

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THREADING KEYFRAME WITH NARRATIVES: MLLMs AS STRONG LONG VIDEO COMPREHENDERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Employing Multimodal Large Language Models (MLLMs) for long video understanding remains a challenging problem due to the dilemma between the substantial number of video frames (i.e., visual tokens) versus the limited context length of language models. Traditional uniform sampling often leads to selection of irrelevant content, while post-training MLLMs on thousands of frames imposes a substantial computational burden. In this paper, we propose *Narrating KeyFrames Capturing* (**Nar-KFC**), a plug-and-play module to facilitate effective and efficient long video understanding. Nar-KFC generally involves two collaborative steps. First, we formulate the *keyframe* selection process as an integer quadratic programming problem, jointly optimizing query-relevance and frame-diversity. To avoid its computational complexity, a customized greedy search strategy is designed as an efficient alternative. Second, to mitigate the temporal discontinuity caused by sparse keyframe sampling, we further introduce interleaved textual *narratives* generated from non-keyframes using off-the-shelf captioners. These narratives are inserted between keyframes based on their true temporal order, forming a coherent and compact representation. Nar-KFC thus serves as a temporal- and content-aware compression strategy that complements visual and textual modalities. Experimental results on multiple long-video benchmarks demonstrate that Nar-KFC significantly improves the performance of popular MLLMs. Code will be made publicly available.

1 INTRODUCTION

Building upon the success of revolutionary Large Language Model (LLMs) (Touvron et al., 2023; Team et al., 2024), recent advances in Multimodal Large Language Models (Liu et al., 2023; Li et al., 2024b; Wang et al., 2024b; Chen et al., 2024c; Tong et al., 2024; Lin et al., 2024b) have significantly improved open-world visual understanding. Moving beyond static images, a natural extension of MLLMs is their application to video understanding. Existing studies have validated their effectiveness in comprehending short videos (~ 10 s) (Yang et al., 2022; Kim et al., 2024; Yao et al., 2024a). However, when scaling MLLMs to long videos (Fu et al., 2025; Wu et al., 2024b; Chandrasegaran et al., 2024; Zhou et al., 2025) (e.g., hours), several critical challenges emerge.

The primary challenge stems from the inherent context limitation of MLLMs, which cannot accommodate the vast volume of visual tokens generated from the whole video. A prominent solution is to extend the context window of language models and fine-tune them on carefully collected long videos. Current video-oriented LLMs, known as VideoLLMs (Lin et al., 2024a; Jin et al., 2024; Song et al., 2024; Xu et al., 2024a; Chen et al., 2024b; Zohar et al., 2024; Shu et al., 2025; Cheng et al., 2025a; Wang et al., 2025a), typically undergo post-training on existing LLMs/MLLMs through: 1) employing a relatively large stride uniform sampling scheme, and 2) incorporating token-level merging or compression techniques to enable broader temporal coverage. However, uniform sampling often fails to preserve key moments relevant to specific instructions, while feeding an excessive number of frames as input introduces redundancy, leading to substantial computational overhead. An alternative solution follows a training-free paradigm (Zhang et al., 2024a; Kahatapitiya et al., 2024; Wang et al., 2024d; 2025b; Park et al., 2024; Ma et al., 2025), where raw videos are first converted into sequential captions, which are subsequently processed using the long-range reasoning abilities of LLMs (Achiam et al., 2023). Compared to direct video frame encoding, textual captions inherently require far fewer tokens, allowing efficient inference in a single forward pass. Nonetheless, the

054 translation from video frame to caption inevitably results in critical information loss (e.g., important
 055 visual features), potentially leading to hallucinated answers caused by the LLM bias.
 056

057 Regarding the aforementioned paradigms, e.g., training a VideoLLM or reasoning with LLMs
 058 on textual captions, are current MLLMs fully equipped to comprehend long videos despite their
 059 limited context length? Instead of relying on uniform sampling, recent studies have focused on
 060 learning to select query-relevant keyframes (Yu et al., 2023; Hu et al., 2025; Yao et al., 2025) to
 061 facilitate inference with MLLMs. Due to the temporal redundancy among adjacent frames, trivial
 062 similarity-based keyframe selection tends to retrieve frames located within narrow time windows,
 063 thereby compromising accuracy. To this end, adaptive keyframe sampling (Tang et al., 2025), inverse
 064 transform sampling (Liu et al., 2025b), DPP sampling (Sun et al., 2025) have been proposed to
 065 promote content diversity to mitigate the concentration of keyframes. Despite a decent boost over
 066 existing MLLMs, these methods largely depend on handcrafted or heuristic strategies with limited
 067 theoretical formulations, and empirically, the retrieved frames can be temporally distant, especially in
 068 long videos. Consequently, the keyframe selection process can introduce temporal discontinuities
 069 into the input provided to the MLLM, ultimately hindering its holistic understanding of video content.
 070

071 In this paper, we propose **Nar-KFC** (**Narrating KeyFrames Capturing**), a training-free framework
 072 for long video understanding with MLLMs. Unlike previous approaches, Nar-KFC jointly considers
 073 *query-relevance*, *frame-diversity* and *temporal-continuity* through two collaborative stages. The
 074 first stage **KFC** selects keyframes by considering both query relevance and frame diversity, so as to
 075 resolve the issues of critical information loss from uniform sampling and the too-narrow focus using
 076 just query-relevance. We consider keyframe selection as a graph problem, where each node is a frame
 077 and the edge weight (score) between nodes combines query-relevant similarities and frame-to-frame
 078 dissimilarities (frame-diversity). The optimal keyframes are obtained by finding the subgraph with
 079 largest total edge weight, which can be formulated as an integer quadratic programming (IQP)
 080 problem. However, since IQP is NP-hard with exponential complexity, finding exact solutions is
 081 infeasible in practice. To overcome this, we introduce a robust and efficient greedy search (GS)
 082 strategy, which, with proper preprocessing of the score matrix, achieves near-optimal performance
 083 with significantly reduced computational complexity.
 084

085 The second stage **Nar-KFC** addresses the problem of temporal discontinuities caused when selecting
 086 keyframes at uneven timestamps. Specifically, Nar-KFC works by threading keyframes (visual tokens)
 087 with *non-keyframe narratives* (text tokens), generated by captioning the intermediate, unselected
 088 frames in between, aiming to reconstruct the video as a continuous and coherent sequence in both
 089 textual and visual modalities. A narrative interval is further applied to control the total number of
 090 captions and to reduce the similarity between neighboring descriptions. Leveraging only a lightweight
 091 2B captioning model, e.g., Qwen2-VL-2B (Wang et al., 2024b), Nar-KFC demonstrates significant
 092 improvements over existing MLLMs. In summary, the contributions of this paper are three-fold:
 093

- 094 • Jointly considering query-relevance and frame-diversity, we formulate the keyframe captur-
 095 ing process (KFC) in long videos as a subgraph selection problem, implemented as an integer
 096 quadratic programming problem. We introduce a customized greedy search algorithm to
 097 solve this problem with significantly reduced and practical time complexity.
- 098 • We propose Nar-KFC, which threads the optimized keyframes with non-keyframe narratives.
 099 By interleaving the two modalities in a temporally continuous manner, Nar-KFC constructs
 100 coherent and compact video representations, enabling a broader video coverage under the
 101 constraint of frame length limitations in current MLLMs.
- 102 • Our KFC and Nar-KFC are generally compatible with many MLLMs, achieving consistent
 103 improvements across four mainstream MLLMs on multiple long-video benchmarks.

104 2 RELATED WORK

105 Transformer-based LLMs have revolutionized the field of natural language processing (Brown et al.,
 106 2020; OpenAI, 2023; Grattafiori et al., 2024; Achiam et al., 2023). By incorporating multimodal
 107 inputs such as images and videos (Li et al., 2024b; Zhu et al., 2023) with a vision encoder, e.g.,
 108 ViT (Dosovitskiy et al., 2020), researchers further extend powerful LLMs to multimodal large
 109 language models (MLLMs) for open-world visual understanding (Alayrac et al., 2022; Li et al., 2023a;
 110 Liu et al., 2023). Despite similar advancements of MLLMs on various video understanding tasks
 111 including video captioning (Chen et al., 2024a; Yang et al., 2023; Wu et al., 2024a), video question

108 answering (Maaz et al., 2023; Li et al., 2023b; Min et al., 2024), and temporal reasoning (Qian et al.,
 109 2024), significant challenges emerge when scaling to long videos due to the substantial amount of
 110 video frames not fitting in the limited context length of LLMs (Wu et al., 2024b).
 111

112 Recent studies have explored methods to extend the context length of LLMs (Wan et al., 2024; Xiong
 113 et al., 2024), or introduced various token-level merging and compression techniques (Song et al., 2024;
 114 Shen et al., 2024; Li et al., 2024d; Wang et al., 2024c; Shu et al., 2025) to accommodate more frames
 115 as input. However, these approaches typically require additional fine-tuning of existing language
 116 models, which increases computational complexity and introduces the risk of hallucinations (Liu
 117 et al., 2024c). Given that textual tokens are significantly fewer than visual frames, another line
 118 of research first converts all video frames into textual descriptions, which are then used for long
 119 video inference, either by summarizing them (Zhang et al., 2024a; Park et al., 2024) or identifying
 120 central frames based on textual similarity via agents (Wang et al., 2024d; 2025b; Ma et al., 2025;
 121 Ye et al., 2025; Liu et al., 2025a). Nonetheless, the converting process inevitably leads to critical
 122 information loss, thereby compromising performance. Other studies, while maintaining the number
 123 of input frames, adopt alternative sampling strategies instead of default uniform sampling to obtain
 124 higher-quality frames for input. In general, query relevance is the primary criterion for selecting
 125 frames that are semantically closest to the query (Yu et al., 2023; Lin et al., 2024b; Wang et al.,
 126 2024d;a; Suo et al., 2025). Methods such as AKS (Tang et al., 2025), BOLT (Liu et al., 2025b),
 127 Frame-Voyager (Yu et al., 2025) further propose adaptive sampling, inverse transform sampling,
 128 and optimal frame combination sampling to identify keyframes that are both query-relevant and
 129 temporally distinctive. Nevertheless, the methods often rely on manually designed heuristics without
 130 principled theoretical guidance, and the selected keyframes are often undistributed and distant over
 131 long intervals, especially in hours-long videos (e.g., 3600 frames per hour at 1 fps). This temporal
 132 sparsity weakens the relationships between frames and can cause confusion in MLLM inference.
 133

134 In contrast to previous works, we formulate long video keyframe selection as a graph-based op-
 135 timization problem with a clearly defined objective, and further leverage the efficiency of textual
 136 descriptions. Our approach jointly considers query relevance, content diversity, and temporal continuity,
 137 aiming to construct optimal combinations of keyframes with interleaved narratives, under the
 138 constraints of MLLM context length.

3 METHOD

3.1 KFC: KEYFRAME CAPTURING

139 Uniform sampling is commonly used in *short* video under-
 140 standing for consistent temporal structure. However, for
 141 *long* videos, it often misses important information with
 142 limited input. While recent works emphasize selecting
 143 query-relevant frames for long video QA, they tend to
 144 overlook the problem of narrow focus due to the high sim-
 145 ilarity between adjacent frames. To address this, we first
 146 propose a keyframe capturing method that simultaneously
 147 considers query-relevance and frame-diversity, modeling
 148 the selection process as subgraph selection problem.
 149

150 **Preliminaries.** General video understanding tasks, e.g.,
 151 video summarization and grounding (Liu et al., 2024b;
 152 Xiao et al., 2024) and long-video QA, can be similarly
 153 formulated as $(V, q) \rightarrow \text{Answer}$, where $V = \{f_i\}_{i=1}^N$
 154 represents a video with N frames, f_i is the i -th frame,
 155 and q is the query. Considering an MLLM model as a
 156 neural function $\mathcal{M}(\cdot)$ with its limited contextual perceiving
 157 length, the normal video QA process reasoned by an
 158 MLLM model can be formulated as $\mathcal{M}(\{f_i\}_{i=1}^K, q) \rightarrow$
 159 Answer , $1 \leq K \ll N$, meaning that only K frames are captured for representing video V . We next
 160 consider two criteria for selecting the K frames, query-relevance and frame-diversity.

161 **Query-relevance.** Since different questions can be asked on the single video, it is crucial to identify
 162 frames that correspond to a specific query first. Here, a standard two-stream vision-language model

Figure 1: Illustration of keyframe capturing (KFC). S_{QR} and S_{FD} scores are computed via inner dot production.

Figure 2: Illustration of Nar-KFC. We represent long videos by threading KFC-optimized keyframes with temporally interleaved narratives, where the narratives are generated frame-wise by an off-the-shelf captioner. Nar-KFC constructs a continuous representation to facilitate MLLM inference.

(VLM), e.g., CLIP (Radford et al., 2021), is used to extract embeddings $\{\mathbf{f}_i\}_{i=1}^N$ and \mathbf{q} for the frames and the query, respectively. After standard normalization of all embeddings, the query-relevance score \mathcal{S}_{QR} is computed as the cosine similarity between the two, $\mathcal{S}_{QR}(i) = \text{sim}(\mathbf{f}_i, \mathbf{q})$.

Frame-diversity. To avoid retrieving query-relevant only frames that are narrowly located in a small time range, we explicitly encourage diversified content when choosing the K frames. In particular, we use the *inverse* of cosine similarity between every pair of frame embeddings (normalized) to represent the diversity score. The function $\exp(\cdot)$ is applied to constrain the score between 0 and 1, formulated as $\mathcal{S}_{FD}(i, j) = \exp(-\text{sim}(\mathbf{f}_i, \mathbf{f}_j))$.

Objective. The final score combines \mathcal{S}_{QR} and \mathcal{S}_{FD} to jointly identify keyframes that are both query-relevant and diversified for KFC,

$$\mathcal{S}(i, j) = \mathcal{S}_{QR}(i) + \mathcal{S}_{FD}(i, j) = \text{sim}(\mathbf{f}_i, \mathbf{q}) + \exp(-\text{sim}(\mathbf{f}_i, \mathbf{f}_j)). \quad (1)$$

Next, as illustrated in Fig.1, we construct a graph where each node is a frame, and the edge weight between node pair (i, j) is $\mathcal{S}(i, j)$. The selection of K keyframes can then be cast as a subgraph selection problem with the original objective as follows: *given N nodes (frames), construct a subgraph by selecting K nodes (keyframes) so as to maximize the total edge weight of the subgraph.* Mathematically, this objective can be expressed as the optimization problem:

$$\max_{Y \subset \{1, \dots, N\}, |Y|=K} \sum_{(i, j) \in \mathcal{I}} \mathcal{S}(i, j), \quad (2)$$

where $Y = \{y_1, \dots, y_K\}$ is the index set of the K keyframes and \mathcal{I} denotes all pairs (i, j) .

3.1.1 THEORETICAL OPTIMUM: INTEGER QUADRATIC PROGRAMMING

Our objective closely resembles the classic Knapsack problem (Salkin & De Kluyver, 1975), which can be commonly solved by dynamic programming or integer linear programming. The problem in (2) can be rewritten equivalently as an **integer quadratic programming (IQP)** problem,

$$\max_{\mathbf{x}} \mathbf{x}^T \mathbf{S} \mathbf{x} \quad \text{s.t. } \mathbf{1}^T \mathbf{x} = K, \quad x_i \in \{0, 1\}, \quad (3)$$

where $x_i = 1$ indicates that the i -th frame is selected, $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$, and $\mathbf{S} \in \mathbb{R}^{N \times N}$ is the score matrix with $\mathbf{S}_{i,j} = \mathcal{S}(i, j)$ for $i < j$, and $\mathbf{S}_{i,i} = 0$ otherwise. Here, only the upper triangle of \mathbf{S} is considered. A discussion of symmetrical \mathbf{S} is detailed in Appendix §E.1. The search space is $C(N, K)$, and the time complexity of solving IQP is exponential regardless of whether the objective is convex or non-convex, making it impractical to get exact solutions in real cases. Modern optimization tools, e.g., CPLEX (Blekli et al., 2014), typically address this by relaxing the binary constraint and allowing $x_i \in [0, 1]$, converting the problem into a continuous optimization task. Solutions can then be obtained using methods like interior-point or Lagrange multiplier methods,

216 with a complexity of $\mathcal{O}(N^3)$. Subsequently, the Branch & Bound algorithm (Morrison et al., 2016) is
 217 applied to prune the search space and retrieve optimal integer solutions of x_i , but the worst-case time
 218 complexity remains exponential.
 219

220 3.1.2 PRACTICALLY FEASIBLE APPROACH: GREEDY SEARCH

221 Solving the IQP optimally is computationally intractable for large N , e.g., long videos with thousands
 222 of frames. To search keyframes within practical latency constraints, we propose an efficient **greedy**
 223 **search (GS)** strategy that yields robust and near-optimal effects to the IQP solution. We first pre-
 224 process the score matrix to reduce noise across adjacent columns/rows, and shrinks the problem size
 225 for greater computational efficiency. Specifically, we apply singular value decomposition (SVD)
 226 to the score matrix \mathbf{S} , retaining the top r singular values to construct a low-rank approximation
 227 $\mathbf{S}_r \in \mathbb{R}^{N \times N}$. This matrix is then uniformly downsampled to $\mathbf{S}_{rd} \in \mathbb{R}^{\frac{N}{d} \times \frac{N}{d}}$ with a downsampling
 228 ratio d . The GS algorithm begins by selecting the most query-relevant frame as the starting point.
 229 It then iteratively adds the frame with the highest *cumulative* score relative to the already selected
 230 frames. In the final refinement step, the algorithm examines the k -nearest neighbors of each selected
 231 frame y_i , replacing y_i with a neighboring frame if it yields a higher cumulative score based on \mathcal{S}_r . A
 232 summary of the algorithm is provided in Alg. 1, and its overall time complexity is $\mathcal{O}(NK)$.
 233

234 **Algorithm 1:** Practically Feasible Approach with Greedy Search

235 **Input:** Query-relevant score \mathcal{S}_{QR} , score matrix \mathbf{S} , number of retained singular values r ,
 236 downsample ratio d , number of frames N , neighbor window k .
 237 **Output:** Indices of selected K frames set $Y = \{y_1, y_2, \dots, y_K\}$
 238 1 $\mathbf{S}_r \leftarrow \text{LowRank}(\mathbf{S})$; $\mathbf{S}_{rd} \leftarrow \text{Downsample}(\mathbf{S}_r, d)$; // Decompose and downsample \mathbf{S}
 239 2 $y_1 = \text{argmax}_i \mathcal{S}_{QR}(i)$; $Y \leftarrow \{y_1\}$ // Initialize with most query-relevant frame
 240 3 **for** $i \leftarrow 2$ **to** K **do**
 241 **for** $j \leftarrow 1$ **to** N **do**
 242 $y_i = \text{argmax}_j \sum_{y \in Y} S_{rd}(y, y_j)$ // Select frame with highest sum
 243 $Y \leftarrow Y \cup y_i$
 244 7 **for** $i \leftarrow 1$ **to** K **do**
 245 $y_i = \text{Refine}(y_i, k | \mathbf{S}_r)$; // Refine selection within k -nearest neighbors
 246 9 **return** $Y = \text{sorted}\{y_1, y_2, \dots, y_K\}$;
 247

248 3.2 NAR-KFC: THREADING KEYFRAME WITH NARRATIVES

249 Keyframes captured by KFC significantly enhance the performance of MLLMs compared to the
 250 default uniform inference mechanism. However, it overlooks the *temporal-continuity* in frame
 251 sequences. Due to the severely uneven distribution of selected frames, temporal relationships become
 252 weak, often leading to confusion during inference.

253 To this end, we propose **Nar-KFC**, which threads keyframes with text narratives to construct a
 254 continuous and coherent input in an interleaved form. Specifically, we first use a lightweight off-the-
 255 shelf captioner, e.g., Qwen2-VL-2B, to generate captions $\{c_i\}_{i=1}^N$ for non-keyframes using a simple
 256 prompt as “<USER> Describe this video frame in no more than 15 words.” Given the unevenly distributed keyframes $\{f_{y_i}\}_{i=1}^K$ from KFC, we insert *captions from non-keyframes*
 257 between the keyframes, arranging them according to their true temporal order. Each y_i denotes the
 258 timestamp, and a uniform interval Δ is set between captions to control the total number of inserted
 259 narratives. The overall long video inference to a MLLM model \mathcal{M} is formulated as:
 260

$$261 \mathcal{M}(\{f_{y_1}, c_{y_1+\Delta}, \dots, c_{y_2-\Delta}, f_{y_2}, c_{y_2+\Delta}, \dots, c_{y_K-\Delta}, f_{y_K}\}, q) \rightarrow \text{Answer.} \quad (4)$$

262 **Viability** of Nar-KFC. MLLMs are typically trained via instruction tuning on both visual and textual
 263 modalities, making them well-suited to process our interleaved inputs of keyframes and narratives.
 264 **Rationality** of Nar-KFC. The approach provides a temporally continuous input that helps MLLMs
 265 “narrate” the story between keyframes. From another perspective, Nar-KFC can be seen as a form
 266 of compression, retaining only the most informative keyframes, while representing less critical
 267 segments with brief textual descriptions. This complementary two-stream mechanism is analogous
 268 to method like Two-Stream (Simonyan & Zisserman, 2014), which combines RGB frames with
 269

270 optical flow. Also, it shares conceptual similarities with SlowFast (Feichtenhofer et al., 2019) and
 271 SlowFast-LLaVA (Xu et al., 2024b), where the caption stream serves as a *fast branch* traversing a
 272 broader temporal range (as in the low frame rate of the slow branch in SlowFast). These mechanisms
 273 together help explain the effectiveness of Nar-KFC in (long) video understanding.
 274

275 4 EXPERIMENTS

276 4.1 EXPERIMENT SETTINGS

277 **Evaluation Benchmarks.** We evaluate our methods on several widely-used long-video question-
 278 answering benchmarks: 1) *Video-MME* (Fu et al., 2025), consisting of 2,700 human-annotated QA
 279 pairs, with an average video duration of 17 min; 2) *LongVideoBench* (Wu et al., 2024b) validation set
 280 (denoted as LVB), which contains 1,337 QA pairs with average duration of 12 min; 3) *MLVU* (Zhou
 281 et al., 2025), where we use the multiple-choice task (M-avg), comprising 2,593 questions across
 282 9 categories, with an average duration of 12 min. We provide more results of on relatively short
 283 EgoSchema (3 min) (Mangalam et al., 2023) and NExTQA (44 sec) (Xiao et al., 2021) benchmarks
 284 in Appendix §D.3. Furthermore, we evaluate open-ended generation performance on *MMBench-Video*
 285 (Fang et al., 2024) and *MLVU-OpenEnded* (Zhou et al., 2025) (G-avg), to verify the fine-grained
 286 capabilities of our methods.
 287

288 **Evaluation Models.** We consider multiple advanced MLLMs, including *InternVL2* (Chen et al.,
 289 2024c), *Qwen2.5-VL* (Bai et al., 2025), *LLaVA-OneVision* (Li et al., 2024b), *LLaVA-Video* (Zhang
 290 et al., 2024d), and *InternVL3* (Zhu et al., 2025), to verify the effectiveness of our method. In Appendix
 291 Tab. 8, we further report performance with very recent *Qwen3-VL* (Team, 2025) model. We re-
 292 implement baseline results (uniform sampling) of these MLLMs using *VLMEvalKit* (Duan et al.,
 293 2024), which may yield slight differences compared to other public toolkits, e.g., *LMMs-Eval* (Li
 294 et al., 2024a).

295 **Implementation Details.** We use CLIP-ViT-L-336px (Radford et al., 2021) to extract query and
 296 video frame embeddings. Candidate frames are sampled from raw videos at 1 fps. For solving the
 297 IQP, we limit the maximum search nodes to 40k in CPLEX (Blekltú et al., 2014). In our customized
 298 greedy search algorithm, we empirically retain the top $\frac{N}{4}$ singular values to form the low-rank
 299 approximation of the score matrix S and further downsample it to a fixed resolution of 128×128
 300 following previous work (Yu et al., 2025; Sun et al., 2025). The refinement window size k is set to
 301 2 (see ablations of hyperparameters in Appendix §E.3). Unless otherwise stated, all ablations are
 302 conducted using the *InternVL2* model on *Video-MME*. Experiments are run on 8 A100 GPUs.
 303

304 4.2 BENCHMARK RESULTS

305 **Comparisons with State-of-the-Arts.** We conduct comprehensive comparisons between our
 306 approach and several recent MLLMs and VideoLLMs in Tab. 1. Earlier works, e.g., *Video-LLaVA* (Lin
 307 et al., 2024a), *Chat-UniVi-V1.5* (Jin et al., 2024), *VideoLLaMA2* (Cheng et al., 2024), etc, are fully
 308 included in Appendix §D.1. Our methods, KFC and Nar-KFC, deliver consistent and significant
 309 gain over **five** baselines across three long-video benchmarks. On *Video-MME* (no sub.), Nar-KFC
 310 outperforms **five MLLM baselines by 4.38% in average**. Using the strongest baseline, i.e., *InternVL3*,
 311 **Nar-KFC achieves state-of-the-art performance (63.8%)**, surpassing previous VideoLLMs - even
 312 those using larger LLMs (e.g., VILA-34B, 58.3%) or more frames (e.g., *Video-XL^{256frm}*, 55.5%).
 313 Incorporating larger numbers of frames may introduce noise and irrelevant information, which can be
 314 well addressed by our keyframe capturing and narrating strategies. On *LVB*, our method also achieves
 315 notable performance improvements, e.g., 52.3% vs. 53.9% with *InternVL2* and **52.7% vs. 55.3% with**
 316 ***Qwen2.5-VL*, although the overall gain is partly offset by videos shorter than 1 min, demonstrating**
 317 **clear advantages in long video understanding**. On *MLVU*, our KFC-only strategy (without narrations)
 318 yields an average improvement of over 6% across five MLLMs. The use of query-relevant and
 319 diverse keyframes significantly boosts performance on *Needle-in-a-haystack* (Zhang et al., 2024b)
 320 and counting questions. Furthermore, appending narratives provides additional and robust gains by
 321 preserving temporal continuity. Detailed analysis are further presented in Appendix §D.4.
 322

323 **Comparisons with varying number of keyframes.** In Fig. 3, we compare KFC and Nar-KFC
 324 against uniform sampling with varying frames across three benchmarks and three models. Due to
 325 *Qwen2.5-VL*'s dynamic resolution mechanism (Dehghani et al., 2023), increasing keyframes often
 326 leads to memory overflow, so its results are omitted. Notably, Nar-KFC shows substantial gains
 327 when the number of keyframes is limited (e.g., 4 or 8), due to its ability to provide broad video
 328 coverage via interleaved textual narratives. As the number of keyframes increases, the performance
 329

324
 325
 326
 327
 328
 Table 1: Comparisons with previous VideoLLMs on three common long-video benchmarks: Video-MME, LVB,
 and MLVU. All methods are evaluated using 8 frames. For Video-MME, we report performance with two
 standard settings: without subtitles (no sub.) and with subtitles (sub.). LVB denotes the LongVideoBench set.
 Methods that use significantly more frames and larger-sized LLM are marked in gray. The reported results are
 accuracy percentage.

Model	Size	Video-MME (no sub. / sub.)				LVB	MLVU
		Short	Medium	Long	Overall _{~17m}		
VILA (Lin et al., 2024b)	8B	57.8 / 61.6	44.3 / 46.2	40.3 / 42.1	47.5 / 50.0	-	46.3
LLaVA-NeXT-QW2 (Liu et al., 2024a)	7B	58.0 / -	47.0 / -	43.4 / -	49.5 / -	-	-
MiniCPM-V2.6 (Yao et al., 2024b)	7B	61.1 / 63.8	50.3 / 50.2	46.4 / 45.4	52.6 / 53.1	51.2	55.4
LongVU (Shen et al., 2024)	7B	64.7 / -	58.2 / -	59.5 / -	60.6 / -	-	65.4
BOLT (Liu et al., 2025b)	7B	66.8 / -	54.2 / -	47.3 / -	56.1 / -	55.6	63.4
Frame-Voyager (Yu et al., 2025)	8B	67.3 / -	56.3 / -	48.9 / -	57.5 / -	-	65.6
LongVILA _{256frm} (Chen et al., 2024b)	8B	61.8 / -	49.7 / -	39.7 / -	50.5 / -	-	-
Video-XL _{256frm} (Shu et al., 2025)	7B	64.0 / 67.4	53.2 / 60.7	49.2 / 54.9	55.5 / 61.0	50.7	64.9
LLaVA-NeXT-Video (Zhang et al., 2024c)	34B	61.7 / 65.1	50.1 / 52.2	44.3 / 47.2	52.0 / 54.9	50.5	58.8
VILA (Lin et al., 2024b)	34B	70.3 / 73.1	58.3 / 62.7	51.2 / 55.7	58.3 / 61.6	-	57.8
InternVL2 (Chen et al., 2024c)	8B	62.1 / 63.9	48.2 / 48.7	45.2 / 44.9	51.9 / 52.5	52.3	54.3
+ KFC	8B	64.5 / 65.4	50.0 / 52.3	46.5 / 47.3	53.5 / 55.0	53.3	62.2
+ Nar-KFC	8B	67.2 / 67.7	54.7 / 57.9	47.1 / 48.9	56.3 / 58.1	53.9	64.4
Qwen2.5-VL (Bai et al., 2025)	7B	65.9 / 66.4	54.4 / 54.3	45.8 / 46.9	55.4 / 55.9	52.7	55.8
+ KFC	7B	68.8 / 70.7	52.6 / 54.9	49.3 / 51.4	56.9 / 59.0	54.3	62.6
+ Nar-KFC	7B	70.1 / 71.0	54.4 / 55.2	49.0 / 49.4	57.9 / 58.6	55.3	64.4
LLaVA-OneVision (Li et al., 2024b)	7B	65.2 / 67.1	51.7 / 54.4	45.1 / 46.1	53.3 / 55.9	54.5	58.5
+ KFC	7B	66.4 / 69.1	52.9 / 56.8	46.8 / 48.8	55.4 / 58.2	55.6	65.0
+ Nar-KFC	7B	67.2 / 68.6	57.1 / 59.8	49.1 / 51.0	57.8 / 59.8	56.5	66.2
LLaVA-Video (Zhang et al., 2024d)	7B	67.2 / 69.4	53.2 / 53.4	47.2 / 47.3	55.9 / 56.7	54.2	60.5
+ KFC	7B	68.3 / 70.0	55.1 / 57.4	49.4 / 51.6	57.6 / 59.7	56.5	66.9
+ Nar-KFC	7B	71.2 / 72.7	61.4 / 62.3	52.0 / 53.9	61.6 / 63.0	57.7	67.7
InternVL3 (Zhu et al., 2025)	8B	68.7 / 70.9	58.3 / 58.2	50.0 / 50.9	59.0 / 60.0	53.6	60.9
+ KFC	8B	70.9 / 71.9	60.6 / 60.1	50.9 / 51.8	60.8 / 61.4	54.5	67.5
+ Nar-KFC	8B	72.9 / 73.9	62.9 / 62.7	55.7 / 55.8	63.8 / 64.1	54.8	68.4

Figure 3: Accuracies (%) of uniform sampling, KFC, and Nar-KFC versus numbers of keyframes.

gap between uniform sampling and our methods narrows. This can be attributed to: 1) uniform sampling is more likely to capture key moments when more frames are used; and 2) many video QA questions typically only require a few number of frames to accurately answer in current benchmarks. Interestingly, on MLVU, KFC alone outperforms Nar-KFC with 32 keyframes, suggesting that when sufficient keyframes are present, the added benefit of narratives diminishes. These results underscore the strength of KFC in selecting informative keyframes while demonstrating that narratives are particularly valuable when MLLMs have limited context capacity. We further scale Nar-KFC to 72B models and compare them with proprietary models and SOTA VideoLLMs in Appendix §D.2.

Improvements on open-ended generation tasks. In Tab. 2), we show Nar-KFC consistently improves performance on open-ended generation tasks that require fine-grained reasoning, demonstrating that even with global-level frame selection and captioning, our methods can still enhance fine-grained tasks. Interestingly, we find that KFC shows decreased performance on the MLVU-OpenEnded summary task, likely because uniformly sampled frames cover the entire video range, whereas KFC-selected frames may be more concentrated. Our Nar-KFC addresses this issue by providing more comprehensive video information.

4.3 ABLATION AND ANALYSIS

KFC and Nar-KFC ablations. We report the ablation results of KFC and Nar-KFC components on the Video-MME (sub.) and MLVU benchmarks in Tab. 3. Simply inserting narratives between

378 Table 2: Improvements on open-ended generation tasks. All results are reported based on 8-frame evaluation.
 379 For MMBench-Video, GPT-4-1106 is used as the judge model, while for MLVU-OpenEnded, GPT-4-0125
 380 serves as the default judge model, following the official implementations.

Model	MMBench-Video			MLVU-OpenEnded		
	Perception	Reasoning	Overall	Sub_scene	Summary	G-Avg
InternVL3-8B (Zhu et al., 2025)	1.54	1.61	1.57	5.47	4.40	4.92
+ KFC	1.56	1.58	1.58	5.73	4.23	4.95
+ Nar-KFC	1.76	1.78	1.78	5.69	4.39	5.02
Qwen3-VL-8B (Team, 2025)	1.62	1.65	1.64	6.17	6.01	6.09
+ KFC	1.65	1.75	1.69	6.32	5.71	6.00
+ Nar-KFC	1.75	1.76	1.76	6.28	5.97	6.12

388 Table 3: Main component ablation results in Nar-KFC. “S,
 389 M, L” refer to short, medium, and long video categories in
 390 the Video-MME (sub.) benchmark.

Strategy	Video-MME				MLVU	Time
	S	M	L	Overall		
Uniform	63.9	48.7	44.9	52.5	54.3	$\mathcal{O}(1)$
+ Narratives	66.1	54.9	45.2	55.4	59.4	$\mathcal{O}(N)$
KFC (IQP)	65.9	52.9	46.4	55.1	62.0	$\mathcal{O}(2^N)$
KFC (GS)	65.4	52.3	47.3	55.0	62.2	$\mathcal{O}(NK)$
w/o \mathcal{S}_{QR}	62.3	47.8	45.3	51.8	57.3	$\mathcal{O}(NK)$
w/o \mathcal{S}_{FD}	63.6	49.4	44.6	52.5	60.9	$\mathcal{O}(NK)$
Nar-KFC	67.7	57.9	48.9	58.1	64.4	$\mathcal{O}(NK)$

Table 4: Effects of including pre-processing and refinement stages in the KFC Greedy Search (GS) method. V-MME denotes the overall Video-MME (sub.). Line (ii') indicates Downsampling without LowRank. The final KFC (GS) strategy integrates all components from (i) to (iv).

Ex#	Strategy	V-MME	MLVU
	Vanilla GS	52.3	60.4
(i)	+ Initialization	53.3	61.0
(ii)	+ LowRank	53.7	61.8
(ii')	+ Downsample	53.9	61.6
(iii)	+ LowRank + Downsample	54.7	62.2
(iv)	+ Refinement (KFC)	55.0	62.2

400 uniformly sampled frames yields improvements of 2.9% on Video-MME and 5.1% on MLVU,
 401 indicating that adding narrative context, despite with frames not being query-specific, can effectively
 402 boost overall video understanding. To retrieve query-relevant and diverse keyframes, our Greedy
 403 Search (GS) strategy achieves results comparable to the optimal Integer Quadratic Programming (IQP)
 404 method (55.0% vs. 55.1% on Video-MME and 62.2% vs. 62.0% on MLVU), while being significantly
 405 more efficient with $\mathcal{O}(NK)$ complexity. Details of our IQP implementation and comparisons with
 406 GS are provided in Appendix §E.2. Further ablations show that removing the query-relevance score
 407 \mathcal{S}_{QR} leads to a 3.2% drop on Video-MME and 4.9% on MLVU with greedy search. This emphasizes
 408 that retrieving query-relevant frames is critical in long videoQA. Meanwhile, incorporating frame
 409 diversity \mathcal{S}_{FD} further stabilizes and enhances performance across benchmarks. When threading
 410 all keyframes with interleaved narratives, Nar-KFC achieves the best overall results on all metrics,
 411 underscoring its solid effectiveness in representing long video contents.

412 **Component analysis of greedy search (GS).** Starting from the vanilla GS, which iteratively selects
 413 the frame with the highest cumulative score relative to the already selected frames, we progressively
 414 incorporate several techniques (Tab. 4) to enhance its effectiveness to a near-optimal solution: (i)
 415 initialization with the frame most relevant to the query brings a modest yet consistent gain (from
 416 52.3%→53.3% on Video-MME, and 60.4%→61.0% on MLVU); (ii and iii) applying low-rank
 417 denoising and downsampling further improves performance by producing a more compact and less
 418 noisy score matrix \mathbf{S} ; and (iv) adding the final refinement step, KFC (GS) achieves the best results of
 419 55.0% on Video-MME and 62.2% on MLVU. This highlights the cumulative benefit of combining
 420 compact frame representations, reduced redundancy, and an iterative selection mechanism.

421 **Comparisons with other keyframe selection methods.** We compare
 422 KFC with several keyframe extraction baselines in Tab. 5, all utilizing
 423 the InternVL2 backbone and 8 frames. Details are in Appendix §E.4.
 424 Methods that apply top-K frame-query matching using SigLIP (Zhai
 425 et al., 2023), or BLIP-2 (Li et al., 2023a) embeddings perform worse
 426 than uniform sampling, possibly due to keyframes being concentrated
 427 within a narrow temporal window. For those localize-then-answer meth-
 428 ods, i.e., TempGQA (Xiao et al., 2024) and SeViLA (Yu et al., 2023),
 429 performance heavily depends on the quality of segment localization,
 430 which can be unreliable. Recent approaches including DPP (Sun et al.,
 431 2025), AKS (Tang et al., 2025), and BOLT (Liu et al., 2025b) generally
 432 yield better results by incorporating frame diversity. However, these
 433 methods rely on handcrafted and heuristic sampling strategies, lacking

Table 5: Comparisons with different frame selection methods on Video-MME.

	V-MME _(no sub./sub.)
InternVL2	51.9 / 52.5
+ CLIP (top-K)	47.7 / 50.0
+ SigLIP (top-K)	47.3 / 51.0
+ BLIP-2 (top-K)	47.8 / 50.9
+ TempGQA	50.4 / 51.1
+ SeViLA	52.2 / 53.7
+ DPP	52.2 / 53.5
+ AKS	52.8 / 53.9
+ BOLT	53.3 / -
+ KFC (Ours)	53.5 / 55.0

Table 6: Analysis of video input components on Video-MME (no sub). Superscript numbers indicate the quantity. Average time and tokens per video are reported.

Components	V-MME	Latency (s)	TFLOPs ↓	Token#
Narratives ²¹⁰	51.1	0.98	109.6	4,725
Frames ⁸ (uniform)	51.9	1.03	146.3	6,280
Frames ⁸ (KFC)	53.5	1.31	146.3	6,280
Interleave ⁸⁺²¹⁰ (Nar-KFC)	56.3	2.13	202.6	11,005

Figure 4: Effect of the total number of inserted narratives, corresponding to the narrative interval Δ , across videos of different lengths.

a principled and generalized frame selection guidance. In comparison, our proposed KFC consistently outperforms all baselines, demonstrating clear superiority in subset frame selection.

Effect of narrative quantity. Due to the varying length of videos, we do not directly ablate the effect on a fixed interval value Δ . Instead, we control the total number of narratives appended, as shown Fig. 4 on Video-MME (sub.). Narratives are incrementally added across 7 intervals between 8 keyframes. The overall accuracy improves steadily from 55.1% to 58.1% as more narratives are available, with more performance gains on medium and long videos. However, since adjacent frames often contain similar visual information, adding more narratives results in diminishing returns due to redundant descriptions. We thus use 210 narratives as the default.

Effect of narrative quality. Fig. 5 presents the impact of different captioners on the quality of generated narratives and the resulting performance of Nar-KFC on the Video-MME (sub.). We evaluate five MLLMs of varying sizes and sources as captioners. Narratives extracted from the largest captioner, Qwen2-VL-72B, achieves the best accuracy, i.e., 58.9% on InternVL2-8B and 58.3% on Qwen2-VL-7B, highlighting the benefit of higher-quality narratives. Nevertheless, the overall performance gap across all captioners is small (less than 1%). This suggests that keyframes play a dominant role in long video understanding, while captions serve as auxiliary and supportive context. We thus use the lightweight Qwen2-VL-2B as the default captioner for other benchmarks.

Efficiency and effectiveness between narratives and keyframes. We decompose Nar-KFC into standalone narratives and frames in Tab. 6. Although translated from 210 frames, pure narratives perform worse than even 8 uniformly sampled frames (51.1% vs. 51.9%), which reflects that substantial information is lost during the frame-to-caption conversion. Nevertheless, narratives exhibit advantages with the shortest latency (0.98s) and the fewest tokens (4,725 per video). Combining narratives with KFC-selected keyframes (Nar-KFC) achieves both the best accuracy and also maintains reasonable efficiency. We discuss detailed computational overhead in Appendix §D.5. In addition, Tab. 7 investigates the temporal structure between narratives and keyframes. Placing all keyframes either before or after the narratives degrades the performance by 0.8% and 1.0%, likely due to disrupted temporal sequences. In contrast, interleaving narratives and frames, as in Nar-KFC, yields superior results. These findings further validate our primary goal: constructing temporally continuous representations for long video understanding.

4.4 QUALITATIVE RESULTS

Fig. 6 presents two qualitative examples of our method. In the first example (left), our KFC effectively identifies frames that are both query-relevant and content-diverse, resulting in the correct answer. In the second example (right), we demonstrate that Nar-KFC substantially improves reasoning in a complete relay race scenario by threading temporally interleaved keyframes with coherent narratives.

Table 7: Temporal structure analysis between narratives and keyframes on Video-MME (no sub) benchmark.

Temporal Structure	V-MME
{Narrative} → {Keyframe} → {Query}	55.5
{Keyframe} → {Narrative} → {Query}	55.3
Interleave (Nar-KFC) → {Query}	56.3

Figure 5: Impact of different captioners for generating narratives. Video-MME (sub.) results are for InternVL2-8B (left) and Qwen2-VL-7B (right).

Figure 6: Qualitative results. (left) Comparison of frames selected by uniform sampling, top-K sampling, and our KFC. (right) Key narratives generated by Nar-KFC that lead to the correct answer. Zoom in for details.

This enables accurate inference of the final winner, whereas KFC fails due to limited number of frames. More examples can be found in Appendix §F.

5 CONCLUSION

In this paper, we propose a keyframe capturing strategy (KFC) and a narrating keyframe method (Nar-KFC) to boost existing MLLMs for long video understanding, under the constraint of limited context length in language models. Our approach constructs long video representations that are query-relevant, content-diverse, and temporally continuous, all achieved in a training-free manner. This significantly improves the performance of current MLLMs on widely-used long video benchmarks. Our findings strongly validate the potential of MLLMs as effective long video comprehenders.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. [arXiv preprint arXiv:2303.08774](https://arxiv.org/abs/2303.08774), 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems (NeurIPS)*, 35:23716–23736, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. [arXiv preprint arXiv:2308.12966](https://arxiv.org/abs/2308.12966), 1(2):3, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. [arXiv preprint arXiv:2502.13923](https://arxiv.org/abs/2502.13923), 2025.

Christian Blieklú, Pierre Bonami, and Andrea Lodi. Solving mixed-integer quadratic programming problems with ibm-cplex: a progress report. In *Proceedings of the twenty-sixth RAMP symposium*, pp. 16–17, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems (NeurIPS)*, 33:1877–1901, 2020.

Keshigeyan Chandrasegaran, Agrim Gupta, Lea M Hadzic, Taran Kota, Jimming He, Cristóbal Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Fei-Fei Li. Hourvideo: 1-hour video-language understanding. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:53168–53197, 2024.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Zhenyu Tang, Li Yuan, et al. Sharegpt4video: Improving video understanding and generation with better captions. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:19472–19495, 2024a.

Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for long videos. [arXiv preprint arXiv:2408.10188](https://arxiv.org/abs/2408.10188), 2024b.

540 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou
 541 Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic
 542 tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 543 pp. 24185–24198, 2024c.

544 Chuanqi Cheng, Jian Guan, Wei Wu, and Rui Yan. Scaling video-language models to 10k frames via hierarchical
 545 differential distillation. *arXiv preprint arXiv:2504.02438*, 2025a.

546 Junhao Cheng, Yuying Ge, Teng Wang, Yixiao Ge, Jing Liao, and Ying Shan. Video-holmes: Can mllm think
 547 like holmes for complex video reasoning? *arXiv preprint arXiv:2505.21374*, 2025b.

549 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang,
 550 Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and audio understanding
 551 in video-lmms. *arXiv preprint arXiv:2406.07476*, 2024.

552 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, An-
 553 dreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n'pack: Navit, a
 554 vision transformer for any aspect ratio and resolution. *Advances in Neural Information Processing Systems
 555 (NeurIPS)*, 36:2252–2274, 2023.

556 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 557 Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16 words: Trans-
 558 formers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*,
 559 2020.

560 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang,
 561 Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models.
 562 In *Proceedings of the 32nd ACM International Conference on Multimedia (MM)*, pp. 11198–11201, 2024.

563 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen. Mmbench-
 564 video: A long-form multi-shot benchmark for holistic video understanding. *NeurIPS*, 37:89098–89124,
 565 2024.

566 Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition.
 567 In *Proceedings of the IEEE/CVF international conference on computer vision (ICCV)*, pp. 6202–6211, 2019.

569 Chaoyou Fu, Yuhai Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
 570 Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark
 571 of multi-modal lmms in video analysis. In *Proceedings of the Computer Vision and Pattern Recognition
 Conference (CVPR)*, pp. 24108–24118, 2025.

572 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 573 Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv
 574 preprint arXiv:2407.21783*, 2024.

576 Kai Hu, Feng Gao, Xiaohan Nie, Peng Zhou, Son Tran, Tal Neiman, Lingyun Wang, Mubarak Shah, Raffay
 577 Hamid, Bing Yin, et al. M-lm based video frame selection for efficient video understanding. In *Proceedings
 578 of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 13702–13712, 2025.

579 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified visual representa-
 580 tion empowers large language models with image and video understanding. In *Proceedings of the IEEE/CVF
 581 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13700–13710, 2024.

582 Kumara Kahatapitiya, Kanchana Ranasinghe, Jongwoo Park, and Michael S Ryoo. Language repository for
 583 long video understanding. In *Workshop on Video-Language Models@ NeurIPS 2024*, 2024.

584 Wonkyun Kim, Changin Choi, Wonseok Lee, and Wonjong Rhee. An image grid can be worth a video: Zero-shot
 585 video question answering using a vlm. *IEEE Access*, 2024.

587 Bo Li, Peiyuan Zhang, Kaichen Zhang, Fanyi Pu, Xinrun Du, Yuhao Dong, Haotian Liu, Yuanhan Zhang,
 588 Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the development of large multimoal
 589 models, March 2024a. URL <https://github.com/EvolvingLMMs-Lab/lmms-eval>.

590 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei
 591 Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024b.

592 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with
 593 frozen image encoders and large language models. In *International conference on machine learning (ICML)*,
 pp. 19730–19742. PMLR, 2023a.

594 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and Yu Qiao.
 595 Videochat: Chat-centric video understanding. [arXiv preprint arXiv:2305.06355](https://arxiv.org/abs/2305.06355), 2023b.

596

597 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhuan Zhu, Haian Huang, Jianfei Gao, Kunchang Li, Yinan
 598 He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context video modeling. [arXiv
 599 preprint arXiv:2501.00574](https://arxiv.org/abs/2501.00574), 2024c.

600 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language models. In
 601 European Conference on Computer Vision (ECCV), pp. 323–340. Springer, 2024d.

602 Jianxin Liang, Xiaojun Meng, Yueqian Wang, Chang Liu, Qun Liu, and Dongyan Zhao. End-to-end video
 603 question answering with frame scoring mechanisms and adaptive sampling. [arXiv preprint arXiv:2407.15047](https://arxiv.org/abs/2407.15047),
 604 2024.

605 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
 606 representation by alignment before projection. In Proceedings of the 2024 Conference on Empirical Methods
 607 in Natural Language Processing (EMNLP), pp. 5971–5984, 2024a.

608

609 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-training
 610 for visual language models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
 611 recognition (CVPR), pp. 26689–26699, 2024b.

612 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
 613 information processing systems (NeurIPS), 36:34892–34916, 2023.

614 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
 615 Improved reasoning, ocr, and world knowledge, January 2024a. URL [https://llava-vl.github
 616 io/blog/2024-01-30-llava-next/](https://llava-vl.github.io/blog/2024-01-30-llava-next/).

617 Huabin Liu, Xiao Ma, Cheng Zhong, Yang Zhang, and Weiyao Lin. Timecraft: Navigate weakly-supervised
 618 temporal grounded video question answering via bi-directional reasoning. In European Conference on
 619 Computer Vision (ECCV), pp. 92–107. Springer, 2024b.

620

621 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
 622 Liang. Lost in the middle: How language models use long contexts. Transactions of the Association for
 623 Computational Linguistics (TACL), 12:157–173, 2024c.

624 Ruyang Liu, Chen Li, Haoran Tang, Yixiao Ge, Ying Shan, and Ge Li. St-llm: Large language models are
 625 effective temporal learners. In European Conference on Computer Vision (ECCV), pp. 1–18. Springer, 2024d.

626 Ruyang Liu, Shangkun Sun, Haoran Tang, Wei Gao, and Ge Li. Flow4agent: Long-form video understanding
 627 via motion prior from optical flow. In Proceedings of the IEEE/CVF International Conference on Computer
 628 Vision (ICCV), pp. 23817–23827, 2025a.

629 Shuming Liu, Chen Zhao, Tianqi Xu, and Bernard Ghanem. Bolt: Boost large vision-language model without
 630 training for long-form video understanding. In Proceedings of the Computer Vision and Pattern Recognition
 631 Conference (CVPR), pp. 3318–3327, 2025b.

632 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun, and Lu Hou.
 633 Tempcompass: Do video llms really understand videos? [arXiv preprint arXiv:2403.00476](https://arxiv.org/abs/2403.00476), 2024e.

634

635 Ziyu Ma, Chenhui Gou, Hengcan Shi, Bin Sun, Shutao Li, Hamid Rezatofighi, and Jianfei Cai. Drvideo:
 636 Document retrieval based long video understanding. In Proceedings of the Computer Vision and Pattern
 637 Recognition Conference (CVPR), pp. 18936–18946, 2025.

638 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt: Towards detailed
 639 video understanding via large vision and language models. [arXiv preprint arXiv:2306.05424](https://arxiv.org/abs/2306.05424), 2023.

640

641 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark for very
 642 long-form video language understanding. Advances in Neural Information Processing Systems (NeurIPS),
 643 36:46212–46244, 2023.

644 Juhong Min, Shyamal Buch, Arsha Nagrani, Minsu Cho, and Cordelia Schmid. Morevqa: Exploring modular
 645 reasoning models for video question answering. In Proceedings of the IEEE/CVF Conference on Computer
 646 Vision and Pattern Recognition (CVPR), pp. 13235–13245, 2024.

647 David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell. Branch-and-bound algorithms:
 648 A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102, 2016.

648 OpenAI. Chatgpt: Optimizing language models for dialogue, 2023. URL [https://openai.com/blog/
649 chatgpt](https://openai.com/blog/chatgpt).

650 Jongwoo Park, Kanchana Ranasinghe, Kumara Kahatapitiya, Wonjeong Ryu, Donghyun Kim, and Michael S
651 Ryoo. Too many frames, not all useful: Efficient strategies for long-form video qa. In Workshop on
652 Video-Language Models@ NeurIPS 2024, 2024.

653 Long Qian, Juncheng Li, Yu Wu, Yaobo Ye, Hao Fei, Tat-Seng Chua, Yueting Zhuang, and Siliang Tang.
654 Momentor: Advancing video large language model with fine-grained temporal reasoning. In International
655 Conference on Machine Learning (ICML), pp. 41340–41356. PMLR, 2024.

656 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
657 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
658 supervision. In International conference on machine learning (ICML), pp. 8748–8763. PmLR, 2021.

659 Harvey M Salkin and Cornelis A De Kluyver. The knapsack problem: a survey. Naval Research Logistics
660 Quarterly, 22(1):127–144, 1975.

661 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun Liu, Fanyi
662 Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive compression for
663 long video-language understanding. arXiv preprint arXiv:2410.17434, 2024.

664 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang, and Bo Zhao.
665 Video-xl: Extra-long vision language model for hour-scale video understanding. In Proceedings of the
666 Computer Vision and Pattern Recognition Conference (CVPR), pp. 26160–26169, 2025.

667 Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos.
668 Advances in neural information processing systems (NeurIPS), 27, 2014.

669 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe Chi,
670 Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for long video
671 understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
672 (CVPR), pp. 18221–18232, 2024.

673 Hui Sun, Shiyin Lu, Huanyu Wang, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Ming Li. Mdp3:
674 A training-free approach for list-wise frame selection in video-lmms. arXiv preprint arXiv:2501.02885, 2025.

675 Yucheng Suo, Fan Ma, Linchao Zhu, Tianyi Wang, Fengyun Rao, and Yi Yang. From trial to triumph: Advancing
676 long video understanding via visual context sample scaling and self-reward alignment. arXiv preprint
677 arXiv:2503.20472, 2025.

678 Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, and Qixiang Ye. Adaptive keyframe sampling for long
679 video understanding. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR),
680 pp. 29118–29128, 2025.

681 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
682 Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini
683 research and technology. arXiv preprint arXiv:2403.08295, 2024.

684 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

685 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha Akula,
686 Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully open, vision-
687 centric exploration of multimodal llms. Advances in Neural Information Processing Systems (NeurIPS), 37:
688 87310–87356, 2024.

689 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
690 Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
691 models. arXiv preprint arXiv:2307.09288, 2023.

692 Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu,
693 Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on Machine Learning Research
694 (TMLR), 2024.

695 Haibo Wang, Chenghang Lai, Yixuan Sun, and Weifeng Ge. Weakly supervised gaussian contrastive grounding
696 with large multimodal models for video question answering. In Proceedings of the 32nd ACM International
697 Conference on Multimedia (MM), pp. 5289–5298, 2024a.

702 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
 703 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution.
 704 [arXiv preprint arXiv:2409.12191](https://arxiv.org/abs/2409.12191), 2024b.

705 Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, and Liqiang Nie. Retake: Reducing temporal and
 706 knowledge redundancy for long video understanding. [arXiv preprint arXiv:2412.20504](https://arxiv.org/abs/2412.20504), 2024c.

707 Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, and Liqiang Nie. Adaretake: Adaptive redundancy
 708 reduction to perceive longer for video-language understanding. [arXiv preprint arXiv:2503.12559](https://arxiv.org/abs/2503.12559), 2025a.

710 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video understanding
 711 with large language model as agent. In [European Conference on Computer Vision \(ECCV\)](https://openaccess.thecvf.com/content/ECCV24/html/Wang_ECCV24.pdf), pp. 58–76.
 712 Springer, 2024d.

713 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu,
 714 Zun Wang, et al. Internvideo: General video foundation models via generative and discriminative learning.
 715 [arXiv preprint arXiv:2212.03191](https://arxiv.org/abs/2212.03191), 2022.

716 Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and Mohit Bansal.
 717 Videotree: Adaptive tree-based video representation for llm reasoning on long videos. In [Proceedings of the
 718 Computer Vision and Pattern Recognition Conference \(CVPR\)](https://openaccess.thecvf.com/content/CVPR24/html/Wang_CVPR24.pdf), pp. 3272–3283, 2025b.

719 Hao Wu, Huabin Liu, Yu Qiao, and Xiao Sun. Dibs: Enhancing dense video captioning with unlabeled videos
 720 via pseudo boundary enrichment and online refinement. In [Proceedings of the IEEE/CVF conference on
 721 computer vision and pattern recognition \(CVPR\)](https://openaccess.thecvf.com/content/CVPR24/html/Wu_CVPR24.pdf), pp. 18699–18708, 2024a.

722 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context interleaved
 723 video-language understanding. [Advances in Neural Information Processing Systems \(NeurIPS\)](https://openaccess.thecvf.com/content/NeurIPS24/html/Wu_NeurIPS24.pdf), 37:28828–
 724 28857, 2024b.

725 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-answering to
 726 explaining temporal actions. In [Proceedings of the IEEE/CVF conference on computer vision and pattern
 727 recognition \(CVPR\)](https://openaccess.thecvf.com/content/CVPR24/html/Xiao_CVPR24.pdf), pp. 9777–9786, 2021.

728 Junbin Xiao, Angela Yao, Yicong Li, and Tat-Seng Chua. Can i trust your answer? visually grounded
 729 video question answering. In [Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 730 Recognition \(CVPR\)](https://openaccess.thecvf.com/content/CVPR24/html/Xiao_CVPR24.pdf), pp. 13204–13214, 2024.

732 Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajwal Bhargava, Rui Hou, Louis Martin, Rashi
 733 Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling of foundation
 734 models. In [Proceedings of the 2024 Conference of the North American Chapter of the Association for
 735 Computational Linguistics: Human Language Technologies \(Volume 1: Long Papers\) \(NAACL\)](https://openaccess.thecvf.com/content/NAACL24/html/Xiong_NAACL24.pdf), pp. 4643–
 736 4663, 2024.

737 Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pl lava: Parameter-free llava
 738 extension from images to videos for video dense captioning. [arXiv preprint arXiv:2404.16994](https://arxiv.org/abs/2404.16994), 2024a.

739 Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang, and Afshin
 740 Dehghan. Slowfast-llava: A strong training-free baseline for video large language models. [arXiv preprint
 741 arXiv:2407.15841](https://arxiv.org/abs/2407.15841), 2024b.

742 Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Zero-shot video question
 743 answering via frozen bidirectional language models. [Advances in Neural Information Processing Systems
 744 \(NeurIPS\)](https://openaccess.thecvf.com/content/NeurIPS24/html/Yang_NeurIPS24.pdf), 35:124–141, 2022.

745 Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic,
 746 and Cordelia Schmid. Vid2seq: Large-scale pretraining of a visual language model for dense video captioning.
 747 In [Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition \(CVPR\)](https://openaccess.thecvf.com/content/CVPR24/html/Yang_CVPR24.pdf), pp.
 748 10714–10726, 2023.

749 Huanjin Yao, Wenhao Wu, Taojannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng
 750 Li, Wanli Ouyang, and Jingdong Wang. Dense connector for mllms. [Advances in Neural Information
 751 Processing Systems \(NeurIPS\)](https://openaccess.thecvf.com/content/NeurIPS24/html/Yao_NeurIPS24.pdf), 37:33108–33140, 2024a.

752 Linli Yao, Haoning Wu, Kun Ouyang, Yuanxing Zhang, Caiming Xiong, Bei Chen, Xu Sun, and Junnan Li.
 753 Generative frame sampler for long video understanding. [arXiv preprint arXiv:2503.09146](https://arxiv.org/abs/2503.09146), 2025.

755 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao,
 756 Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. [arXiv preprint arXiv:2408.01800](https://arxiv.org/abs/2408.01800), 2024b.

756 Jinhui Ye, Zihan Wang, Haosen Sun, Keshigeyan Chandrasegaran, Zane Durante, Cristobal Eyzaguirre, Yonatan
 757 Bisk, Juan Carlos Niebles, Ehsan Adeli, Li Fei-Fei, et al. Re-thinking temporal search for long-form video
 758 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp.
 759 8579–8591, 2025.

760 Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for video
 761 localization and question answering. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:
 762 76749–76771, 2023.

763 Sicheng Yu, Chengkai Jin, Huanyu Wang, Zhenghao Chen, Sheng Jin, Zhongrong Zuo, Xiaolei Xu, Zhenbang
 764 Sun, Bingni Zhang, Jiawei Wu, et al. Frame-voyager: Learning to query frames for video large language
 765 models.(2025). In *Proceedings of the Thirteenth International Conference on Learning Representations*
 766 (ICLR), pp. 24–28, 2025.

767 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
 768 pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision (ICCV)*, pp.
 769 11975–11986, 2023.

770 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming
 771 Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models for image and video
 772 understanding. *arXiv preprint arXiv:2501.13106*, 2025.

773 Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang Wang, Shoubin Yu, Mohit Bansal, and Gedas Bertasius. A
 774 simple llm framework for long-range video question-answering. In *Proceedings of the 2024 Conference on*
 775 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 21715–21737, 2024a.

776 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue Wang, Hao-
 777 ran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision. *arXiv preprint*
 778 *arXiv:2406.16852*, 2024b.

779 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and Chunyuan
 780 Li. Llava-next: A strong zero-shot video understanding model, April 2024c. URL <https://llava-v1.github.io/blog/2024-04-30-llava-next-video/>.

781 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction tuning
 782 with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024d.

783 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang Liang, Shitao Xiao, Minghao Qin, Xi Yang, Yongping
 784 Xiong, Bo Zhang, et al. Mlvu: Benchmarking multi-task long video understanding. In *Proceedings of the*
 785 *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 13691–13701, 2025.

786 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
 787 language understanding with advanced large language models. *arXiv preprint arXiv:2304.10592*, 2023.

788 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie
 789 Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal
 790 models. *arXiv preprint arXiv:2504.10479*, 2025.

791 Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng Yu,
 792 Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, et al. Apollo: An exploration of video understanding in large
 793 multimodal models. *arXiv preprint arXiv:2412.10360*, 2024.

794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

APPENDIX

A LIMITATIONS AND FUTURE WORK

We discuss limitations and possible extensions of Nar-KFC. Despite current MLLMs being able to process our interleaved inputs of keyframes and narratives, thanks to their instruction tuning step, they are not trained with such input formats. This may weaken their ability to fully understand the structure and relationships within our specialized long video representations. A valuable future direction is to incorporate keyframe selection and narrative interleaving into the training of MLLMs, thereby aligning training and testing procedures for improved long video understanding. Furthermore, our method relies mainly on interleaving visual information with narrations and does not incorporate additional modalities such as audio or subtitles. Exploring these modalities in future work may further improve multi-modal long video understanding.

B THE USE OF LARGE LANGUAGE MODELS (LLMs)

In this paper, we exclusively utilize advanced LLMs to refine and polish the manuscript. Our prompts to the LLMs include requests such as: “Please help me polish this academic writing paragraph. It should be concise, fluent, logical, and in line with academic standards.” LLMs are not employed for any purposes beyond writing improvement.

C BROADER IMPACTS

Effective and efficient long video understanding is a critical task, especially as Internet video streams often last tens of minutes or even hours. We expect that the proposed keyframe selection and narration methods will benefit society by enabling MLLMs to comprehend long videos more accurately and efficiently. However, it is essential to ensure that the narratives generated by specific models remain free from harmful or unrelated content.

D MAIN RESULTS SUPPLEMENTARY

We provide supplementary results to the main experiments: Sec. D.1 covers earlier works. Sec. D.2 scales Nar-KFC to 72B models and compares its performance with proprietary models and VideoLLMs capable of reasoning over thousands of frames. Sec. D.3 presents the performance of KFC and Nar-KFC on additional EgoSchema and NExTQA benchmarks, and Sec. D.4 provides a detailed analysis on the MLVU benchmark. Finally, Sec. D.5 discusses the detailed computational overhead introduced by Nar-KFC.

D.1 COMPREHENSIVE COMPARISONS WITH PREVIOUS METHODS.

VideoLLMs for video understanding have become a popular research area in recent years. However, directly applying previous VideoLLMs to long videos, such as Video-MME, LongVideoBench, and MLVU, often leads to unsatisfactory performance. To provide a more comprehensive comparison, as an extension to the main paper in Tab. 1, we also include the performance of earlier works, such as Video-LLaVA (Lin et al., 2024a), Qwen-VL-Chat (Bai et al., 2023), ST-LLM (Liu et al., 2024d), VideoChat2 (Li et al., 2023b), ShareGPT4Video (Chen et al., 2024a), Chat-UniVi-V1.5 (Jin et al., 2024), and VideoLLaMA2 (Cheng et al., 2024), in Tab. 8.

D.2 SCALING NAR-KFC TO 72B MODELS

To further evaluate the ability of Nar-KFC to enhance SOTA performance, we scale our Nar-KFC framework to two advanced models: LLaVA-OneVision-72B (32 frames) and LLaVA-Video-72B-Qwen2 (64 frames). We also compare our results with those of SOTA proprietary models and recent works, as shown in Tab. 9 and Tab. 10, with our results highlighted in bold. Extensive experiments demonstrate that the Nar-KFC framework enables 72B models to achieve competitive performance on

864

865

866

867

868

869

870

871

872

873

874

875
876
877
Table 8: Comprehensive comparisons with previous VideoLLMs/MLLMs on three common long-video benchmarks: Video-MME, LVB, and MLVU. The reported results are accuracy percentage.

Model	Size	Video-MME (no sub. / sub.)				LVB	MLVU
		Short	Medium	Long	Overall _{~17m}		
Video-LLaVA (Lin et al., 2024a)	7B	45.3 / 46.1	38.0 / 40.7	36.2 / 38.1	39.9 / 41.6	39.1	47.3
Qwen-VL-Chat (Bai et al., 2023)	7B	46.9 / 47.3	38.7 / 40.4	37.8 / 37.9	41.1 / 41.9	-	-
ST-LLM (Liu et al., 2024d)	7B	45.7 / 48.4	36.8 / 41.4	31.3 / 36.9	37.9 / 42.3	-	-
VideoChat2 (Li et al., 2023b)	7B	48.3 / 52.8	37.0 / 39.4	33.2 / 39.2	39.5 / 43.8	39.3	44.5
ShareGPT4Video (Chen et al., 2024a)	8B	48.3 / -	36.3 / -	35.0 / -	39.9 / -	41.8	46.4
Chat-UniVi-V1.5 (Jin et al., 2024)	7B	45.7 / 51.2	40.3 / 44.6	35.8 / 41.8	40.6 / 45.9	-	-
VideoLLaMA2 (Cheng et al., 2024)	7B	56.0 / -	45.4 / -	42.1 / -	47.9 / -	-	-
VILA (Lin et al., 2024b)	8B	57.8 / 61.6	44.3 / 46.2	40.3 / 42.1	47.5 / 50.0	-	46.3
LLaVA-NeXT-QW2 (Liu et al., 2024a)	7B	58.0 / -	47.0 / -	43.4 / -	49.5 / -	-	-
MiniCPM-V2.6 (Yao et al., 2024b)	7B	61.1 / 63.8	50.3 / 50.2	46.4 / 45.4	52.6 / 53.1	51.2	55.4
LongVU (Shen et al., 2024)	7B	64.7 / -	58.2 / -	59.5 / -	60.6 / -	-	65.4
Frame-Voyager (Yu et al., 2025)	8B	67.3 / -	56.3 / -	48.9 / -	57.5 / -	-	65.6
LongVILA ^{256frm} (Chen et al., 2024b)	8B	61.8 / -	49.7 / -	39.7 / -	50.5 / -	-	-
Video-XL ^{256frm} (Shu et al., 2025)	7B	64.0 / 67.4	53.2 / 60.7	49.2 / 54.9	55.5 / 61.0	50.7	64.9
VILA (Lin et al., 2024b)	34B	70.3 / 73.1	58.3 / 62.7	51.2 / 55.7	58.3 / 61.6	-	57.8
InternVL2 (Chen et al., 2024c)	8B	62.1 / 63.9	48.2 / 48.7	45.2 / 44.9	51.9 / 52.5	52.3	54.3
+ KFC	8B	64.3 / 65.4	49.6 / 52.3	46.1 / 47.3	53.1 / 55.0	53.3	62.2
+ Nar-KFC	8B	67.2 / 67.7	54.7 / 57.9	47.1 / 48.9	56.3 / 58.1	53.9	64.4
Qwen2-VL (Wang et al., 2024b)	7B	65.7 / 66.9	52.8 / 53.0	46.7 / 48.6	55.0 / 56.1	53.4	59.6
+ KFC	7B	68.2 / 69.7	53.3 / 54.9	48.4 / 50.2	56.7 / 58.3	54.6	65.9
+ Nar-KFC	7B	68.8 / 69.3	53.4 / 55.3	48.0 / 49.0	56.7 / 57.9	53.6	68.5
Qwen2.5-VL (Bai et al., 2025)	7B	65.9 / 66.4	54.4 / 54.3	45.8 / 46.9	55.4 / 55.9	52.7	55.8
+ KFC	7B	68.8 / 70.7	52.6 / 54.9	49.3 / 51.4	56.9 / 59.0	54.3	62.6
+ Nar-KFC	7B	70.1 / 71.0	54.4 / 55.2	49.0 / 49.4	57.9 / 58.6	55.3	64.4
LLaVA-OneVision (Li et al., 2024b)	7B	65.2 / 67.1	51.7 / 54.4	45.1 / 46.1	53.3 / 55.9	54.5	58.5
+ KFC	7B	66.4 / 69.1	52.9 / 56.8	46.8 / 48.8	55.4 / 58.2	55.6	65.0
+ Nar-KFC	7B	67.2 / 68.6	57.1 / 59.8	49.1 / 51.0	57.8 / 59.8	56.5	66.2
LLaVA-Video (Zhang et al., 2024d)	7B	67.2 / 69.4	53.2 / 53.4	47.2 / 47.3	55.9 / 56.7	54.2	60.5
+ KFC	7B	68.3 / 70.0	55.1 / 57.4	49.4 / 51.6	57.6 / 59.7	56.5	66.9
+ Nar-KFC	7B	71.2 / 72.7	61.4 / 62.3	52.0 / 53.9	61.6 / 63.0	57.7	67.7
InternVL3 (Zhu et al., 2025)	8B	68.7 / 70.9	58.3 / 58.2	50.0 / 50.9	59.0 / 60.0	53.6	60.9
+ KFC	8B	70.9 / 71.9	60.6 / 60.1	50.9 / 51.8	60.8 / 61.4	54.5	67.5
+ Nar-KFC	8B	72.9 / 73.9	62.9 / 62.7	55.7 / 55.8	63.8 / 64.1	54.8	68.4
Qwen3-VL (Team, 2025)	8B	68.4 / 70.7	55.4 / 55.3	50.1 / 52.0	58.0 / 59.1	54.7	49.5
+ KFC	8B	68.4 / 71.9	57.3 / 57.0	50.8 / 50.7	58.9 / 59.9	55.8	63.0
+ Nar-KFC	8B	70.4 / 72.9	60.1 / 59.7	52.7 / 52.4	61.1 / 61.7	56.2	65.8

907

908

909

910

911

912

913

914

915

916

917

918 Table 9: Scaling to 72B models on the Video-MME benchmark. Results from our Nar-KFC method are in bold.
919

Model	Frames	Video-MME (no sub.)			
		Short	Medium	Long	Overall
LLaVA-OneVision-72B	32	76.7	62.2	60.0	66.3
+ Nar-KFC	32	77.5	68.6	61.9	69.6
LLaVA-Video-72B	64	81.7	67.9	61.8	70.4
+ Nar-KFC	64	82.0	68.9	63.6	71.5
VideoChat-Flash@448-7B (Li et al., 2024c)	N/A	-	-	-	65.3
LLaVA-OneVision-72B + T* (Ye et al., 2025)	32	77.5	66.6	61.0	68.3
VILAMP-7B (Cheng et al., 2025a)	1 fps	-	-	-	67.5
Aria-8x3.5B	256	76.9	67.0	58.8	67.6
GPT-4o (0615)	384	80.0	70.3	65.3	71.9
Qwen2-VL-72B (Wang et al., 2024b)	768	80.1	71.3	62.2	71.2
AdaReTake-72B (Wang et al., 2025a)	2 fps	-	-	-	73.5
Gemini-1.5-Pro (0615)	1/0.5 fps	81.7	74.3	67.4	75.0

932 Table 10: Scaling to 72B models on the MLVU benchmark. Results from our Nar-KFC method are shown in
933 bold. * indicates results obtained from our own implementation.
934

Model	Frames	MLVU
LLaVA-OneVision-72B	32	66.4
+ Nar-KFC	32	74.4
LLaVA-Video-72B	64	74.4 (73.6*)
+ Nar-KFC	64	75.0
GPT-4o (0615)	0.5 fps	64.6
VideoLLaMA3-7B (Zhang et al., 2025)	≤ 180	73.0
VILAMP-7B (Cheng et al., 2025a)	1 fps	72.6
VideoChat-Flash@448-7B (Li et al., 2024c)	1 fps	74.7
AdaReTake-72B (Wang et al., 2025a)	2 fps	78.1

945 the Video-MME benchmark (71.5%) and leading results on MLVU (75.0%). Notably, our approach
946 uses significantly fewer frames (32 or 64) compared to proprietary models such as Gemini-1.5-Pro
947 and VideoLLMs that reason over thousands of frames, including VILAMP (Cheng et al., 2025a)
948 and AdaReTake (Wang et al., 2025a). These findings underscore the potential significance of our
949 framework, particularly under the limited context length constraints of MLLMs.
950

951 D.3 RESULTS ON MORE BENCHMARKS

953 Table 11: Results on EgoSchema and NExTQA benchmarks. Accuracy sign % is omitted for clarity.

Model	Frames	EgoSchema	NExT-QA
		3min	0.7min
InternVideo (Wang et al., 2022)	90	32.1	49.1
LLoVi (Zhang et al., 2024a)	90	57.6	67.7
LangRepo (Kahatapitiya et al., 2024)	180	66.2	60.9
VideoAgent (Wang et al., 2024d)	8.4	60.2	71.3
LVNet (Park et al., 2024)	12	66.0	72.9
VidF4 (Liang et al., 2024)	8	-	74.1
VideoTree (Wang et al., 2025b)	63.2	66.2	73.5
InternVL2-8B (Chen et al., 2024c)		59.8	76.5
+ KFC	8	58.6	77.8
+ Nar-KFC		64.0	78.1
Qwen2-VL-7B (Wang et al., 2024b)		60.8	76.3
+ KFC	8	63.2	76.6
+ Nar-KFC		65.8	77.6

968 We further report performance of our KFC and Nar-KFC on two relatively shorter video benchmarks,
969 i.e., EgoSchema (Subset) (Mangalam et al., 2023) and NExTQA (Xiao et al., 2021), in Tab. 11.
970

971 Unlike the long video datasets discussed in the main paper, our keyframe selection strategy (i.e.,
972 KFC) may underperfrom compared to uniform sampling when applied to shorter videos. For example,

972 InternVL2-8B yields 58.6% accuracy on EgoSchema when using KFC. This performance drop is
 973 primarily due to KFC disrupting the temporal consistency of frame sequences, which is particularly
 974 important for short video understanding. Nevertheless, supplementing with non-keyframe narratives
 975 (Nar-KFC) leads to consistent performance improvements even on these shorter benchmarks. The
 976 gains are especially evident on EgoSchema, while the improvement on NExTQA is more limited,
 977 likely due to its relatively short average video length of approximately 44 sec.

978
979 Table 12: Results on TempCompass and Video-Holmes benchmarks. Accuracy sign % is omitted for clarity.
980

Model	TempCompass		Video-Holmes
	Caption Matching	Overall	
Qwen2.5-VL-7B (Bai et al., 2025)	74.0	72.2	20.4
+ KFC	74.1	72.2	20.7
+ Nar-KFC	-	-	22.9
InternVL3-8B (Zhu et al., 2025)	80.1	74.8	33.5
+ KFC	80.2	74.9	34.5
+ Nar-KFC	-	-	34.5
Qwen3-VL-8B (Team, 2025)	79.1	74.4	30.9
+ KFC	80.0	74.3	33.7
+ Nar-KFC	-	-	33.8

991 We also evaluate our methods on extremely short video understanding benchmarks (TempCom-
 992 pass (Liu et al., 2024e), 10s), where narratives are not required, as well as on the more complex
 993 video reasoning benchmark, Video-Holmes (Cheng et al., 2025b), as illustrated in Tab. 12. For the
 994 relatively short TempCompass benchmark, selecting query-relevant and diversified keyframes results
 995 in considerable overlap with uniform sampling, leading to limited performance improvement. In
 996 contrast, on the more challenging Video-Holmes benchmark, our approach of carefully selecting
 997 keyframes and incorporating threaded narratives significantly enhances the MLLM’s video reasoning
 998 capabilities.

999
1000 D.4 DETAILED ANALYSIS ON MLVU CATEGORIES

1001 In Fig. 7, we provide a detailed comparison of performance across specific categories in the MLVU
 1002 benchmark as a supplement to the main paper Tab. 1. Compared to uniform sampling, the overall
 1003 performance improvement introduced by KFC across all four models is primarily attributed to its
 1004 superior accuracy in the **needle** and **count** categories. The *needle* task involves questions based
 1005 on rare or unusual frames sourced from external videos, which are more likely to be captured by
 1006 our query-relevance-based sampling strategy. In contrast, such frames are often missed by uniform
 1007 sampling. A similar challenge arises in the *count* task, where correct answers rely on retrieving
 1008 specific frames first in order to support accurate object/crowd/event counting.

1009 On the other hand, our Nar-KFC approach generally achieves the best performance on **plotQA** and
 1010 **topic** tasks. This advantage stems from its ability to preserve temporal continuity, which is often
 1011 lacking in KFC-optimized keyframes that are temporally sparse and discontinuous. Such discontinuity
 1012 hinders the model’s ability to comprehend holistic video contents. For instance, KFC performs the
 1013 worst on the *topic* task when inferenced with LLaVA-OneVision (c) and LLaVA-Video (d), even
 1014 underperforming the uniform sampling baseline. In contrast, Nar-KFC addresses this issue through a
 1015 narrative threading strategy, which maintains continuity by supplementing keyframes with coherent
 1016 non-keyframe descriptions. This strategy significantly enhances the model’s understanding of overall
 1017 video plots and topics.

1018
1019 D.5 COMPUTATIONAL OVERHEAD

1020 We analyze and present the detailed computational complexity (efficiency), including TFLOPs,
 1021 latency, and memory usage, in Tab. 13. Note that searching the entire space of IQP would require
 1022 approximately 10^{13} TFLOPs, making it impractical in real-world scenarios. Therefore, we report the
 1023 computational complexity based on using 30k nodes in the IQP algorithm. Here, “search efficiency”
 1024 refers to the keyframe search stage, while “overall efficiency” primarily pertains to the MLLM
 1025 reasoning stage.

Figure 7: Performance comparison across specific categories of the MLVU benchmark. Results are shown for (a) InternVL2-8B, (b) Qwen2-VL-7B, (c) LLaVA-OneVision-7B, and (d) LLaVA-Video-7B, evaluated using three keyframe selection strategies: Uniform, KFC, and Nar-KFC.

Table 13: Computational efficiency comparison, including TFLOPs, latency, and memory usage for both the searching and overall inference stages. Results are reported using 8 frames and 210 narratives with the InternVL2-8B model.

Method	Search Efficiency			Overall Efficiency		
	TFLOPs ↓	Latency (s) ↓	Memory (GB)	TFLOPs ↓	Latency (s) ↓	Memory (GB)
Uniform-8	N/A	0.20	N/A	146.3	1.03	21.8
Top-k	N/A	0.24	N/A	146.3	1.07	21.8
KFC (IQP-30k)	6.9	7.18	N/A	153.2	8.01	21.8
KFC (GS)	~0	0.48	N/A	146.3	1.31	21.8
Nar-KFC	~0	0.60	N/A	202.6	2.13	32.2

Since we use an offline CLIP model to extract video embeddings (including query embeddings) and a Qwen2-VL-2B captioning model to generate video narratives, we also report their computational complexity in Tab. 14. The results are evaluated on an average 17-minute video (1,020 frames at 1 fps). It is important to note that these extraction processes are performed offline prior to online reasoning, which is the same as all previous keyframe selection strategies. Therefore, although the

1080 preprocessing step is time-consuming, it impacts all keyframe selection methods equally, but does
 1081 not impact the final inference complexity.
 1082

1083 For an on-demand (long) video understanding system and suppose we are given an on-demand video,
 1084 our lightweight captioner only needs to extract less than 210 narratives no matter how long the video
 1085 is (since we have proved in our paper that more narrations won't bring further improvements and
 1086 may exceed the context length of MLLMs). The caption extraction process requires less than 74.2
 1087 sec of latency. In practice, there are often no more than 210 frames between the first and last sampled
 1088 keyframes, which can further reduce preprocessing time. The low computational cost of captioning is
 1089 primarily due to our lightweight captioner, as we demonstrate that Nar-KFC's performance is not
 1090 sensitive to captioner size and only a small number of frames are processed. If a latency of 74.2 sec
 1091 (or less) remains a concern for on-demand video systems, our keyframe selection method, KFC-GS,
 1092 can be used without the captioning stage for faster inference compared with prior frame selection
 1093 methods. Overall, our approach achieves a favorable balance between accuracy and efficiency.
 1094

1095 Table 14: Computational overhead for CLIP embedding extraction and frame captioning. Results are reported
 1096 on an average 17 min video at 1 fps (1020 frames) frame sampling.
 1097

Model	Frames	TFLOPs \downarrow	Latency (s) \downarrow	Memory (GB)
<i>Offline Frame Embedding & Caption Extraction</i>				
CLIP-ViT-L-336px	1020	420.8	25.8	1.6
Qwen2-VL-2B	1020	4462.5	360.5	7.2
<i>On-demand Video System Processing</i>				
Qwen2-VL-2B	≤ 210	≤ 918.8	≤ 74.2	7.2

E ADDITIONAL ABLATION RESULTS

E.1 A SYMMETRICAL FORMULATION OF ORIGINAL OBJECTIVE AND ANALYSIS.

1108 **Objective Revisiting.** In the main paper Sec. 3, we formulate the keyframe selection task as a *graph*
 1109 problem and model it using integer quadratic programming (IQP) (3). However, the constructed
 1110 score matrix (1) is asymmetric, as it only accounts for the query relevance of the i -th frame and
 1111 the diversity between the i -th and j -th frames, while neglecting the query relevance of the j -th
 1112 frame. This asymmetry introduces a minor discrepancy compared to the standard subgraph selection
 1113 procedure. We illustrate this discrepancy with an example.

1114 **Example.** Suppose we aim to retrieve 3 keyframes from 5 frames, and the optimal selection is given
 1115 by $\mathbf{x} = [1, 1, 1, 0, 0]^T$, indicating that first three frames are selected. The score matrix \mathbf{S} is defined as:
 1116

$$1117 \mathbf{S}_{i,j} = \mathcal{S}(i, j) = S_{QR}(i) + S_{FD}(i, j) = \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & 0 & a_{23} & a_{24} & a_{25} \\ 0 & 0 & 0 & a_{34} & a_{35} \\ 0 & 0 & 0 & 0 & a_{45} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \quad (5)$$

1121 where $a_{i,j}$ denotes the score term for $i < j$ (i.e., only the upper triangular part of \mathbf{S} is considered).
 1122 According to (3), the maximum sum score (the total edge weight of the subgraph) should be:
 1123

$$1124 \mathbf{x}^T \mathbf{S} \mathbf{x} = [1, 1, 1, 0, 0] \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & 0 & a_{23} & a_{24} & a_{25} \\ 0 & 0 & 0 & a_{34} & a_{35} \\ 0 & 0 & 0 & 0 & a_{45} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} [1, 1, 1, 0, 0]^T \quad (6)$$

$$1125 = [1, 1, 1, 0, 0] [a_{12} + a_{13}, a_{23}, 0, 0, 0]^T$$

$$1126 = a_{12} + a_{13} + a_{23}$$

$$1127 = S_{QR}(1) + S_{FD}(1, 2) + S_{QR}(1) + S_{FD}(1, 3) + S_{QR}(2) + S_{FD}(2, 3).$$

1128 From this computation, we know that the query relevance of the first frame is counted twice, while
 1129 that of the last selected frame (3^{rd}) is not counted at all, as there are no subsequent frames after it.
 1130 This *discrepancy* shows the deviation from the standard graph-based subgraph selection formulation.
 1131

1134
 1135 **Symmetric Score Matrix.** To mitigate this discrepancy and align the keyframe selection process with
 1136 a standard graph problem, we reconstruct the original score matrix \mathbf{S} to be symmetric by incorporating
 1137 the query relevance of the j -th frame, defined as:

$$1138 \quad \mathbf{S}_{i,j} = S(i,j) = S_{QR}(i) + 2S_{FD}(i,j) + S_{QR}(j). \quad (7)$$

1139
 1140 **Experimental Results and Analysis.** Compared with the symmetric \mathbf{S} in (7), our original asymmetric
 1141 matrix involves fewer terms with reducing size (only the upper triangular part is calculated), which
 1142 leads to faster inference. Tab. 15 presents additional experimental results for replacing the original
 1143 score matrix \mathbf{S} with its symmetric counterpart. Modifying \mathbf{S} to be symmetric – thus aligning the
 1144 formulation with a standard graph problem – results in a 1% performance drop when using the IQP
 1145 solver. This result supports the benefit of assigning higher weights to the initially selected frame
 1146 at the beginning. Since the first keyframe is heuristically selected based on query relevance, this
 1147 modification has negligible impact when using the GS strategy. We thus adopt the asymmetric score
 1148 matrix defined in (1) for the remainder of our process.

1149 Table 15: Impact of replacing score matrix to its symmetric counterpart. Results are reported on the
 1150 Video-MME (sub.) benchmark using InternVL2-8B model. The search node number is 40k for solving IQP.

Setting	Strategy	Video-MME (sub.)			
		Short	Medium	Long	Overall
asymmetric \mathbf{S} (1)	IQP	65.9	52.9	46.4	55.1
		66.1	50.1	46.1	54.1
asymmetric \mathbf{S} (1)	GS	65.4	52.3	47.3	55.0
		65.7	52.6	47.2	55.1

1160 E.2 INTEGER QUADRATIC PROGRAMMING (IQP) vs. GREEDY SEARCH (GS)

1161
 1162 Table 16: Impact of expanding the IQP search space on performance and efficiency. Results are reported on
 1163 the Video-MME (sub.) benchmark using InternVL2-8B model, with average computational time per video (in
 1164 seconds) evaluated on a single NVIDIA A100 GPU.

Setting	Nodes#	Video-MME (sub.)				Time (s)
		Short	Medium	Long	Overall	
Uniform GS	-	63.9	48.7	44.9	52.5	1.03
	-	65.4	52.3	47.3	55.0	1.31
	5k	64.2	52.6	46.7	54.5	3.91
	10k	64.4	52.6	45.8	55.0	4.81
	20k	64.3	52.3	47.9	54.9	6.23
	30k	65.6	52.6	46.2	54.8	8.01
IQP (GS init)	40k	65.9	52.9	46.4	55.1	9.26
	5k	64.3	52.0	48.0	54.7	5.22
	10k	65.1	51.9	47.3	54.5	6.12
	20k	65.1	52.3	47.5	54.9	7.54
	30k	65.3	52.3	45.7	54.4	9.32
	40k	65.8	51.4	46.0	54.4	10.57

1181 We implement the Integer Quadratic Programming (IQP) algorithm using CPLEX and set a maximum
 1182 number of search nodes to obtain the optimal set of keyframe indices within a limited time. The
 1183 corresponding IQP results are reported in Tab. 16. As the search space increases from 5k to 40k
 1184 nodes, performance on short videos gradually improves from 64.2% to 65.9%, which validates the
 1185 effectiveness of modeling keyframe selection as an IQP problem. However, this improvement does
 1186 not hold for long videos, where performance becomes unstable as the search space expands. We
 1187 speculate that this is because even 40k nodes are still insufficient to cover the full solution space for
 1188 long videos. For instance, in a 15-minute video (900 frames at 1 fps), selecting 8 keyframes results

in approximately $C(900, 8) \simeq 2.5 \times 10^{18}$, i.e., roughly 2.5 quintillion possible combinations. This vast search space far exceeds what can be practically explored with a node limit of 40k, let alone for videos that span several hours.

We also attempt to initialize the IQP search with greedy searched results, which are highlighted in gray in Tab. 16, in hopes of better guiding the IQP solving process. Experimental results indicate that this initialization strategy does not lead to further improvements in IQP performance, likely due to the search space remaining too large to be effectively navigated. Therefore, we adopt a customized greedy search (GS) strategy as a practical and robust alternative to the IQP algorithm.

E.3 ABLATIONS ON HYPERPARAMETERS IN KFC (GS)

Table 17: Impact of low-rank truncation r in our Greedy Seach (GS) algorithm.

LowRank truncation r	Video-MME (sub.)			
	Short	Meidum	Long	Overall
$N/16$	64.8	51.3	46.3	54.2
$N/8$	65.3	51.7	46.0	54.3
$N/4$	65.4	52.3	47.3	55.0
$N/2$	65.2	51.7	47.6	54.8
N (w/o SVD)	64.1	51.8	45.7	53.9

The low-rank truncation parameter r in SVD (Sec. 3.1.2) serves to compress and denoise neighboring frames in the score matrix \mathcal{S} . Setting r equal to the number of video frames N is equivalent to not applying the SVD technique. Our experiments in Tab. 17 demonstrate that incorporating this decomposition step facilitates frame selection and reduces the problem size. Setting $r = \frac{N}{4}$ yields the best performance, where N refers to the total number of frames in a video. Choosing a smaller value, such as $\frac{N}{16}$ or $\frac{N}{8}$, leads to excessive information loss and consequently degrades the performance.

Table 18: Impact of downsample resolution in our Greedy Seach (GS) algorithm.

Downsample Resolution	Video-MME (sub.)			
	Short	Meidum	Long	Overall
64	63.8	52.3	44.0	53.4
128	65.4	52.3	47.3	55.0
256	64.8	50.2	47.6	54.2
512	63.0	51.4	47.7	53.8

Following previous works such as Frame-Voyager (Yu et al., 2025) and MDP3 (Sun et al., 2025), we default to downsampling the frame sequence to 128 frames. Our experiments, as shown in Tab. 18, also indicate that this downsampling resolution generally yields the best performance. Similar to SVD, the downsampling operation is designed to balance the trade-off between denoising the score matrix and minimizing the information loss.

Table 19: Impact of refinement window size k in our Greedy Seach (GS) algorithm.

Window Size k	Video-MME (sub.)			
	Short	Meidum	Long	Overall
0 (w/o refine)	65.0	51.2	47.8	54.7
1	65.1	51.4	47.4	54.7
2	65.4	52.3	47.3	55.0
4	64.6	53.1	45.7	54.4
8	64.2	50.3	43.8	52.8

We analyze the impact of the neighbor window size k in the final Greedy Search (GS) refinement step. As shown in Tab. 19, setting $k = 0$ corresponds to using the GS strategy without any refinement.

1242 Table 20: Impact of incorporating full video-level narratives. These narratives include segments that appear
 1243 before the first keyframe and after the last keyframe. * indicates that only narratives *between keyframes* are
 1244 utilized in Nar-KFC.

Setting	Video-MME (no sub. / sub.)			
	Short	Meidum	Long	Overall
Full-Narrative	66.3 / 66.9	56.3 / 58.0	46.7 / 47.3	56.4 / 57.4
Nar-KFC*	67.2 / 67.7	54.7 / 57.9	47.1 / 48.9	56.3 / 58.1

1250 When $k = 2$, which means examining a total of four frames, two before and two after the selected
 1251 keyframe, the model achieves the best overall performance. This highlights the effectiveness of
 1252 the refinement step as a robust strategy to complement prior SVD and downsampling operations.
 1253 However, increasing the window size further (e.g., $k = 4$ or $k = 8$) results in performance degradation.
 1254 This is likely due to the disruption of holistic keyframe combinations constructed by the greedy
 1255 search, as excessive frame examination may introduce noise or redundancy.

1256 **Conclusion.** The core of KFC-GS is a greedy algorithm, which iteratively selects the next frame with
 1257 the highest cumulative score. Although we incorporate some pre-processing (SVD, downsampling)
 1258 and post-processing steps (refinement) to further enhance performance, the vanilla greedy selection
 1259 (GS) is already highly effective with initialization, eg., achieving 53.3 on Video-MME and 61.0
 1260 on MLVU. These results demonstrate that KFC-GS is generally robust and capable of generalizing
 1261 well across different benchmarks. In fact, we do not manually tune the hyperparameters (r, d)
 1262 involved in the pre-processing techniques, as they can be empirically set within an appropriate range.
 1263 Comprehensive ablations on these hyperparameters (Tab. 17, Tab. 18, Tab. 19) further demonstrate
 1264 that our results are not particularly sensitive to these parameters. Re-tuning is generally unnecessary,
 1265 as our approach consistently achieves improvements over multiple benchmarks with 4 different
 1266 MLLMs.

1268 E.4 IMPLEMENTATION DETAILS OF FRAME EXTRACTION BASELINES IN TAB. 5

1269 For CLIP¹ (Radford et al., 2021), SigLIP² (Zhai et al., 2023), and BLIP-2³ (Li et al., 2023a), we
 1270 directly rank and select the top-K candidate keyframes based on their frame-query cosine similarity
 1271 logits. For TempGQA (Xiao et al., 2024), we follow the official code⁴ to first select a segment
 1272 based on the question, and then uniformly sample frames from the selected segment to generate the
 1273 answer. For SeViLA (Yu et al., 2023), we use its trained localizer⁵ to select the K keyframes as input,
 1274 while maintaining the original hyperparameter settings. As for DPP (Determinantal Point Process)
 1275 selection (Sun et al., 2025), since the official code is unavailable, we reimplement the DPP algorithm
 1276 by defining its kernel matrix as $\mathcal{S}(i, q)\mathcal{S}(j, q)[1 - \mathcal{S}(i, j)]$, where the first two terms represent the
 1277 similarity of frames i, j to the query q , and the last term encourages frame diversity between frame
 1278 i and frame j . \mathcal{S} denotes the cosine similarity operation. For AKS (Tang et al., 2025), we select
 1279 keyframes based on the frame scores provided in the official repository⁶.

1281 E.5 INCORPORATING FULL VIDEO-LEVEL NARRATIVES.

1282 Our default Nar-KFC configuration (see main paper Sec. 3.2) only uses narratives that appear between
 1283 the first and the last keyframe, discarding those that occur at the beginning or end of the video. Here,
 1284 we analyze the effect of incorporating full video-level narratives, as shown in Tab. 20, while keeping
 1285 the total number of inserted narratives fixed at 210. The results suggest that including these additional
 1286 narratives has minimal impact on overall video understanding. This finding further supports our
 1287 primary conclusion: keyframes play a dominant role in long-form VideoQA, while narratives mainly
 1288 serve as auxiliary context.

1¹<https://huggingface.co/openai/clip-vit-large-patch14-336>

2²<https://huggingface.co/google/siglip-so400m-patch14-384>

3³<https://huggingface.co/Salesforce/blip2-opt-2.7b>

4⁴<https://github.com/doc-doc/NExT-GQA/tree/main/code/TempGQA>

5⁵<https://github.com/Yui010206/SeViLA?tab=readme-ov-file>

6⁶<https://github.com/ncTimTang/AKS>

1296 F ADDITIONAL QUALITATIVE EXAMPLES
12971298 We present additional qualitative examples of our keyframe selection method (KFC) in Fig. 8, and
1299 of the narrating keyframe method (Nar-KFC) in Fig. 9. Note that the frames leading to incorrect
1300 predictions in Fig. 9 can be regarded as failure cases of KFC.
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 8: More qualitative examples of keyframe selection using our KFC method, compared with uniform sampling and topK sampling baselines. Zoom in for better visual details.

1404
1405
1406
1407
14081454
1455
1456
1457