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Abstract
Robust explanations of machine learning models
are critical to establish human trust in the models.
Due to limited cognition capability, most humans
can only interpret the top few salient features.
It is critical to make top salient features robust
to adversarial attacks, especially those against
the more vulnerable gradient-based explanations.
Existing defense measures robustness using ℓp-
norms, which have weaker protection power. We
define explanation thickness for measuring salient
features ranking stability, and derive tractable sur-
rogate bounds of the thickness to design the R2ET
algorithm to efficiently maximize the thickness
and anchor top salient features. Theoretically, we
prove a connection between R2ET and adversarial
training. Experiments with a wide spectrum of
network architectures and data modalities, includ-
ing brain networks, demonstrate that R2ET attains
higher explanation robustness under stealthy at-
tacks while retaining accuracy.

1. Introduction
Deep neural networks (DNNs) have proven their strengths
in many real-world applications, including financial (Wang
et al., 2020b), image retrieval (Zhou et al., 2020), and
biomedical research (Hudson & Cohen, 2000). The explain-
ability of DNNs is a fundamental requirement for establish-
ing humans’ trust and is key to further deployments in high-
stake applications (Goodman & Flaxman, 2017; Pu & Chen,
2006). As human cognitive capability is limited (Saaty &
Ozdemir, 2003), an explanation typically attributes a pre-
diction to a few salient features of the input data (see Fig.
2). Among all explanation methods, saliency maps based
on model gradients with respect to input data are widely
adopted due to their inexpensive computation and intuitive
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Figure 1: Blue ( 1⃝): Model training. Yellow ( 2⃝- 4⃝): Explana-
tion generation for a target input. Red ( 5⃝- 6⃝): Adversarial attacks
against the explanation by manipulating the input.

interpretation (Nielsen et al., 2022).

Existing works (Dombrowski et al., 2019; Ghorbani et al.,
2019; Heo et al., 2019) show that the gradients can be ma-
nipulated with unnoticeable changes in the input. They
measure the explanation robustness using a certain ℓp norm,
leading to the idea of minimizing the ℓp norm of the Hes-
sian of the model against the input for robust explanations
(Dombrowski et al., 2021; Wang et al., 2020c). However, as
demonstrated in Fig. 2, a perturbed explanation with a small
ℓp distance to the original one can have rather different top
salient features, since the ℓp norm considers the importance
of all features equally. Such inconsistency between the ℓp
metric and the modus operandi of human perception can
lead to mistrust of the model and the associated explanations.
Alternatively, we will measure the stability of the rankings
of the top salient features. Prior work on ranking robustness
can be found in information retrieval (Zhou et al., 2020;
2021), though they are not applicable to stability in explain-
able ML, in terms of vulnerabilities, attacking objectives,
theoretical analysis, and computations (see Sec. 5).

Contributions. We center our contributions around a novel
metric called “ranking explanation thickness” that precisely
measures the robustness of the top salient features. (1) Theo-
retically, we derive surrogate bounds of ranking explanation
thickness for more efficient optimization and to reveal a
fundamental limit of using Hessian norm for explanation
robustness. We also disclose the equivalence between rank-
ing explanation thickness and Adversarial Training in Eq.
(7). (2) Algorithmically, based on the theoretical analysis,
we propose an efficient training method, R2ET (see Fig.
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Figure 2: A smaller ℓp distance between saliency maps does
not imply similar top salient features. x is the original input,
and x′ and x′′ are two perturbed inputs. Saliency map (expla-
nation), denoted by I(·), is a function of the input. The satu-
ration of the red color indicates feature saliency, and the blue
dashed boxes highlight the top salient features/regions. Left:
∥I(x) − I(x′)∥2 = 2.4 > 1.1 = ∥I(x) − I(x′′)∥2. How-
ever, I(x′) and I(x) have the same top-3 salient features. Right:
∥I(x) − I(x′)∥2 = 0.10 > 0.07 = ∥I(x) − I(x′′)∥2, but the
top-50 salient features from I(x) and I(x′) have a 92% of over-
lap, and only 36% between I(x) and I(x′′).

1), to attain the desired robustness without costly adver-
sarial training. R2ET optimizes the surrogate bounds to
overcome the limitation of existing Hessian-based curvature
smoothing approaches. (3) Experimentally, we conduct both
ℓ2-norm attack and a ranking-based attack (see Fig. 1) to
demonstrate: i) prior ℓp-norm attack cannot manipulate as
efficiently as ranking-based attacks, and Hessian-related de-
fense algorithms do not result in robust rankings; ii) the high
correlation between explanation thickness and robustness;
iii) the generality and wide applications of R2ET to different
neural network architectures and various data modalities,
including two brain network datasets.

2. Preliminaries
Saliency map explanations. Let a classification model with
parameters w be f(x,w) : X → [0, 1]C , and f(x,w)c is
the probability of class c for the input x ∈ X . We omit
w for brevity in the sequel as w is fixed. Gradient-based
methods (Adebayo et al., 2018; Baldassarre & Azizpour,
2019) explain f(x)c by the top features with the largest
magnitudes. Formally, a saliency map explanation is defined
as I(x, c; f) = ∇xf(x)c. Since the model f is fixed for
explanations and we fix c to the predicted class, we use
I(x) to denote I(x, c; f), and use I(x)i to denote the i-th
feature’s importance score.

Threat model. The adversary solves the following problem
to find the optimal perturbation δ∗ to distort the explanations
without changing the predictions (Dombrowski et al., 2021):

max
δ:∥δ∥2≤ϵ

Dist(I(x), I(x+ δ))

s.t. argmax
c

f(x)c = argmax
c

f(x+ δ)c,

(1)

δ is the perturbation whose ℓ2-norm is not larger than a
given budget ϵ. Dist(·, ·) evaluates how different the two

explanations are. E.g., Dist(·, ·) is inversely related to the
correlation between two rankings. The constraint can make
manipulating feature ranking more difficult.

3. Explanation Robustness via Thickness
3.1. Ranking explanation thickness and surrogates

Quantify the gap. Given a model f and the associated origi-
nal explanation I(x) with respect to an instance x ∈ Rn, we
denote the gap between the importance of i-th and j-th fea-
tures by h(x, i, j) = I(x)i−I(x)j . Clearly, h(x, i, j) > 0
if and only if when the i-th feature has a more significantly
positive contribution to the prediction than the j-th feature.
Although the feature importance order varies across dif-
ferent x, for notation simplicity, we label the features in
descending order such that the i-th feature is always more
important than the j-th one, namely, h(x, i, j) > 0, ∀i < j,
with respect to the original input x. This assumption will
not affect the following analysis.

Ranking robustness. Ranking robustness (Goren et al.,
2018; Zhou & Croft, 2006) measures how much the ranking
changes concerning slight input perturbations. Now, we
consider the perturbed input x′ = x + δ with ∥δ∥2 ≤ ϵ.
Apparently, the adversary in Eq. (1) tries to flip the ranking
between (i, j) features such that h(x′, i, j) < 0 for some
i < j. Meanwhile, a model with robust ranking explanation
is supposed to retain the rankings between any two features,
h(x′, i, j) > 0,∀i < j. We define the explanation thickness
by the probability of the relative ranking of the features
(i, j) being unchanged in a neighborhood of x. The relevant
work (Yang et al., 2020a) proposes the boundary thickness
to evaluate a model’s prediction robustness by measuring
the expected distance between two level sets.

Definition 3.1 (Local Pairwise Ranking Thickness). Given
a model f , an input x ∈ X and a distribution D over x′,
the local pairwise ranking thickness (as a probability) of the
pair of features (i, j) is

Θ̃(f,x,D, i, j)
def
= Ex′∼D

[∫ 1

0

1[h(x(t), i, j) ≥ 0]dt

]
, (2)

where x′ ∼ D is the perturbed input drawn from a neigh-
borhood of x. x(t) = (1 − t)x + tx′, t ∈ [0, 1], is on the
line segment connecting the sample pair (x,x′).

Clearly, Θ̃ ≤ 1 and the equality holds when the relative im-
portance of the i-th and j-th features is never flipped. The
integration calculates the probability that the i-th feature is
more important than j-th feature between x and x′. The ex-
pectation considers all such probabilities where x′ is drawn
from a Uniform distribution U(x, ϵ) (Wang et al., 2020c) or
a Gaussian distribution N (x, σ2I) (Smilkov et al., 2017).
The expectation makes the thickness estimation more com-
prehensive around the neighborhood of x. Alternatively, we
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can set x′ to an adversarial sample local to x (Yang et al.,
2020a) to find the worst case of the thickness, and we will
further discuss it in Sec. 3.2.

Relaxation. Due to the non-differentiability of the indicator
function in Eq. (2), it is difficult to analyze and optimize the
thickness efficiently. Alternatively, we remove the indicator
function and define the local pairwise ranking thickness as

Θ(f,x,D, i, j)
def
= Ex′∼D

[∫ 1

0

h(x(t), i, j)dt

]
, (3)

which is still monotonically increasing in h. Θ(f,x,D, i, j)
measures the expected gap between the importance score of
i and j features. Our following analysis will focus on Θ.

Top-k thickness. Existing works in general robust ranking
propose maintaining the ranking between every two features
(Zhou et al., 2021), demanding a complexity of O(n2) for n
features. However, as shown in Fig. 2, only the top-k impor-
tant features in I(x) and the robustness of their positions
are more relevant to human perception of explanation. Thus,
only the relative ranking between a feature from the top-k
and another one from the remaining ones are relevant. We
define the following robustness metric that requires nearly-
linear complexity O(n) when k ≪ n.
Definition 3.2 (Local Top-k Ranking Thickness). Given a
model f , an input x ∈ X , and a distribution D over x′, the
local thickness of the ranking of the top-k features is

Θ(f,x,D; k, n)
def
=

1

m

k∑
i=1

n∑
j=k+1

Θ(f,x,D, i, j), (4)

where m = k(n−k), and Θ̃(f,x,D; k, n) with an indicator
function can be defined in a similar way.

3.2. Training for robust ranking explanations

To make attacks more difficult and thus the explanation
more robust, we add Θ(f,x,D; k, n) as a regularizer when
training f on the training set (XT ,YT ):

min
w

Ltotal(f) = Lcls(f)− λEx∈XT
[Θ(f,x,D; k, n)] ,

where Lcls(f) is the empirical classification loss of f(x,w)
and λ > 0 is a hyperparameter.

A surrogate bound of explanation thickness. Directly op-
timizing Θ in Eq. (4) requires M1×M2×2 backward prop-
agations per training sample per iteration. M1 is the number
of perturbed samples sampled from U(x, ϵ) or N (x, σ2I),
or the number of iterations for finding the adversarial sam-
ple x′; M2 is the number of interpolations x(t) sampled
from the line segment between x and x′; and evaluating the
gradient of h(x, i, j) = I(x)i − I(x)j requires at least 2
backward propagations (Pearlmutter, 1994). To avoid sam-
pling x′ and x(t), we derive a lower bound of Θ, which
requires only 2 backward propagations to maximize.

Definition 3.3 (Locally Lipschitz continuity). A function
f is L-locally Lipschitz continuous if ∥f(x)− f(x′)∥2 ≤
L∥x − x′∥2 holds for all x′ ∈ B2(x, ϵ) = {x′ ∈ Rn :
∥x− x′∥2 ≤ ϵ}.

Proposition 3.4. (Bounds of thickness) Given a L-locally
Lipschitz model f , for some L, local pairwise ranking thick-
ness Θ(f,x,D, i, j) is bounded by

h(x, i, j)− ϵ ∗ 1

2
∥H(x)i −H(x)j∥2 ≤

Θ(f,x,D, i, j) ≤ h(x, i, j) + ϵ(Li + Lj),
(5)

where H(x)i is the derivative of I(x)i with respect to the
input x, and Li = maxx′∈B2(x,ϵ) ∥H(x′)i∥2.

Note that the bounds are related to h(x, i, j) = I(x)i −
I(x)j and the Hessian of f . The bounds of the local top-k
ranking thickness could be derived similarly.

The bounds have the following implications.

• The bounds are related to x, not x′, and optimizing the
bounds requires M1 ×M2 fewer times of backward prop-
agations and frees from heavy computations in Eq. (3).

• The bounds are related to the perturbation budget ϵ, but not
to the distribution D. Thus, Eq. (5) is valid for adversarial
sample x′ (Yang et al., 2020a) with ∥δ∥2 ≤ ϵ or any
random distribution such as U(x, ϵ) (Wang et al., 2020c).

• We reveal another motivation for minimizing Hessian
norm: rather than smoothing the curvature, we aim to
tighten the bounds of thickness and to ultimately maximize
the thickness without dealing with neighbor sampling and
line integration in Eq. (3). In particular, as ∥H(x)∥2 → 0,
we have Li + Lj → 0, ∥Hi(x) − Hj(x)∥2 → 0, and

lim∥H(x)∥2→0 Ex′

[∫ 1

0
h(x(t), i, j)dt

]
= h(x, i, j).

• The bounds are related to h(x, i, j) = Ii(x) − Ij(x)
and the Hessian of f . Thus, only minimizing a Hessian
norm (Dombrowski et al., 2019; 2021) is insufficient for
ranking explanation robustness (see Table 1).

• The most relevant prior work is (Hein & Andriushchenko,
2017). They connect the robustness of prediction fc to the
ratio maxj

f(x)c−f(x)j
∥I(x′,c)−I(x′,j)∥2

, where the ratio stems from
the optimal perturbation direction. Although we can adopt
their proof to obtain a similar ratio I(x)i−I(x)j

∥∇I(x′)i−∇I(x′)j∥2
,

our experiments show that the second-order term in the
denominator makes the optimization less stable and the
training can hardly converge (see Table 4).

Based on Prop. 3.4, simultaneously maximizing the gap
and minimizing Hessian norm improve the thickness. Thus,
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we have the following optimization problem for training an
accurate classifier with robust feature ranking explanations:

min
w

Ltotal(f) =Lcls(f)− λ1Ex

 k∑
i=1

n∑
j=k+1

h(x, i, j)


+ λ2Ex [∥H(x)∥2] ,

(6)
where λ1, λ2 ≥ 0. In this way, we optimize the gap and
Hessian norm concentrating in x ∈ XT and are free from
expensive sampling. When λ1 = 0, we recover Hessian
norm minimization to smooth the curvature (Dombrowski
et al., 2021). When λ2 = 0, we only increase the gaps. We
call the strategy that trains f using Eq. (6) Robust Ranking
Explanation via Thickness (R2ET).

Connection to adversarial training (AT). We have follow-
ing proposition based on the prior work (Xu et al., 2009):
Proposition 3.5. The optimization problem in Eq. (6) is
equivalent to the following min-max problem:

min
w

max
(δ1,k+1,...,δk,n)∈N

Lcls − Ex

 k∑
i=1

n∑
j=k+1

h(x+ δi,j , i, j)

 ,

(7)
where δi,j is a perturbation to x targeting the (i, j) pair of
features. N is the feasible set of perturbations where each
δi,j is independent of each other, with ∥

∑
i,j δi,j∥ ≤ ϵ

Prop. 3.5 indicates that R2ET has the same effect as the
AT but uses a regularization to bypass heavy computations.
Specifically, the bottleneck of the above AT is the high time
complexity for finding the optimal δ for any x, which makes
the AT M1 times more expensive than R2ET, where M1 is
the number of attack iterations per x.

Selecting pairs to compare. Notice that the features in
the long tail are less likely to be confused with the top-k
features, we set the k-th salient feature as the “anchor”,
and approximate the top-k ranking thickness by k′ pairs
of features

∑k′

i=1 h(x, k − i, k + i) with O(k′) complexity.
When k′ = k, we preserve the relative rankings of the
top-2k features, which is named R2ET-mm.

4. Experiments
4.1. Experimental Settings

Model architectures and datasets. We adopt two types of
network architectures: single-input DNNs and dual-input
Siamese Networks (SNs). For single-input DNN, we use
three tabular datasets: Bank (Moro et al., 2014), Adult,
and COMPAS (Mothilal et al., 2020), and an image dataset
CIFAR-10 (Krizhevsky et al., 2009) with ResNet. For SNs
that compare two inputs, we use the image dataset MNIST
(LeCun et al., 1998) and two graph datasets of brain net-
works: BP (Ma et al., 2019) and ADHD (Ma et al., 2016).

In BP and ADHD, each brain network comprises 82 and 116
nodes, respectively. Since the datasets are limited, we em-
ploy five-fold cross-validation, where three folds are used
for training, one for validation, and one for testing. We
create training sets by pairing any two training graphs. We
pair any two training graphs as the training set. To simulate
real medical diagnosis (by comparing a new sample with
those in the database), each pair consists of a training graph
and a validation (or test) graph as validation (or testing) sets.

Evaluation metrics. We use Precision@k (P@k) (Ghor-
bani et al., 2019; Wang et al., 2020c) to quantify the similar-
ity between two explanations before and after attacks. To
ensure all the trained models have similarly good predic-
tion performance, we guarantee that almost all the models
have relatively high clean AUC. We further keep the ad-
versarial AUC high and sensitivity (Xu et al., 2020) close
to zero when conducting attacks. In Sec. 4.6, we report
DFFOT (Serrano & Smith, 2019), comprehensiveness and
sufficiency (DeYoung et al., 2019) to show that explanations
from R2ET models are faithful.

• Decision Flip - Fraction of Tokens (DFFOT) (Ser-
rano & Smith, 2019) measures the minimum frac-
tion of important features to be removed to flip the
prediction. Formally, mink

k
n , s.t. argmaxc f(x)c ̸=

argmaxc f(x[\k])c, where x[\k] is the perturbed input
whose top-k important features are removed.

• Comprehensiveness (COMP) (DeYoung et al., 2019)
measures the changes in predictions before and af-
ter removing the most important features. Formally,
1

∥K∥
∑

k∈K |f(x)c − f(x[\k])c|, where K is {1, . . . , n}
for tabular data, and {1% ∗ n, 5% ∗ n, 10% ∗ n, 20% ∗
n, 50% ∗ n} for images and graphs.

• Sufficiency (SUFF) (DeYoung et al., 2019) measures the
change of predictions if only the important tokens are pre-
served. Formally, 1

∥K∥
∑

k∈K |f(x)c − f(x[k])c|, where
x[k] is the perturbed input with only top-k important fea-
tures, and K is set the same as the one for COMP.

Explanation methods. We adopt SimpleGrad as the expla-
nation method, and similar conclusions to SimpleGrad can
be drawn when adopting SmoothGrad (Smilkov et al., 2017)
and Integrated Gradients (Sundararajan et al., 2017).

Hyperparamters. We pick k = 8 for three tabular data,
k = 100 for CIFAR-10, and k = 50 for MNIST and graphs.
We set the maximal training epoch as 300 for three tabular
data, 100 for MNIST, and 10 for two graph datasets, BP
and ADHD. Almost all models are guaranteed to converge
within given maximal epochs, except when the regulariza-
tion term weights are too large. The learning rate is set to
1e-2 for three tabular data, 1e-3 for MNIST, 1e-2 for CIFAR-
10, and 1e-4 for BP and ADHD. We set k′ = k for R2ET
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and its variants for three tabular datasets and image datasets,
and k′ = 20 for BP and ADHD. As for attacks, we conduct
attacks in a PGD-style (Madry et al., 2017) for at most 1000
iterations for tabular datasets, and perturb input with a 1e-3
budget in each iteration. Thus, each input in tabular datasets
can be manipulated with at most ϵ = 10−3 ∗ 1000 = 1
budget. The budget is set as 100∗5e−2 for CIFAR-10, and
100 ∗ 1e − 2 for the rest. Inputs are normalized in image
datasets such as CIFAR-10 and MNIST.

4.2. Compared Methods

We conduct two attacks in the PGD manner (Madry et al.,
2017): Explanation Ranking attack (ERAttack) and MSE
attack. ERAttack minimizes

∑k
i=1

∑n
j=k+1 h(x

′, i, j) to
manipulate the ranking of features in explanation I(x), and
MSE attack maximizes the MSE (i.e., ℓ2 distance) between
I(x) and I(x′). We compare the proposed defense strategy
R2ET with the following baselines.

• Vanilla: provides the basic ReLU model trained without
weight decay or any regularizer term.

• Weight decay (WD) (Dombrowski et al., 2021): uses
weight decay during training to bound Hessian norm.

• Softplus (SP) (Dombrowski et al., 2019; 2021): replaces
ReLU with Softplus(x; ρ) = 1

ρ ln(1 + eρx).

• Estimated-Hessian (Est-H) (Dombrowski et al., 2021):
Hessian norm as the regularizer, which is estimated by
the finite difference (Moosavi-Dezfooli et al., 2019):
∥∇f(x+κv)−∇f(x)

κ ∥2, where κ ≪ 1, v = sign(∇f(x))
||sign(∇f(x))||2 .

It can be considered an ablation variant of R2ET (λ1 = 0).

• Exact-Hessian (Exact-H): the exact Hessian norm is used
as the regularizer.

• SSR (Wang et al., 2020c): sets the largest eigenvalue of
the Hessian matrix as the regularizer.

• Adversarial Training (AT) for robust prediction
(Huang et al., 2016; Wong et al., 2020): find f by
minf

∑
(x,y)∈(XT ,YT )(Lcls(f ;x + δ∗, y)), where δ∗ =

argmaxδ −
∑k

i=1

∑n
j=k+1 h(x+ δ, i, j).

• R2ET-mm: selects multiple distinct i, j with minimal
h(x, i, j) as discussed in Sec. 3.2.

• R2ET\H and R2ET-mm\H: They are the ablation vari-
ants of R2ET and R2ET-mm, respectively, without opti-
mizing the Hessian-related term in Eq. (6) (λ2 = 0).

4.3. Overall robustness results

Attackability of ranking-based explanation. Table 1 re-
ports P@k under ERAttack and MSE attacks for every
model on all datasets. We observe that more than 50% of

models achieve at least 90% P@k under MSE attacks, con-
cluding that MSE attack cannot effectively alter the rankings
of salient features, even without extra defense (row Vanilla).
The ineffective attack method can give a false impression
of explanation robustness, and a stronger attack is needed.
ERAttack, on the other hand, can remove more salient fea-
tures from the top-k positions for most models and datasets,
leading to significantly lower P@k values than MSE attack.
For example, about 50% of the top 50 features are out of top
positions under ERAttack on average on ADHD, while less
than 20% of the top 50 features drop out of the top under
the MSE attack.

Effectiveness of ranking thickness against ERAttacks.
We compare the performance of different defense strategies
against ERAttack, which is more effective than MSE at-
tacks. Similar conclusion can be made with MSE attacks
case. First, R2ET and its variants achieve the best (highest)
top-k explanation robustness for most datasets, indicating
R2ET methods’ superiority for preserving the top salient
features. Second, it is counter-intuitive that R2ET\H , as
an ablation version of R2ET, outperforms R2ET on Adult
and Bank. The reason is that R2ET\H has a better rank-
ing thickness on these datasets than R2ET (see Fig. 3 in
Sec. 4.4). We conjecture that the number of features in
the dataset can serve as a straightforward and intuitive in-
dicator to determine the potential performance of R2ET or
R2ET\H in practical scenarios. Specifically, in cases where
the number of features is small, such as in the Adult, Bank,
and COMPAS datasets, it becomes easier to restrict the rel-
ative rankings among a limited set of features. As a result,
both R2ET\H and R2ET-mm\H demonstrate good perfor-
mance. In this case, reducing the Hessian norm diminishes
the gap between features and adversely affects robustness,
as observed when comparing Vanilla and Est-H or Exact-H.
Conversely, when the number of features is large, it be-
comes significantly more challenging to maintain all the
rankings solely by expanding the gaps between features,
which is the approach taken by R2ET\H and R2ET-mm\H .
Due to the sheer number of features involved, R2ET, which
simultaneously expands the gaps and minimizes the Hessian
norm, has the potential to outperform the other methods.
The theoretical discussion is disclosed in Sec. 3.2. Lastly,
we consider the baselines that strive for a smoother curva-
ture without considering the absolute gaps among feature
importance, including WD, SP, Est-H, Exact-H, and SSR.
Overall, their performance is unstable across datasets (SP on
COMPAS and Est-H on BP). However, the best performers
always have the largest thickness as demonstrated in Sec.
4.4. The above observations show that ranking thickness
is a more fundamental measurement of ranking robustness.
Besides that, Est-H, Exact-H, and SSR smooth the curvature
by adding Hessian-related terms, either Hessian norm or the
maximal eigenvalue of Hessian, and they perform similarly.
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Based on their performance in Table 1, optimizing Hessian
norm or its relevant terms solely is not sufficient to improve
the ranking thickness. Since it is extremely expensive to
compute the exact Hessian norm and its eigenvalues, both
Exact-H and SSR are inapplicable to MNIST, CIFAR-10,
ADHD and BP. We adopt “fast”-AT (Wong et al., 2020) for
AT baseline, where the inner maximization is solved by a
single-step attack to balance the training time and robust
performance. “Fast”-AT, however, suffers from unstable ro-
bust performance as studied in (Li et al., 2020), and cannot
perform well in most datasets.

4.4. Analysis on Ranking Thickness and Existing Metric

As shown in Table 1, R2ET and its variants are the winners
on almost all the datasets except COMPAS and BP, and
R2ET\H and R2ET-mm\H outperform their counterparts
(R2ET and R2ET-mm) on Adult and Bank. We aim to
identify the essential factor that helps a method outperform
others. We will use the number of iterations to reach a
successful attack where any salient feature is swapped out
of the top k positions of the original explanation.

To explore the correlations among metrics, for each sample
x, we collect the number of iterations to the first flip under
ERAttack, Hessian norm, and thickness. Each dot in Fig.
3 indicates one sample x, and the correlation coefficient
between metrics is shown in each subplot. Compared with
Hessian norm, thickness is significantly more correlated
with the number of iterations to the first flip. It indicates
that Hessian norm is not a strong indicator of explanation
ranking robustness. Recall the discussion in Sec 3.2, min-
imizing Hessian norm helps tighten the bounds. However,
optimizing Hessian norm solely may only marginally con-
tribute to the ranking robustness, and it is consistent with
the observations in Table 1, where Est-H and Exact-H do
not perform well most of the time. As thickness is a precise
measurement for the robustness of explanations, we further
report the model-level thickness, an average of thickness
over all samples, in Table 2. It could answer why R2ET can-
not always outperform baselines: On Adult and COMPAS,
R2ET\H has a higher thickness (0.999 and 0.973, resp.)
than R2ET (0.997 and 0.987, resp.). We have similar obser-
vations for BP, where Est-H has a higher thickness (0.93563)
than R2ET-mm (0.93561).

4.5. Case study: saliency maps visualization

Besides the robustness of ranking explanations, we hope
optimizing thickness can lead to models that identify the
ground-truth important features (e.g., pixels covering the
digits), since a model that robustly uses irrelevant features
is not useful in practice. MNIST and CIFAR-10 provide
suitable testbeds to visually evaluate whether R2ET forces
the model to use irrelevant features.
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Figure 3: Correlation between the number of iterations to first flip,
and ranking thickness (left) and Hessian norm (right) for R2ET
model on COMPAS.

In Fig.4, we conduct ERAttack against models trained with
different strategies. In MNIST, Vanilla performs poorly,
with about 30% ∼ 50% of the top 50 important features fell
out of top positions under ERAttack. WD improves P@k to
56% and 68% compared with Vanilla in the example. For
R2ET and R2ET-mm, it is difficult to find visible change
in the top salient features before and after ERAttack, and
P@k of both methods are greater than 90%. We can also
see that the top 50 salient pixels used by Vanilla and WD do
not highlight the spatial patterns of the digits. However, the
explanations show that the top 50 important features used by
R2ET and R2ET-mm encode recognizable spatial patterns
of the digits. We have similar conclusions in CIFAR-10.
Specifically, take the explanations on the ship in Fig. 4 bot-
tom as an example. Vanilla and WD perform badly in terms
of P@k, while R2ET and R2ET-mm achieve around as high
as 90% P@k. All four models make correct predictions
due to a similar region (front hull of the ship). However,
ERAttack manipulates the explanations of Vanilla and WD
to include another region (wheelhouse of the ship) while
the key regions of the explanations of R2ET and R2ET-mm
under attacks remain the same. The wheelhouse may be
one reason for classifying the image to ship, but the incon-
sistency of explanations due to imperceptible perturbations
raises confusion and mistrust.

4.6. Explanation Faithfulness

To ensure the faithfulness of explanations for R2ET models,
we evaluate their faithfulness using three widely accepted
metrics. The results, presented in Table 3, demonstrate that
the explanations provided by R2ET models are on par with,
if not superior to, other models in terms of faithfulness.

4.7. Sensitivity Analysis

Impacts of pretrain / retrain. We explore how good are
these methods when applying them in the retrain schema.
In previous experiments, all models are trained from ran-
dom states. We now retrain the Vanilla models with these
methods for 10 epochs at most. Since the Vanilla model has
already converged and reached a good cAUC, we assume
that the Vanilla model’s explanation ranking is an excellent
reference, and thus these robust methods try to maintain the
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Table 1: P@k (shown in percentage) of different robust models (rows) under ERAttack / MSE attack. k = 8 for the first three dataset,
and k = 50 for the rest. Numbers in bold indicate the winner on the dataset, and numbers indicate the runner-up. (∗ Est-H has 4.6% and
3.9% lower clean AUC than R2ET-mm under two attacks, respectively, and is less useful in practice.)

Method Adult Bank COMPAS MNIST CIFAR-10 ADHD BP

Vanilla 87.6 / 87.7 83.0 / 94.0 84.2 / 99.7 59.0 / 64.0 66.5 / 68.3 45.5 / 81.1 69.4 / 88.9
WD 91.7 / 91.8 82.4 / 85.9 87.7 / 99.4 59.1 / 64.8 64.2 / 65.6 47.6 / 79.4 69.4 / 88.6
SP 97.4 / 97.5 95.4 / 95.5 99.5 / 100.0 62.9 / 66.9 67.2 / 71.9 42.5 / 81.3 68.7 / 90.1

Est-H 87.1 / 87.2 78.4 / 81.8 82.6 / 97.7 85.2 / 90.2 77.1 / 78.7 58.2 / 83.7 75.0∗ / 91.4∗

Exact-H 89.6 / 89.7 81.9 / 85.6 77.2 / 96.0 - / - - / - - / - - / -
SSR 91.2 / 92.6 76.3 / 84.5 82.1 / 97.2 - / - - / - - / - - / -
AT 68.4 / 91.4 80.0 / 88.4 84.2 / 90.5 56.0 / 63.9 61.6 / 66.8 59.4 / 81.0 72.0 / 89.0

R2ET\H 97.5 / 97.7 100.0 / 100.0 91.0 / 99.2 82.8 / 89.7 67.3 / 72.2 60.7 / 86.8 70.9 / 89.5
R2ET-mm\H 93.5 / 93.6 95.8 / 98.2 95.3 / 97.2 81.6 / 89.7 77.7 / 79.4 64.2 / 88.8 72.4 / 91.0

R2ET 92.1 / 92.7 80.4 / 90.5 92.0 / 99.9 85.7 / 90.8 75.0 / 77.4 71.6 / 91.3 71.5 / 89.9
R2ET-mm 87.8 / 87.9 75.1 / 85.4 82.1 / 98.4 85.3 / 91.4 78.0 / 79.1 58.8 / 87.5 73.8 / 91.1

Table 2: P@k (shown in percentage) of different robust models (rows) under ERAttack and model-level thickness.

Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 87.6 / 0.9889 83.0 / 0.9692 84.2 / 0.9533 59.0 / 0.9725 45.5 / 0.9261 69.4 / 0.9282
WD 91.7 / 0.9960 82.4 / 0.9568 87.7 / 0.9769 59.1 / 0.9732 47.6 / 0.9343 69.4 / 0.9298
SP 97.4 / 0.9983 95.4 / 0.9978 99.5 / 0.9999 62.9 / 0.9771 42.5 / 0.9316 68.7 / 0.9300

Est-H 87.1 / 0.9875 78.4 / 0.9583 82.6 / 0.9557 85.2 / 0.9948 58.2 / 0.9578 75.0 / 0.9356
Exact-H 89.6 / 0.9932 81.9 / 0.9521 77.2 / 0.9382 - / - - / - - / -

SSR 91.2 / 0.9934 76.3 / 0.9370 82.1 / 0.9549 - / - - / - - / -
AT 68.4 / 0.9372 80.0 / 0.9473 84.2 / 0.9168 56.0 / 0.9639 59.4 / 0.9597 72.0 / 0.9342

R2ET\H 97.5 / 0.9989 100.0 / 1.0000 91.0 / 0.9727 82.8 / 0.9949 60.7 / 0.9588 70.9 / 0.9271
R2ET-mm\H 93.5 / 0.9963 95.8 / 0.9874 95.3 / 0.9906 81.6 / 0.9942 64.2 / 0.9622 72.4 / 0.9342

R2ET 92.1 / 0.9970 80.4 / 0.9344 92.0 / 0.9865 85.7 / 0.9949 71.6 / 0.9731 71.5 / 0.9296
R2ET-mm 87.8 / 0.9943 75.1 / 0.9102 82.1 / 0.9544 85.3 / 0.9948 58.8 / 0.9588 73.8 / 0.9356

Table 3: Faithfulness of explanations evaluated by DFFOT (↓) / COMP (↑) / SUFF (↓).

Method Adult Bank COMPAS MNIST ADHD BP

Vanilla 0.24 / 0.43 / 0.18 0.23 / 0.14 / 0.04 0.17 / 0.37 / 0.14 0.37 / 0.16 / 0.23 0.51 / 0.05 / 0.28 0.40 / 0.06 / 0.29
WD 0.45 / 0.47 / 0.23 0.36 / 0.27 / 0.07 0.29 / 0.41 / 0.18 0.37 / 0.16 / 0.22 0.49 / 0.06 / 0.27 0.35 / 0.05 / 0.33
SP 0.43 / 0.47 / 0.25 0.35 / 0.31 / 0.07 0.29 / 0.45 / 0.18 0.38 / 0.15 / 0.22 0.30 / 0.10 / 0.34 0.38 / 0.06 / 0.30

Est-H 0.44 / 0.44 / 0.24 0.18 / 0.21 / 0.06 0.27 / 0.42 / 0.17 0.23 / 0.24 / 0.18 0.59 / 0.04 / 0.26 0.45 / 0.05 / 0.24
Exact-H 0.43 / 0.46 / 0.23 0.19 / 0.14 / 0.04 0.30 / 0.40 / 0.18 - / - / - - / - / - - / - / -

SSR 0.54 / 0.39 / 0.21 0.46 / 0.04 / 0.01 0.32 / 0.43 / 0.18 - / - / - - / - / - - / - / -
AT 0.16 / 0.14 / 0.08 0.19 / 0.10 / 0.03 0.24 / 0.10 / 0.07 0.40 / 0.12 / 0.28 0.35 / 0.10 / 0.26 0.46 / 0.06 / 0.25

R2ET\H 0.13 / 0.50 / 0.14 0.34 / 0.32 / 0.10 0.17 / 0.40 / 0.17 0.23 / 0.22 / 0.19 0.38 / 0.13 / 0.37 0.43 / 0.07 / 0.29
R2ET-mm\H 0.42 / 0.47 / 0.22 0.34 / 0.41 / 0.14 0.25 / 0.42 / 0.17 0.25 / 0.22 / 0.21 0.37 / 0.17 / 0.37 0.42 / 0.07 / 0.29

R2ET 0.32 / 0.46 / 0.19 0.11 / 0.24 / 0.07 0.27 / 0.39 / 0.17 0.18 / 0.26 / 0.23 0.48 / 0.12 / 0.26 0.42 / 0.07 / 0.29
R2ET-mm 0.38 / 0.48 / 0.20 0.12 / 0.21 / 0.08 0.28 / 0.44 / 0.15 0.19 / 0.26 / 0.22 0.50 / 0.04 / 0.25 0.45 / 0.05 / 0.29

Vanilla model’s rankings. Thus, we will terminate the re-
training phase if P@k between Vanilla model’s explanation
ranking and the retrain model’s ranking significantly drops,
or the retrain model’s cAUC drops a lot.

Table 4 presents the results for comparing two training
schemas. Since the baseline SP changes the models’ struc-
ture (activation function), we do not consider it here. Instead,
we consider another baseline, CL (Hein & Andriushchenko,
2017), and it is adopted here due to much fewer re-training
epochs. More details for CL can be found in Sec. 3.2. Be-

sides that, none of retrain models by Exact-H and SSR can
maintain Vanilla model’s explanation rankings and cAUC
at the same time on Bank, and thus both are not applicable.

5. Related Work
Explainable machine learning and explanation robust-
ness. Recent post-hoc explanation methods for deep net-
works can be categorized into gradient-based (Zhou et al.,
2016; Selvaraju et al., 2017; Baldassarre & Azizpour, 2019;
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Vanilla WD R2ET R2ET-mm
ori. pert. ori. pert. ori. pert. ori. pert.

Original
Input

Figure 4: Top: With the Siamese network that compares two images from MNIST, saliency maps for the original and perturbed pairs
of input images under ERAttack against different robust methods. The examples of a pair of images are from the same class (digit 3).
Bottom: Two images from CIFAR-10, one from class ship and another from class deer. The top k (50 for MNIST and 100 for CIFAR-10)
salient pixels are highlighted, and darker colors indicate higher importance. The robustness metric P@k is printed within each subplot.
Table 4: P@k (shown in percentage) of models under ER-
Attack when the models are trained from a random state or
retrained from the Vanilla models.

Method Adult Bank COMPAS

Vanilla 87.6 / 87.6 83.0 / 83.0 84.2 / 84.2
WD 91.7 / 88.3 82.4 / 82.1 87.7 / 82.7
CL - / 93.1 - / 100.0 - / 87.1

Est-H 87.1 / 92.1 78.4 / 85.2 82.6 / 85.1
Exact-H 89.6 / 88.7 81.9 / - 77.2 / 87.0

SSR 91.2 / 88.7 76.3 / - 82.1 / 86.1

R2ET\H 97.5 / 100.0 100.0 / 100.0 91.9 / 97.8
R2ET-mm\H 93.5 / 100.0 95.8 / 98.3 95.3 / 95.6

R2ET 92.1 / 92.6 80.4 / 86.2 92.0 / 85.1
R2ET-mm 87.8 / 91.6 75.1 / 86.2 82.1 / 87.4

Smilkov et al., 2017; Sundararajan et al., 2017; Shrikumar
et al., 2017), surrogate model based (Ribeiro et al., 2016;
Huang et al., 2022), Shapley values (Lundberg & Lee, 2017;
Liu et al., 2020; Ancona et al., 2019), and causality (Pearl,
2018; Chattopadhyay et al., 2019). Although gradient-based
methods are widely used (Nielsen et al., 2022), they are
found to lack robustness against small perturbations (Ghor-
bani et al., 2019; Heo et al., 2019). Some works (Chen
et al., 2019; Singh et al., 2020; Ivankay et al., 2020; Wang
& Kong, 2022; Sarkar et al., 2021; Upadhyay et al., 2021)
propose to improve the explanation robustness by adversar-
ial training (AT). To bypass the high time complexity of
AT, some works propose replacing ReLU function with soft-
plus (Dombrowski et al., 2021), training with weight decay
(Dombrowski et al., 2019), and incorporating gradient- and

Hessian-related terms as regularizers (Wang et al., 2020c;
Wicker et al., 2023). Some works propose explanation meth-
ods, rather than training methods, to enhance explanation
robustness (Smilkov et al., 2017; Lu et al., 2021; Liu et al.,
2022; Chen et al., 2021; Manupriya et al., 2022; Rieger &
Hansen, 2020). Besides, many works (Madry et al., 2017;
Tu et al., 2019; Roth et al., 2020; Yang et al., 2020a;b; Deng
et al., 2021; Tsipras et al., 2018; Wen et al., 2020; Zhang
et al., 2019) for adversarial robustness focus on prediction
robustness, instead of explanation robustness.

Ranking robustness and manipulations. The ranking ro-
bustness is well-studied in information retrieval (IR), in
terms of “noise” (Zhou & Croft, 2006) and adversarial at-
tacks (Goren et al., 2018). In (Wang et al., 2020a), authors
attacked image ranking by maximizing (minimizing, resp.)
the similarity of mismatched (matched resp.) image pairs.
Black-box attacks (Li et al., 2021) and targeted manipu-
lations (Tolias et al., 2019) on rankings are also studied.
Attacks on IR and explanations are different in three aspects.
1) Vulnerabilities: IR has queries and candidates that can
be attacked (Zhou et al., 2020; 2021), while we focus on
attacking the gradient of classifiers via input manipulation.
2) Attacking objectives: On IR, authors either manipulate
the ranking of one single candidate, or manipulate query to
distort the ranking of candidates. We aim to swap any pairs
of salient and non-salient features. 3) Computations: expla-
nations are defined by gradient or its variants and studying
their robustness requires second or higher-order derivatives.
The cost of higher-order derivatives motivates us to design
a surrogate regularizer to bypass the costly computations.
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6. Conclusion
We proposed “explanation ranking thickness” to measure
the robustness of the top-ranked salient explaining features
to align with human cognitive capability when interpreting
a classifier’s predictions. We provided theoretical insights,
including surrogate bounds of the thickness, the connec-
tion between thickness and a min-max optimization prob-
lem, and a global convergence rate of a constrained multi-
objective attacking algorithm against the thickness. The
theory leads to a well-justified optimization problem and an
efficient training algorithm R2ET. On 7 datasets (vectors,
images, and graphs) and with 2 neural network architectures,
we compared 7 state-of-the-art baselines and 3 variants of
R2ET, and consistently confirmed that explanation ranking
thickness is indeed a strong indicator of the stability of top
salient features. In the future, we plan to consider it in the
natural language processing problems and to explore R2ET
with larger language models.
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