST Split FashionMNIST Split notMNIST
Memory size Methods t p t p t p

M=10
MCTS vs Random 1.98 0.086 1.56 0.158 2.16 0.067
MCTS vs ETS 2.56 0.045 1.73 0.123 1.59 0.159
MCTS vs Heur-GD 2.37 0.049 0.94 0.374 2.97 0.018

M=20
MCTS vs Random 5.06 0.004 3.54 0.009 6.80 0.000
MCTS vs ETS 4.07 0.010 4.07 0.004 0.88 0.429
MCTS vs Heur-GD 5.08 0.004 1.18 0.271 1.43 0.219

M=40
MCTS vs Random 2.45 0.044 2.65 0.029 3.13 0.014
MCTS vs ETS 1.43 0.192 3.62 0.014 1.78 0.115
MCTS vs Heur-GD 2.16 0.073 -0.21 0.843 2.51 0.046

M=100
MCTS vs Random 2.18 0.082 2.44 0.043 2.45 0.040
MCTS vs ETS -1.00 0.356 1.31 0.246 -0.69 0.515
MCTS vs Heur-GD 12.55 0.000 1.48 0.180 6.29 0.001

M=200
MCTS vs Random 3.21 0.029 2.16 0.075 2.37 0.046
MCTS vs ETS 0.39 0.707 0.65 0.548 -0.51 0.639
MCTS vs Heur-GD 25.79 0.000 9.69 0.001 6.41 0.000

33



Under review as a conference paper at ICLR 2023

Table 21: Performance comparison in the Class Incremental Learning setting over various memory
sizes for the methods on the 20-task datasets.

Split CIFAR-100 Split miniImagenet
Memory Size Method ACC (%) BWT (%) ACC (%) BWT (%)

M=100

Random 4.49 ± 0.04 -85.73 ± 0.34 3.36 ± 0.23 -60.11 ± 0.83
ETS 4.51 ± 0.13 -85.62 ± 0.34 3.34 ± 0.21 -60.25 ± 0.47
Heur-GD 4.55 ± 0.13 -84.62 ± 0.44 3.29 ± 0.14 -57.01 ± 0.45
MCTS 4.62 ± 0.10 -84.73 ± 0.23 3.51 ± 0.19 -57.57 ± 1.13

M=200

Random 5.24 ± 0.12 -84.53 ± 0.28 3.60 ± 0.24 -58.83 ± 0.81
ETS 4.98 ± 0.14 -85.05 ± 0.19 3.75 ± 0.14 -58.92 ± 1.03
Heur-GD 5.20 ± 0.16 -83.33 ± 0.29 3.95 ± 0.36 -54.81 ± 0.58
MCTS 5.84 ± 0.16 -82.89 ± 0.28 4.26 ± 0.19 -55.19 ± 0.73

M=400

Random 7.13 ± 0.25 -81.93 ± 0.29 4.81 ± 0.40 -56.36 ± 0.44
ETS 6.35 ± 0.25 -82.92 ± 0.23 4.35 ± 0.15 -57.28 ± 0.83
Heur-GD 7.66 ± 0.60 -79.82 ± 0.60 6.97 ± 0.78 -49.44 ± 1.04
MCTS 8.31 ± 0.21 -79.58 ± 0.51 7.64 ± 0.70 -48.73 ± 1.71

M=800

Random 10.64 ± 0.51 -77.27 ± 0.62 8.40 ± 1.07 -50.95 ± 1.85
ETS 9.13 ± 0.20 -79.54 ± 0.43 7.15 ± 0.51 -53.95 ± 0.74
Heur-GD 11.33 ± 0.47 -74.75 ± 0.73 8.44 ± 1.15 -48.89 ± 1.43
MCTS 12.06 ± 0.24 -74.70 ± 0.29 11.56 ± 1.30 -44.30 ± 1.63

M=1600

Random 15.54 ± 0.69 -70.42 ± 0.55 13.72 ± 1.30 -44.19 ± 1.73
ETS 13.99 ± 0.32 -72.42 ± 0.24 12.17 ± 1.40 -47.55 ± 1.39
Heur-GD 15.66 ± 1.84 -67.24 ± 1.75 8.39 ± 1.35 -49.35 ± 1.77
MCTS 17.59 ± 0.42 -66.59 ± 0.66 15.40 ± 0.34 -42.27 ± 0.73

Table 22: Two-tailed Welch’s t-test results for the varying memory size experiments presented in
Table 21 in the Class Incremental Learning setting on the 20-task datasets.

Split CIFAR-100 Split miniImagenet
Memory size Methods t p t p

M=100
MCTS vs Random 2.35 0.065 1.03 0.335
MCTS vs ETS 1.38 0.208 1.20 0.266
MCTS vs Heur-GD 0.87 0.410 1.86 0.103

M=200
MCTS vs Random 5.95 0.000 4.34 0.003
MCTS vs ETS 8.07 0.000 4.35 0.003
MCTS vs Heur-GD 5.72 0.000 1.51 0.182

M=400
MCTS vs Random 7.15 0.000 7.06 0.000
MCTS vs ETS 11.98 0.000 9.22 0.000
MCTS vs Heur-GD 2.01 0.101 1.29 0.232

M=800
MCTS vs Random 5.05 0.003 3.75 0.006
MCTS vs ETS 18.79 0.000 6.32 0.001
MCTS vs Heur-GD 2.77 0.033 3.60 0.007

M=1600
MCTS vs Random 5.08 0.002 2.50 0.059
MCTS vs ETS 13.60 0.000 4.49 0.008
MCTS vs Heur-GD 2.04 0.104 10.04 0.000

34



Under review as a conference paper at ICLR 2023

E ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS FOR REPLAY
SCHEDULING POLICY EXPERIMENTS

This section is structured as follows:

• Appendix E.1: Full details on the experimental settings.
• Appendix E.2: Details of the ranking method to assess the generalization abilities of the schedul-

ing policies.
• Appendix E.3: Additional experimental results for the Replay Scheduling Policy Generalization

experiments with Welch’s t-tests for statistical significance between the RL algorithms (DQN and
A2C) and the baselines.

• Appendix E.4: Task splits in the continual learning environments used for testing.

E.1 EXPERIMENTAL SETTINGS FOR RL-BASED FRAMEWORK

Here, we provide details on the experimental settings for the experiments with our RL-based frame-
work where we use multiple CL environments for learning replay scheduling policies that generalize.

Datasets. We conduct experiments on CL environments with four datasets common CL bench-
marks, namely, Split MNIST (Zenke et al., 2017), Split Fashion-MNIST (Xiao et al., 2017), Split
notMNIST (Bulatov, 2011), and Split CIFAR-10 (Krizhevsky & Hinton, 2009). All datasets consists
of 5 tasks with 2 classes/task.

CL Network Architectures. We use a 2-layer MLP with 256 hidden units and ReLU activation
for Split MNIST, Split FashionMNIST, and Split notMNIST. For Split CIFAR-10, we use the same
ConvNet architecture as used for Split CIFAR-100 in Appendix D.1. We use a multi-head output
layer for each dataset and assume task labels are available at test time for selecting the correct output
head related to the task.

CL Hyperparameters. We train all networks with the Adam optimizer (Kingma & Ba, 2014)
with learning rate η = 0.001 and hyperparameters β1 = 0.9 and β2 = 0.999. Note that the learning
rate for Adam is not reset before training on a new task. Next, we give details on number of training
epochs and batch sizes specific for each dataset:

• Split MNIST: 10 epochs/task, batch size 128.
• Split FashionMNIST: 10 epochs/task, batch size 128.
• Split notMNIST: 20 epochs/task, batch size 128.
• Split CIFAR-10: 20 epochs/task, batch size 256.

Generating CL Environments. We generate multiple CL environments with pre-set random
seeds for initializing the network parameters ϕ and shuffling the task order. The pre-set random
seeds are in the range 0 − 49, such that we have 50 environments for each dataset. We shuffle
the task order by permuting the class order and then split the classes into 5 pairs (tasks) with 2
classes/pair. For environments with seed 0, we keep the original task order in the dataset. Taking
a step at task t in the CL environments involves training the CL network on the t-th dataset with a
replay memory Mt from the discrete action space described in Section 3.2. Therefore, to speed up
the experiments with the RL algorithms, we run a breadth-first search (BFS) through the discrete
action space and save the classification results for re-use during policy learning. Note that the action
space has 1050 possible paths of replay schedules for the datasets with T = 5 tasks, which makes
the environment generation time-consuming. Hence, we only generate environments where the re-
play memory size M = 10 have been used, and leave analysis of different memory sizes as future
work. The CL environments we used are provided in the code submission.

DQN and A2C Architectures. The input layer has size T − 1 where each unit is in-
putting the task performances since the states are represented by the validation accuracies st =

[A
(val)
t,1 , ..., A

(val)
t,t , 0, ..., 0]. The current task can therefore be determined by the number of non-zero

state inputs. The output layer has 35 units representing the possible actions at T = 5 with the dis-
crete action space we have constructed in Section 3.2. We use action masking on the output units to
prevent the network from selection invalid actions for constructing the replay memory at the current
task. The DQN is a 2-layer MLP with 512 hidden units and ReLU activations. For A2C, we use

35



Under review as a conference paper at ICLR 2023

Table 23: DQN hyperparameters for the experiments on New Task Orders in Section 4.2.
Hyperparameters Split MNIST Split FashionMNIST Split CIFAR-10
Training Environments 30 20 10
Learning Rate 0.0001 0.0003 0.0003
Optimizer Adam Adam Adam
Buffer Size 10k 10k 10k
Target Update per step 500 500 500
Batch Size 32 32 32
Discount Factor γ 1.0 1.0 1.0
Exploration Start ϵstart 1.0 1.0 1.0
Exploration Final ϵfinal 0.02 0.02 0.02
Exploration Annealing (episodes) 2.5k 2.5k 2.5k
Training Episodes 10k 10k 10k

Table 24: A2C hyperparameters for the experiments on New Task Orders in Section 4.2.
Hyperparameters Split MNIST Split FashionMNIST Split CIFAR-10
Training Environments 10 10 10
Learning Rate 0.0001 0.0003 0.00003
Optimizer RMSProp RMSProp RMSProp
Gradient Clipping 0.5 0.5 0.5
GAE parameter λ 0.95 0.95 0.95
VF coefficient 0.5 0.5 0.5
Entropy coefficient 0.01 0.01 0.01
Number of steps nsteps 5 5 5
Discount Factor γ 1.0 1.0 1.0
Training Episodes 100k 100k 100k

separate networks for parameterizing the policy and the value function, where both networks are
2-layer MLPs with 64 hidden units of Tanh activations.

DQN and A2C Hyperparameters. We provide the hyperparameters for the both DQN and A2C
in Table 23-27. Table 23 and 24 includes the hyperparameters on the New Task Order experiment for
DQN and A2C respectively, while Table 26 and 27 includes the hyperparameters on the New Dataset
experiment for DQN and A2C respectively. Regarding the training environments in Table 26 and
27, we use two different datasets in the training environments to increase the diversity. When Spit
notMNIST is for testing, half the amount of training environments are using Split MNIST and the
other half uses Split FashionMNIST. For example, in Table 27, A2C uses 10 training environments
which means that there are 5 Split MNIST environments and 5 Split FashionMNIST environments.
Similarly, half the amount of training environments are using Split MNIST and the other half uses
Split notMNIST when the testing environments uses Split FashionMNIST.

Computational Cost. All experiments were performed on one NVIDIA GeForce RTW 2080Ti
on an internal GPU cluster. Generating a CL environment for one seed with Split MNIST took on
around 9.5 hours averaged over 10 runs of BFS. Similarly for Split CIFAR-10, generating one CL
environment took on average 16.1 hours. Table 25 shows a time-cost ablation experiment w/ or w/o
a DQN for selecting which tasks to replay in Split MNIST. We measured the wall clock time for
training and evaluating the CL model on the 5 Split MNIST tasks w/ and w/o the DQN, and show
the wall clock time averaged over 10 different DQN seeds. The time difference when w/ DQN is
only 3.2 seconds, since selecting which tasks to replay is only a forward pass with the RL policy.

Table 25: Time-cost ablation experiment w/ or w/o a DQN for replay schduling on Split MNIST.

Time Cost With DQN Without DQN Difference

Avg. Time (in sec) 84.6 81.4 3.2

Implementations. The code for DQN was adapted from OpenAI baselines (Dhariwal et al., 2017)
and the PyTorch (Paszke et al., 2019) tutorial on DQN https://pytorch.org/tutorials/
intermediate/reinforcement_q_learning.html. For A2C, we followed the implementa-
tions released by Kostrikov (2018) and Igl et al. (2020).

36

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html


Under review as a conference paper at ICLR 2023

Table 26: DQN hyperparameters for the experiments on New Dataset in Section 4.2. Split notM-
NIST and Split FashionMNIST indicate the dataset used in the test environments.

Hyperparameters Split notMNIST Split FashionMNIST
Training Environments 30 30
Learning Rate 0.0001 0.0001
Optimizer Adam Adam
Buffer Size 10k 10k
Target Update per step 500 500
Batch Size 32 32
Discount Factor γ 1.0 1.0
Exploration Start ϵstart 1.0 1.0
Exploration Final ϵfinal 0.02 0.02
Exploration Annealing (episodes) 2.5k 2.5k
Training Episodes 10k 10k

Table 27: A2C hyperparameters for the experiments on New Dataset in Section 4.2. Split notM-
NIST and Split FashionMNIST indicate the dataset used in the test environments.

Hyperparameters Split notMNIST Split FashionMNIST
Training Environments 10 10
Learning Rate 0.0001 0.0003
Optimizer RMSProp RMSProp
Gradient Clipping 0.5 0.5
GAE parameter λ 0.95 0.95
VF coefficient 0.5 0.5
Entropy coefficient 0.01 0.01
Number of steps nsteps 5 5
Discount Factor γ 1.0 1.0
Training Episodes 100k 100k

37



Under review as a conference paper at ICLR 2023

E.2 ASSESSING GENERALIZATION WITH RANKING METHOD

We use a ranking method based on the CL performance in every test environment for performance
comparison between the methods in Section 4.2. We use rankings because the performances can
vary greatly between environments with different task orders and datasets. To measure the CL
performance in the environments, we use the average test accuracy over all tasks after learning the
final task, i.e.,

ACC =
1

T

T∑
i=1

A
(test)
T,i ,

where A
(test)
t,i is the test accuracy of task i after learning task t. Each method are ranked in de-

scending order based on the ACC achieved in an environment. For example, assume that we want
to compare the CL performance from using learned replay scheduling policies with DQN and A2C
against a Random scheduling policy in one environment. The CL performances achieved for each
method are given by

[ACCRandom,ACCDQN,ACCA2C] = [90%, 99%, 95%].

We get the following ranking order between the methods based on their corresponding ACC:

ranking([ACCRandom,ACCDQN,ACCA2C]) = [3, 1, 2],

where DQN is ranked in 1st place, A2C in 2nd, and Random in 3rd. When there are multiple
environments for evaluation, we compute the average ranking across the ranking positions in every
environment for each method to compare.

The average ranking for DQN and A2C are computed over the seed for initializing the network
parameters as well as the seed of the environment. Similarly, the Random baseline is affected by the
seed setting the random selection of actions and the environment seed. However, the performance
of the ETS and Heuristic baselines are affected by the seed of the environment as these policies are
fixed. We use copied values of the performance in environments for the ETS and Heuristic baselines
when we need to compare across different random seeds for Random, DQN, and A2C. We show an
example of such ranking calculation for ETS, a Heuristic baseline, DQN, and A2C. Consider the
following performances for one environment:[

ACC1
ETS ACC1

Heur ACC1
DQN ACC1

A2C

ACC2
ETS ACC2

Heur ACC2
DQN ACC2

A2C

]
=

[
90% 95% 95% 99%

∗ ∗ 97% 98%

]
,

where ∗ denotes a copy of the ACC value in the first row. The subscript on ACC denotes the method
and the superscript the seed used for initializing the policy network θ. Therefore, we copy the
values for ETS and Heur such that the ACC2

DQN for seed 2 can be compared against ETS and Heur.
Note that there is a tie between ACC1

Heur and ACC1
DQN as they have ACC 95%. We handle ties by

assigning tied methods the average of their ranks, such that the ranks for both seeds will be

ranking

([
ACC1

ETS ACC1
Heur ACC1

DQN ACC1
A2C

ACC2
ETS ACC2

Heur ACC2
DQN ACC2

A2C

]
,axis=-1, keepdim=True

)

=ranking

([
90% 95% 95% 99%

90% 95% 97% 98%

]
,axis=-1, keepdim=True

)
=

[
4 2.5 2.5 1

4 3 2 1

]
,

where we inserted the copied values, such that ACC1
ETS = ACC2

ETS = 90% and ACC1
Heur =

ACC2
Heur = 95%. The mean ranking across the seeds thus becomes

mean

([
4 2.5 2.5 1

4 3 2 1

]
,axis=0

)
= [4 2.75 2.25 1]

where A2C comes in 1st place, DQN in 2nd, Heur. in 3rd, and ETS on 4th place. We average across
seeds and environments to obtain the final ranking score for each method for comparison.

38



Under review as a conference paper at ICLR 2023

E.3 ADDITIONAL RESULTS FOR REPLAY SCHEDULING POLICY GENERALIZATION
EXPERIMENTS

Here, we display the ACC and BWT metrics for each method averaged across 5 seeds and the
average rank in every test environment. Note that the ACC and BWT from ETS and the heuristic
scheduling baselines have standard deviation zero since these policies are fixed. Averaging the ranks
over all test environments yields the corresponding average rank in Table 4. Furthermore, we provide
the p-values from Welch’s t-test to show whether the statistical significance of the results.

• New Task Order, Split MNIST: Metrics in Table 28, and Welch’s t-test in Table 29.
• New Task Order, Split FashionMNIST: Metrics in Table 31, and Welch’s t-test in Table 30.
• New Task Order, Split notMNIST: Metrics in Table 32, and Welch’s t-test in Table 33.
• New Task Order, Split CIFAR-10: Metrics in Table 35, and Welch’s t-test in Table 34.
• New Dataset, Split FashionMNIST: Metrics in Table 36, and Welch’s t-test in Table 37.
• New Dataset, Split notMNIST: Metrics in Table 39, and Welch’s t-test in Table 38.

The improvement with the learning replay scheduling policies is less significant than in the MCTS
experiments, however, such behaviour is common when RL is used for generalizing to new environ-
ments.

39



Under review as a conference paper at ICLR 2023

Table 28: Performance comparison in every test environment with seed (10-19) with with Split
MNIST for New Task Order experiment. Under each column named ’Test Env. Seed X’, we
show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 10 Test Env. Seed 11
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.95 ± 2.68 -6.95 ± 3.33 4.2 92.13 ± 1.34 -9.46 ± 1.68 4.6
ETS 89.89 ± 0.00 -12.01 ± 0.00 6.8 93.77 ± 0.00 -7.41 ± 0.00 2.8
Heur-GD 94.64 ± 0.00 -6.06 ± 0.00 4.5 91.34 ± 0.00 -10.47 ± 0.00 5.6
Heur-LD 95.63 ± 0.00 -4.80 ± 0.00 1.8 91.34 ± 0.00 -10.47 ± 0.00 5.6
Heur-AT 94.64 ± 0.00 -6.06 ± 0.00 4.5 91.34 ± 0.00 -10.47 ± 0.00 5.6
DQN 94.68 ± 1.16 -6.00 ± 1.44 3.2 94.08 ± 1.75 -7.01 ± 2.19 2.8
A2C 95.31 ± 0.00 -5.21 ± 0.00 3 96.41 ± 0.18 -4.09 ± 0.23 1

Test Env. Seed 12 Test Env. Seed 13
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.22 ± 2.35 -9.16 ± 2.93 4.4 93.65 ± 2.06 -7.47 ± 2.58 4.8
ETS 91.69 ± 0.00 -9.82 ± 0.00 6.4 94.95 ± 0.00 -5.88 ± 0.00 3
Heur-GD 94.82 ± 0.00 -5.89 ± 0.00 1.7 94.66 ± 0.00 -6.14 ± 0.00 4.7
Heur-LD 91.93 ± 0.00 -9.50 ± 0.00 5.4 93.17 ± 0.00 -8.00 ± 0.00 6.8
Heur-AT 94.82 ± 0.00 -5.89 ± 0.00 1.7 94.66 ± 0.00 -6.14 ± 0.00 4.7
DQN 93.05 ± 1.37 -8.05 ± 1.71 4.6 95.59 ± 1.22 -4.94 ± 1.53 2
A2C 93.62 ± 0.00 -7.34 ± 0.00 3.8 95.56 ± 0.00 -5.01 ± 0.00 2

Test Env. Seed 14 Test Env. Seed 15
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 85.74 ± 3.47 -17.19 ± 4.32 3.8 94.54 ± 1.49 -6.20 ± 1.87 4.8
ETS 87.29 ± 0.00 -15.23 ± 0.00 2.4 95.32 ± 0.00 -5.23 ± 0.00 4.6
Heur-GD 81.20 ± 0.00 -23.00 ± 0.00 6.3 95.92 ± 0.00 -4.49 ± 0.00 2.7
Heur-LD 81.20 ± 0.00 -23.00 ± 0.00 6.3 96.05 ± 0.00 -4.30 ± 0.00 1
Heur-AT 82.36 ± 0.00 -21.52 ± 0.00 4.8 95.92 ± 0.00 -4.49 ± 0.00 2.7
DQN 91.22 ± 3.23 -10.45 ± 4.02 1.6 94.37 ± 0.74 -6.45 ± 0.90 6.4
A2C 88.16 ± 5.81 -14.27 ± 7.25 2.8 94.82 ± 0.00 -5.94 ± 0.00 5.8

Test Env. Seed 16 Test Env. Seed 17
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 83.05 ± 3.07 -20.78 ± 3.84 6.2 95.86 ± 0.48 -4.52 ± 0.59 2.4
ETS 79.38 ± 0.00 -25.36 ± 0.00 6.8 95.69 ± 0.00 -4.77 ± 0.00 2.8
Heur-GD 91.16 ± 0.00 -10.57 ± 0.00 3.2 93.48 ± 0.00 -7.39 ± 0.00 5.8
Heur-LD 91.16 ± 0.00 -10.57 ± 0.00 3.2 93.48 ± 0.00 -7.39 ± 0.00 5.8
Heur-AT 91.16 ± 0.00 -10.57 ± 0.00 3.2 93.48 ± 0.00 -7.39 ± 0.00 5.8
DQN 92.93 ± 1.19 -8.41 ± 1.48 1.8 94.67 ± 2.13 -5.91 ± 2.65 4
A2C 91.11 ± 0.98 -10.69 ± 1.23 3.6 96.28 ± 0.21 -3.89 ± 0.27 1.4

Test Env. Seed 18 Test Env. Seed 19
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.30 ± 2.91 -10.28 ± 3.63 2.8 95.85 ± 2.20 -4.71 ± 2.76 1.8
ETS 92.89 ± 0.00 -8.28 ± 0.00 1.4 97.40 ± 0.00 -2.78 ± 0.00 1.2
Heur-GD 87.82 ± 0.00 -14.53 ± 0.00 5.8 88.34 ± 0.00 -14.21 ± 0.00 5
Heur-LD 87.82 ± 0.00 -14.53 ± 0.00 5.8 88.34 ± 0.00 -14.21 ± 0.00 5
Heur-AT 87.82 ± 0.00 -14.53 ± 0.00 5.8 88.34 ± 0.00 -14.21 ± 0.00 5
DQN 90.05 ± 0.88 -11.74 ± 1.12 3.8 89.04 ± 1.82 -13.28 ± 2.28 4.4
A2C 91.64 ± 0.00 -9.75 ± 0.00 2.6 87.64 ± 1.88 -15.03 ± 2.33 5.6

40



Under review as a conference paper at ICLR 2023

Table 29: Two-tailed Welch’s t-test results for Split MNIST in New Task Order experiment.
Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random 0.50 0.636 1.77 0.117 0.62 0.560 1.62 0.152 2.32 0.049
DQN vs ETS 8.30 0.001 0.36 0.740 1.99 0.117 1.05 0.352 2.44 0.071
DQN vs Heur-GD 0.08 0.942 3.13 0.035 -2.57 0.062 1.53 0.201 6.21 0.003
DQN vs Heur-LD: -1.64 0.175 3.13 0.035 1.63 0.177 3.97 0.017 6.21 0.003
DQN vs Heur-AT 0.08 0.942 3.13 0.035 -2.57 0.062 1.53 0.201 5.49 0.005
DQN vs A2C -1.08 0.341 -2.65 0.056 -0.83 0.455 0.06 0.957 0.92 0.391

A2C vs Random 1.01 0.369 6.32 0.003 1.20 0.298 1.85 0.138 0.72 0.499
A2C vs ETS inf 0.000 28.80 0.000 inf 0.000 inf 0.000 0.30 0.778
A2C vs Heur-GD inf 0.000 55.32 0.000 -inf 0.000 inf 0.000 2.40 0.075
A2C vs Heur-LD -inf 0.000 55.32 0.000 inf 0.000 inf 0.000 2.40 0.075
A2C vs Heur-AT inf 0.000 55.32 0.000 -inf 0.000 inf 0.000 2.00 0.117
A2C vs DQN 1.08 0.341 2.65 0.056 0.83 0.455 -0.06 0.957 -0.92 0.391

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -0.21 0.844 6.01 0.002 -1.09 0.332 -0.82 0.452 -4.76 0.002
DQN vs ETS -2.60 0.060 22.75 0.000 -0.95 0.396 -6.48 0.003 -9.17 0.001
DQN vs Heur-GD -4.22 0.013 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484
DQN vs Heur-LD: -4.57 0.010 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484
DQN vs Heur-AT -4.22 0.013 2.98 0.041 1.12 0.324 5.10 0.007 0.77 0.484
DQN vs A2C -1.24 0.283 2.36 0.047 -1.50 0.205 -3.63 0.022 1.07 0.315

A2C vs Random 0.38 0.722 5.00 0.005 1.60 0.164 0.24 0.824 -5.67 0.001
A2C vs ETS -inf 0.000 23.87 0.000 5.56 0.005 -inf 0.000 -10.39 0.000
A2C vs Heur-GD -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498
A2C vs Heur-LD -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498
A2C vs Heur-AT -inf 0.000 -0.10 0.925 26.08 0.000 inf 0.000 -0.75 0.498
A2C vs DQN 1.24 0.283 -2.36 0.047 1.50 0.205 3.63 0.022 -1.07 0.315

Table 30: Two-tailed Welch’s t-test results for Split FashionMNIST in New Task Order experi-
ment.

Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14
Methods t p t p t p t p t p

DQN vs Random -0.05 0.962 -0.17 0.871 0.18 0.864 3.28 0.024 0.24 0.819
DQN vs ETS 1.78 0.150 0.76 0.490 2.06 0.109 12.55 0.000 4.19 0.014
DQN vs Heur-GD -3.61 0.023 -1.29 0.265 -0.33 0.761 4.03 0.016 -0.85 0.445
DQN vs Heur-LD: -3.61 0.023 -1.99 0.118 -1.07 0.343 1.51 0.205 -0.56 0.604
DQN vs Heur-AT 13.80 0.000 -1.45 0.221 -0.88 0.427 -2.62 0.059 11.80 0.000
DQN vs A2C -0.61 0.574 2.26 0.084 4.35 0.012 -1.51 0.180 -0.13 0.901

A2C vs Random 0.09 0.934 -5.96 0.002 -2.74 0.052 3.87 0.016 0.64 0.556
A2C vs ETS 22.94 0.000 -10.13 0.001 -inf 0.000 24.85 0.000 81.68 0.000
A2C vs Heur-GD -28.72 0.000 -23.78 0.000 -inf 0.000 10.04 0.001 -13.50 0.000
A2C vs Heur-LD -28.72 0.000 -28.38 0.000 -inf 0.000 5.65 0.005 -8.14 0.001
A2C vs Heur-AT 138.22 0.000 -24.81 0.000 -inf 0.000 -1.54 0.199 225.61 0.000
A2C vs DQN 0.61 0.574 -2.26 0.084 -4.35 0.012 1.51 0.180 0.13 0.901

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -7.48 0.000 -1.05 0.327 -1.11 0.300 3.23 0.028 -2.26 0.067
DQN vs ETS -13.28 0.000 -4.06 0.015 4.28 0.013 5.49 0.005 -2.31 0.082
DQN vs Heur-GD 34.42 0.000 12.59 0.000 -3.97 0.017 7.21 0.002 -0.34 0.752
DQN vs Heur-LD: -10.25 0.001 7.27 0.002 -3.64 0.022 9.52 0.001 2.41 0.073
DQN vs Heur-AT 3.44 0.026 0.12 0.912 0.16 0.883 3.72 0.021 -1.24 0.281
DQN vs A2C 27.78 0.000 2.23 0.056 -0.64 0.540 3.54 0.010 -1.79 0.143

A2C vs Random -26.79 0.000 -3.58 0.010 -0.50 0.634 2.39 0.073 -1.34 0.235
A2C vs ETS -109.10 0.000 -6.83 0.002 5.87 0.004 2.18 0.094 -2.52 0.066
A2C vs Heur-GD 11.50 0.000 8.66 0.001 -3.56 0.024 4.99 0.008 7.67 0.002
A2C vs Heur-LD -101.45 0.000 3.71 0.021 -3.19 0.033 8.76 0.001 21.88 0.000
A2C vs Heur-AT -66.83 0.000 -2.94 0.042 1.15 0.313 -0.71 0.517 3.00 0.040
A2C vs DQN -27.78 0.000 -2.23 0.056 0.64 0.540 -3.54 0.010 1.79 0.143

41



Under review as a conference paper at ICLR 2023

Table 31: Performance comparison in every test environment with seed (10-19) with with Split
FashionMNIST for New Task Order experiment. Under each column named ’Test Env. Seed X’,
we show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 10 Test Env. Seed 11
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 96.79 ± 3.02 -3.11 ± 3.76 2.2 90.84 ± 1.64 -8.02 ± 2.04 4.4
ETS 96.10 ± 0.00 -3.98 ± 0.00 5.6 88.84 ± 0.00 -10.55 ± 0.00 5.8
Heur-GD 97.96 ± 0.00 -1.93 ± 0.00 2.3 93.21 ± 0.00 -4.96 ± 0.00 3.4
Heur-LD 97.96 ± 0.00 -1.93 ± 0.00 2.3 94.68 ± 0.00 -3.12 ± 0.00 1
Heur-AT 91.95 ± 0.00 -9.30 ± 0.00 6.8 93.54 ± 0.00 -4.70 ± 0.00 2
DQN 96.71 ± 0.69 -3.47 ± 0.86 4.5 90.46 ± 4.25 -8.60 ± 5.32 4.6
A2C 96.93 ± 0.07 -3.20 ± 0.09 4.3 85.60 ± 0.64 -14.65 ± 0.79 6.8

Test Env. Seed 12 Test Env. Seed 13
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.97 ± 4.60 -6.60 ± 5.74 2.8 91.66 ± 3.08 -9.38 ± 3.85 6.4
ETS 91.25 ± 0.00 -10.08 ± 0.00 5.6 91.24 ± 0.00 -9.85 ± 0.00 6.6
Heur-GD 94.97 ± 0.00 -5.26 ± 0.00 4.2 95.09 ± 0.00 -5.10 ± 0.00 5
Heur-LD 96.14 ± 0.00 -3.89 ± 0.00 1.8 96.23 ± 0.00 -3.69 ± 0.00 3.8
Heur-AT 95.84 ± 0.00 -4.21 ± 0.00 3 98.10 ± 0.00 -1.38 ± 0.00 1.2
DQN 94.46 ± 3.12 -6.00 ± 3.95 3.8 96.91 ± 0.90 -2.83 ± 1.12 2.6
A2C 87.67 ± 0.00 -14.49 ± 0.00 6.8 97.70 ± 0.52 -1.87 ± 0.67 2.4

Test Env. Seed 14 Test Env. Seed 15
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.17 ± 1.37 -3.79 ± 1.73 3.6 93.74 ± 0.95 -4.53 ± 1.18 1.4
ETS 90.04 ± 0.00 -8.92 ± 0.00 6 93.51 ± 0.00 -4.81 ± 0.00 1.6
Heur-GD 95.37 ± 0.00 -2.26 ± 0.00 1.6 79.33 ± 0.00 -22.05 ± 0.00 7
Heur-LD 95.07 ± 0.00 -2.65 ± 0.00 3.2 92.61 ± 0.00 -5.44 ± 0.00 3
Heur-AT 81.98 ± 0.00 -18.88 ± 0.00 7 88.54 ± 0.00 -10.50 ± 0.00 4.8
DQN 94.47 ± 2.12 -3.12 ± 2.66 2.4 89.56 ± 0.59 -9.25 ± 0.74 4.2
A2C 94.61 ± 0.11 -2.96 ± 0.14 4.2 80.68 ± 0.24 -20.34 ± 0.29 6

Test Env. Seed 16 Test Env. Seed 17
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 90.96 ± 1.68 -7.18 ± 2.06 2.4 98.99 ± 0.26 -0.66 ± 0.34 3.8
ETS 94.41 ± 0.00 -2.96 ± 0.00 1 98.11 ± 0.00 -1.77 ± 0.00 7
Heur-GD 73.82 ± 0.00 -28.91 ± 0.00 7 99.37 ± 0.00 -0.24 ± 0.00 1
Heur-LD 80.40 ± 0.00 -20.66 ± 0.00 6 99.32 ± 0.00 -0.30 ± 0.00 2
Heur-AT 89.24 ± 0.00 -9.68 ± 0.00 3.6 98.74 ± 0.00 -0.99 ± 0.00 4.8
DQN 89.39 ± 2.47 -9.49 ± 3.09 3.4 98.76 ± 0.31 -0.97 ± 0.38 5
A2C 85.33 ± 2.66 -14.62 ± 3.36 4.6 98.89 ± 0.27 -0.80 ± 0.33 4.4

Test Env. Seed 18 Test Env. Seed 19
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 89.92 ± 3.44 -11.26 ± 4.30 5.6 97.64 ± 0.79 -1.58 ± 1.06 1.8
ETS 93.56 ± 0.00 -6.74 ± 0.00 4.4 97.49 ± 0.00 -1.81 ± 0.00 2
Heur-GD 92.92 ± 0.00 -7.31 ± 0.00 5.4 95.79 ± 0.00 -3.94 ± 0.00 5.4
Heur-LD 92.06 ± 0.00 -8.40 ± 0.00 6.4 93.42 ± 0.00 -6.85 ± 0.00 6.8
Heur-AT 94.22 ± 0.00 -5.66 ± 0.00 2.2 96.57 ± 0.00 -3.01 ± 0.00 4.2
DQN 95.60 ± 0.74 -3.92 ± 0.93 1 95.50 ± 1.72 -4.42 ± 2.16 5
A2C 94.06 ± 0.46 -5.88 ± 0.58 3 97.07 ± 0.33 -2.41 ± 0.40 2.8

42



Under review as a conference paper at ICLR 2023

Table 32: Performance comparison in every test environment with seed (10-19) with Split notM-
NIST for New Task Order experiment. Under each column named ’Test Env. Seed X’, we show the
mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the corresponding
method.

Test Env. Seed 10 Test Env. Seed 11
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 89.19 ± 3.60 -9.93 ± 4.54 5 91.90 ± 1.05 -2.01 ± 1.35 4
ETS 93.24 ± 0.00 -4.74 ± 0.00 1.6 91.79 ± 0.00 -2.28 ± 0.00 3.4
Heur-GD 91.58 ± 0.00 -5.60 ± 0.00 4 90.92 ± 0.00 -4.21 ± 0.00 6.8
Heur-LD 90.88 ± 0.00 -6.51 ± 0.00 6.4 91.60 ± 0.00 -3.31 ± 0.00 5.6
Heur-AT 91.36 ± 0.00 -5.48 ± 0.00 5 91.70 ± 0.00 -3.44 ± 0.00 4.6
DQN 93.70 ± 1.02 -3.37 ± 0.72 1.8 92.73 ± 0.77 -2.12 ± 0.65 1.8
A2C 91.78 ± 0.60 -5.63 ± 0.49 4.2 92.66 ± 0.36 -2.31 ± 0.33 1.8

Test Env. Seed 12 Test Env. Seed 13
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 90.59 ± 2.85 -7.94 ± 3.69 4 91.63 ± 2.40 -3.73 ± 2.70 3.8
ETS 83.06 ± 0.00 -17.48 ± 0.00 7 86.28 ± 0.00 -10.76 ± 0.00 7
Heur-GD 92.89 ± 0.00 -4.45 ± 0.00 2.2 94.06 ± 0.00 -1.22 ± 0.00 1.2
Heur-LD 92.96 ± 0.00 -3.57 ± 0.00 1.2 92.21 ± 0.00 -3.53 ± 0.00 4
Heur-AT 91.20 ± 0.00 -5.92 ± 0.00 4.6 88.77 ± 0.00 -7.46 ± 0.00 5.8
DQN 91.59 ± 0.87 -5.46 ± 0.95 3.8 92.30 ± 1.48 -3.42 ± 1.86 3.5
A2C 91.02 ± 0.26 -5.97 ± 0.19 5.2 93.52 ± 0.60 -2.05 ± 0.44 2.7

Test Env. Seed 14 Test Env. Seed 15
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.42 ± 0.80 -3.95 ± 0.94 3 89.42 ± 1.66 -6.65 ± 1.97 3.6
ETS 92.67 ± 0.00 -3.89 ± 0.00 2.4 89.32 ± 0.00 -6.41 ± 0.00 4.2
Heur-GD 93.63 ± 0.00 -1.46 ± 0.00 1 92.08 ± 0.00 -4.12 ± 0.00 1
Heur-LD 89.18 ± 0.00 -7.02 ± 0.00 5.8 89.58 ± 0.00 -7.25 ± 0.00 3
Heur-AT 88.14 ± 0.00 -8.58 ± 0.00 6.8 84.47 ± 0.00 -14.12 ± 0.00 6.8
DQN 90.69 ± 0.79 -5.25 ± 0.95 4.8 86.99 ± 1.50 -10.77 ± 1.87 5.6
A2C 91.47 ± 1.79 -4.64 ± 2.34 4.2 89.04 ± 2.55 -8.28 ± 3.07 3.8

Test Env. Seed 16 Test Env. Seed 17
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.66 ± 0.54 -0.94 ± 0.77 1 90.30 ± 2.35 -7.20 ± 2.85 6
ETS 91.91 ± 0.00 -2.65 ± 0.00 2.8 92.56 ± 0.00 -3.99 ± 0.00 3.4
Heur-GD 89.22 ± 0.00 -5.95 ± 0.00 4.7 91.30 ± 0.00 -5.69 ± 0.00 5.9
Heur-LD 89.22 ± 0.00 -5.95 ± 0.00 4.7 91.30 ± 0.00 -5.69 ± 0.00 5.9
Heur-AT 86.29 ± 0.00 -9.36 ± 0.00 7 93.87 ± 0.00 -1.30 ± 0.00 2
DQN 88.94 ± 1.41 -5.84 ± 1.93 5.2 94.53 ± 0.90 -1.41 ± 1.11 1.2
A2C 91.85 ± 1.45 -1.88 ± 1.43 2.6 92.58 ± 0.67 -3.78 ± 0.99 3.6

Test Env. Seed 18 Test Env. Seed 19
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.78 ± 2.97 -2.78 ± 3.76 2 92.83 ± 2.19 -2.62 ± 2.73 4.4
ETS 92.43 ± 0.00 -5.57 ± 0.00 5.8 90.89 ± 0.00 -5.17 ± 0.00 6.8
Heur-GD 92.79 ± 0.00 -5.69 ± 0.00 4.4 94.16 ± 0.00 -2.21 ± 0.00 3.2
Heur-LD 94.65 ± 0.00 -3.71 ± 0.00 1.8 94.94 ± 0.00 -1.01 ± 0.00 1.2
Heur-AT 88.15 ± 0.00 -11.30 ± 0.00 7 93.46 ± 0.00 -3.99 ± 0.00 5.4
DQN 93.32 ± 0.69 -4.77 ± 1.02 3.8 94.08 ± 0.96 -3.10 ± 1.02 3.6
A2C 93.64 ± 0.22 -4.58 ± 0.48 3.2 93.66 ± 0.80 -3.82 ± 0.94 3.4

43



Under review as a conference paper at ICLR 2023

Table 33: Two-tailed Welch’s t-test results for Split notMNIST in New Task Order experiment.
Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random -1.32 0.226 2.81 0.023 2.64 0.033 2.22 0.083 -0.41 0.692
DQN vs ETS -0.36 0.739 3.08 0.037 0.68 0.535 8.68 0.001 0.20 0.849
DQN vs Heur-GD -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -0.72 0.512
DQN vs Heur-LD: -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -1.56 0.194
DQN vs Heur-AT -1.20 0.296 6.06 0.004 9.21 0.001 -7.65 0.002 -0.72 0.512
DQN vs A2C -0.63 0.554 0.78 0.458 1.29 0.245 -3.88 0.005 -1.64 0.172

A2C vs Random -1.04 0.333 1.74 0.122 2.10 0.091 3.57 0.019 1.68 0.159
A2C vs ETS 0.67 0.537 1.57 0.191 -1.56 0.194 12.84 0.000 9.59 0.001
A2C vs Heur-GD -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 4.86 0.008
A2C vs Heur-LD -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 0.56 0.606
A2C vs Heur-AT -0.96 0.390 4.08 0.015 15.93 0.000 -1.58 0.189 4.86 0.008
A2C vs DQN 0.63 0.554 -0.78 0.458 -1.29 0.245 3.88 0.005 1.64 0.172

Test Env. Seed 5 Test Env. Seed 6 Test Env. Seed 7 Test Env. Seed 8 Test Env. Seed 9

Methods t p t p t p t p t p

DQN vs Random 1.82 0.108 1.05 0.332 -1.16 0.283 0.85 0.438 -3.30 0.023
DQN vs ETS 3.61 0.023 2.01 0.115 -3.07 0.037 7.25 0.002 -4.29 0.013
DQN vs Heur-GD 1.67 0.169 2.66 0.056 15.47 0.000 -0.78 0.479 2.69 0.055
DQN vs Heur-LD: 1.67 0.169 9.49 0.001 8.95 0.001 8.72 0.001 2.69 0.055
DQN vs Heur-AT 1.67 0.169 2.66 0.056 0.32 0.767 -0.78 0.479 2.69 0.055
DQN vs A2C -0.38 0.722 1.63 0.142 -0.39 0.710 -1.43 0.226 -2.71 0.053

A2C vs Random 2.56 0.060 -0.07 0.944 -0.83 0.430 8.71 0.001 -2.39 0.073
A2C vs ETS 18.34 0.000 -0.40 0.707 -2.50 0.067 inf 0.000 -39.30 0.000
A2C vs Heur-GD 9.47 0.001 0.18 0.867 15.87 0.000 inf 0.000 135.29 0.000
A2C vs Heur-LD 9.47 0.001 6.23 0.003 9.41 0.001 inf 0.000 135.29 0.000
A2C vs Heur-AT 9.47 0.001 0.18 0.867 0.86 0.439 inf 0.000 135.29 0.000
A2C vs DQN 0.38 0.722 -1.63 0.142 0.39 0.710 1.43 0.226 2.71 0.053

Table 34: Two-tailed Welch’s t-test results for Split CIFAR-10 in New Task Order experiment.
Test Env. Seed 10 Test Env. Seed 11 Test Env. Seed 12 Test Env. Seed 13 Test Env. Seed 14

Methods t p t p t p t p t p

DQN vs Random 0.70 0.504 8.12 0.000 -3.77 0.006 0.48 0.653 2.03 0.091
DQN vs ETS -0.07 0.948 12.90 0.000 -0.79 0.473 12.33 0.000 12.12 0.000
DQN vs Heur-GD 1.18 0.303 -0.09 0.932 -10.41 0.000 5.18 0.007 -3.77 0.020
DQN vs Heur-LD: 0.61 0.574 -6.72 0.003 -5.31 0.006 -1.29 0.265 1.24 0.283
DQN vs Heur-AT 1.77 0.152 -5.15 0.007 -9.97 0.001 0.84 0.448 -3.26 0.031
DQN vs A2C 3.97 0.017 -10.54 0.000 -2.38 0.051 -2.70 0.049 -1.86 0.127

A2C vs Random -2.29 0.084 13.83 0.000 -2.31 0.061 1.63 0.178 3.15 0.033
A2C vs ETS -inf 0.000 inf 0.000 3.19 0.033 68.53 0.000 50.37 0.000
A2C vs Heur-GD -inf 0.000 inf 0.000 -12.02 0.000 36.03 0.000 -6.59 0.003
A2C vs Heur-LD -inf 0.000 inf 0.000 -3.96 0.017 6.66 0.003 11.37 0.000
A2C vs Heur-AT -inf 0.000 inf 0.000 -11.34 0.000 16.34 0.000 -4.77 0.009
A2C vs DQN -3.97 0.017 10.54 0.000 2.38 0.051 2.70 0.049 1.86 0.127

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -2.67 0.045 0.07 0.945 1.35 0.222 1.53 0.165 4.03 0.010
DQN vs ETS -1.66 0.172 -1.08 0.342 2.69 0.055 0.20 0.850 5.14 0.007
DQN vs Heur-GD -1.38 0.239 7.09 0.002 0.56 0.608 -0.38 0.725 4.68 0.009
DQN vs Heur-LD: -1.98 0.119 9.15 0.001 -0.54 0.621 -3.08 0.037 5.53 0.005
DQN vs Heur-AT -1.98 0.119 7.09 0.002 -0.74 0.502 -0.38 0.725 4.68 0.009
DQN vs A2C -2.65 0.054 -2.90 0.044 -0.33 0.756 -1.86 0.119 -1.31 0.259

A2C vs Random -0.35 0.740 0.50 0.643 3.17 0.034 4.00 0.009 4.80 0.009
A2C vs ETS 6.26 0.003 inf 0.000 inf 0.000 5.35 0.006 inf 0.000
A2C vs Heur-GD 7.95 0.001 inf 0.000 inf 0.000 3.95 0.017 inf 0.000
A2C vs Heur-LD 4.31 0.013 inf 0.000 -inf 0.000 -2.58 0.061 inf 0.000
A2C vs Heur-AT 4.31 0.013 inf 0.000 -inf 0.000 3.95 0.017 inf 0.000
A2C vs DQN 2.65 0.054 2.90 0.044 0.33 0.756 1.86 0.119 1.31 0.259

44



Under review as a conference paper at ICLR 2023

Table 35: Performance comparison in every test environment with seed (10-19) with with Split
CIFAR-10 for New Task Order experiment. Under each column named ’Test Env. Seed X’, we
show the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the
corresponding method.

Test Env. Seed 10 Test Env. Seed 11
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 86.35 ± 1.57 -13.27 ± 1.98 4.2 73.05 ± 1.42 -27.40 ± 1.91 6.8
ETS 87.10 ± 0.00 -12.31 ± 0.00 1.8 75.16 ± 0.00 -25.14 ± 0.00 6.2
Heur-GD 86.31 ± 0.00 -13.19 ± 0.00 4 79.45 ± 0.00 -19.79 ± 0.00 4.6
Heur-LD 86.67 ± 0.00 -12.74 ± 0.00 3 81.64 ± 0.00 -17.05 ± 0.00 2
Heur-AT 85.94 ± 0.00 -13.69 ± 0.00 5.2 81.12 ± 0.00 -17.74 ± 0.00 3
DQN 87.06 ± 1.26 -12.42 ± 1.57 2.8 79.42 ± 0.66 -19.64 ± 0.83 4.4
A2C 84.55 ± 0.00 -15.59 ± 0.00 7 82.90 ± 0.00 -15.26 ± 0.00 1

Test Env. Seed 12 Test Env. Seed 13
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.86 ± 1.12 -10.36 ± 1.44 3.4 80.07 ± 1.43 -15.40 ± 1.78 3.3
ETS 85.53 ± 0.00 -13.33 ± 0.00 6.6 76.85 ± 0.00 -19.34 ± 0.00 7
Heur-GD 89.76 ± 0.00 -7.69 ± 0.00 1 78.93 ± 0.00 -16.48 ± 0.00 5.8
Heur-LD 87.52 ± 0.00 -10.40 ± 0.00 3.8 80.81 ± 0.00 -14.20 ± 0.00 2.8
Heur-AT 89.57 ± 0.00 -8.15 ± 0.00 2 80.19 ± 0.00 -14.77 ± 0.00 4.3
DQN 85.18 ± 0.88 -13.31 ± 1.12 6.4 80.43 ± 0.58 -14.47 ± 0.75 3.4
A2C 86.42 ± 0.56 -11.90 ± 0.75 4.8 81.24 ± 0.13 -13.35 ± 0.15 1.4

Test Env. Seed 14 Test Env. Seed 15
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 82.04 ± 2.37 -17.84 ± 2.95 6 84.86 ± 0.62 -14.77 ± 0.79 2
ETS 77.79 ± 0.00 -23.26 ± 0.00 6.8 83.78 ± 0.00 -16.15 ± 0.00 5.2
Heur-GD 86.86 ± 0.00 -11.70 ± 0.00 1 83.52 ± 0.00 -16.29 ± 0.00 6.2
Heur-LD 84.00 ± 0.00 -15.24 ± 0.00 4.8 84.08 ± 0.00 -15.58 ± 0.00 3.5
Heur-AT 86.57 ± 0.00 -12.05 ± 0.00 2 84.08 ± 0.00 -15.58 ± 0.00 3.5
DQN 84.71 ± 1.14 -14.62 ± 1.36 4.2 82.22 ± 1.88 -17.83 ± 2.38 5.8
A2C 85.81 ± 0.32 -13.35 ± 0.40 3.2 84.74 ± 0.31 -14.65 ± 0.39 1.8

Test Env. Seed 16 Test Env. Seed 17
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.60 ± 1.72 -10.51 ± 2.15 4 72.33 ± 2.14 -26.27 ± 2.73 6
ETS 87.80 ± 0.00 -10.20 ± 0.00 2.8 70.35 ± 0.00 -28.79 ± 0.00 6.6
Heur-GD 86.77 ± 0.00 -12.23 ± 0.00 5.1 74.14 ± 0.00 -23.30 ± 0.00 4.8
Heur-LD 86.51 ± 0.00 -12.63 ± 0.00 6.6 76.08 ± 0.00 -20.88 ± 0.00 2.6
Heur-AT 86.77 ± 0.00 -12.23 ± 0.00 5.1 76.44 ± 0.00 -20.49 ± 0.00 1.4
DQN 87.66 ± 0.25 -11.02 ± 0.33 2.8 75.13 ± 3.56 -21.96 ± 4.45 3
A2C 88.03 ± 0.00 -10.59 ± 0.00 1.6 75.72 ± 0.00 -21.18 ± 0.00 3.6

Test Env. Seed 18 Test Env. Seed 19
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.43 ± 0.88 -10.75 ± 1.03 6.4 74.89 ± 2.33 -25.80 ± 2.89 7
ETS 88.32 ± 0.00 -10.19 ± 0.00 5.8 77.67 ± 0.00 -22.16 ± 0.00 5
Heur-GD 88.59 ± 0.00 -10.34 ± 0.00 4.3 77.87 ± 0.00 -22.98 ± 0.00 3.5
Heur-LD 89.85 ± 0.00 -8.95 ± 0.00 1.2 77.50 ± 0.00 -23.50 ± 0.00 6
Heur-AT 88.59 ± 0.00 -10.34 ± 0.00 4.3 77.87 ± 0.00 -22.98 ± 0.00 3.5
DQN 88.41 ± 0.93 -10.73 ± 1.15 3.8 79.91 ± 0.87 -20.52 ± 1.07 1.7
A2C 89.35 ± 0.39 -9.47 ± 0.48 2.2 80.48 ± 0.00 -19.78 ± 0.00 1.3

45



Under review as a conference paper at ICLR 2023

Table 36: Performance comparison in every test environment with seed (0-9) with with Split Fash-
ionMNIST for New Dataset experiment. Under each column named ’Test Env. Seed X’, we show
the mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the corre-
sponding method.

Test Env. Seed 0 Test Env. Seed 1
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 94.33 ± 3.03 -6.15 ± 3.78 5.4 92.26 ± 3.84 -5.96 ± 4.78 4.2
ETS 97.10 ± 0.00 -2.70 ± 0.00 5.8 94.10 ± 0.00 -3.59 ± 0.00 3.2
Heur-GD 97.90 ± 0.00 -1.59 ± 0.00 1 95.01 ± 0.00 -2.69 ± 0.00 1.4
Heur-LD 97.59 ± 0.00 -1.99 ± 0.00 3 90.03 ± 0.00 -8.90 ± 0.00 6.8
Heur-AT 97.41 ± 0.00 -2.21 ± 0.00 4.6 94.09 ± 0.00 -3.78 ± 0.00 4.2
DQN 96.82 ± 1.50 -3.06 ± 1.87 3.8 93.74 ± 1.86 -4.24 ± 2.33 3.2
A2C 95.74 ± 3.33 -4.39 ± 4.15 4.4 92.80 ± 1.56 -5.27 ± 1.95 5

Test Env. Seed 2 Test Env. Seed 3
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.74 ± 2.97 -6.36 ± 3.71 5.8 94.12 ± 4.14 -6.99 ± 5.16 3.9
ETS 86.72 ± 0.00 -15.17 ± 0.00 7 89.44 ± 0.00 -12.86 ± 0.00 6.4
Heur-GD 97.41 ± 0.00 -1.87 ± 0.00 2.8 96.69 ± 0.00 -3.68 ± 0.00 3
Heur-LD 97.30 ± 0.00 -1.91 ± 0.00 3.8 90.61 ± 0.00 -11.26 ± 0.00 4.8
Heur-AT 97.65 ± 0.00 -1.58 ± 0.00 1 99.40 ± 0.00 -0.26 ± 0.00 1.1
DQN 96.13 ± 0.97 -3.47 ± 1.20 5 94.66 ± 5.00 -6.24 ± 6.26 3.6
A2C 97.31 ± 0.55 -1.99 ± 0.71 2.6 92.12 ± 3.75 -9.40 ± 4.68 5.2

Test Env. Seed 4 Test Env. Seed 5
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 83.64 ± 5.22 -16.86 ± 6.48 5.4 89.76 ± 2.46 -7.91 ± 3.06 4
ETS 87.07 ± 0.00 -12.61 ± 0.00 4.2 91.53 ± 0.00 -5.61 ± 0.00 1.2
Heur-GD 91.29 ± 0.00 -7.30 ± 0.00 2.4 90.33 ± 0.00 -7.25 ± 0.00 3.4
Heur-LD 86.75 ± 0.00 -12.87 ± 0.00 5.2 88.01 ± 0.00 -10.02 ± 0.00 4.8
Heur-AT 83.28 ± 0.00 -17.02 ± 0.00 6.4 90.53 ± 0.00 -6.81 ± 0.00 2.4
DQN 88.76 ± 4.73 -10.37 ± 5.95 3.2 87.31 ± 1.09 -10.89 ± 1.38 6.2
A2C 91.98 ± 0.17 -6.36 ± 0.18 1.2 87.93 ± 0.00 -10.07 ± 0.00 6

Test Env. Seed 6 Test Env. Seed 7
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 95.34 ± 0.74 -2.57 ± 1.01 1.4 94.40 ± 0.77 -3.53 ± 0.94 4
ETS 95.48 ± 0.00 -2.50 ± 0.00 1.6 95.31 ± 0.00 -2.21 ± 0.00 2.6
Heur-GD 90.01 ± 0.00 -9.09 ± 0.00 4.2 91.76 ± 0.00 -6.84 ± 0.00 5.6
Heur-LD 85.44 ± 0.00 -14.96 ± 0.00 5.2 95.14 ± 0.00 -2.64 ± 0.00 3.6
Heur-AT 76.02 ± 0.00 -26.58 ± 0.00 7 96.78 ± 0.00 -0.67 ± 0.00 1.2
DQN 86.60 ± 5.92 -13.56 ± 7.39 4.8 89.22 ± 2.34 -10.06 ± 2.88 6.8
A2C 89.14 ± 3.66 -10.35 ± 4.57 3.8 93.49 ± 2.58 -4.77 ± 3.18 4.2

Test Env. Seed 8 Test Env. Seed 9
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.15 ± 4.08 -7.22 ± 5.09 3 94.81 ± 3.66 -5.14 ± 4.51 2.8
ETS 94.80 ± 0.00 -5.18 ± 0.00 2.8 96.71 ± 0.00 -2.76 ± 0.00 2
Heur-GD 95.00 ± 0.00 -4.83 ± 0.00 1.6 95.27 ± 0.00 -4.75 ± 0.00 3.2
Heur-LD 87.86 ± 0.00 -13.66 ± 0.00 6.8 90.02 ± 0.00 -11.16 ± 0.00 6.8
Heur-AT 93.93 ± 0.00 -6.07 ± 0.00 3.8 90.29 ± 0.00 -10.82 ± 0.00 5.8
DQN 91.67 ± 2.85 -8.94 ± 3.61 5 95.32 ± 1.76 -4.60 ± 2.19 2.6
A2C 93.57 ± 0.00 -6.61 ± 0.00 5 91.31 ± 1.08 -9.62 ± 1.37 4.8

46



Under review as a conference paper at ICLR 2023

Table 37: Two-tailed Welch’s t-test results for Split FashionMNIST in New Dataset experiment.
Test Env. Seed 0 Test Env. Seed 1 Test Env. Seed 2 Test Env. Seed 3 Test Env. Seed 4

Methods t p t p t p t p t p

DQN vs Random 1.47 0.193 0.69 0.515 1.53 0.187 0.17 0.872 1.46 0.184
DQN vs ETS -0.38 0.725 -0.38 0.720 19.36 0.000 2.09 0.105 0.72 0.513
DQN vs Heur-GD -1.45 0.222 -1.36 0.245 -2.63 0.058 -0.81 0.463 -1.07 0.345
DQN vs Heur-LD: -1.03 0.360 3.98 0.016 -2.40 0.074 1.62 0.181 0.85 0.442
DQN vs Heur-AT -0.79 0.473 -0.37 0.728 -3.12 0.035 -1.90 0.131 2.32 0.081
DQN vs A2C 0.59 0.579 0.77 0.462 -2.11 0.076 0.81 0.442 -1.36 0.245

A2C vs Random 0.63 0.547 0.26 0.804 2.37 0.073 -0.72 0.495 3.19 0.033
A2C vs ETS -0.82 0.461 -1.67 0.171 38.38 0.000 1.43 0.226 57.27 0.000
A2C vs Heur-GD -1.30 0.265 -2.84 0.047 -0.35 0.746 -2.44 0.072 8.05 0.001
A2C vs Heur-LD -1.11 0.329 3.56 0.024 0.05 0.962 0.81 0.465 61.00 0.000
A2C vs Heur-AT -1.00 0.373 -1.65 0.173 -1.22 0.290 -3.88 0.018 101.48 0.000
A2C vs DQN -0.59 0.579 -0.77 0.462 2.11 0.076 -0.81 0.442 1.36 0.245

Test Env. Seed 5 Test Env. Seed 6 Test Env. Seed 7 Test Env. Seed 8 Test Env. Seed 9

Methods t p t p t p t p t p

DQN vs Random -1.82 0.122 -2.93 0.041 -4.21 0.009 -0.59 0.570 0.25 0.812
DQN vs ETS -7.73 0.002 -3.00 0.040 -5.20 0.007 -2.20 0.093 -1.58 0.189
DQN vs Heur-GD -5.53 0.005 -1.15 0.313 -2.17 0.096 -2.34 0.079 0.05 0.961
DQN vs Heur-LD: -1.28 0.269 0.39 0.714 -5.06 0.007 2.67 0.056 6.00 0.004
DQN vs Heur-AT -5.90 0.004 3.58 0.023 -6.46 0.003 -1.59 0.187 5.70 0.005
DQN vs A2C -1.14 0.320 -0.73 0.490 -2.45 0.040 -1.34 0.253 3.87 0.007
A2C vs Random -1.49 0.210 -3.32 0.026 -0.68 0.529 0.21 0.846 -1.84 0.129
A2C vs ETS -inf 0.000 -3.47 0.026 -1.41 0.231 -inf 0.000 -10.02 0.001
A2C vs Heur-GD -inf 0.000 -0.47 0.660 1.34 0.252 -inf 0.000 -7.35 0.002
A2C vs Heur-LD -inf 0.000 2.03 0.113 -1.28 0.270 inf 0.000 2.39 0.075
A2C vs Heur-AT -inf 0.000 7.18 0.002 -2.55 0.063 -inf 0.000 1.89 0.131
A2C vs DQN 1.14 0.320 0.73 0.490 2.45 0.040 1.34 0.253 -3.87 0.007

Table 38: Two-tailed Welch’s t-test results for Split notMNIST in New Dataset experiment.
Test Env. Seed 0 Test Env. Seed 1 Test Env. Seed 2 Test Env. Seed 3 Test Env. Seed 4

Methods t p t p t p t p t p

DQN vs Random 2.41 0.065 1.27 0.242 0.67 0.534 0.47 0.651 -3.09 0.015
DQN vs ETS 0.89 0.423 2.45 0.071 19.64 0.000 8.12 0.001 -5.03 0.007
DQN vs Heur-GD 4.15 0.014 4.72 0.009 -3.00 0.040 -2.37 0.077 -7.47 0.002
DQN vs Heur-LD: 5.52 0.005 2.96 0.041 -3.16 0.034 0.13 0.906 3.84 0.018
DQN vs Heur-AT 4.58 0.010 2.70 0.054 0.88 0.428 4.76 0.009 6.47 0.003
DQN vs A2C 3.23 0.016 0.17 0.870 1.25 0.271 -1.52 0.186 -0.80 0.457
A2C vs Random 1.42 0.226 1.36 0.234 0.30 0.777 1.52 0.194 -0.97 0.372
A2C vs ETS -4.85 0.008 4.73 0.009 60.22 0.000 24.32 0.000 -1.34 0.251
A2C vs Heur-GD 0.67 0.537 9.51 0.001 -14.14 0.000 -1.82 0.142 -2.42 0.073
A2C vs Heur-LD 2.99 0.040 5.82 0.004 -14.66 0.000 4.40 0.012 2.57 0.062
A2C vs Heur-AT 1.40 0.233 5.27 0.006 -1.39 0.238 15.96 0.000 3.73 0.020
A2C vs DQN -3.23 0.016 -0.17 0.870 -1.25 0.271 1.52 0.186 0.80 0.457

Test Env. Seed 15 Test Env. Seed 16 Test Env. Seed 17 Test Env. Seed 18 Test Env. Seed 19

Methods t p t p t p t p t p

DQN vs Random -2.17 0.062 -6.27 0.001 3.36 0.019 -0.96 0.387 1.04 0.340
DQN vs ETS -3.11 0.036 -4.23 0.013 4.40 0.012 2.60 0.060 6.64 0.003
DQN vs Heur-GD -6.80 0.002 -0.40 0.708 7.21 0.002 1.56 0.194 -0.16 0.881
DQN vs Heur-LD: -3.45 0.026 -0.40 0.708 7.21 0.002 -3.85 0.018 -1.79 0.149
DQN vs Heur-AT 3.37 0.028 3.77 0.020 1.47 0.214 15.03 0.000 1.29 0.267
DQN vs A2C -1.39 0.211 -2.89 0.020 3.50 0.009 -0.87 0.426 0.68 0.514

A2C vs Random -0.25 0.809 -2.32 0.067 1.86 0.126 -0.77 0.483 0.70 0.512
A2C vs ETS -0.22 0.837 -0.07 0.945 0.06 0.958 11.20 0.000 6.87 0.002
A2C vs Heur-GD -2.39 0.075 3.62 0.022 3.84 0.018 7.88 0.001 -1.26 0.277
A2C vs Heur-LD -0.42 0.694 3.62 0.022 3.84 0.018 -9.37 0.001 -3.20 0.033
A2C vs Heur-AT 3.59 0.023 7.66 0.002 -3.89 0.018 50.85 0.000 0.48 0.659
A2C vs DQN 1.39 0.211 2.89 0.020 -3.50 0.009 0.87 0.426 -0.68 0.514

47



Under review as a conference paper at ICLR 2023

Table 39: Performance comparison in every test environment with seed (0-9) with with Split notM-
NIST for New Dataset experiment. Under each column named ’Test Env. Seed X’, we show the
mean and stddev. of ACC and BWT, and the Rank averaged over the RL seeds for the corresponding
method.

Test Env. Seed 0 Test Env. Seed 1
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 93.09 ± 2.31 -3.66 ± 2.82 2.4 92.13 ± 0.80 -3.91 ± 0.93 3.8
ETS 91.08 ± 0.00 -6.61 ± 0.00 5.8 92.46 ± 0.00 -3.75 ± 0.00 2.8
Heur-GD 92.41 ± 0.00 -3.55 ± 0.00 3.8 91.18 ± 0.00 -6.26 ± 0.00 5.8
Heur-LD 92.41 ± 0.00 -3.55 ± 0.00 3.8 91.18 ± 0.00 -6.26 ± 0.00 5.8
Heur-AT 92.41 ± 0.00 -3.55 ± 0.00 3.8 91.18 ± 0.00 -6.26 ± 0.00 5.8
DQN 90.52 ± 3.15 -6.92 ± 3.57 4.6 93.79 ± 0.86 -1.65 ± 1.03 1.6
A2C 91.62 ± 1.62 -5.47 ± 2.49 3.8 93.26 ± 1.02 -2.12 ± 1.41 2.4

Test Env. Seed 2 Test Env. Seed 3
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 87.13 ± 3.01 -10.47 ± 3.60 4.4 89.04 ± 3.01 -8.60 ± 3.86 6.4
ETS 91.23 ± 0.00 -5.23 ± 0.00 2 89.33 ± 0.00 -8.28 ± 0.00 6.4
Heur-GD 82.58 ± 0.00 -15.83 ± 0.00 5.8 95.26 ± 0.00 -0.99 ± 0.00 2
Heur-LD 82.58 ± 0.00 -15.83 ± 0.00 5.8 95.26 ± 0.00 -0.99 ± 0.00 2
Heur-AT 82.58 ± 0.00 -15.83 ± 0.00 5.8 95.26 ± 0.00 -0.99 ± 0.00 2
DQN 91.92 ± 2.03 -4.77 ± 2.31 1.6 92.49 ± 0.73 -4.69 ± 0.54 5.2
A2C 90.46 ± 0.99 -6.03 ± 1.24 2.6 94.61 ± 0.82 -2.06 ± 0.46 4

Test Env. Seed 4 Test Env. Seed 5
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.37 ± 1.63 -5.04 ± 2.02 4.6 91.06 ± 1.45 -5.87 ± 1.82 5.6
ETS 90.52 ± 0.00 -5.81 ± 0.00 6.2 90.73 ± 0.00 -6.00 ± 0.00 6.4
Heur-GD 91.64 ± 0.00 -6.55 ± 0.00 4.3 91.80 ± 0.00 -3.52 ± 0.00 4
Heur-LD 92.66 ± 0.00 -5.28 ± 0.00 2.4 91.80 ± 0.00 -3.52 ± 0.00 4
Heur-AT 91.64 ± 0.00 -6.55 ± 0.00 4.3 91.80 ± 0.00 -3.52 ± 0.00 4
DQN 90.76 ± 2.44 -6.15 ± 3.21 4.4 92.72 ± 1.11 -3.49 ± 1.10 2.2
A2C 92.80 ± 0.48 -4.09 ± 0.48 1.8 92.94 ± 0.24 -3.00 ± 0.29 1.8

Test Env. Seed 6 Test Env. Seed 7
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 91.80 ± 2.56 -4.63 ± 3.25 3 93.72 ± 0.78 -3.20 ± 0.94 2.4
ETS 91.99 ± 0.00 -5.12 ± 0.00 2.6 94.03 ± 0.00 -1.98 ± 0.00 1.4
Heur-GD 91.55 ± 0.00 -4.47 ± 0.00 4.7 88.81 ± 0.00 -8.97 ± 0.00 7
Heur-LD 87.03 ± 0.00 -10.13 ± 0.00 7 90.65 ± 0.00 -5.98 ± 0.00 6
Heur-AT 91.55 ± 0.00 -4.47 ± 0.00 4.7 93.08 ± 0.00 -2.95 ± 0.00 3.8
DQN 93.32 ± 1.33 -2.59 ± 1.27 2.4 93.17 ± 0.56 -2.79 ± 0.55 4
A2C 91.69 ± 1.50 -4.35 ± 1.87 3.6 93.32 ± 0.57 -2.46 ± 0.59 3.4

Test Env. Seed 8 Test Env. Seed 9
Method ACC (%) BWT (%) Rank ACC (%) BWT (%) Rank

Random 92.62 ± 0.30 -4.15 ± 0.61 4.6 92.48 ± 1.34 -5.36 ± 1.50 2.2
ETS 89.04 ± 0.00 -8.36 ± 0.00 6 94.29 ± 0.00 -3.55 ± 0.00 1
Heur-GD 93.56 ± 0.00 -2.86 ± 0.00 2.9 79.09 ± 0.00 -22.95 ± 0.00 5.8
Heur-LD 88.21 ± 0.00 -9.54 ± 0.00 7 79.09 ± 0.00 -22.95 ± 0.00 5.8
Heur-AT 93.56 ± 0.00 -2.86 ± 0.00 2.9 79.09 ± 0.00 -22.95 ± 0.00 5.8
DQN 93.12 ± 1.13 -3.20 ± 1.38 3.4 84.95 ± 4.36 -15.42 ± 5.12 4.6
A2C 93.92 ± 0.00 -2.53 ± 0.00 1.2 90.87 ± 0.17 -8.58 ± 0.22 2.8

48



Under review as a conference paper at ICLR 2023

E.4 TASK SPLITS IN TEST ENVIRONMENTS IN POLICY GENERALIZATION EXPERIMENTS

Here, we provide the task splits of the test environments used in the policy generalization exper-
iments in Section 4.2. We evaluated all methods using 10 test environments in all experiments.
The test environments in the New Task Order experiments were generated with seeds 10-19. We
show the task splits for the Split MNIST, Split FashionMNIST, and Split CIFAR-10 environments
in Table 40, 41, and 42 respectively. The test environments in the New Dataset experiments were
generated with seeds 0-9. We show the task splits for the Split notMNIST and Split FashionMNIST
environments in Table 43 and 44 respectively.

Table 40: Task splits with their corresponding seed for test environments of Split MNIST datasets
in the New Task Orders experiments in Section 4.2.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

10 8, 2 5, 6 3, 1 0, 7 4, 9

11 7, 8 2, 6 4, 5 1, 3 0, 9

12 5, 8 7, 0 4, 9 3, 2 1, 6

13 3, 5 6, 1 4, 7 8, 9 0, 2

14 3, 9 0, 5 4, 2 1, 7 6, 8

15 2, 6 1, 3 7, 0 9, 4 5, 8

16 6, 2 0, 7 8, 4 3, 1 5, 9

17 7, 2 5, 3 4, 0 9, 8 6, 1

18 7, 9 0, 4 2, 1 6, 5 8, 3

19 1, 7 9, 6 8, 4 3, 0 2, 5

Table 41: Task splits with their corresponding seed for test environments of Split FashionMNIST
datasets in the New Task Orders experiments in Section 4.2.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

10 Bag, Pullover Sandal, Shirt Dress, Trouser T-shirt/top, Sneaker Coat, Ankle boot

11 Sneaker, Bag Pullover, Shirt Coat, Sandal Trouser, Dress T-shirt/top, Ankle boot

12 Sandal, Bag Sneaker, T-shirt/top Coat, Ankle boot Dress, Pullover Trouser, Shirt

13 Dress, Sandal Shirt, Trouser Coat, Sneaker Bag, Ankle boot T-shirt/top, Pullover

14 Dress, Ankle boot T-shirt/top, Sandal Coat, Pullover Trouser, Sneaker Shirt, Bag

15 Pullover, Shirt Trouser, Dress Sneaker, T-shirt/top Ankle boot, Coat Sandal, Bag

16 Shirt, Pullover T-shirt/top, Sneaker Bag, Coat Dress, Trouser Sandal, Ankle boot

17 Sneaker, Pullover Sandal, Dress Coat, T-shirt/top Ankle boot, Bag Shirt, Trouser

18 Sneaker, Ankle boot T-shirt/top, Coat Pullover, Trouser Shirt, Sandal Bag, Dress

19 Trouser, Sneaker Ankle boot, Shirt Bag, Coat Dress, T-shirt/top Pullover, Sandal

49



Under review as a conference paper at ICLR 2023

Table 42: Task splits with their corresponding seed for test environments of Split CIFAR-10 datasets
in the New Task Orders experiments in Section 4.2.

Seed Task 1 Task 2 Task 3 Task 4 Task 5
10 Ship, Bird Dog, Frog Cat, Automobile Airplane, Horse Deer, Truck

11 Horse, Ship Bird, Frog Deer, Dog Automobile, Cat Airplane, Truck

12 Dog, Ship Horse, Airplane Deer, Truck Cat, Bird Automobile, Frog

13 Cat, Dog Frog, Automobile Deer, Horse Ship, Truck Airplane, Bird

14 Cat, Truck Airplane, Dog Deer, Bird Automobile, Horse Frog, Ship

15 Bird, Frog Automobile, Cat Horse, Airplane Truck, Deer Dog, Ship

16 Frog, Bird Airplane, Horse Ship, Deer Cat, Automobile Dog, Truck

17 Horse, Bird Dog, Cat Deer, Airplane Truck, Ship Frog, Automobile

18 Horse, Truck Airplane, Deer Bird, Automobile Frog, Dog Ship, Cat

19 Automobile, Horse Truck, Frog Ship, Deer Cat, Airplane Bird, Dog

Table 43: Task splits with their corresponding seed for test environments of Split notMNIST datasets
in the New Dataset experiments in Section 4.2.

Seed Task 1 Task 2 Task 3 Task 4 Task 5

0 A, B C, D E, F G, H I, J

1 C, J G, E A, D B, H I, F

2 E, B F, A H, C D, G J, I

3 F, E B, C J, G H, A D, I

4 D, I E, J C, G A, B F, H

5 J, F C, E H, B A, I G, D

6 I, B H, A G, F C, E D, J

7 I, F A, C B, J H, D G, E

8 I, G J, A C, F H, B E, D

9 I, E H, C B, J D, A G, F

Table 44: Task splits with their corresponding seed for test environments of Split FashionMNIST
datasets in the New Dataset experiments in Section 4.2.

Seed Task 1 Task 2 Task 3 Task 4 Task 5
0 T-shirt/top, Trouser Pullover, Dress Coat, Sandal Shirt, Sneaker Bag, Ankle boot

1 Pullover, Ankle boot Shirt, Coat T-shirt/top, Dress Trouser, Sneaker Bag, Sandal

2 Coat, Trouser Sandal, T-shirt/top Sneaker, Pullover Dress, Shirt Ankle boot, Bag

3 Sandal, Coat Trouser, Pullover Ankle boot, Shirt Sneaker, T-shirt/top Dress, Bag

4 Dress, Bag Coat, Ankle boot Pullover, Shirt T-shirt/top, Trouser Sandal, Sneaker

5 Ankle boot, Sandal Pullover, Coat Sneaker, Trouser T-shirt/top, Bag Shirt, Dress

6 Bag, Trouser Sneaker, T-shirt/top Shirt, Sandal Pullover, Coat Dress, Ankle boot

7 Bag, Sandal T-shirt/top, Pullover Trouser, Ankle boot Sneaker, Dress Shirt, Coat

8 Bag, Shirt Ankle boot, T-shirt/top Pullover, Sandal Sneaker, Trouser Coat, Dress

9 Bag, Coat Sneaker, Pullover Trouser, Ankle boot Dress, T-shirt/top Shirt, Sandal

50


	Introduction
	Related Work
	Method
	Problem Setting
	Replay Scheduling in Continual Learning
	Policy Learning Framework for Replay Scheduling

	Experiments
	Results on Replay Scheduling with Monte Carlo Tree Search
	Policy Generalization to New Continual Learning Scenarios

	Conclusions
	Extended Related Work
	Additional Methodology
	Monte Carlo Tree Search Algorithm for Replay Scheduling 
	RL Framework Algorithm

	Heuristic Scheduling Baselines
	Additional Experimental Settings and Results for Replay Scheduling using MCTS
	Experimental Settings for MCTS in Single CL Environments
	Performance Progress of MCTS
	Replay Schedule Visualization for Split MNIST
	Alternative Memory Selection Methods
	Applying Scheduling to Recent Replay Methods
	Efficiency of Replay Scheduling
	Varying Memory Size in Different Continual Learning Setting

	Additional Experimental Settings and Results for Replay Scheduling Policy Experiments
	Experimental Settings for RL-Based Framework
	Assessing Generalization with Ranking Method
	Additional Results for Replay Scheduling Policy Generalization Experiments
	Task Splits in Test Environments in Policy Generalization Experiments


