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ABSTRACT

Employing Multimodal Large Language Models (MLLMs) for long video under-
standing remains a challenging problem due to the dilemma between the substantial
number of video frames (i.e., visual tokens) versus the limited context length of lan-
guage models. Traditional uniform sampling often leads to selection of irrelevant
content, while post-training MLLMs on thousands of frames imposes a substantial
computational burden. In this paper, we propose Narrating KeyFrames Capturing
(Nar-KFC), a plug-and-play module to facilitate effective and efficient long video
understanding. Nar-KFC generally involves two collaborative steps. First, we
formulate the keyframe selection process as an integer quadratic programming
problem, jointly optimizing query-relevance and frame-diversity. To avoid its
computational complexity, a customized greedy search strategy is designed as
an efficient alternative. Second, to mitigate the temporal discontinuity caused
by sparse keyframe sampling, we further introduce interleaved textual narratives
generated from non-keyframes using off-the-shelf captioners. These narratives
are inserted between keyframes based on their true temporal order, forming a
coherent and compact representation. Nar-KFC thus serves as a temporal- and
content-aware compression strategy that complements visual and textual modal-
ities. Experimental results on multiple long-video benchmarks demonstrate that
Nar-KFC significantly improves the performance of popular MLLMs. Code will
be made publicly available.

1 INTRODUCTION

Building upon the success of revolutionary Large Language Model (LLMs) (Touvron et al., 2023;
Team et al., 2024), recent advances in Multimodal Large Language Models (Liu et al., 2023; Li
et al., 2024b; Wang et al., 2024b; Chen et al., 2024c; Tong et al., 2024; Lin et al., 2024b) have
significantly improved open-world visual understanding. Moving beyond static images, a natural
extension of MLLMs is their application to video understanding. Existing studies have validated
their effectiveness in comprehending short videos (∼10 s) (Yang et al., 2022; Kim et al., 2024; Yao
et al., 2024a). However, when scaling MLLMs to long videos (Fu et al., 2025; Wu et al., 2024b;
Chandrasegaran et al., 2024; Zhou et al., 2025) (e.g., hours), several critical challenges emerge.

The primary challenge stems from the inherent context limitation of MLLMs, which cannot accom-
modate the vast volume of visual tokens generated from the whole video. A prominent solution is
to extend the context window of language models and fine-tune them on carefully collected long
videos. Current video-oriented LLMs, known as VideoLLMs (Lin et al., 2024a; Jin et al., 2024;
Song et al., 2024; Xu et al., 2024a; Chen et al., 2024b; Zohar et al., 2024; Shu et al., 2025; Cheng
et al., 2025; Wang et al., 2025a), typically undergo post-training on existing LLMs/MLLMs through:
1) employing a relatively large stride uniform sampling scheme, and 2) incorporating token-level
merging or compression techniques to enable broader temporal coverage. However, uniform sampling
often fails to preserve key moments relevant to specific instructions, while feeding an excessive
number of frames as input introduces redundancy, leading to substantial computational overhead. An
alternative solution follows a training-free paradigm (Zhang et al., 2024a; Kahatapitiya et al., 2024;
Wang et al., 2024d; 2025b; Park et al., 2024; Ma et al., 2025), where raw videos are first converted
into sequential captions, which are subsequently processed using the long-range reasoning abilities of
LLMs (Achiam et al., 2023). Compared to direct video frame encoding, textual captions inherently
require far fewer tokens, allowing efficient inference in a single forward pass. Nonetheless, the
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translation from video frame to caption inevitably results in critical information loss (e.g., important
visual features), potentially leading to hallucinated answers caused by the LLM bias.

Regarding the aforementioned paradigms, e.g., training a VideoLLM or reasoning with LLMs
on textual captions, are current MLLMs fully equipped to comprehend long videos despite their
limited context length? Instead of relying on uniform sampling, recent studies have focused on
learning to select query-relevant keyframes (Yu et al., 2023; Hu et al., 2025; Yao et al., 2025) to
facilitate inference with MLLMs. Due to the temporal redundancy among adjacent frames, trival
similarity-based keyframe selection tends to retrieve frames located within narrow time windows,
thereby compromising accuracy. To this end, adaptive keyframe sampling (Tang et al., 2025), inverse
transform sampling (Liu et al., 2025), DPP sampling (Sun et al., 2025) have been proposed to promote
content diversity to mitigate the concentration of keyframes. Despite a decent boost over existing
MLLMs, these methods largely depend on handcrafted or heuristic strategies with limited theoretical
formulations, and empirically, the retrieved frames can be temporally distant, especially in long
videos. Consequently, the keyframe selection process can introduce temporal discontinuities into the
input provided to the MLLM, ultimately hindering its holistic understanding of video content.

In this paper, we propose Nar-KFC (Narrating KeyFrames Capturing), a training-free framework
for long video understanding with MLLMs. Unlike previous approaches, Nar-KFC jointly considers
query-relevance, frame-diversity and temporal-continuity through two collaborative stages. The
first stage KFC selects keyframes by considering both query relevance and frame diversity, so as to
resolve the issues of critical information loss from uniform sampling and the too-narrow focus using
just query-relevance. We consider keyframe selection as a graph problem, where each node is a frame
and the edge weight (score) between nodes combines query-relevant similarities and frame-to-frame
dissimilarities (frame-diversity). The optimal keyframes are obtained by finding the subgraph with
largest total edge weight, which can be formulated as an integer quadratic programming (IQP)
problem. However, since IQP is NP-hard with exponential complexity, finding exact solutions is
infeasible in practice. To overcome this, we introduce a robust and efficient greedy search (GS)
strategy, which, with proper preprocessing of the score matrix, achieves near-optimal performance
with significantly reduced computational complexity.

The second stage Nar-KFC addresses the problem of temporal discontinuities caused when selecting
keyframes at uneven timestamps. Specifically, Nar-KFC works by threading keyframes (visual tokens)
with non-keyframe narratives (text tokens), generated by captioning the intermediate, unselected
frames in between, aiming to reconstruct the video as a continuous and coherent sequence in both
textual and visual modalities. A narrative interval is further applied to control the total number of
captions and to reduce the similarity between neighboring descriptions. Leveraging only a lightweight
2B captioning model, e.g., Qwen2-VL-2B (Wang et al., 2024b), Nar-KFC demonstrates significant
improvements over existing MLLMs. In summary, the contributions of this paper are three-fold:

• Jointly considering query-relevance and frame-diversity, we formulate the keyframe captur-
ing process (KFC) in long videos as a subgraph selection problem, implemented as an integer
quadratic programming problem. We introduce a customized greedy search algorithm to
solve this problem with significantly reduced and practical time complexity.

• We propose Nar-KFC, which threads the optimized keyframes with non-keyframe narratives.
By interleaving the two modalities in a temporally continuous manner, Nar-KFC constructs
coherent and compact video representations, enabling a broader video coverage under the
constraint of frame length limitations in current MLLMs.

• Our KFC and Nar-KFC are generally compatible with many MLLMs, achieving consistent
improvements across four mainstream MLLMs on multiple long-video benchmarks.

2 RELATED WORK

Transformer-based LLMs have revolutionized the field of natural language processing (Brown et al.,
2020; OpenAI, 2023; Grattafiori et al., 2024; Achiam et al., 2023). By incorporating multimodal
inputs such as images and videos (Li et al., 2024b; Zhu et al., 2023) with a vision encoder, e.g.,
ViT (Dosovitskiy et al., 2020), researchers further extend powerful LLMs to multimodal large
language models (MLLMs) for open-world visual understanding (Alayrac et al., 2022; Li et al., 2023a;
Liu et al., 2023). Despite similar advancements of MLLMs on various video understanding tasks
including video captioning (Chen et al., 2024a; Yang et al., 2023; Wu et al., 2024a), video question
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answering (Maaz et al., 2023; Li et al., 2023b; Min et al., 2024), and temporal reasoning (Qian et al.,
2024), significant challenges emerge when scaling to long videos due to the substantial amount of
video frames not fitting in the limited context length of LLMs (Wu et al., 2024b).

Recent studies have explored methods to extend the context length of LLMs (Wan et al., 2024; Xiong
et al., 2024), or introduced various token-level merging and compression techniques (Song et al., 2024;
Shen et al., 2024; Li et al., 2024d; Wang et al., 2024c; Shu et al., 2025) to accommodate more frames
as input. However, these approaches typically require additional fine-tuning of existing language
models, which increases computational complexity and introduces the risk of hallucinations (Liu
et al., 2024c). Given that textual tokens are significantly fewer than visual frames, another line
of research first converts all video frames into textual descriptions, which are then used for long
video inference, either by summarizing them (Zhang et al., 2024a; Park et al., 2024) or identifying
central frames based on textual similarity via agents (Wang et al., 2024d; 2025b; Ma et al., 2025;
Ye et al., 2025). Nonetheless, the converting process inevitably leads to critical information loss,
thereby compromising performance. Other studies, while maintaining the number of input frames,
adopt alternative sampling strategies instead of default uniform sampling to obtain higher-quality
frames for input. In general, query relevance is the primary criterion for selecting frames that are
semantically closest to the query (Yu et al., 2023; Lin et al., 2024b; Wang et al., 2024d;a). Methods
such as AKS (Tang et al., 2025), BOLT (Liu et al., 2025), Frame-Voyager (Yu et al., 2025) further
propose adaptive sampling, inverse transform sampling, and optimal frame combination sampling to
identify keyframes that are both query-relevant and temporally distinctive. Nevertheless, the methods
often rely on manually designed heuristics without principled theoretical guidance, and the selected
keyframes are often undistributed and distant over long intervals, especially in hours-long videos (e.g.,
3600 frames per hour at 1 fps). This temporal sparsity weakens the relationships between frames and
can cause confusion in MLLM inference.

In contrast to previous works, we formulate long video keyframe selection as a graph-based op-
timization problem with a clearly defined objective, and further leverage the efficiency of textual
descriptions. Our approach jointly considers query relevance, content diversity, and temporal continu-
ity, aiming to construct optimal combinations of keyframes with interleaved narratives, under the
constraints of MLLM context length.

3 METHOD

3.1 KFC: KEYFRAME CAPTURING
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Figure 1: Illustration of keyframe capturing
(KFC). SQR and SFD scores are computed
via inner dot production.

Uniform sampling is commonly used in short video under-
standing for consistent temporal structure. However, for
long videos, it often misses important information with
limited input. While recent works emphasize selecting
query-relevant frames for long video QA, they tend to
overlook the problem of narrow focus due to the high sim-
ilarity between adjacent frames. To address this, we first
propose a keyframe capturing method that simultaneously
considers query-relevance and frame-diversity, modeling
the selection process as subgraph selection problem.

Preliminaries. General video understanding tasks, e.g.,
video summarization and grounding (Liu et al., 2024b;
Xiao et al., 2024) and long-video QA, can be similarly
formulated as (V, q) → Answer, where V = {fi}Ni=1
represents a video with N frames, fi is the i-th frame,
and q is the query. Considering an MLLM model as a
neural functionM(·) with its limited contextual perceiv-
ing length, the normal video QA process reasoned by an
MLLM model can be formulated as M({fi}Ki=1, q) →
Answer, 1 ≤ K ≪ N , meaning that only K frames are captured for representing video V . We next
consider two criteria for selecting the K frames, query-relevance and frame-diversity.

Query-relevance. Since different questions can be asked on the single video, it is crucial to identify
frames that correspond to a specific query first. Here, a standard two-stream vision-language model
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Q: Why does the mother 
brown bear in make her 
cubs run to higher ground?

A: Because she spotted two 
adult male brown bears.

KFC

MLLM

… …… …

Nar-KFCCaptioner

1s: A bear is standing in a river…
2s: A brown bear stands on a rocky…
…
10s: A fish is jumping out of the water…
11s: A powerful waterfall crashing…
…
35s: A seaplane with pontoons lands… 

off-the-shelf
main stream

327s: Capturing a bear in 
the distance by a river.

341s: Two brown bears 
walking on a grassy terrain.

315s : A photographer 
holding a camera…

…
343s: Two brown bear 
looks around.

313s 339s

…

355s

Input Video

…

Figure 2: Illustration of Nar-KFC. We represent long videos by threading KFC-optimized keyframes with
temporally interleaved narratives, where the narratives are generated frame-wise by an off-the-shelf captioner.
Nar-KFC constructs a continuous representation to facilitate MLLM inference.

(VLM), e.g., CLIP (Radford et al., 2021), is used to extract embeddings {fi}Ni=1 and q for the frames
and the query, respectively. After standard normalization of all embeddings, the query-relevance
score SQR is computed as the cosine similarity between the two, SQR(i) = sim(fi,q).

Frame-diversity. To avoid retrieving query-relevant only frames that are narrowly located in a small
time range, we explicitly encourage diversified content when choosing the K frames. In particular,
we use the inverse of cosine similarity between every pair of frame embeddings (normalized) to
represent the diversity score. The function exp(·) is applied to constrain the score between 0 and 1,
formulated as SFD(i, j) = exp(−sim(fi, fj)).

Objective. The final score combines SQR and SFD to jointly identify keyframes that are both
query-relevant and diversified for KFC,

S(i, j) = SQR(i) + SFD(i, j) = sim(fi,q) + exp(−sim(fi, fj)). (1)

Next, as illustrated in Fig.1, we construct a graph where each node is a frame, and the edge weight
between node pair (i, j) is S(i, j). The selection of K keyframes can then be cast as a subgraph
selection problem with the original objective as follows: given N nodes (frames), construct a sub-
graph by selecting K nodes (keyframes) so as to maximize the total edge weight of the subgraph.
Mathematically, this objective can be expressed as the optimization problem:

max
Y⊂{1,··· ,N},|Y |=K

∑
(i,j)∈I

S(i, j), (2)

where Y = {y1, · · · , yK} is the index set of the K keyframes and I denotes all pairs (i, j).

3.1.1 THEORETICAL OPTIMUM: INTEGER QUADRATIC PROGRAMMING

Our objective closely resembles the classic Knapsack problem (Salkin & De Kluyver, 1975), which
can be commonly solved by dynamic programming or integer linear programming. The problem in
(2) can be rewritten equivalently as an integer quadratic programming (IQP) problem,

max
x

xTSx s.t. 1Tx = K, xi ∈ {0, 1}, (3)

where xi = 1 indicates that the i-th frame is selected, x = [x1, x2, · · · , xN ]T , and S ∈ RN×N

is the score matrix with Si,j = S(i, j) for i < j, and Si,j = 0 otherwise. Here, only the upper
triangle of S is considered. A discussion of symmetrical S is detailed in Appendix §E.1. The search
space is C(N,K), and the time complexity of solving IQP is exponential regardless of whether the
objective is convex or non-convex, making it impractical to get exact solutions in real cases. Modern
optimization tools, e.g., CPLEX (Bliek1ú et al., 2014), typically address this by relaxing the binary
constraint and allowing xi ∈ [0, 1], converting the problem into a continuous optimization task.
Solutions can then be obtained using methods like interior-point or Lagrange multiplier methods,
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with a complexity of O(N3). Subsequently, the Branch & Bound algorithm (Morrison et al., 2016) is
applied to prune the search space and retrieve optimal integer solutions of xi, but the worst-case time
complexity remains exponential.

3.1.2 PRACTICALLY FEASIBLE APPROACH: GREEDY SEARCH

Solving the IQP optimally is computationally intractable for large N , e.g., long videos with thousands
of frames. To search keyframes within practical latency constraints, we propose an efficient greedy
search (GS) strategy that yields robust and near-optimal effects to the IQP solution. We first pre-
process the score matrix to reduce noise across adjacent columns/rows, and shrinks the problem size
for greater computational efficiency. Specifically, we apply singular value decomposition (SVD)
to the score matrix S, retaining the top r singular values to construct a low-rank approximation
Sr ∈ RN×N . This matrix is then uniformly downsampled to Srd ∈ RN

d ×N
d with a downsampling

ratio d. The GS algorithm begins by selecting the most query-relevant frame as the starting point.
It then iteratively adds the frame with the highest cumulative score relative to the already selected
frames. In the final refinement step, the algorithm examines the k-nearest neighbors of each selected
frame yi, replacing yi with a neighboring frame if it yields a higher cumulative score based on Sr. A
summary of the algorithm is provided in Alg. 1, and its overall time complexity is O(NK).

Algorithm 1: Practically Feasible Approach with Greedy Search
Input: Query-relevant score SQR, score matrix S, number of retained singular values r,

downsample ratio d, number of frames N , neighbor window k.
Output: Indices of selected K frames set Y = {y1, y2, · · · , yK}

1 Sr ← LowRank(S); Srd ← Downsample(Sr, d); // Decompose and downsample S
2 y1 = argmaxi SQR(i); Y ← {y1} // Initialize with most query-relevant frame
3 for i← 2 to K do
4 for j ← 1 to N do
5 yi = argmaxj

∑
y∈Y Srd(y, yj) // Select frame with highest sum

6 Y ← Y ∪ yi

7 for i← 1 to K do
8 yi = Refine(yi, k|Sr); // Refine selection within k-nearest neighbors

9 return Y = sorted{y1, y2, · · · , yK};

3.2 NAR-KFC: THREADING KEYFRAME WITH NARRATIVES

Keyframes captured by KFC significantly enhance the performance of MLLMs compared to the
default uniform inference mechanism. However, it overlooks the temporal-continuity in frame
sequences. Due to the severely uneven distribution of selected frames, temporal relationships become
weak, often leading to confusion during inference.

To this end, we propose Nar-KFC, which threads keyframes with text narratives to construct a
continuous and coherent input in an interleaved form. Specifically, we first use a lightweight off-the-
shelf captioner, e.g., Qwen2-VL-2B, to generate captions {ci}Ni=1 for non-keyframes using a simple
prompt as “<USER> Describe this video frame in no more than 15 words.”
Given the unevenly distributed keyframes {fyi

}Ki=1 from KFC, we insert captions from non-keyframes
between the keyframes, arranging them according to their true temporal order. Each yi denotes the
timestamp, and a uniform interval△ is set between captions to control the total number of inserted
narratives. The overall long video inference to a MLLM modelM is formulated as:

M
(
{fy1

, cy1+△, · · · , cy2−△, fy2
, cy2+△, · · · , cyK−△, fyK

}, q
)
→ Answer. (4)

Viability of Nar-KFC. MLLMs are typically trained via instruction tuning on both visual and textual
modalities, making them well-suited to process our interleaved inputs of keyframes and narratives.
Rationality of Nar-KFC. The approach provides a temporally continous input that helps MLLMs
“narrate” the story between keyframes. From another perspective, Nar-KFC can be seen as a form
of compression, retaining only the most informative keyframes, while representing less critical
segments with brief textual descriptions. This complementary two-stream mechanism is analogous
to method like Two-Stream (Simonyan & Zisserman, 2014), which combines RGB frames with
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optical flow. Also, it shares conceptual similarities with SlowFast (Feichtenhofer et al., 2019) and
SlowFast-LLaVA (Xu et al., 2024b), where the caption stream serves as a fast branch traversing a
broader temporal range (as in the low frame rate of the slow branch in SlowFast). These mechanisms
together help explain the effectiveness of Nar-KFC in (long) video understanding.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Evaluation Benchmarks. We evaluate on three popular long-video benchmarks: 1) Video-MME (Fu
et al., 2025), consisting of 2,700 human-annotated QA pairs, with an average video duration of 17
min; 2) LongVideoBench (Wu et al., 2024b) validation set (denoted as LVB), which contains 1,337 QA
pairs with average duration of 12 min; 3) MLVU (Zhou et al., 2025), where we use the multiple-choice
task (M-avg), comprising 2,593 questions across 9 categories, with an average duration of 12 min.
We provide more results of on relatively short EgoSchema (3 min) (Mangalam et al., 2023) and
NExTQA (44 sec) (Xiao et al., 2021) benchmarks in Appendix §D.3.
Evaluation Models. We consider four advanced MLLMs, including InternVL2 (Chen et al., 2024c),
Qwen2-VL (Wang et al., 2024b), LLaVA-OneVision (Li et al., 2024b), and LLaVA-Video (Zhang
et al., 2024d), to verify the effectiveness of our method. We re-implement baseline results (uniform
sampling) of these MLLMs using VLMEvalKit (Duan et al., 2024), which may yield slight differences
compared to other public toolkits, e.g., LMMs-Eval (Li et al., 2024a).
Implementation Details. We use CLIP-ViT-L-336px (Radford et al., 2021) to extract query and
video frame embeddings. Candidate frames are sampled from raw videos at 1 fps. For solving the
IQP, we limit the maximum search nodes to 40k in CPLEX (Bliek1ú et al., 2014). In our customized
greedy search algorithm, we empirically retain the top N

4 singular values to form the low-rank
approximation of the score matrix S and further downsample it to a fixed resolution of 128×128
following previous work (Yu et al., 2025; Sun et al., 2025). The refinement window size k is set to
2 (see ablations of hyperparameters in Appendix §E.3). Unless otherwise stated, all ablations are
conducted using the InternVL2 model on Video-MME. Experiments are run on 8 A100 GPUs.

4.2 BENCHMARK RESULTS

Comparisons with State-of-the-Arts. We conduct comprehensive comparisons between our ap-
proach and several recent MLLMs and VideoLLMs in Tab. 1. Earlier works, e.g., Video-LLaVA (Lin
et al., 2024a), Chat-UniVi-V1.5 (Jin et al., 2024), VideoLLaMA2 (Cheng et al., 2024), etc, are fully
included in Appendix §D.1. Our methods, KFC and Nar-KFC, deliver consistent and significant
gain over four baselines across three long-video benchmarks. On Video-MME (no sub.), Nar-KFC
outperforms four MLLM baselines by 4.4%, 1.7%, 4.5%, and 5.7%, respectively. Using the strongest
baseline, i.e., LLaVA-Video, Nar-KFC achieves state-of-the-art performance (61.6%), surpassing
previous VideoLLMs - even those using larger LLMs (e.g., VILA-34B, 58.3%) or more frames (e.g.,
Video-XL256frm, 55.5%). Incorporating larger numbers of frames may introduce noise and irrelevant
information, which can be well addressed by our keyframe capturing and narrating strategies. On
LVB, our method also achieves notable performance improvements, e.g., 52.3% vs. 53.9% with
InternVL2 and 53.4% vs. 54.6% with Qwen2-VL, although the overall gain is partly offset by videos
shorter than 1 min. Nevertheless, the improvement on typical long videos (∼1 hour, as shown in
parentheses) reaches 3.5% and 2.9%, respectively, demonstrating clear advantages in long video
understanding. On MLVU, our KFC-only strategy (without narrations) yields an average improvement
of over 6% across four MLLMs. The use of query-relevant and diverse keyframes significantly boosts
performance on Needle-in-a-haystack (Zhang et al., 2024b) and counting questions. Furthermore,
appending narratives provides additional and robust gains by preserving temporal continuity. Detailed
analysis are further presented in Appendix §D.4.

Comparisons with varying number of keyframes. In Fig. 3, we compare KFC and Nar-KFC
against uniform sampling with varying frames across three benchmarks and three models. Due to
Qwen2-VL’s dynamic resolution mechanism (Dehghani et al., 2023), increasing keyframes often
leads to memory overflow, so its results are omitted. Notably, Nar-KFC shows substantial gains
when the number of keyframes is limited (e.g., 4 or 8), due to its ability to provide broad video
coverage via interleaved textual narratives. As the number of keyframes increases, the performance
gap between uniform sampling and our methods narrows. This can be attributed to: 1) uniform
sampling is more likely to capture key moments when more frames are used; and 2) many video QA
questions typically only require a few number of frames to accurately answer in current benchmarks.
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Table 1: Comparisons with previous VideoLLMs on three common long-video benchmarks: Video-MME, LVB,
and MLVU. All methods are evaluated using 8 frames. For Video-MME, we report performance with two
standard settings: without subtitles (no sub.) and with subtitles (sub.). LVB denotes the LongVideoBench set,
with results for (15m, 60m] long videos shown in parentheses. Methods that use significantly more frames and
larger-sized LLM are marked in gray. The reported results are accuracy percentage.

Model Size Video-MME(no sub. / sub.) LVB MLVU
Short Medium Long Overall∼17m ∼12m ∼12m

VILA (Lin et al., 2024b) 8B 57.8 / 61.6 44.3 / 46.2 40.3 / 42.1 47.5 / 50.0 - 46.3
LLaVA-NeXT-QW2 (Liu et al., 2024a) 7B 58.0 / - 47.0 / - 43.4 / - 49.5 / - - -
MiniCPM-V2.6 (Yao et al., 2024b) 7B 61.1 / 63.8 50.3 / 50.2 46.4 / 45.4 52.6 / 53.1 51.2 55.4
LongVU (Shen et al., 2024) 7B 64.7 / - 58.2 / - 59.5 / - 60.6 / - - 65.4
BOLT (Liu et al., 2025) 7B 66.8 / - 54.2 / - 47.3 / - 56.1 / - 55.6 63.4
Frame-Voyager (Yu et al., 2025) 8B 67.3 / - 56.3 / - 48.9 / - 57.5 / - - 65.6
LongVILA256frm (Chen et al., 2024b) 8B 61.8 / - 49.7 / - 39.7 / - 50.5 / - - -
Video-XL256frm (Shu et al., 2025) 7B 64.0 / 67.4 53.2 / 60.7 49.2 / 54.9 55.5 / 61.0 50.7 64.9
LLaVA-NeXT-Video (Zhang et al., 2024c) 34B 61.7 / 65.1 50.1 / 52.2 44.3 / 47.2 52.0 / 54.9 50.5 58.8
VILA (Lin et al., 2024b) 34B 70.3 / 73.1 58.3 / 62.7 51.2 / 55.7 58.3 / 61.6 - 57.8
InternVL2 (Chen et al., 2024c) 8B 62.1 / 63.9 48.2 / 48.7 45.2 / 44.9 51.9 / 52.5 52.3 (45.2) 54.3

+ KFC 8B 64.5 / 65.4 50.0 / 52.3 46.5 / 47.3 53.5 / 55.0 53.3 (47.2) 62.2
+ Nar-KFC 8B 67.2 / 67.7 54.7 / 57.9 47.1 / 48.9 56.3 / 58.1 53.9 (48.8) 64.4

Qwen2-VL (Wang et al., 2024b) 7B 65.7 / 66.9 52.8 / 53.0 46.7 / 48.6 55.0 / 56.1 53.4 (45.0) 59.6
+ KFC 7B 68.2 / 69.7 53.3 / 54.9 48.4 / 50.2 56.7 / 58.3 54.6 (47.9) 65.9
+ Nar-KFC 7B 68.8 / 69.3 53.4 / 55.3 48.0 / 49.0 56.7 / 57.9 53.6 (46.3) 68.5

LLaVA-OneVision (Li et al., 2024b) 7B 65.2 / 67.1 51.7 / 54.4 45.1 / 46.1 53.3 / 55.9 54.5 (45.7) 58.5
+ KFC 7B 66.4 / 69.1 52.9 / 56.8 46.8 / 48.8 55.4 / 58.2 55.6 (47.3) 65.0
+ Nar-KFC 7B 67.2 / 68.6 57.1 / 59.8 49.1 / 51.0 57.8 / 59.8 56.5 (48.2) 66.2

LLaVA-Video (Zhang et al., 2024d) 7B 67.2 / 69.4 53.2 / 53.4 47.2 / 47.3 55.9 / 56.7 54.2 (46.5) 60.5
+ KFC 7B 68.3 / 70.0 55.1 / 57.4 49.4 / 51.6 57.6 / 59.7 56.5 (49.3) 66.9
+ Nar-KFC 7B 71.2 / 72.7 61.4 / 62.3 52.0 / 53.9 61.6 / 63.0 57.7 (50.2) 67.7
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Figure 3: Accuracies (%) of uniform sampling, KFC, and Nar-KFC versus numbers of keyframes.

Interestingly, on MLVU, KFC alone outperforms Nar-KFC with 32 keyframes, suggesting that when
sufficient keyframes are present, the added benefit of narratives diminishes. These results underscore
the strength of KFC in selecting informative keyframes while demonstrating that narratives are
particularly valuable when MLLMs have limited context capacity. We further scale Nar-KFC to 72B
models and compare them with proprietary models and SOTA VideoLLMs in Appendix §D.2.

4.3 ABLATION AND ANALYSIS

KFC and Nar-KFC ablations. We report the ablation results of KFC and Nar-KFC components
on the Video-MME (sub.) and MLVU benchmarks in Tab. 2. Simply inserting narratives between
uniformly sampled frames yields improvements of 2.9% on Video-MME and 5.1% on MLVU,
indicating that adding narrative context, despite with frames not being query-specific, can effectively
boost overall video understanding. To retrieve query-relevant and diverse keyframes, our Greedy
Search (GS) strategy achieves results comparable to the optimal Integer Quadratic Programming (IQP)
method (55.0% vs. 55.1% on Video-MME and 62.2% vs. 62.0% on MLVU), while being significantly
more efficient with O(NK) complexity. Details of our IQP implementation and comparisons with
GS are provided in Appendix §E.2. Further ablations show that removing the query-relevance score
SQR leads to a 3.2% drop on Video-MME and 4.9% on MLVU with greedy search. This emphasizes
that retrieving query-relevant frames is critical in long videoQA. Meanwhile, incorporating frame
diversity SFD further stabilizes and enhances performance across benchmarks. When threading
all keyframes with interleaved narratives, Nar-KFC achieves the best overall results on all metrics,
underscoring its solid effectiveness in representing long video contents.

Component analysis of greedy search (GS). Starting from the vanilla GS, which iteratively selects
the frame with the highest cumulative score relative to the already selected frames, we progressively
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Table 2: Main component ablation results in Nar-KFC. “S,
M, L” refer to short, medium, and long video categories in
the Video-MME (sub.) benchmark.

Strategy Video-MME MLVU Time
S M L Overall

Uniform 63.9 48.7 44.9 52.5 54.3 O(1)
+ Narratives 66.1 54.9 45.2 55.4 59.4 O(N)

KFC (IQP) 65.9 52.9 46.4 55.1 62.0 O(2N )
KFC (GS) 65.4 52.3 47.3 55.0 62.2 O(NK)
w/o SQR 62.3 47.8 45.3 51.8 57.3 O(NK)
w/o SFD 63.6 49.4 44.6 52.5 60.9 O(NK)

Nar-KFC 67.7 57.9 48.9 58.1 64.4 O(NK)

Table 3: Effects of including pre-processing and
refinement stages in the KFC Greedy Search
(GS) method. V-MME denotes the overall Video-
MME (sub). Line (ii′) indicates Downsampling
without LowRank. The final KFC (GS) strategy
integrates all components from (i) to (iv).

Ex# Strategy V-MME MLVU

Vanilla GS 52.3 60.4
(i) + Initialization 53.3 61.0
(ii) + LowRank 53.7 61.8
(ii′) + Downsample 53.9 61.6
(iii) + LowRank + Downsample 54.7 62.2
(iv) + Refinement (KFC) 55.0 62.2
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Figure 4: Effect of the total number of inserted narra-
tives, corresponding to the narrative interval △, across
videos of different lengths.
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Figure 5: Impact of different captioners for gener-
ating narratives. Video-MME (sub.) results are for
InternVL2-8B (left) and Qwen2-VL-7B (right).

incorporate several techniques (Tab. 3) to enhance its effectiveness to a near-optimal solution: (i)
initialization with the frame most relevant to the query brings a modest yet consistent gain (from
52.3%→53.3% on Video-MME, and 60.4%→61.0% on MLVU); (ii and iii) applying low-rank
denoising and downsampling further improves performance by producing a more compact and less
noisy score matrix S; and (iv) adding the final refinement step, KFC (GS) achieves the best results of
55.0% on Video-MME and 62.2% on MLVU. This highlights the cumulative benefit of combining
compact frame representations, reduced redundancy, and an iterative selection mechanism.

Table 4: Comparisons with dif-
ferent frame selection meth-
ods on Video-MME.

V-MME(no sub./sub.)

InternVL2 51.9 / 52.5
+ CLIP (top-K) 47.7 / 50.0
+ SigLIP (top-K) 47.3 / 51.0
+ BLIP-2 (top-K) 47.8 / 50.9
+ TempGQA 50.4 / 51.1
+ SeViLA 52.2 / 53.7
+ DPP 52.2 / 53.5
+ AKS 52.8 / 53.9
+ BOLT 53.3 / -
+ KFC (Ours) 53.5 / 55.0

Comparisons with other keyframe selection methods. We compare
KFC with several keyframe extraction baselines in Tab. 4, all utilizing
the InternVL2 backbone and 8 frames. Details are in Appendix §E.4.
Methods that apply top-K frame-query matching using SigLIP (Zhai
et al., 2023), or BLIP-2 (Li et al., 2023a) embeddings perform worse
than uniform sampling, possibly due to keyframes being concentrated
within a narrow temporal window. For those localize-then-answer meth-
ods, i.e., TempGQA (Xiao et al., 2024) and SeViLA (Yu et al., 2023),
performance heavily depends on the quality of segment localization,
which can be unreliable. Recent approaches including DPP (Sun et al.,
2025), AKS (Tang et al., 2025), and BOLT (Liu et al., 2025) generally
yield better results by incorporating frame diversity. However, these
methods rely on handcrafted and heuristic sampling strategies, lacking
a principled and generalized frame selection guidance. In comparison, our proposed KFC consistently
outperforms all baselines, demonstrating clear superiority in subset frame selection.

Effect of narrative quantity. Due to the varying length of videos, we do not directly ablate the
effect on a fixed interval value△. Instead, we control the total number of narratives appended, as
shown Fig. 4 on Video-MME (sub.). Narratives are incrementally added across 7 intervals between
8 keyframes. The overall accuracy improves steadily from 55.1% to 58.1% as more narratives are
available, with more performance gains on medium and long videos. However, since adjacent frames
often contain similar visual information, adding more narratives results in diminishing returns due to
redundant descriptions. We thus use 210 narratives as the default.

Effect of narrative quality. Fig. 5 presents the impact of different captioners on the quality of
generated narratives and the resulting performance of Nar-KFC on the Video-MME (sub.). We
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Table 5: Analysis of video input components on Video-MME
(no sub). Superscript numbers indicate the quantity. Average
time and tokens per video are reported.

Components V-MME Latency (s) TFLOPs ↓ Token#

Narratives210 51.1 0.98 109.6 4,725
Frames8 (uniform) 51.9 1.03 146.3 6,280
Frames8 (KFC) 53.5 1.31 146.3 6,280

Interleave8+210 (Nar-KFC) 56.3 2.13 202.6 11,005

Table 6: Temporal structure analysis between
narratives and keyframes on Video-MME (no
sub) benchmark.

Temporal Structure V-MME

{Narrative}→{Keyframe}→{Query} 55.5
{Keyframe}→{Narrative}→{Query} 55.3

Interleave (Nar-KFC)→{Query} 56.3
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Which team in the video reached the finish line first?

K
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“C. Bread.”

“A. Milk.”
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K
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a. A male athlete from Brazil is celebrating on a track.
b. A group of athletes on a track, one holding a baton.

e. Two male athletes in a relay race,  one from Canada and one from the 
USA,  are  running towards the finish line.

d. Four male athletes in a relay race, one passing the baton to the next.

g. A group of people, including a man taking a selfie with a Canadian flag, are 
gathered in a stadium.

N
ar-K

FC
“B. Canadian team.”>>>>>>>>>>> >>

1 2 3 4
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c. A runner in a track and field event, passing the baton to another runner.
2

f.  A male athlete in a Canada jersey holds a baton, celebrating with his 
arms raised.

3

4
1 2 3 4

Figure 6: Qualitative results. (left) Comparison of frames selected by uniform sampling, top-K sampling, and
our KFC. (right) Key narratives generated by Nar-KFC that lead to the correct answer. Zoom in for details.

evaluate five MLLMs of varying sizes and sources as captioners. Narratives extracted from the largest
captioner, Qwen2-VL-72B, achieves the best accuracy, i.e., 58.9% on InternVL2-8B and 58.3%
on Qwen2-VL-7B, highlighting the benefit of higher-quality narratives. Nevertheless, the overall
performance gap across all captioners is small (less than 1%). This suggests that keyframes play a
dominant role in long video understanding, while captions serve as auxiliary and supportive context.
We thus use the lightweight Qwen2-VL-2B as the default captioner for other benchmarks.

Efficiency and effectiveness between narratives and keyframes. We decompose Nar-KFC into
standalone narratives and frames in Tab. 5. Although translated from 210 frames, pure narratives
perform worse than even 8 uniformly sampled frames (51.1% vs. 51.9%), which reflects that sub-
stantial information is lost during the frame-to-caption conversion. Nevertheless, narratives exhibit
advantages with the shortest latency (0.98s) and the fewest tokens (4,725 per video). Combining
narratives with KFC-selected keyframes (Nar-KFC) achieves both the best accuracy and also main-
tains reasonable efficiency. We discuss detailed computational overhead in Appendix §D.5. In
addition, Tab. 6 investigates the temporal structure between narratives and keyframes. Placing all
keyframes either before or after the narratives degrades the performance by 0.8% and 1.0%, likely
due to disrupted temporal sequences. In contrast, interleaving narratives and frames, as in Nar-KFC,
yields superior results. These findings further validate our primary goal: constructing temporally
continuous representations for long video understanding.

4.4 QUALITATIVE RESULTS

Fig. 6 presents two qualitative examples of our method. In the first example (left), our KFC effectively
identifies frames that are both query-relevant and content-diverse, resulting in the correct answer.
In the second example (right), we demonstrate that Nar-KFC substantially improves reasoning in a
complete relay race scenario by threading temporally interleaved keyframes with coherent narratives.
This enables accurate inference of the final winner, whereas KFC fails due to limited number of
frames. More examples can be found in Appendix §F.

5 CONCLUSION

In this paper, we propose a keyframe capturing strategy (KFC) and a narrating keyframe method
(Nar-KFC) to boost existing MLLMs for long video understanding, under the constraint of limited
context length in language models. Our approach constructs long video representations that are query-
relevant, content-diverse, and temporally continuous, all achieved in a training-free manner. This
significantly improves the performance of current MLLMs on widely-used long video benchmarks.
Our findings strongly validate the potential of MLLMs as effective long video comprehenders.
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APPENDIX
A LIMITATIONS AND FUTURE WORK

We discuss limitations and possible extensions of Nar-KFC. Despite current MLLMs being able to
process our interleaved inputs of keyframes and narratives, thanks to their instruction tuning step,
they are not trained with such input formats. This may weaken their ability to fully understand
the structure and relationships within our specialized long video representations. A valuable future
direction is to incorporate keyframe selection and narrative interleaving into the training of MLLMs,
thereby aligning training and testing procedures for improved long video understanding. Furthermore,
our method relies mainly on interleaving visual information with narrations and does not incorporate
additional modalities such as audio or subtitles. Exploring these modalities in future work may further
improve multi-modal long video understanding.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we exclusively utilize advanced LLMs to refine and polish the manuscript. Our prompts
to the LLMs include requests such as: “Please help me polish this academic
writing paragraph. It should be concise, fluent, logical, and in
line with academic standards.” LLMs are not employed for any purposes beyond
writing improvement.

C BROADER IMPACTS

Effective and efficient long video understanding is a critical task, especially as Internet video streams
often last tens of minutes or even hours. We expect that the proposed keyframe selection and narration
methods will benefit society by enabling MLLMs to comprehend long videos more accurately and
efficiently. However, it is essential to ensure that the narratives generated by specific models remain
free from harmful or unrelated content.

D MAIN RESULTS SUPPLEMENTARY

We provide supplementary results to the main experiments: Sec. D.1 covers earlier works. Sec. D.2
scales Nar-KFC to 72B models and compares its performance with proprietary models and Vide-
oLLMs capable of reasoning over thousands of frames. Sec. D.3 presents the performance of KFC
and Nar-KFC on additional EgoSchema and NExTQA benchmarks, and Sec. D.4 provides a detailed
analysis on the MLVU benchmark. Finally, Sec. D.5 discusses the detailed computational overhead
introduced by Nar-KFC.

D.1 COMPREHENSIVE COMPARISONS WITH PREVIOUS METHODS.

VideoLLMs for video understanding have become a popular research area in recent years. However,
directly applying previous VideoLLMs to long videos, such as Video-MME, LongVideoBench, and
MLVU, often leads to unsatisfactory performance. To provide a more comprehensive comparison,
as an extension to the main paper in Tab. 1, we also include the performance of earlier works, such
as Video-LLaVA (Lin et al., 2024a), Qwen-VL-Chat (Bai et al., 2023), ST-LLM (Liu et al., 2024d),
VideoChat2 (Li et al., 2023b), ShareGPT4Video (Chen et al., 2024a), Chat-UniVi-V1.5 (Jin et al.,
2024), and VideoLLaMA2 (Cheng et al., 2024), in Tab. 7.

D.2 SCALING NAR-KFC TO 72B MODELS

To further evaluate the ability of Nar-KFC to enhance SOTA performance, we scale our Nar-KFC
framework to two advanced models: LLaVA-OneVision-72B (32 frames) and LLaVA-Video-72B-
Qwen2 (64 frames). We also compare our results with those of SOTA proprietary models and recent
works, as shown in Tab. 8 and Tab. 9, with our results highlighted in bold. Extensive experiments
demonstrate that the Nar-KFC framework enables 72B models to achieve competitive performance on
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Table 7: Comprehensive comparisons with previous VideoLLMs/MLLMs on three common long-video bench-
marks: Video-MME, LVB, and MLVU. The reported results are accuracy percentage.

Model Size Video-MME(no sub. / sub.) LVB MLVU
Short Medium Long Overall∼17m ∼12m ∼12m

Video-LLaVA (Lin et al., 2024a) 7B 45.3 / 46.1 38.0 / 40.7 36.2 / 38.1 39.9 / 41.6 39.1 47.3
Qwen-VL-Chat (Bai et al., 2023) 7B 46.9 / 47.3 38.7 / 40.4 37.8 / 37.9 41.1 / 41.9 - -
ST-LLM (Liu et al., 2024d) 7B 45.7 / 48.4 36.8 / 41.4 31.3 / 36.9 37.9 / 42.3 - -
VideoChat2 (Li et al., 2023b) 7B 48.3 / 52.8 37.0 / 39.4 33.2 / 39.2 39.5 / 43.8 39.3 44.5
ShareGPT4Video (Chen et al., 2024a) 8B 48.3 / - 36.3 / - 35.0 / - 39.9 / - 41.8 46.4
Chat-UniVi-V1.5 (Jin et al., 2024) 7B 45.7 / 51.2 40.3 / 44.6 35.8 / 41.8 40.6 / 45.9 - -
VideoLLaMA2 (Cheng et al., 2024) 7B 56.0 / - 45.4 / - 42.1 / - 47.9 / - - -
VILA (Lin et al., 2024b) 8B 57.8 / 61.6 44.3 / 46.2 40.3 / 42.1 47.5 / 50.0 - 46.3
LLaVA-NeXT-QW2 (Liu et al., 2024a) 7B 58.0 / - 47.0 / - 43.4 / - 49.5 / - - -
MiniCPM-V2.6 (Yao et al., 2024b) 7B 61.1 / 63.8 50.3 / 50.2 46.4 / 45.4 52.6 / 53.1 51.2 55.4
LongVU (Shen et al., 2024) 7B 64.7 / - 58.2 / - 59.5 / - 60.6 / - - 65.4
Frame-Voyager (Yu et al., 2025) 8B 67.3 / - 56.3 / - 48.9 / - 57.5 / - - 65.6
LongVILA256frm (Chen et al., 2024b) 8B 61.8 / - 49.7 / - 39.7 / - 50.5 / - - -
Video-XL256frm (Shu et al., 2025) 7B 64.0 / 67.4 53.2 / 60.7 49.2 / 54.9 55.5 / 61.0 50.7 64.9
VILA (Lin et al., 2024b) 34B 70.3 / 73.1 58.3 / 62.7 51.2 / 55.7 58.3 / 61.6 - 57.8
InternVL2 (Chen et al., 2024c) 8B 62.1 / 63.9 48.2 / 48.7 45.2 / 44.9 51.9 / 52.5 52.3 (45.2) 54.3

+ KFC 8B 64.3 / 65.4 49.6 / 52.3 46.1 / 47.3 53.1 / 55.0 53.3 (47.2) 62.2
+ Nar-KFC 8B 67.2 / 67.7 54.7 / 57.9 47.1 / 48.9 56.3 / 58.1 53.9 (48.8) 64.4

Qwen2-VL (Wang et al., 2024b) 7B 65.7 / 66.9 52.8 / 53.0 46.7 / 48.6 55.0 / 56.1 53.4 (45.0) 59.6
+ KFC 7B 68.2 / 69.7 53.3 / 54.9 48.4 / 50.2 56.7 / 58.3 54.6 (47.9) 65.9
+ Nar-KFC 7B 68.8 / 69.3 53.4 / 55.3 48.0 / 49.0 56.7 / 57.9 53.6 (46.3) 68.5

LLaVA-OneVision (Li et al., 2024b) 7B 65.2 / 67.1 51.7 / 54.4 45.1 / 46.1 53.3 / 55.9 54.5 (45.7) 58.5
+ KFC 7B 66.4 / 69.1 52.9 / 56.8 46.8 / 48.8 55.4 / 58.2 55.6 (47.3) 65.0
+ Nar-KFC 7B 67.2 / 68.6 57.1 / 59.8 49.1 / 51.0 57.8 / 59.8 56.5 (48.2) 66.2

LLaVA-Video (Zhang et al., 2024d) 7B 67.2 / 69.4 53.2 / 53.4 47.2 / 47.3 55.9 / 56.7 54.2 (46.5) 60.5
+ KFC 7B 68.3 / 70.0 55.1 / 57.4 49.4 / 51.6 57.6 / 59.7 56.5 (49.3) 66.9
+ Nar-KFC 7B 71.2 / 72.7 61.4 / 62.3 52.0 / 53.9 61.6 / 63.0 57.7 (50.2) 67.7

Table 8: Scaling to 72B models on the Video-MME benchmark. Results from our Nar-KFC method are in bold.

Model Frames Video-MME (no sub.)
Short Medium Long Overall

LLaVA-OneVision-72B 32 76.7 62.2 60.0 66.3
+ Nar-KFC 32 77.5 68.6 61.9 69.6
LLaVA-Video-72B 64 81.7 67.9 61.8 70.4
+ Nar-KFC 64 82.0 68.9 63.6 71.5
VideoChat-Flash@448-7B (Li et al., 2024c) N/A - - - 65.3
LLaVA-OneVision-72B + T* (Ye et al., 2025) 32 77.5 66.6 61.0 68.3
VILAMP-7B (Cheng et al., 2025) 1 fps - - - 67.5
Aria-8x3.5B 256 76.9 67.0 58.8 67.6
GPT-4o (0615) 384 80.0 70.3 65.3 71.9
Qwen2-VL-72B (Wang et al., 2024b) 768 80.1 71.3 62.2 71.2
AdaReTake-72B (Wang et al., 2025a) 2 fps - - - 73.5
Gemini-1.5-Pro (0615) 1/0.5 fps 81.7 74.3 67.4 75.0

the Video-MME benchmark (71.5%) and leading results on MLVU (75.0%). Notably, our approach
uses significantly fewer frames (32 or 64) compared to proprietary models such as Gemini-1.5-Pro
and VideoLLMs that reason over thousands of frames, including VILAMP (Cheng et al., 2025)
and AdaReTake (Wang et al., 2025a). These findings underscore the potential significance of our
framework, particularly under the limited context length constraints of MLLMs.

D.3 RESULTS ON MORE BENCHMARKS

We further report performance of our KFC and Nar-KFC on two relatively shorter video benchmarks,
i.e., EgoSchema (Subset) and NExTQA, in Tab. 10.

EgoSchema (Mangalam et al., 2023). EgoSchema is a benchmark derived from 5,000 egocentric
videos, capturing a first-person perspective of humans engaged in a wide range of daily activities,
each lasting approximately 3 min. Here, we use its subset of 500 questions with publicly available
labels.
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Table 9: Scaling to 72B models on the MLVU benchmark. Results from our Nar-KFC method are shown in bold.
* indicates results obtained from our own implementation.

Model Frames MLVU

LLaVA-OneVision-72B 32 66.4
+ Nar-KFC 32 74.4
LLaVA-Video-72B 64 74.4 (73.6∗)
+ Nar-KFC 64 75.0
GPT-4o (0615) 0.5 fps 64.6
VideoLLaMA3-7B (Zhang et al., 2025) ≤180 73.0
VILAMP-7B (Cheng et al., 2025) 1 fps 72.6
VideoChat-Flash@448-7B (Li et al., 2024c) 1 fps 74.7
AdaReTake-72B (Wang et al., 2025a) 2 fps 78.1

Table 10: Results on EgoSchema and NExTQA benchmarks. Accuracy sign % is omitted for clarity.

Model Frames EgoSchema NExT-QA
3min 0.7min

InternVideo (Wang et al., 2022) 90 32.1 49.1
LLoVi (Zhang et al., 2024a) 90 57.6 67.7
LangRepo (Kahatapitiya et al., 2024) 180 66.2 60.9
VideoAgent (Wang et al., 2024d) 8.4 60.2 71.3
LVNet (Park et al., 2024) 12 66.0 72.9
VidF4 (Liang et al., 2024) 8 - 74.1
VideoTree (Wang et al., 2025b) 63.2 66.2 73.5

InternVL2-8B (Chen et al., 2024c) 59.8 76.5
+ KFC 8 58.6 77.8
+ Nar-KFC 64.0 78.1

Qwen2-VL-7B (Wang et al., 2024b) 60.8 76.3
+ KFC 8 63.2 76.6
+ Nar-KFC 65.8 77.6

NExTQA (Xiao et al., 2021). Following standard practices, we use the validation set of NExTQA for
evaluation. This set contains 570 videos (44 sec on average) and 5,000 multiple-choice questions.

Unlike the long video datasets discussed in the main paper, our keyframe selection strategy (i.e.,
KFC) may underperfom compared to uniform sampling when applied to shorter videos. For example,
InternVL2-8B yields 58.6% accuracy on EgoSchema when using KFC. This performance drop is
primarily due to KFC disrupting the temporal consistency of frame sequences, which is particularly
important for short video understanding. Nevertheless, supplementing with non-keyframe narratives
(Nar-KFC) leads to consistent performance improvements even on these shorter benchmarks. The
gains are especially evident on EgoSchema, while the improvement on NExTQA is more limited,
likely due to its relatively short average video length of approximately 44 sec.

D.4 DETAILED ANALYSIS ON MLVU CATEGORIES

In Fig.7, we provide a detailed comparison of performance across specific categories in the MLVU
benchmark as a supplement to the main paper Tab. 1. Compared to uniform sampling, the overall
performance improvement introduced by KFC across all four models is primarily attributed to its
superior accuracy in the needle and count categories. The needle task involves questions based
on rare or unusual frames sourced from external videos, which are more likely to be captured by
our query-relevance-based sampling strategy. In contrast, such frames are often missed by uniform
sampling. A similar challenge arises in the count task, where correct answers rely on retrieving
specific frames first in order to support accurate object/crowd/event counting.

On the other hand, our Nar-KFC approach generally achieves the best performance on plotQA and
topic tasks. This advantage stems from its ability to preserve temporal continuity, which is often
lacking in KFC-optimized keyframes that are temporally sparse and discontinuous. Such discontinuity
hinders the model’s ability to comprehend holistic video contents. For instance, KFC performs the
worst on the topic task when inferenced with LLaVA-OneVision (c) and LLaVA-Video (d), even
underperforming the uniform sampling baseline. In contrast, Nar-KFC addresses this issue through a
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(a) (b)

(c) (d)

Figure 7: Performance comparison across specific categories of the MLVU benchmark. Results are shown for
(a) InternVL2-8B, (b) Qwen2-VL-7B, (c) LLaVA-OneVision-7B, and (d) LLaVA-Video-7B, evaluated using
three keyframe selection strategies: Uniform, KFC, and Nar-KFC.

narrative threading strategy, which maintains continuity by supplementing keyframes with coherent
non-keyframe descriptions. This strategy significantly enhances the model’s understanding of overall
video plots and topics.

D.5 COMPUTATIONAL OVERHEAD

We analyze and present the detailed computational complexity (efficiency), including TFLOPs,
latency, and memory usage, in Tab. 11. Note that searching the entire space of IQP would require
approximately 1013 TFLOPs, making it impractical in real-world scenarios. Therefore, we report the
computational complexity based on using 30k nodes in the IQP algorithm. Here, “search efficiency”
refers to the keyframe search stage, while “overall efficiency” primarily pertains to the MLLM
reasoning stage.

Since we use an offline CLIP model to extract video embeddings (including query embeddings) and
a Qwen2-VL-2B captioning model to generate video narratives, we also report their computational
complexity in Tab. 12. The results are evaluated on an average 17-minute video (1,020 frames at
1 fps). It is important to note that these extraction processes are performed offline prior to online
reasoning, which is the same as all previous keyframe selection strategies. Therefore, although the
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Table 11: Computational efficiency comparison, including TFLOPs, latency, and memory usage for both
the searching and overall inference stages. Results are reported using 8 frames and 210 narratives with the
InternVL2-8B model.

Method Search Efficiency Overall Efficiency
TFLOPs↓ Latency (s) ↓ Memory (GB) TFLOPs↓ Latency (s) ↓ Memory (GB)

Uniform-8 N/A 0.20 N/A 146.3 1.03 21.8
Top-k N/A 0.24 N/A 146.3 1.07 21.8
KFC (IQP-30k) 6.9 7.18 N/A 153.2 8.01 21.8
KFC (GS) ∼0 0.48 N/A 146.3 1.31 21.8
Nar-KFC ∼0 0.60 N/A 202.6 2.13 32.2

preprocessing step is time-consuming, it impacts all keyframe selection methods equally, but does
not impact the final inference complexity.

For an on-demand (long) video understanding system and suppose we are given an on-demand video,
our lightweight captioner only needs to extract less than 210 narratives no matter how long the video
is (since we have proved in our paper that more narrations won’t bring further improvements and
may exceed the context length of MLLMs). The caption extraction process requires less than 74.2
sec of latency. In practice, there are often no more than 210 frames between the first and last sampled
keyframes, which can further reduce preprocessing time. The low computational cost of captioning is
primarily due to our lightweight captioner, as we demonstrate that Nar-KFC’s performance is not
sensitive to captioner size and only a small number of frames are processed. If a latency of 74.2 sec
(or less) remains a concern for on-demand video systems, our keyframe selection method, KFC-GS,
can be used without the captioning stage for faster inference compared with prior frame selection
methods. Overall, our approach achieves a favorable balance between accuracy and efficiency.

Table 12: Computational overhead for CLIP embedding extraction and frame captioning. Results are reported
on an average 17 min video at 1 fps (1020 frames) frame sampling.

Model Frames TFLOPs↓ Latency (s)↓ Memory (GB)

Offline Frame Embedding & Caption Extraction
CLIP-ViT-L-336px 1020 420.8 25.8 1.6
Qwen2-VL-2B 1020 4462.5 360.5 7.2

On-demand Video System Processing
Qwen2-VL-2B ≤210 ≤ 918.8 ≤74.2 7.2

E ADDITIONAL ABLATION RESULTS

E.1 A SYMMETRICAL FORMULATION OF ORIGINAL OBJECTIVE AND ANALYSIS.

Objective Revisiting. In the main paper Sec. 3, we formulate the keyframe selection task as a graph
problem and model it using integer quadratic programming (IQP) (3). However, the constructed
score matrix (1) is asymmetric, as it only accounts for the query relevance of the i-th frame and
the diversity between the i-th and j-th frames, while neglecting the query relevance of the j-th
frame. This asymmetry introduces a minor discrepancy compared to the standard subgraph selection
procedure. We illustrate this discrepancy with an example.

Example. Suppose we aim to retrieve 3 keyframes from 5 frames, and the optimal selection is given
by x = [1, 1, 1, 0, 0]T , indicating that first three frames are selected. The score matrix S is defined as:

Si,j = S(i, j) = SQR(i) + SFD(i, j) =


0 a12 a13 a14 a15
0 0 a23 a24 a25
0 0 0 a34 a35
0 0 0 0 a45
0 0 0 0 0

 . (5)
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where ai,j denotes the score term for i < j (i.e., only the upper trangular part of S is considered).
According to (3), the maximum sum score (the total edge weight of the subgraph) should be:

xTSx = [1, 1, 1, 0, 0]


0 a12 a13 a14 a15
0 0 a23 a24 a25
0 0 0 a34 a35
0 0 0 0 a45
0 0 0 0 0

 [1, 1, 1, 0, 0]T

= [1, 1, 1, 0, 0][a12 + a13, a23, 0, 0, 0]
T

= a12 + a13 + a23

= SQR(1) + SFD(1, 2) + SQR(1) + SFD(1, 3) + SQR(2) + SFD(2, 3).

(6)

From this computation, we know that the query relevance of the first frame is counted twice, while
that of the last selected frame (3rd) is not counted at all, as there are no subsequent frames after it.
This discrepancy shows the deviation from the standard graph-based subgraph selection formulation.

Symmetric Score Matrix. To mitigate this discrepancy and align the keyframe selection process with
a standard graph problem, we reconstruct the original score matrix S to be symmetric by incorporating
the query relevance of the j-th frame, defined as:

Si,j = S(i, j) = SQR(i) + 2SFD(i, j) + SQR(j). (7)

Experimental Results and Analysis. Compared with the symmetric S in (7), our original asymmetric
matrix involves fewer terms with reducing size (only the upper triangular part is calculated), which
leads to faster inference. Tab. 13 presents additional experimental results for replacing the original
score matrix S with its symmetric counterpart. Modifying S to be symmetric – thus aligning the
formulation with a standard graph problem – results in a 1% performance drop when using the IQP
solver. This result supports the benefit of assigning higher weights to the initially selected frame
at the beginning. Since the first keyframe is heuristically selected based on query relevance, this
modification has negligible impact when using the GS strategy. We thus adopt the asymmetric score
matrix defined in (1) for the remainder of our process.

Table 13: Impact of whether replacing score matrix to its symmetric counterpart. Results are reported on the
Video-MME (sub.) benchmark using InternVL2-8B model. The search node number is 40k for solving IQP.

Setting Strategy Video-MME (sub.)
Short Medium Long Overall

asymmetric S (1) IQP 65.9 52.9 46.4 55.1
symmetric S (7) 66.1 50.1 46.1 54.1

asymmetric S (1) GS 65.4 52.3 47.3 55.0
symmetric S (7) 65.7 52.6 47.2 55.1

E.2 INTEGER QUADRATIC PROGRAMMING (IQP) vs. GREEDY SEARCH (GS)

We implement the Integer Quadratic Programming (IQP) algorithm using CPLEX and set a maximum
number of search nodes to obtain the optimal set of keyframe indices within a limited time. The
corresponding IQP results are reported in Tab. 14. As the search space increases from 5k to 40k
nodes, performance on short videos gradually improves from 64.2% to 65.9%, which validates the
effectiveness of modeling keyframe selection as an IQP problem. However, this improvement does
not hold for long videos, where performance becomes unstable as the search space expands. We
speculate that this is because even 40k nodes are still insufficient to cover the full solution space for
long videos. For instance, in a 15-minute video (900 frames at 1 fps), selecting 8 keyframes results
in approximately C(900, 8) ≃ 2.5× 1018, i.e., roughly 2.5 quintillion possible combinations. This
vast search space far exceeds what can be practically explored with a node limit of 40k, let alone for
videos that span several hours.

We also attempt to initialize the IQP search with greedy searched results, which are highlighted in
gray in Tab. 14, in hopes of better guiding the IQP solving process. Experimental results indicate that
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Table 14: Impact of expanding the IQP search space on performance and efficiency. Results are reported on
the Video-MME (sub.) benchmark using InternVL2-8B model, with average computational time per video (in
seconds) evaluated on a single NVIDIA A100 GPU.

Setting Nodes# Video-MME (sub.) Time (s)Short Medium Long Overall

Uniform - 63.9 48.7 44.9 52.5 1.03
GS - 65.4 52.3 47.3 55.0 1.31

5k 64.2 52.6 46.7 54.5 3.91
10k 64.4 52.6 45.8 55.0 4.81

IQP 20k 64.3 52.3 47.9 54.9 6.23
30k 65.6 52.6 46.2 54.8 8.01
40k 65.9 52.9 46.4 55.1 9.26

IQP
(GS init)

5k 64.3 52.0 48.0 54.7 5.22
10k 65.1 51.9 47.3 54.5 6.12
20k 65.1 52.3 47.5 54.9 7.54
30k 65.3 52.3 45.7 54.4 9.32
40k 65.8 51.4 46.0 54.4 10.57

this initialization strategy does not lead to further improvements in IQP performance, likely due to
the search space remaining too large to be effectively navigated. Therefore, we adopt a customized
greedy search (GS) strategy as a practical and robust alternative to the IQP algorithm.

E.3 ABLATIONS ON HYPERPARAMETERS IN KFC (GS)

Table 15: Impact of low-rank truncation r in our Greedy Seach (GS) algorithm.

LowRank truncation r
Video-MME (sub.)

Short Meidum Long Overall

N/16 64.8 51.3 46.3 54.2
N/8 65.3 51.7 46.0 54.3
N/4 65.4 52.3 47.3 55.0
N/2 65.2 51.7 47.6 54.8

N (w/o SVD) 64.1 51.8 45.7 53.9

The low-rank truncation parameter r in SVD (Sec. 3.1.2) serves to compress and denoise neighboring
frames in the score matrix S. Setting r equal to the number of video frames N is equivalent to
not applying the SVD technique. Our experiments in Tab. 15 demonstrate that incorporating this
decomposition step facilitates frame selection and reduces the problem size. Setting r = N

4 yields the
best performance, where N refers to the total number of frames in a video. Choosing a smaller value,
such as N

16 or N
8 , leads to excessive information loss and consequently degrades the performance.

Table 16: Impact of downsample resolution in our Greedy Seach (GS) algorithm.

Downsample Resolution Video-MME (sub.)
Short Meidum Long Overall

64 63.8 52.3 44.0 53.4
128 65.4 52.3 47.3 55.0
256 64.8 50.2 47.6 54.2
512 63.0 51.4 47.7 53.8

Following previous works such as Frame-Voyager (Yu et al., 2025) and MDP3 (Sun et al., 2025), we
default to downsampling the frame sequence to 128 frames. Our experiments, as shown in Tab. 16,
also indicate that this downsampling resolution generally yields the best performance. Similar to
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SVD, the downsampling operation is designed to balance the trade-off between denoising the score
matrix and minimizing the information loss.

Table 17: Impact of refinement window size k in our Greedy Seach (GS) algorithm.

Window Size k
Video-MME (sub.)

Short Meidum Long Overall

0 (w/o refine) 65.0 51.2 47.8 54.7

1 65.1 51.4 47.4 54.7
2 65.4 52.3 47.3 55.0
4 64.6 53.1 45.7 54.4
8 64.2 50.3 43.8 52.8

We analyze the impact of the neighbor window size k in the final Greedy Search (GS) refinement
step. As shown in Tab. 17, setting k = 0 corresponds to using the GS strategy without any refinement.
When k = 2, which means examining a total of four frames, two before and two after the selected
keyframe, the model achieves the best overall performance. This highlights the effectiveness of
the refinement step as a robust strategy to complement prior SVD and downsampling operations.
However, increasing the window size further (e.g., k = 4 or k = 8) results in performance degradation.
This is likely due to the disruption of holistic keyframe combinations constructed by the greedy
search, as excessive frame examination may introduce noise or redundancy.

Conclusion. The core of KFC-GS is a greedy algorithm, which iteratively selects the next frame with
the highest cumulative score. Although we incorporate some pre-processing (SVD, downsampling)
and post-processing steps (refinement) to further enhance performance, the vanilla greedy selection
(GS) is already highly effective with initialization, eg., achieving 53.3 on Video-MME and 61.0
on MLVU. These results demonstrate that KFC-GS is generally robust and capable of generalizing
well across different benchmarks. In fact, we do not manually tune the hyperparameters (r, d)
involved in the pre-processing techniques, as they can be empirically set within an appropriate range.
Comprehensive ablations on these hyperparameters (Tab. 15, Tab. 16, Tab. 17)further demonstrate
that our results are not particularly sensitive to these parameters. Re-tuning is generally unnecessary,
as our approach consistently achieves improvements over multiple benchmarks with 4 different
MLLMs.

E.4 IMPLEMENTATION DETAILS OF FRAME EXTRACTION BASELINES IN TAB. 4

For CLIP1 (Radford et al., 2021), SigLIP2 (Zhai et al., 2023), and BLIP-23 (Li et al., 2023a), we
directly rank and select the top-K candidate keyframes based on their frame-query cosine similarity
logits. For TempGQA (Xiao et al., 2024), we follow the official code4 to first select a segment
based on the question, and then uniformly sample frames from the selected segment to generate the
answer. For SeViLA (Yu et al., 2023), we use its trained localizer5 to select the K keyframes as input,
while maintaining the original hyperparameter settings. As for DPP (Determinantal Point Process)
selection (Sun et al., 2025), since the official code is unavailable, we reimplement the DPP algorithm
by defining its kernel matrix as S(i, q)S(j, q)[1 − S(i, j)], where the first two terms represent the
similarity of frames i, j to the query q, and the last term encourages frame diversity between frame
i and frame j. S denotes the cosine similarity operation. For AKS (Tang et al., 2025), we select
keryframes based on the frame scores provided in the official repository6.
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Table 18: Impact of incorporating full video-level narratives. These narratives include segments that appear
before the first keyframe and after the last keyframe. ∗ indicates that only narratives between keyframes are
utilized in Nar-KFC.

Setting Video-MME (no sub. / sub.)
Short Meidum Long Overall

Full-Narrative 66.3 / 66.9 56.3 / 58.0 46.7 / 47.3 56.4 / 57.4
Nar-KFC∗ 67.2 / 67.7 54.7 / 57.9 47.1 / 48.9 56.3 / 58.1

E.5 INCORPORATING FULL VIDEO-LEVEL NARRATIVES.

Our default Nar-KFC configuration (see main paper Sec. 3.2) only uses narratives that appear between
the first and the last keyframe, discarding those that occur at the beginning or end of the video. Here,
we analyze the effect of incorporating full video-level narratives, as shown in Tab. 18, while keeping
the total number of inserted narratives fixed at 210. The results suggest that including these additional
narratives has minimal impact on overall video understanding. This finding further supports our
primary conclusion: keyframes play a dominant role in long-form VideoQA, while narratives mainly
serve as auxiliary context.

F ADDITIONAL QUALITATIVE EXAMPLES

We present additional qualitative examples of our keyframe selection method (KFC) in Fig. 8, and
of the narrating keyframe method (Nar-KFC) in Fig. 9. Note that the frames leading to incorrect
predictions in Fig. 9 can be regarded as failure cases of KFC.

1https://huggingface.co/openai/clip-vit-large-patch14-336
2https://huggingface.co/google/siglip-so400m-patch14-384
3https://huggingface.co/Salesforce/blip2-opt-2.7b
4https://github.com/doc-doc/NExT-GQA/tree/main/code/TempGQA
5https://github.com/Yui010206/SeViLA?tab=readme-ov-file
6https://github.com/ncTimTang/AKS

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

What clothing was not copied in the clip showing the plagiarism against Zara? (A. High heels. B. Floral Shirt. C. Dress. D. Jeans.)

U
niform

K
FC

Top-K

“A. High heels.”

“A. High heels.”

“D. Jeans.”

What color is the suit worn by the man taking wedding photos? (A. Browm B. Pink. C. Black. D. White.)

U
niform

K
FC

Top-K

“C. Black.”

“D. White”

“B. Pink.”

Where are the black cows with yellow tags on their ears eating hay on a sunny day? (A. farm    B. barn    C. forest    D. field)

U
niform

K
FC

Top-K

“D. In the field.”

“B. In the barn.”

“A. At the farm.”

What is the condition of the grass in the video segment during the forest fire?

U
niform

K
FC

Top-K

“B. The grass is wet

“C. Green and fresh.”

“A. Old and dry.”

Figure 8: More qualitative examples of keyframe selection using our KFC method, compared with uniform
sampling and topK sampling baselines. Zoom in for better visual details.
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2 41 73 85 6

1 2 3 4 5 6 7 8

What style is the video?

K
FC

(A. Funny clip    B. Tutorial    C. Vlog    D. Match video)

1

g. A black background with white text expressing gratitude for received submissions.

f. A black screen with white text that says, \"I wanna say I'm super thankful.\

7

6

h. Two images of a room with crates and boxes, one with a red circle marking a spot, and the other with a person aiming a gun.
8

a. A player in a video game is jumping off a ledge with a star on it.
b. Two players in a first-person shooter game, one holding a weapon, the other a gun.

c. A player in a police uniform is aiming a gun in a dark tunnel, with a score of 2 and a health of 6.
2

d. A close-up of a character's hand with a glowing, liquid-like substance on it.
3

e. A game scene with a player aiming a sniper rifle in a room labeled \"Cedar Creek Nuclear Power Plant.
4

5
… …

“D. Match video.”

N
ar-K

FC

2 41 73 85 6 “A. Funny clip.”>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>> >>> >>>

2 41 73 85 6

1 2 3 4 5 6 7 8

In which part of the video does the red parrot appear?

K
FC

(A. Does not appear   B. End    C. Beginning    D. Middle)

1

f. A woman works at a desk while a child plays nearby, with a BBC logo visible in the top left corner.

a. A woman with red hair stands in a room, adjusting her white sweater.
b. A group of people, including a woman with red hair, are gathered around a cage in a living room.

c. A vibrant red parrot with blue wings perches in a cage with a blue ball hanging above it.
2

d. A woman in a white coat dances in a living room with friends watching.
3

e. A family, including a woman and two children, waves outside a house.
4

5

“A. Does not appear.”

N
ar-K

FC

… …
2 41 73 85 6 “C. Beginning of video.”>>> >>> >>>>>>> >>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>

2 41 73 85 6

1 2 3 4 5 6 7 8

What does the performers do after they get four yeses?
K
FC

1

f. A shirtless man and a woman on a stage with a colorful background.

a. Two performers in a daring aerial acrobatic routine, suspended by red straps, with a vibrant stage backdrop.
b. A man and a woman perform aerial acrobatics on a stage with a vibrant backdrop.
c. A muscular man and a woman in black attire perform a dance routine on a stage with a cityscape backdrop.

2
d. A woman performs aerial acrobatics on a colorful stage with blue and orange lighting.

3
e. Four judges sit at a table with Sonic drinks, with a large audience in the background.

4

“C. They gave a high five to each other.”

N
ar-K

FC

2 41 73 85 6 “B. They kissed each other.”

g. A man and woman kiss on stage, with the man holding a microphone.

h. A shirtless man and a woman walk on a stage, smiling.

5 … …

>>>>>>>>> >>>>>>>> >>>>> >>>>>>>>> >> >>

Figure 9: More qualitative examples of our threading keyframe methods Nar-KFC. Zoom in for details.
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