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Abstract

Graph learning benefits many fields. However, Graph Neural Networks (GNNs)
often struggle with scalability, especially on large graphs. At the same time, many
tasks seem to be simple in terms of learning, e.g., simple diffusion yields favorable
performance. In this paper, we present Random Propagation GNN (RAP-GNN),
a framework that addresses two main research questions: (i) can random prop-
agations in GNNs be as effective as end-to-end optimized GNNs? and (ii) can
they reduce the computational burden required by traditional GNNs? Our empir-
ical findings indicate that RAP-GNN reduces training time by up to 58%, while
maintaining strong accuracy for node and graph classification tasks.

1 Introduction

Graph learning has become crucial across fields like biology and recommendation systems, with
Graph Neural Networks (GNNs) at the core [1]. While GNNs perform well on various tasks, their
computational demands can be high due to backpropagation through every layer, making large-
scale training costly. Early studies introduced lightweight alternatives, such as diffusion [2, 3],
linear GNNs [4], and neighborhood sampling [5]. More recently, Forward-Forward learning [6]
bypassed backpropagation by training layers independently, including in GNNs [7, 8]. However,
this still requires training each layer and computing outputs for all classes. Random propagation in
GNNs, which uses random weights instead of backpropagation, offers a more efficient approach,
significantly reducing training time and computational costs. This method allows the processing of
deeper, larger graphs without significant performance loss [9–11], though it has been mostly limited
to simpler tasks and GNN architectures.

In this work, we address the following questions:

1. How effective is random propagation across various datasets and tasks, from small to large
graphs?

2. Can random weights, requiring only the final classifier to be trained, serve as a viable alternative
to current methods?

To explore this, we introduce Random Propagation GNN (RAP-GNN), a framework utilizing ran-
domly sampled weights in GNN layers and a pretrained feature embedding, requiring only the clas-
sifier to be trained. Our experiments on node and graph level tasks show that RAP-GNN cuts
training time by up to 58% while maintaining competitive accuracy compared to end-to-end trained
GNNs.
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2 Related Work

Several methods have been proposed to improve GNN training efficiency, as outlined below.

Backpropagation-Free Training Methods. The Forward-Forward approach simplifies training by
avoiding backpropagation and training each layer independently. Initially applied to computer vision
[6], it was later adapted to GNNs [7, 8]. However, training all layers and computing outputs for all
classes is still required. In contrast, our method only trains the classifier, using random propagation
through the GNN layers, which reduces computational overhead.

Graph Lottery-Ticket Hypothesis. The Graph Lottery-Ticket approach proposed recently [12, 13]
suggests that sparse sub-networks can perform as well as fully trained models. However, this method
requires pretraining the entire network to find these sub-networks, which remains computationally
intensive.

Random Models. The most closely related work comes from Reservoir Computing (RC), where
fixed, randomly sampled reservoirs capture graph dynamics without extensive training [14, 9, 15].
Traditional RC methods [14, 9] rely on recurrent forward passes until convergence or a set number
of iterations, which can be computationally demanding. FDGNN [9] introduced a GNN framework
with random, fixed weights for graph classification, using stability constraints in a recurrent setting.
MRGNN [15] extended this by “unrolling” the recurrent hidden layer, reducing time complexity.
These methods rely on static random weights and are primarily suited for graph classification, yet
demonstrate strong performance at lower computational cost. GCN-RW [10] further improved effi-
ciency with random filters optimized through least squares, enabling faster training in node classi-
fication tasks without sacrificing accuracy. Moreover, randomness in node features [16–19] and its
propagation has proven effective as a positional encoding technique [20] and within the normaliza-
tion layer [21]. Similarly, Yu et al. [22] explored how adding noise to graph features can improve
performance, paralleling the use of random initialization as a form of augmentation. Although the
method does not focus on improving training efficiency, it underscores the versatility of randomness
as a tool for improving efficiency and performance in GNN tasks.

Additionally, recent work [23, 24] questions the necessity of graph convolution during training,
suggesting that alternative methods, such as post-training modifications (e.g., Graph-ODE), can
achieve strong results. They highlight the potential for bypassing training of GNN layers, aligning
with the random weight techniques used in our method. Our RAP-GNN, which dynamically samples
random weights in each hidden GNN layer during every forward pass, similarly demonstrates that
full reliance on GNN may not be essential for achieving strong performance. This method enhances
representation flexibility while reducing computational overhead.

3 RAP-GNN

Figure 1: RAP-GNN Framework: We employ
an L-layer GNN with randomly sampled GNN
weights as defined in Equation (1) instead of
learnable GNN weights, paired with either a pre-
trained or learnable embedding.

In this section, we introduce RAP-GNN,
which uses randomness in GNN layers while
only training the final classifier. Random
weights for all GNN layers are sampled from a
uniform distribution at each forward pass, elim-
inating backpropagation and significantly re-
ducing computational costs. We also utilize a
pretrained feature embedding to process input
node features. The necessity of this pretrained
embedding is discussed in Appendix C. The full
architecture of RAP-GNN variants using ran-
domly sampled GNN weights is shown in Fig-
ure 1, with other variants detailed in Section 4.

The model RAP-GNN consists of three com-
ponents: (i) an embedding layer hpre

ϕ , (ii) a
stack of GNN layers with non-linearities gW,
and (iii) a classifier cθ. The embedding layer
hpre
ϕ : Rp → Rd maps input feature dimen-

sion, p, into a hidden-dimensional space, d, using a multi-layer perceptron (MLP) or a single-layer
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GNN. The GNN layers gW : Rn×d × Rn×n → Rn×d process these representations, with weights
W = [w(1),w(2), . . . ,w(L)] sampled uniformly at each forward pass. If hpre

ϕ is learnable, backprop-
agation through the GNN layers would be needed, but this is avoided with a pretrained embedding.
The classifier cθ : Rd → Y maps representations to the target space Y , with only the classifier
parameters θ learned during training. The model is trained in two phases:

Pretraining Phase. The embedding layer, hpre
ϕ , is pretrained on the dataset for the downstream task

using a simplified network, f pre = cpre
ϕ′ ◦ hpre

ϕ . This step optimizes the embedding layer to extract
meaningful features from the input data. By pretraining the embedding layer, the model captures
relevant features early on, eliminating the need to update ϕ during the main training phase.

Appendix C empirically demonstrates that using dynamic random embeddings at each call intro-
duces excessive noise, while fixed random embeddings lack adaptability during training, both of
which degrade accuracy. Therefore, this pretraining step is essential in scenarios where extensive
training is undesirable or impractical.

Training Phase. In the training phase, the key innovation is introducing randomness into the GNN
network, gW, which consists of L hidden layers. During each forward pass, a new random diagonal
weight matrix w(l) is sampled for each GNN layer. In Appendix A, we detail how w(l) is applied
across different GNN backbones, but it is generated as follows:

w(l) =


α
(l)
1 0

. . .

0 α
(l)
d

 (1)

where α(l) = [α
(l)
1 , . . . , α

(l)
d ] is a vector randomly sampled from the uniform distribution, with

d = hidden dims. The diagonal entries α
(l)
i are constrained to the interval [0, 1]. Thus, α(l) is

sampled from a uniform distribution U(0, 1). The diagonal structure ensures that each feature is
propagated independently by the corresponding α

(l)
i , thereby preventing full random weights from

mixing up the features. Limiting each w(l) to include values in [0,1], combined with GCN [25],
renders diffusion propagations, as shown in Eliasof et al. [26]. The main difference is that instead
of learning w(l), it is randomly sampled at each forward pass of the network. This controlled
propagation type allows the model to explore a rich variety of feature representations while avoiding
excessive disruption of the learned structure.

During backpropagation in this training phase, only the parameters θ of the classifier cθ are up-
dated based on the loss function, while W and ϕ remain unchanged. This eliminates the need for
backpropagation through the GNN layers, significantly reducing computational costs.

Inference with Majority Voting. During inference, majority voting is employed to enhance robust-
ness and generalization, with the number of votes, M, treated as a hyperparameter. For each vote
j ∈ {1, . . . , M}, a new random vector α(l) is sampled to generate a corresponding w(l), ∀l ∈ [L],
as outlined in Equation (1). The model then computes the output ŷj = f(xte) for each vote , where
xte is the testing data. The final prediction ŷ is determined by majority voting across all voters’
outputs ŷj . A similar scheme was used by Bevilacqua et al. [27] to reduce stochasticity in subgraph
sub-sampling.

Our approach leverages on-the-fly random sampling of diagonal weights for all GNN layers, com-
bined with a fixed pretrained embedding layer and a trainable classifier. This enhances generalization
across diverse graph structures while improving robustness and efficiency, as empirically validated
in Section 4 and Appendix D. The pseudocode for the algorithm is provided in Appendix A.

4 Experiments

We empirically address our key questions by first evaluating whether training the entire network is
necessary or if randomness in GNN layers can serve as an effective alternative. We assess the impact
of different randomness strategies on downstream performance using the Cora [28], CiteSeer [29],
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Table 1: RAP-GNN accuracy performance (%)↑ with a GCN backbone on node classification is
evaluated against two end-to-end networks. The results show that RAP-GNN achieves competitive
accuracy, even can surpass the baselines across various datasets with LEARNEMB.

Method ↓ / Dataset → CORA CITESEER PUBMED OGBN-ARXIV

NATURAL BASELINES
LW 81.50 ± 0.8 71.10 ± 0.7 79.00 ± 0.6 73.41 ± 0.2
LW + LEARNEMB + RNF 81.25 ± 0.6 70.34 ± 0.2 78.83±0.7 73.28 ± 0.3

RAP-GNN VARIANTS
IPW + LEARNEMB 82.28 ± 0.6 73.58 ± 0.2 78.86 ± 0.3 70.57 ± 0.1
IPW + LEARNEMB + RNF 81.86 ± 0.5 73.64 ± 0.3 79.14 ± 0.2 70.59 ± 0.2
FPW + LEARNEMB 81.92 ± 0.9 70.98 ± 0.5 78.34 ± 0.5 70.28 ± 0.6
FPW + LEARNEMB + RNF 82.34 ± 0.8 71.56 ± 0.3 79.13 ± 0.2 70.15 ± 0.4
DPW + LEARNEMB 82.82 ± 0.9 71.48 ± 0.7 78.76 ± 0.6 70.58 ± 0.3
DPW + LEARNEMB + RNF 84.36 ± 0.3 72.16 ± 0.6 79.32 ± 0.3 71.23 ± 0.2
DPW + PREEMB + RNF 83.33 ± 0.2 70.80 ± 0.3 78.70 ± 0.4 69.84 ± 0.4

PubMed [30] and ogbn-arxiv [31] datasets. Additionally, we compare the training and evaluation
times of these strategies with those of end-to-end backpropagation, using a GCN backbone [25].

For further evaluation across tasks and backbones, Appendix D provides results for graph classifi-
cation on TUDatasets [32] with a GIN backbone [33], and additional results on ogbn-arxiv using
GraphSage [5]. We also assess the performance of RAP-GNN using different randomness strate-
gies in the embedding layer versus a pretrained embedding on Cora, CiteSeer, and PubMed. Full
implementation details are in the Appendix E.

4.1 Impact of Randomness in GNN layers

We evaluate the impact of three randomness strategies in GNN weights: (i) Identity Propagation
Weights (IPW): All w(l) in W are identity matrices, passing input representations unchanged, with-
out using randomly sampled weights. (ii) Fixed Propagation Weights (FPW): All w(l) are randomly
initialized and fixed throughout. (iii) Dynamic Propagation Weights (DPW): All w(l) are randomly
sampled at each forward pass. Each strategy is tested with and without random features (RNF). To
optimize accuracy, we combine these strategies with a learnable embedding (LEARNEMB) trained
via backpropagation, comparing against a standard GCN with fully learnable weights (LW). We fur-
ther evaluate a RAP-GNN variant that combines a pretrained embedding (PREEMB) with DPW and
RNF. Additionally, we introduce another trained end-to-end baseline combining LW, LEARNEMB
and RNF. We use majority voting with voter count M = 5 for the Cora, Citeseer, and PubMed
datasets, and M = 3 for ogbn-arxiv in the RAP-GNN variants.

Firstly, without prioritizing runtime optimization, we focus on evaluating how different random-
ized sampling methods combined with LEARNEMB performs compared to fully end-to-end trained
networks. The results in Table 1 reveal consistent trends across the Cora, CiteSeer, and PubMed
datasets. Among the end-to-end baselines, the LEARNEMB setup slightly underperforms com-
pared to baseline without LEARNEMB, likely due to the less expressive MLP backbone used in
LEARNEMB compared to GCN. However, within the variations of RAP-GNN combined with
LEARNEMB, IPW achieves accuracy comparable to fully end-to-end models on all three datasets.
Even FPW, which limits random sampling in GNN, reaches the same accuracy levels as the end-to-
end baselines. Notably, DPW combined with LEARNEMB consistently improves over the end-to-end
networks across these datasets, highlighting the strength of leveraging randomness in GNN layers,
which can even surpass traditional fully learned networks.

On the more challenging ogbn-arxiv dataset, all variations of RAP-GNN combined with
LEARNEMB exhibit only a slight decrease in accuracy compared to the two end-to-end baselines,
further demonstrating that randomized GNN layers can still deliver competitive results.

We also notice that DPW with a pretrained embedding show a slight accuracy drop compared to a
learnable embedding across all datasets (since the embeddings aren’t updated during training), they
still outperform the end-to-end trained baselines on Cora. Although these are early-stage results,
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Table 2: Running time for training (TRAIN) and evaluation (TEST) with varying voter counts (M)
using a GCN backbone for node classification. RAP-GNN with PREEMB reduces training time by
58%.

Method ↓ / Dataset →
CORA (ms) OGB-ARXIV (ms)

TRAIN TEST
(M=5)

TEST
(M=1)

TRAIN TEST
(M=3)

TEST
(M=1)

NATURAL BASELINES
LW + LEARNEMB 4.89 – 0.31 438.78 – 214.28
LW + LEARNEMB + RNF 5.10 – 0.39 441.63 – 214.70

RAP-GNN VARIANTS
IPW + LEARNEMB 2.36 2.76 0.34 397.43 644.02 214.73
IPW + LEARNEMB + RNF 2.44 3.61 0.36 425.27 689.64 229.84
FPW + LEARNEMB 2.42 2.38 0.48 373.29 643.60 214.54
FPW + LEARNEMB + RNF 2.21 2.79 0.55 339.15 688.94 229.61
DPW + LEARNEMB 2.88 3.68 0.74 408.16 659.64 219.88
DPW + LEARNEMB + RNF 2.56 3.96 0.80 439.86 711.59 237.17
DPW + PREEMB + RNF 2.04 3.98 0.89 228.59 660.89 220.31

they underscore the potential of our approach for real-world applications where both accuracy and
efficiency are critical.

4.2 Time Analysis

To assess the efficiency of RAP-GNN, we report the average runtime for a single training epoch
(TRAIN) and on the whole test (TEST) on the small Cora dataset (with M = 5 votes) and the larger
ogbn-arxiv dataset (with M = 3 votes). For a fair comparison, all models are configured with the
same number of hidden channels, layers, and random features (for RNF models).

In Table 2, we demonstrate that RAP-GNN offers a significant advantage in training efficiency.
On Cora, using PREEMB and DPW reduces training time by 58% compared to end-to-end training,
as we only need to backpropagate through the classifier. Similarly, on ogbn-arxiv, using PREEMB
and DPW reduces training time by 47%. The pretraining times, shown in Appendix D.4, reveal
that even when combined with pretraining, the total training time for PREEMB and DPW remains
substantially lower than methods with fully learnable weights. Variants using LEARNEMB also
show reduced training times, particularly with IPW and FPW, where layer weights are fixed.

However, during evaluation, all RAP-GNN variants experience slower performance due to the need
for majority voting (M>1). When M=1 (i.e., without majority voting), the evaluation time is compa-
rable, although DPW lags slightly due to random sampling at each forward pass. Accuracy compar-
isons for both with and without majority voting on the Cora and ogbn-arxiv datasets are provided in
Appendix D.3, suggesting that further investigation is needed into the impact of majority voting.

5 Conclusion

We demonstrate that RAP-GNN achieves competitive accuracy in node and graph classification
tasks across various small- and large-scale datasets with different GNN backbones while notably
reducing training time. These findings highlight that the key component of RAP-GNN, random
sampling GNN weights, offers an effective and efficient alternative to end-to-end trained models.
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[17] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surpris-
ing power of graph neural networks with random node initialization. In Proceedings of the
Thirtieth International Joint Conference on Artifical Intelligence (IJCAI), 2021.

[18] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM),
pages 333–341. SIAM, 2021.

6



[19] Omri Puny, Heli Ben-Hamu, and Yaron Lipman. Global attention improves graph networks
generalization. arXiv preprint arXiv:2006.07846, 2020.

[20] Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International Confer-
ence on Machine Learning, pages 9202–9223. PMLR, 2023.

[21] Moshe Eliasof, Beatrice Bevilacqua, Carola-Bibiane Schönlieb, and Haggai Maron. Granola:
Adaptive normalization for graph neural networks. arXiv preprint arXiv:2404.13344, 2024.

[22] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are
graph augmentations necessary? simple graph contrastive learning for recommendation. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’22, page 12941303, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531937.

[23] Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Liancheng Fang, and
Philip S Yu. Do we really need graph convolution during training? light post-training graph-
ode for efficient recommendation. arXiv preprint arXiv:2407.18910, 2024.

[24] Mingxuan Ju, William Shiao, Zhichun Guo, Yanfang Ye, Yozen Liu, Neil Shah, and Tong
Zhao. How does message passing improve collaborative filtering? Advances in neural infor-
mation processing systems, 2024.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[26] Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with learn-
able propagation operators. In International Conference on Machine Learning, pages 9224–
9245. PMLR, 2023.

[27] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph ag-
gregation networks. arXiv preprint arXiv:2110.02910, 2021.

[28] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3:127–163,
2000.

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[30] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active
surveying for collective classification. In 10th international workshop on mining and learning
with graphs, volume 8, page 1, 2012.

[31] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[32] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Tudataset: A collection of benchmark datasets for learning with
graphs. arXiv preprint arXiv:2007.08663, 2020.

[33] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[34] Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing
gnns for node classification. arXiv preprint arXiv:2406.08993, 2024.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

7



[36] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[37] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

[38] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pages 5453–5462. PMLR, 2018.

8

https://www.wandb.com/
https://www.wandb.com/


A Method Algorithm

In this section, we outline the steps in RAP-GNN, in Algorithm 1.

Algorithm 1 Pretraining, Training and Evaluation Procedure in RAP-GNN

1: Initialize Model: f = cθ ◦ gW ◦ hpre
ϕ

• Feature embedding: hpre
ϕ : Rp → Rd

– A MLP or 1-hidden GNN layer
– p is node feature dimension
– d is the chosen hidden dimension for GNN layers

• Random-weight GNN Embedding: gW : Rn×d × Rn×n → Rn×d

– GNN with L hidden layers and random weight of each layer denotes as w(l)

• MLP classifier: cθ : Rd → Y
– Y is the target space

2: Pretraining Phase for hpre
ϕ

3: Initialize learning rate ηpre and max epochs T pre for the pretraining process.
4: for i = 1 to T pre do
5: for xtr in Datatr do ▷ Datatr is training dataset.
6: ŷ = cpre

ϕ′ ◦ hpre
ϕ (xtr)

7: Compute the downstream task loss between the ground-truth y and ŷ.
8: Update cpre

ϕ′ and hpre
ϕ parameters using a gradient-descent method (Adam) with a learning

rate ηpre.
9: end for

10: end for

11: Training Phase
12: Initialize learning rate η and max epochs T for training the model using full standard training

data.
13: for i = 1 to T do
14: for xtr in Datatr do ▷ Datatr is training dataset.
15: Sample L random vectors α(l) ∈ [0, 1]d.
16: Generate random GNN weight matrices w(l) using α(l). ▷ Equation (1)
17: Compute model output ŷ = f(xtr).
18: Update cθ parameters using a gradient-descent method (Adam) with learning rate η.
19: end for
20: end for

21: Evaluation Phase
22: Set the number of voters M
23: for j = 1 to M do
24: for xte in Datate do ▷ Datate is testing dataset.
25: Sample L random vectors α(l) ∈ [0, 1]d.
26: Generate random GNN weight matrices w(l) using α(l). ▷ Equation (1)
27: Compute the model output ŷj = f(xte).
28: end for
29: end for
30: Compute final prediction ŷ via majority voting over {ŷ1, ŷ2, . . . , ŷM}.

Each w(l) functions as a GNN weight matrix, but its application depends on the specific GNN back-
bone used. Below, we illustrate how w(l) is utilized in two GNN backbones: GCN and GraphSAGE,
both with L hidden layers. For generalization, consider the transition from the (l−1)-th layer to the
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l-th layer, where x(l−1) represents the output from (l − 1)-th layer, also the input of the l-th layer,
while x(l) is the output of the l-th layer).

GCN. The forward pass formula for the l-th GCN layer, with σ(·) as the non-linear activation
function (e.g., ReLU), is:

x(l) = σ(Ãx(l−1)w(l))

where Ã = D− 1
2AD− 1

2 , where D is the node degree-matrix and A denoting the adjacency matrix.
In RAP-GNN variants, all w(l) are randomly sampled on-the-fly as diagonal matrices, as shown in
Equation (1).

GraphSAGE. The forward pass formula for the l-th GraphSAGE layer is:

x(l)
v = σ

(
w(l) · AGGREGATE

(
{x(l−1)

v } ∪ {x(l−1)
u , ∀u ∈ N (v)}

))
Where:

• x
(l)
v is the embedding of node v at layer l-th, which is a component in x(l−1).

• N (v) denotes the set of neighbors of node v.
• AGGREGATE is a neighborhood aggregation function (e.g., mean, LSTM, pooling).

• w(l) is a trainable weight matrix at layer l, but with RAP-GNN variants, w(l) are randomly
sampled on-the-fly as diagonal matrices, as shown in Equation (1).

• σ(·) is a non-linear activation function.

B Discussion on Equivariance

Recall that each weight matrix w(l) is randomly sampled at every forward pass. In practice, in all
experiments in this paper, since each w(l) is sampled for every forward pass, it is the same for all
graphs in the same batch, but it is different for graphs in different batches. This implies that the
output of RAP-GNN is permutation equivariant for each graph, but not across graphs. In other
words, isomorphic nodes within each graph are assigned the same representation, while isomorphic
nodes in different graphs may receive different representations.

This approach introduces a middle ground between permutation-equivariant GNNs, which assign the
same representation to isomorphic nodes, regardless if they are in the same or in different graphs,
and permutation-sensitive methods, such those employing RNF, which instead differentiate isomor-
phic nodes (with high probability). We believe that this hybrid approach makes it easier to yield
correct predictions compared to RNF models, especially in the case of node classification task, as
demonstrated by our experiments. Indeed, as isomorphic nodes are still assigned the same repre-
sentation within a graph, the classifier does not need to map the different representations of the
isomorphic nodes within a graph to the same prediction. We believe that properly investigating this
aspect represents an interesting avenue for future research.

C Impact of Initial Embeddings

In this section, we examine how various configurations of the initial MLP-based embedding layer
affect RAP-GNN’s performance on the Cora, CiteSeer, and PubMed datasets. The primary role
of this embedding layer is to extract meaningful features from the input data, enhancing overall
model performance. To assess the impact of these configurations, we conduct an ablation study
while keeping the GNN weights sampled on-the-fly, and majority voting scheme as described in
Section 3. Specifically, we explore five distinct setups for sampling the MLP feature embedding
weights.

For random sampling of ϕ in hpre
ϕ , the Identity Propagation Embedding (IPE), Fixed Propagation

Embedding (FPE), and Dynamic Propagation Embedding (DPE) configurations apply the corre-
sponding random sampling schemes to the GNN weights, as detailed in Section 4.1. For the learn-

10



Table 3: Ablation Study of MLP Embedding Configuration for Node Classification (↑) using GCN.

Method ↓ / Dataset → CORA CITESEER PUBMED

NATURAL BASELINES
LW 81.50 ± 4.8 71.10 ± 0.7 79.00 ± 0.6

RAP-GNN VARIANTS
DPW + IPE + RNF 78.44 ± 2.95 OOM 73.46 ± 1.11
DPW + FPE + RNF 82.82 ± 0.95 71.48 ± 0.73 78.76 ± 0.55
DPW + DPE + RNF 26.30 ± 6.08 25.22 ± 0.85 37.28 ± 1.36
DPW + LEARNEMB + RNF 84.36 ± 0.29 72.16 ± 0.57 79.32 ± 0.26
DPW + PREEMB + RNF 83.33 ± 0.19 70.80 ± 0.32 78.70 ± 0.35

able embedding configurations, we evaluate two setups: (1) Learnable Embedding (LEARNEMB),
where the MLP weights are learned alongside the classifier while maintaining dynamic random
propagation in the GNN, and (2) Pretrained Embedding (PREEMB), where the MLP embedding is
pretrained without the GNN and remains fixed during the main training phase (as outlined in Sec-
tion 3). These setups are compared to the natural baseline model with fully learnable weights (LW),
where all parameters are learnable during training.

The results in Table 3 offer valuable insights into the different configurations. Among the random
propagation methods, the DPE setupwhere both MLP and GNN layers have random weightsstrug-
gles to learn across all datasets, indicating that randomization in both layers hinders effective fea-
ture learning. Similarly, the IPE setup (excluding the MLP) causes significant performance drops on
Cora and PubMed and leads to Out-of-Memory (OOM) issues on CiteSeer, which has more features,
underscoring the impracticality of this approach for larger-scale datasets.

In contrast, the FPE configuration, where the MLP weights are fixed after initialization, shows
improvements on Cora and CiteSeer but provides no significant gains on PubMed. This can be
attributed to the same limitations found with Fixed Propagation in GNN layers, as discussed in Sec-
tion 4.1, due to insufficient propagation. Nonetheless, fixed MLP weights still enable the model to
learn meaningful features when paired with random GNN weights.

The LEARNEMB combined with DPW configuration demonstrates substantial gains across all
datasets, even surpassing the baseline GCN. However, this setup requires backpropagation through
the entire network, despite only updating the MLP embedding and classifier, increasing training
complexity and reducing scalability. Nonetheless, the strong performance shows that a learnable
embedding is essential, as random sampling at this stage fails to extract meaningful features, setting
the upper bound for all variants using DPW.

To reduce training complexity, the PREEMB setup provides a balanced option. While it is slightly
less accurate than the learnable embedding, it still outperforms the GCN baseline on Cora. However,
its performance on CiteSeer and PubMed is lacking, despite its superior training time as shown in
Table 2, indicating potential areas for improvement. Nonetheless, we believe the combination of
PREEMB with DPW presents promising opportunities for further exploration.

D Further Evaluation

D.1 Evaluation on Graph Classification Tasks

In this section, we extend our evaluation to a different taskgraph classificationusing a new GNN
backbone, GIN [33], on TUDatasets [32]. We compare IPW, FPW, and DPW combined with learn-
able embedding (LEARNEMB) and DPW combined with pretrained embedding (PREEMB) against
the natural baseline (LW), which trains the network end-to-end. We also included a network training
end-to-end using RNF, LW + RNF [18], as we also incorporate RNF in the proposed method.

The results in Table 4 indicate that the variants of our proposed method, RAP-GNN, consistently
achieve competitive accuracy compared to networks trained end-to-end with fully learnable weights.
Notably, the combination of DPW with LEARNEMB either outperforms or matches the performance
across all datasets. This demonstrates that RAP-GNN, despite not requiring training of all GNN
weights in the hidden layers, can still achieve comparable results to end-to-end models. These find-
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Table 4: Graph classification accuracy (%) ↑ on TUDatasets.

Method ↓ / Dataset → MUTAG PTC PROTEINS

NATURAL BASELINES
LW + RNF [18] 90.8 ± 4.8 64.4 ± 6.7 74.1 ± 2.6
LW + LEARNEMB + RNF 89.9 ± 6.4 62.5 ± 6.9 76.7 ± 4.1

RAP-GNN VARIANTS
IPW + LEARNEMB + RNF 91.0 ± 4.7 61.9 ± 7.6 74.6 ± 4.0
FPW + LEARNEMB + RNF 91.0 ± 4.1 61.8 ± 10.6 75.3 ± 3.9
DPW + LEARNEMB + RNF 92.5 ± 2.6 65.2 ± 5.3 76.5 ± 4.9
DPW + PREEMB + RNF 89.9 ± 5.5 64.0 ± 4.6 76.3 ± 6.0

Table 5: Node classification accuracy (%) ↑ with GraphSage backbone.

Method OGBN-ARXIV

NATURAL BASELINES
LW [34] 73.08 ± 0.1

RAP-GNN VARIANTS
DPW + LEARNEMB + RNF 70.36 ± 0.2
DPW + PREEMB + RNF 69.83 ± 0.3

ings reinforce the potential of RAP-GNN to enhance both accuracy and computational efficiency
across various GNN architectures and tasks. However, similar to the results shown in Section 4.1
for node classification, there is a slight performance decrease when comparing DPW combined with
LEARNEMB and PREEMB, highlighting it as a promising strategy for scenarios where scalability
and efficiency are critical without sacrificing performance.

D.2 Evaluation with different GNN backbones

We further evaluate the performance of RAP-GNN using another GNN backbone, GraphSage [5],
on the large-scale dataset ogbn-arxiv. In all experiments, the feature embedding consists of a 1-
hidden GNN layer, utilizing the same GraphSage backbone as the GNN hidden layers. We compare
the combinations of DPW with LEARNEMB and PREEMB with RNF against networks trained end-
to-end with the GraphSage backbone.

The results of this experiment are presented in Table 5. Consistent with the results observed using
the GCN backbone in Appendix D.1, both combinations of DPW with LEARNEMB and PREEMB
with RNF show only a small gap in accuracy, although they slightly lag behind the natural baseline
trained end-to-end.

Although these results are still in the early stages and require further refinement, they provide strong
empirical evidence for the effectiveness and efficiency of using random weights in GNN hidden
layers, compared to traditional networks that require all components to be learned.

D.3 Accuracy Analysis Using Majority Voting

In this section, we present the accuracy results with and without majority voting during the evalua-
tion phase for the Cora and ogbn-arxiv datasets. The corresponding run times are shown in Table 2
in Section 4.

As seen in Table 6, for the Cora dataset, the accuracy with M=1 (without majority voting) is compa-
rable to that with majority voting (M=5) and still surpasses the end-to-end trained networks. On the
ogbn-arxiv dataset, the accuracy remains the same with (M=3) and without (M=1) majority voting,
although it does not match the performance of end-to-end trained networks.

When we consider the run times from Table 2 in Section 4 with and without majority voting on both
datasets, it becomes clear that omitting majority voting (setting M=1) significantly reduces inference
time while maintaining comparable accuracy. This suggests that further investigation is needed to
determine whether majority voting should be retained or dropped for better efficiency.
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Table 6: Node classification accuracy (%)↑ for Cora and ogbn-arxiv with (M>1) and without (M=1)
majority voting. The results show that without majority voting (M=1) achieves accuracy comparable
to using majority voting.

Method ↓ / Dataset → CORA OGBN-ARXIV

M=5 M=1 M=3 M=1

NATURAL BASELINES
LW – 81.50 ± 0.8 – 73.41 ± 0.2
LW + LEARNEMB + RNF – 81.25 ± 0.6 – 73.28 ± 0.3

RAP-GNN VARIANTS
IPW + LEARNEMB 82.28 ± 0.6 81.72 ± 0.2 70.57 ± 0.1 70.28 ± 0.1
IPW + LEARNEMB + RNF 81.86 ± 0.5 81.86 ± 0.2 70.59 ± 0.2 70.63 ± 0.2
FPW + LEARNEMB 81.92 ± 0.9 82.32 ± 0.3 70.28 ± 0.6 70.01 ± 0.5
FPW + LEARNEMB + RNF 82.34 ± 0.8 82.62 ± 0.4 70.15 ± 0.4 69.98 ± 0.6
DPW + LEARNEMB 82.82 ± 0.9 82.52 ± 0.6 70.58 ± 0.3 70.84 ± 0.3
DPW + LEARNEMB + RNF 84.36 ± 0.3 83.16 ± 0.6 71.23 ± 0.2 70.92 ± 0.4
DPW + PREEMB + RNF 83.33 ± 0.2 83.07 ± 0.5 69.84 ± 0.4 69.23 ± 0.1

Table 7: Runtime for pretraining (PRETRAIN) and training (TRAIN). The total time for both pre-
training and training phases with RAP-GNN is shorter than that of end-to-end training methods.

Method ↓ / Dataset → CORA (ms) OGBN-ARXIV (ms)

PRETRAIN TRAIN PRETRAIN TRAIN

NATURAL BASELINES
LW + LEARNEMB – 4.89 – 438.78
LW + LEARNEMB + RNF – 5.10 – 441.63

RAP-GNN VARIANTS
DPW + PREEMB + RNF 1.09 2.04 41.60 228.59

D.4 Training Time Analysis for RAP-GNN with PREEMB embeddings

In this section, we present the average runtime per epoch during the pretraining phase for the Cora
and ogbn-arxiv datasets, as shown in Table 7. For smaller datasets like Cora, the time-saving benefits
of using RAP-GNN combined with a pretrained embedding are less pronounced, as the total time
for both the pretraining and training phases (as shown in Table 2, Section 4) is only slightly shorter
than that of end-to-end trained networks. However, for larger datasets like ogbn-arxiv, the difference
becomes significantly more substantial. The combined pretraining and training time is over half that
of end-to-end training, leading to considerable time savings. This underscores the scalability and
efficiency of RAP-GNN with a pretrained embedding for graph learning tasks.

E Experiment Details

Our experiments were conducted using the PyTorch [35] and PyTorch Geometric [36] frameworks,
utilizing WandB [37] for hyperparameter sweeps. In this section, we provide details on our specific
implementation of the experiments.

Table 8 outlines the hyperparameter search space for all datasets. Note that all w(l) matrices must
be square, which requires that the input and output dimensions of all hidden layers in gW are the
same, and are all equal to HIDDEN DIM.. We use L to denote the number of hidden layers in gW.
For Cora, CiteSeer, PubMed, and all datasets under TUDatasets, the number of MLP layers for the
embedding is treated as a hyperparameter, while the hidden and output dimensions of the MLP are
set equal to HIDDEN DIM.. All hyperparameter search details are provided Table 8.

Node Classification Tasks. For the Cora, CiteSeer, and PubMed datasets, all networks use a GCN
backbone. The LW implementation follows the PyTorch Geometric example, incorporating Jumping
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Table 8: Hyperparameters search for all models in different datasets, where L is the number of
hidden layers in gW and HIDDEN DIM. denotes the dimension of all hidden layers in gW.

Dataset #LAYER in hpre
ϕ L LEARNING RATE HIDDEN DIM. #EPOCHS BATCH SIZE DROPOUT #RNF

Node Class.
CORA {1, 2} {2, 4, 8, 16} {0.01, 0.007, 0.005, 0.001} {16, 32} {700} – {0, 0.25, 0.4, 0.5} {0, 2, 4, 6, 8}
CITESEER {1, 2, 3} {2, 4, 6} {0.01, 0.007, 0.005, 0.001} {16, 32, 64, 128} {1000} – {0, 0.25, 0.4, 0.5} {0, 2, 4, 6}
PUBMED {1, 2, 3} {4, 6, 8, 12} {0.01, 0.007, 0.005, 0.001} {16, 64, 128, 256} {1000} – {0, 0.25, 0.4, 0.5} {0, 4, 8, 12, 16}
OGBN-ARXIV {1} {5, 6, 7, 8} {0.05, 0.01, 0.005, 0.001} {128, 256} {2000} – {0, 0.25, 0.5, 0.6} {0, 4, 6, 8}
Graph Class.
MUTAG {1, 2, 3} {1, 2, 3} {0.05, 0.03, 0.01, 0.007} {16, 64, 128} {1000} {64, 128, 512} {0.2} {0, 2, 4, 6}
PTC {1, 2, 3} {2, 3, 4, 6} {0.05, 0.03, 0.01, 0.007} {16, 64, 128} {1000} {64, 128, 512} {0.2} {0, 2, 4, 8, 12}
PROTEINS {1, 2, 3} {1, 2, 3, 4} {0.05, 0.03, 0.01, 0.007} {16, 32, 64} {1000} {128, 256, 512} {0.2} {0, 2, 4, 8, 12}

Knowledge (JK) [38]. All variants of RAP-GNN are built on this foundation, using MLP-based
embeddings. We set M=5 for the results reported with the Cora, CiteSeer, and PubMed datasets.

For the ogbn-arxiv dataset, the implementation is based on [34], featuring both GCN and GraphSage
backbones. As mentioned, the embedding shares the same backbone as the GNN layers, with just
one hidden layer (no further tuning). All variants of RAP-GNN are implemented on this structure.
We utilize 3 voters for the results reported with the ogbn-arxiv dataset.

Moreover, in all node classification tasks, batching is not required for either training or evaluation;
therefore, the batch size column in Table 8 for all datasets under node classification tasks is left
blank.

Furthermore, for all considered experiments in all node classification tasks, we show the mean ±
std. of 5 runs with different random seeds.

Graph Classification Tasks. For the TUDatasets, the LW implementation follows the PyTorch
Geometric example, using GIN as the backbone. The three datasets used for evaluation are MUTAG,
PROTEINS, and PTC_MR (PTC). All variants of RAP-GNN build on this foundation, again using
MLP-based embeddings. We use 5 voters for the results presented in Table 4.

For evaluation, we followed the method used in Xu et al. [33]. For each dataset, we report the mean
± standard deviation of the validation accuracies across 10 folds in the cross-validation.
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