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Abstract
This study explores the sample complexity for two-layer neural networks to learn a generalized
linear target function under Stochastic Gradient Descent (SGD), focusing on the challenging regime
where many flat directions are present at initialization. It is well-established that in this scenario
n = O(d log d) samples are typically needed. However, we provide precise results regarding the
pre-factors in high-dimensional contexts and for varying widths. Notably, our findings suggest that
overparametrization can only enhance convergence by a constant factor within this problem class.
These insights are grounded in the reduction of SGD dynamics to a stochastic process in lower
dimensions, where escaping mediocrity equates to calculating an exit time. Yet, we demonstrate that
a deterministic approximation of this process adequately represents the escape time, implying that
the role of stochasticity may be minimal in this scenario.

1. Introduction

In this manuscript we are interested in the supervised task of learning the following target function:

y = σ⋆

(
w⊤
⋆ x
)
+
√
∆z, (1)

where x ∼ N (0, 1/dId), z ∼ N (0, 1). This target belongs to a general class of models known as
single-index or generalised linear models, where the labels depend on the covariates x ∈ Rd only
through its projection on a fixed direction w⋆ ∈ Rd, followed by a non-linear real-valued function
σ⋆ : R → R. The popularity of this model is that different separation results can be shown in the
high-dimensional limit where d ≫ 1:

• In the well-specified setting where we fit an isotropic single-index model with the same hypothesis
class (i.e. fθ(x) = σ⋆(w

⊤x)), it has been shown that the sample complexity of one-pass SGD1 is
determined by the first non-zero Hermite coefficient of the target σ⋆, also known as the information
exponent [7]. Problems with non-zero first Hermite have information exponent k = 1, and w⋆ can be
learned at linear sample complexity n = O(d). Instead, problems with zero first and non-zero second
Hermite coefficient have information exponent k = 2, requiring instead n = O(d log d) samples
[7, 42].
• For fully-connected two-layer neural networks fθ(x) = a⊤σ(Wx), several results are known under
different assumptions. For fixed first layer weights W ∈ Rp×d (a.k.a. random features model) and
large enough width p, learning the k-th order Hermite coefficient σ⋆ requires n = O(dk) samples [28],
implying a sample complexity of n = O(d2) for a quadratic problem, e.g. σ⋆(x) = x2. Recently,

1. Which we recall the reader is equivalent to the convergence rate.
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it was shown that wide networks (p → ∞) can achieve the well-specified sample complexity of
n = O(d) under one-pass SGD, provided that all Hermite coefficients of both σ⋆, σ are non-zero [9].
In particular, this assumption cover only problems with information exponent k = 1, excluding hard
cases such as quadratic problems. Finally, for σ(x) = σ⋆(x) = x2, [38] has shown that for p large
enough, full-batch gradient flow achieves sample complexity n = 2d, although at a running time of
t = O(log d).

With the exception of [9], the works mentioned above cover the scaling of the sample complexity in
the high-dimensional limit. Our goal is, instead, to derive sharp results for the sample complexity of
learning (1) with a fully-connected two-layer neural network in the challenging case where σ⋆ has
a vanishing first Hermite coefficient. As discussed above, this case violates the “standard learning
scenario” of [9], and can be seen as a proxy for hard learning problems for descent-based algorithms.
For concreteness, in the following we focus on the purely quadratic case:

y =
(
w⊤
⋆ x
)2

+
√
∆z, w⋆ ∈ Sd−1(

√
d) (2)

Learning the target (2) consists of learning the non-linearity σ⋆(x) = x2 and the direction w⋆. In
this work, we focus our attention in the second part, considering the following architecture with
squared-activation:

fΘ(x) =
1

p

p∑
i=1

ai(w
⊤
i x)

2. (3)

where Θ = (a,W ) is the set of trainable weights, which are trained with one-pass stochastic gradient
descent (SGD):

Θν+1 = Θν − γ∇Θℓ(y
ν , fΘν (xν)) (4)

with square loss ℓ(y, x) = 1/2(y − x)2 and initial condition Θ0 = (a0,W 0). Note that at each step
ν, the gradient is evaluated at a fresh pair of data (xν , yν) ∈ Rd+1 drawn from the model (2). In
particular, this implies that after ν ∈ [n] steps, the algorithm has seen n data points.

Learning in this problem is hard, and can be compared to finding a needle in a haystack.
Indeed, with the exception of one direction that points towards ±w⋆, the population risk at (random)
initialization is mostly flat. This slows down the dynamics, which takes a long time to establish a
significant correlation with the signal - a scenario we refer to as escaping mediocrity.

At first, the particular case of purely quadratic activation might appear too specific. Indeed, as
we will see later the population risk for this task has a a global maximum at initialization and a
degenerated set of global minima. The choice of more general σ⋆ and σ with zero first Hermite
but not necessarily zero higher-order coefficients might give rise to other critical points such as
saddle-points, giving rise to a more complex SGD dynamics. However, since the focus of this work
is on escaping mediocrity, our conclusions will hold, up to constants, to more general activations
with information exponent equal to 2 .

Summary of results — Our main contributions in this manuscript are:

• We derive a deterministic set of ODEs providing an exact and analytically tractable description
of the one-pass SGD dynamics in the high-dimensional limit d → ∞, and characterize the leading
order stochastic corrections to this limit.
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• We provide an analytical formula for the number of samples required for one-pass SGD to learn the
phase retrieval target in high-dimensions at arbitrary network width. We show that overparametriza-
tion can only improve convergence by a constant factor for phase retrieval.
• Finally, we compute the leading order stochastic corrections to the exit time, and show that
stochasticity does not help escaping the flat directions at initialization. This suggests that the
deterministic descriptions is enough to fully capture the phenomenology of the dynamics in this
problem.

All the codes used for numerical experiments are provided in this anonymous repository. Further
related work is discussed in App. A.

We introduce our key theoretical tool, which consists in low-dimensional reduction of the
projected SGD dynamics (4); in Appendix B we derive the high-dimensional limit d → ∞ of
interest.

Sufficient statistics — The key observation is to notice that the population risk only depends on
the hidden-layer weights W ∈ Rp×d through the the second layer weights a ∈ Rp and the weights
correlation matrices Ω ∈ R(p+1)×(p+1)

Ω:=

(
Q m
m⊤ 1

)
=

(
1/dWW⊤ 1/dWw⋆

1/d (Ww⋆)
⊤ 1

)
(5)

The explicit expression of the population risk is:

R(Θ) = E
[
ℓ(y, fΘ(x))

]
=

∆+ 3

2
− 1

p

p∑
j=1

aj

(
Qjj + 2m2

j

)
+

1

2p2

p∑
j,l=1

ajal(QjjQll + 2Q2
jl)

(6)

Notice that the matrices M,Q are precisely the second moments of the pre-activations (λ⋆, λ) =
(w⊤

⋆ x,Wx) ∈ Rp+1. Therefore, to characterize the evolution of the risk throughout SGD, it is
sufficient to track the evolution of the first layer weights ai and the correlation matrices m,Q, which
consists of p(p+ 1) parameters.

2. Escaping mediocrity in the well-specified scenario

As a starting point, we consider the well-specified case of p = 1. In this section, we show that in
the high-dimensional limit, the sample complexity constant for one-pass SGD can be well estimated
from the deterministic reduction (12). In particular, we show that the stochastic corrections from a
finer analysis of the process (12) can be neglected.

Exit time from deterministic limit— We now move to the description of the one-pass SGD
dynamics. Our key goal in this section is to determine how much data / how long SGD takes in order
to find the signal in the high-dimensional limit d → ∞. As we discuss in App. B, in this limit the
sufficient statistics concentrate, with its evolution being described by the following deterministic
ODE:

dm̄(t)

dt
= m̄(t)

[
4(1− 6γ)(1− m̄2(t))− 2γ∆

]
with m̄(t) ∈ [−1, 1] (7)
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with initial condition m̄(0) = 1/dw⊤
⋆ w

0. See App. D for an explicit derivation. Figure 1 (left)
compares the evolution of the risk predicted from solving the high-dimensional ODEs (7) with
different finite size (d = 3000) simulated instances of the problem, showing a a good agreement
between the theory and the averaged population risk over the different runs. Given the spherical
constraint, the population risk is now simply given by R(m) = 2

(
1−m2

)
+ ∆/2. From this

expression, it is clear that m = ±1 are global minima and m = 0 is a global maximum. Therefore,
the information theoretically minimum achievable risk is minR(m) = R(±1) = ∆/2.

We start with two immediate observations that can be drawn from (7). First, we have a necessary
upper bound on the learning rate for learning to occur: γ < 1/6. Moreover, from fixed-point stability
analysis we can get the value where m̄ converges for large times, and, consequently, the asymptotic
excess population risk achievable in this setting is:

lim
t→∞

R(m̄(t))− ∆/2 =
γ∆

1− 6γ
. (8)

We now move to our main problem: estimating the time SGD takes to escape mediocrity at
initialization. Let T ∈ [0, 1] be the relative difference with respect to the initial value of the risk,
and let text be the time when the risk exits the region above the threshold T , see Fig. 1 (right) for an
illustration. By construction, text can be found by solving the following equation:

(1− T )

(
R
(
m̄(0)

)
− ∆

2

)
=

(
R
(
m̄ (text)

)
− ∆

2

)
. (9)

The above can be exactly solved by numerically integrating (7) and then finding the root of (9).
However, an analytical expression for the ODE exit time can be found from the following two
observations:

• From the discussion around equation (19), initializing at random in high-dimensions imply that
m̄(0) = ε ≪ 1, so we can consider the linearization of equation (7) in ε and solve it analytically.
For small enough T , this will lead us to an accurate result;
• Even if the ODE trajectories are deterministic, the exit time text is a random variable of the random
initialization.

Note there these lead to two natural notions of average exit time over the initial conditions. The first
one is obtained by taking the expected value over initial conditions before solving the cross-threshold
equation, while the second is to take the expected value exit time obtained from solving (7) over a
fixed initial condition

t(anl)
ext =

log
[
Td+ (1− T )

]
8(1− 6γ)− 4γ∆

t
(qnc)
ext = Eµ0∼χ2(1)

 log
[
Td
µ0

+ (1− T )
]

8(1− 6γ)− 4γ∆)

 . (10)

Borrowing the jargon from statistical physics we refer to t(anl)
ext as the annealed exit time, while t

(qnc)
ext

as the quenched exit time. Some comments on this result are in order:

• By concavity of the logarithm function, we have t
(qnc)
ext ≥ t

(anl)
ext .

• For both notions, we have text = O(log d) implying n = O(d log d) samples are required to
escape mediocrity, consistent with the rates in the literature [7, 14, 42].
• Both exit times are monotonically increasing in both γ ∈ [0, 1/6] and ∆ ≥ 0. Recalling that
δt = γ/d, this implies the existence of an optimal learning rate γopt = 1/(12 + ∆) that minimizes the
number of samples required to escape mediocrity.
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Figure 1: multiple run of the simulated SGD and the numerically integrated SDE, always starting
from the same initial condition, with d = 3000. All the text presented are obtained by
solving numerically (9). The SDE captures the variance that the ODE doesn’t exhibit, but
the text do not change considerably.

Does stochasticity matters? — Note that the initial correlation parameter at random initialization
(18) is given by m0 = O(1/

√
d). Therefore, in the high-dimensional limit d → ∞ in which the

ODE description (7) is exact, we have m̄(0) = 0. This is a fixed point (7), which suggests that that
strictly in the high-dimensional limit SGD is trapped forever at mediocrity. However, in practice we
always have d < ∞, meaning that at initialization we always have a non-zero correlation with the
signal m0 = ε ≪ 1. Moreover, at high but finite dimensions, (7) is just an approximation to the
actual stochastic dynamics (12). Indeed, this is precisely what we used in order to estimate the exit
time from the deterministic ODE (7). While the stochastic corrections to the high-dimensional limit
does not radically change the convergence rate scaling [42] (and hence the mediocrity picture), it is
important to ask whether it leads to important corrections on the precise exit time.

Stochastic corrections to the deterministic high-dimensional limit of one-pass SGD have been
recently discussed in a broad setting by [8]. In particular, this work has shown that close to a fixed
point the the process for the sufficient statistics (12) can be well approximated in the high-dimensional
limit by a diffusion process with drift potential given by the corresponding deterministic ODEs. We
follow a similar strategy, and consider the following process specialized to the case p = 1:

dm1 = Ψ1(Ω) dt+

√
γ

d
σm(Ω) · dBt, dQ11 = Φ11(Ω) dt+

√
γ

d
σQ(Ω) · dBt (11)

where dBt is a 2-dimensional Wiener process, and σM and σQ are defined as the standard deviation
vector of the sufficient statistics; details in App. G . Notice that the stochastic correction is proportional
to
√

γ/d, consistent to a first order correction to the deterministic limit. Similarly to the discussion
in Sec. 2, the spherical constraint can be imposed by projecting the process in the sphere. This is
discussed in detail in App. D. Figure 1 compares different instances of finite size simulations with
instances of the spherical SDE with the same initial condition. Although the stochastic correction
offers a better description of the process at large but finite dimensions, we find that quite surprisingly
they have a small impact in the exit time. Hence, the formulas (10) derived in the Sec. 2 for random
initialization provide a good approximation to the exit time. In App. F we discuss how to derive an
exit time formulae with the stochastic corrections, both annealed and quenched one. As just showed,
the new formulas do not offer any improvements compared to the deterministic ones, nevertheless
the stochastic process can describe the dynamic even when the initialization is exactly m = 0, that is
a fixed point of the ODE.
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To summarize, in this section we have shown that the deterministic ODEs provides a good
approximation for the precise number of samples required for escaping mediocrity in high-dimensions.
In other words, stochasticity does not help in navigating the flat directions at initialization and in
correlating with the signal.

3. The role of width

Thus far our discussion has focused on the well-specified case. We now discuss the role of width in
escaping mediocrity. Our starting point are the deterministic ODEs (17) for the sufficient statistics
derived in Sec. B. As in our previous analysis, we focus on the spherical setting where wi ∈
Sd−1(

√
d), implying Qjj = 1, see App. D for a detailed derivation. First, we derive analytical

expressions for the exit time for arbitrary width p ≥ 1 in the particular case where the second layer is
fixed at initialization a0j = 1, ∀j ∈ [n]. The role played by the second layer is then discussed in App. I
. Differently from the p = 1 case, the process cannot be described be a single sufficient statistics,
and instead we have to track p(p− 1)/2 non-diagonal entries of Q (it is a symmetric matrix), and p
components of the vector m. Note that equation (9) remains valid to define text, and can be solved
numerically. An analytical expression for the exit time can be derived under similar assumptions
to the ones discussed in Section 2, although the derivation is significantly more cumbersome. Full
details and the explicit expression of text can be found in App. E.

Notice that text is a monotonically decreasing function of the width. Nevertheless, for any p ≥ 1,
the leading order dependence in the dimension is text = log d. Hence, despite helping escaping
mediocrity, increasing the width cannot mitigate it. This can be contrasted to other aspects in which
overparametrization can significantly help optimization, for instance with global convergence [5].
Interestingly, the minimal escaping time t(anl)

ext = 1/4 log(T (p+ 1)d+ (p+ 1)(1− T )/2p), obtained by
choosing the learning rate that minimizes the sample complexity for escaping, has the same pre-factor
for any width p ≥ 1, with the only differences being the dependence in p inside the logarithm and
in the time scaling t = νγ/pd. At infinite width p → ∞, this simply amounts to a factor 12+∆

2+∆ with
respect to p = 1. Details of this computation can be found in App. E.4.

Figure 1(right) compares our analytical formulas (47) & (46) with real one-pass SGD simulations.
The simulation are averaged over many different instance of the initial conditions, and the ratio γ/p is
kept constant when varying p, for not having discrepancies due to the different learning rate scaling.
It’s interesting to notice how the two different formulas gives the same outcome for large width
p ≫ 1. Moreover, for narrow networks they essentially differ from by a d independent constant.
Figure 1(right) also suggests that, as for p = 1, the stochasticity can be neglected in the estimation of
the exit time. In App. G we provide further evidence of that.
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Appendix A. Further related work

The investigation of a deterministic high-dimensional limit of one-pass SGD for two-layer neural
networks draws back to the seminal works of [34–36], and was followed by a stream of works
that span decades of research [3, 16, 20–22, 31, 32, 43]. More recently, the stochastic corrections
around fixed points of the dynamics have been investigated by [8]. In a complementary research
line, [15, 19, 27, 33, 39]) have shown that an alternative deterministic description of SGD can be
obtained in the infinite width-limit, a.k.a. mean-field regime. High-dimensional reductions of the
mean-field equations have been studied by [1, 2, 9, 23]. Recently, [3, 43] has shown that these
apparently different limits of one-pass SGD can be unified in a single description.

There has been a recent surge of interest in studying how increasing degrees of complexity in
the target function are incrementally learned by SGD [1, 2, 9, 10, 24], with an emerging staircase
picture where complexity is sequentially learned in different scenarios. This picture, however, is
bound to classes of targets where SGD develops strong correlations with the target directions at
initialization, a notion which was mathematically formalized by the so-called information exponent
(IE) by [7]. Instead, targets for which the landscape at initialization is mostly flat (IE ≥ 2) are
hard for SGD at high-dimensions, translating to very slow dynamics. This is precisely the case
for the phase retrieval problem (IE = 2), a classic inverse problem arising in many scientific areas,
from X-ray crystallography to astronomical imaging [18, 25]. Phase retrieval has been widely
studied in the literature as a prototypical example of a hard inverse problem [4, 6, 11–13, 26, 30],
providing a simple yet challenging example of a non-convex optimization problem which is hard for
descent-based algorithms [14, 17, 29, 37, 38, 40–42].

Appendix B. High-dimensional limit of SGD

As shown in Appendix C, starting from Eq. (4) we can derive a set of self-consistent stochastic
processes describing the evolution of (a,m,Q):

aν+1
j − aνj =

γ

pd
Eνλ2

j (12)

mν+1
j −mν

j =:Mj(a, λ⋆, λ) = 2
γ

pd
Eνajλjλ⋆ (13)

Qν+1
jl −Qν

jl =:Qjl(a, λ⋆, λ) = 2
γ

pd
Eν
(
aj + al

)
λjλl (14)

+ 4
γ2

p2d
Eν2||xν ||2ajalλjλl (15)

where we have defined the displacement vector

Eν :=
1

p

p∑
j=1

aj(λ
ν
j )

2 − (λ⋆ν)2 +
√
∆zν , (16)

and we used γ/d as the learning rate of the second layer, in order to have the same high-dimensional
scaling.

High-dimensional limit — As of now we have not made any assumptions on the dimension of
the problem; the stochastic processes defined in (12) are exact, with the right-hand side depending
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implicitly on (m,Q) through the moments of (λ⋆, λ). However, our goal is to study this process
in the high-dimensional limit d → ∞ where learning is hard and simulating (4) can be computa-
tionally demanding. Defining a step-size δt = γ/pd and a continuous extension of (aν ,mν , Qν) to
continuous time (a(νδt),m(νδt), Q(νδt)) by linear interpolation, it can be shown that in the high-
dimensional limit d → ∞ the sufficient statistics (a(t),m(t), Q(t)) concentrate in their expectation
(ā(t), m̄(t), Q̄(t)), which satisfies the following system of ordinary differential equations (ODEs):

dāj
dt

= E(λ,λ⋆)∼N (0p+1,Ω)

[
Eλ2

j

]
dm̄j

dt
= E(λ,λ⋆)∼N (0p+1,Ω)

[
Mj(a, λ⋆, λ)

]
=: Ψj (Ω)

dQ̄jl

dt
= E(λ,λ⋆)∼N (0p+1,Ω)

[
Qjl(a, λ⋆, λ)

] (17)

with initial conditions given by (ā(0), m̄(0), Q̄(0)) = (a0, 1/dW 0w⋆, 1/dW
0W 0⊤). The explicit

expression of these expected values can be found in Appendix C. As discussed in the related works,
the high-dimensional limit of one-pass SGD for two-layer neural networks have been studied under
different settings in the literature [3, 8, 9, 20, 31, 34, 41, 43]. However, to our best knowledge our
work is the first to derive and study these equations for the squared activation in the high-dimensional
limit.

Initialization and mediocrity — In the noiseless case ∆ = 0, it is easy to check that aj = 1 and
wj = ±w⋆ (mj = ±1 and Qjl = 1) is indeed a stationary point of (17) that corresponds to two
degenerated global minima of the population risk (6). Adding a noise ∆ > 0 only shift these values.
Similarly, it is easy to check that mi = 0 and Qij = 0 for i ̸= j are also stationary points. These
correspond to taking wj ⊥ wl ⊥ w⋆ for all j ̸= l in (17), and is a global maximum of (6). This
stationary point plays an important role in the dynamics. Indeed, in the absence of knowledge on the
process that generated the data (2), it is customary to initialize the weights randomly:

w0
j ∼ N (0, Id), j = 1, · · · , p. (18)

When d → ∞, the weights are be orthogonal with high probability. In terms of the sufficient
statistics:

Qjj ∼ Dirac(1), j ̸= l :
√
dQ0

jl
d→+∞−−−−→ N (0, 1) and

√
dm0

j
d→+∞−−−−→ N (0, 1). (19)

Therefore, since the variance of (m0, Q0) decays as 1/d, the higher the dimension, the closer a random
initialization is to a stationary point of the dynamics. Moreover, of all the d directions, there exists
d − p − 1 directions orthogonal to w⋆ and {w0

j}j∈[p] along which the population risk (6) remains
constant. The proliferation of flat directions close to initialization severely slows down the SGD
dynamics at high-dimensions, which typically requires n = O(d log d) steps to develop a significant
correlation with the signal in order to escape this region. This scenario, which we refer to as escaping
mediocrity, is common to many hard learning problems [7]. In the following, we leverage the exact
description (17) derived in this section to estimate precisely how much data is required for SGD to
escape mediocrity in the prototypical phase retrieval problem (1).
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Spherical constraint — A phenomenon that is observed when starting from the initial conditions
above is a change in the norms of the weights wi without effectively correlating with w⋆. In this phase,
sometimes referred as norm learning, m ≈ Qjl ≈ 0 for j ̸= l, while Qjj changes considerably,
resulting in a slightly decrease in the population risk towards a plateau that reflects mediocrity. Since
the focus of this study is precisely on escaping mediocrity (i.e. developing non-zero correlation with
the signal), in the following we will fix the norm of the weights wν

i ∈ Sd−1(
√
d) at initialization

and throughout the dynamics ν ∈ [n]. This assumption, which was also the focus of [7], amounts to
imposing a spherical constraint at every step of SGD, also known as projected SGD:

wν+1
j =

wν
j − γ∇wjℓ(y

ν , fΘν (xν))∥∥∥wν
j − γ∇wjℓ(y

ν , fΘν (xν))
∥∥∥
√
d. (20)

The high-dimensional limit of these equations lead to the following ODEs for the evolution of the
sufficient statistics (M,Q):

dm̄j

dt
= Ψj(Ω)−

m̄j

2
Φjj(Ω),

dQ̄jl

dt
= Φjl(Ω)−

Q̄jl

2

(
Φjj(Ω) + Φll(Ω)

)
. (21)

Note that Qjj = 1 is consistently fixed.

Appendix C. Explicit ODEs derivation

C.1. Derivation of the process

Let’s start by reminding the definition of displacement at step ν

Eν :=
1

p

p∑
j=1

aj(λ
ν
j )

2 − (λν
⋆)

2 +
√
∆zν , (22)

from which it’s easy to write the loss function

ℓ(yν , fΘν (xν)) =
1

2
(Eν)2 . (23)

The gradient respect to the parameters is given

∂ajℓ(y
ν , fΘν (xν)) =

1

p
Eν(λν

j )
2

∇wjℓ(y
ν , fΘν (xν)) =

1

p
Eν2aνjλ

ν
jx

ν
(24)

Using γ as learning rate for the weights wj and γ/p for the second layer, we have the following update
equations

aν+1
j = aνj −

γ

pd
Eν(λν

j )
2

wν+1
j = wν

j − γ

p
Eν2aνjλ

ν
jx

ν
(25)

Applying the definition of the sufficient statistics, mj = wjw⋆/d and Qjl = wjwl/d, we can recover
Eqs. (12).
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C.2. Explicit ODE

To get the explicit form of our ODEs we need to compute some expected value over the preactivations
(λ⋆, λ). These are gaussian variables, whose correlation matrix is given by Ω. Similarly, the
population risk is defined as

R = E(λ,λ⋆)∼N (0p+1,Ω)

[
1

2
E2

]
.

Let’s look close to the random variable we need for this expected values, expressing them just as
function of local fields. To be more concise, from now on with E we always mean the expected value
over (λ, λ⋆) ∼ N (0p+1,Ω). For the risk we just need

E
[
E2
]
=λ4

⋆ +
1

p2

p∑
j,l=1

ajalE
[
λ2
jλ

2
l

]
− 2

p

p∑
j=1

ajE
[
λ2
jλ

2
⋆

]
,

while for the ODE of ā

E
[
Eλ2

j

]
=

1

p

p∑
l=1

alE
[
λ2
l λ

2
j

]
− E

[
λ2
⋆λ

2
j

]
,

where we omitted the noise part since it averages out with the expectation. The equation for m̄
requires

2ajE
[
Eλjλ⋆

]
=

2

p

p∑
l=1

ajalE
[
λ2
l λjλ⋆

]
− 2E

[
λ2
⋆λjλ⋆

]
,

while we need two different expectations for Q̄

2(aj + al)E
[
Eλjλ⋆

]
= 2(aj + al)

1
p

p∑
s=1

asE
[
λ2
sλjλl

]
− E

[
λ2
⋆λjλl

] and

4
γ

p
E2ajalλjλl = 16

γ

p
ajal

[
E
[
λjλlλ

4
⋆

]
− 2

p

p∑
s=1

asE
[
λjλlλ

2
⋆λ

2
s

]
+

1

p2

p∑
s,t=1

(
asatE

[
λjλlλ

2
sλ

2
t

]
+∆E

[
λjλl

])]
.

We are left to compute some distribution moments of a multivariate Gaussian of second, fourth and
sixh order. In the anonymous repository can be found a Mathematica script to address this task;
alternatively Isserlis’ Theorem can be applied. We introduce a shorthand in the notation

ωαβ := [Ω]αβ ,

where the indices α and β can discriminate between local fields λ (if α, β ∈ [1, . . . , p], and λ⋆ (if
α, β = p+ 1). The final result are given by

E
[
λαλβ

]
= ωαβ

E
[
λ2
αλ

2
β

]
= ωααωββ + 2ω2

αβ

E
[
λαλβλ

2
γ

]
= ωαβωγγ + 2ωαγωβγ

E
[
λαλβλ

2
γλ

2
δ

]
= ωαβωγγωδδ + 2ωαβω

2
γδ + 2ωαγωβγωδδ+

4ωαγωβδωγδ + 4ωαδωβγωγδ + 2ωαδωβδωγγ
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By retracing all steps backward and making the necessary substitutions, we can arrive at an explicit
form of the ODEs and population risk. While the full risk expression can be found in Eq. (6), we
report here just the case aj = 1 for the ODEs since they have a compact matrix form

dm

dt
= 2

(
ρ− Tr [Q]

p

)
m+ 4

(
ρm− Qm

p

)
(26a)

dQ

dt
= 4

(
ρ− Tr [Q]

p

)
Q+ 8

(
mm⊤

k
− Q2

p

)

+
4γ

p

{[
3ρ2Q+ 12ρmm⊤

]
+

1

p2

[(
Tr [Q]2 + 2Tr

[
Q2
])

Q+ 4Tr [Q]Q2 + 8Q3

]

− 2

p

[(
ρTr [Q] + 2Tr

[
mm⊤

])
Q+ 2Tr [Q]mm⊤

+ 2ρQ2 + 4
(
mm⊤Q+Qmm⊤

)]
+∆Q

}
,

(26b)

where ρ := w2
⋆/d. For completeness, this is Eq. (6) for the case aj = 1

R(Ω)=
3 +∆

2
−
ρTr [Q] + 2Tr

[
mm⊤

]
p

+
Tr [Q]2 + 2Tr

[
Q2
]

2p2
. (27)
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Appendix D. Spherically constrained ODE and SDE

D.1. Spherical constraint for ODE

Let’s recall the update rule for the weights

wν+1
j =

wν
j − γ∇wjℓ(y

ν , fΘν (xν))∥∥∥wν
j − γ∇wjℓ(y

ν , fΘν (xν))
∥∥∥
√
d, (28)

we will find the leading order approximation of it and then apply the argument as the unconstrained
case for deriving the ODEs. To shorten the notation we will use ℓν for indicating ℓ(yν , fΘν (xν)).

Let’s start by computing the normalization factor

1∥∥∥wν
j − γ∇wjℓ

ν
∥∥∥ =

[(
wν
j − γ∇wjℓ

ν
)
·
(
wν
j − γ∇wjℓ

ν
)]− 1

2

=

[∥∥∥wν
j

∥∥∥2 − 2γwν
j · ∇wjℓ

ν + γ2
∥∥∥∇wjℓ

ν
∥∥∥2]− 1

2

=
1√
d

[
1− 1

d

(
2γwν

j · ∇wjℓ
ν − γ2

∥∥∥∇wjℓ
ν
∥∥∥2)]− 1

2

=
1√
d

[
1 +

1

2d

(
2γwν

j · ∇wjℓ
ν − γ2

∥∥∥∇wjℓ
ν
∥∥∥2)+ o

(
d−1
)]

.

Note that we kept both two terms in the expansion because we can show that both the norm and the
scalar product with a weight vector are order 1

∥∥∥∇wjℓ
ν
∥∥∥2 ∼2E2λν

j

p2

∑d
i=1

(
xνi
)2

d
∼

2E2λν
j

p2
χ2
d

d
= O (1) ,

wj · ∇wl
ℓν ∼

2Eλν
l

p

d∑
i=1

wj,i√
d
N (0, 1) ∼

2Eλν
l

p2
N

0,

d∑
i=1

w2
j,i

d

 ∼
2Eλν

l

p2
N (0, 1) = O (1) .

We can now plug the expansion back into the original update rule

wν+1
j =

(
wν
j − γ∇wjℓ

ν
)[

1 +
1

2d

(
2γwν

j · ∇wjℓ
ν − γ2

∥∥∥∇wjℓ
ν
∥∥∥2)+ o

(
d−1
)]√

d.

We are ready to go over the steps that take us from the update rule on vector weights to those on
order parameters. We report by way of example the steps performed for m; the accounts for Q are
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similar, just a bit more tedious.

mν+1
j =

wν+1
j · w∗

d

=

(
mν

j −
γw∗ · ∇wl

ℓν

d

)[
1 +

1

2d

(
2γwν

j · ∇wjℓ
ν − γ2

∥∥∥∇wjℓ
ν
∥∥∥2)+ o

(
d−1
)]

= mν
j −

γw∗ · ∇wl
ℓν

d
+

mν
jr

2d

(
2γwν

j · ∇wjℓ
ν − γ2

∥∥∥∇wjℓ
ν
∥∥∥2)+ o

(
d−1
)

= mν
j +

1

d

γ
p
λ⋆Eνλν

j −
mν

j

2

(
2
γ

p
Eνλν

jλ
ν
j +

γ2

p2
Eνλν

j
2

)+ o
(
d−1
)
.

(29)

We can now take the limit d → +∞, claiming that the theorem [20, 43] proving ODE convergence
is still valid. Indeed, the error term o(d−1) in Eq. (29) has an average order of O(d−2), which can be
absorbed in the term Γν of Theorem A.1 in [43]. The rest of the proof proceeds the same way, noting
that the square function can be assumed to be Lipschitz since the dynamics take place on the sphere.

The differential equation that describes the evolution of m is

dm̄j(t)

dt
= Eλ,λ∗∼N (0,Ω(t))

[
2Eλjλ⋆ −

m̄j(t)

2

(
4Eλjλj + 4

γ

p
E2λ2

j

)]
;

Using the definitions introduced in Equations (21) we can write the equation in a nicer form

dm̄j(t)

dt
= Ψj(Ω)−

m̄j(t)

2
Φjj(Ω). (30)

Essentially, the spherical constraint can be imposed by using a term proportional to the unconstrained
Q update.

Without reporting all the calculations, we can write an analogous differential equation for Q
evolution

dQ̄jl(t)

dt
= Φjl(Ω)−

Q̄jl(t)

2

(
Φjj(Ω) + Φll(Ω)

)
. (31)

Note that
dQ̄jj(t)

dt
= 0 if Qjj(t) = 1, as it should be since the norm of spherical vectors must not

change.
In Figure 2 we show two examples of integration of ODEs, for different values of p. Simulating

for large but finite d does not kills the stochasticity in the SGD runs, but we can clearly see how the
ODE well describe the dynamics on average.

D.2. Spherical constraint for SDE

This subsection we derive the spherical constraint for the SDE, with p = 1. We assume that the
stochastic process is given

dm = Ψ1(Ω) dt+

√
γ

d
σm(Ω) · dBt

dQ = Φ11(Ω) dt+

√
γ

d
σQ(Ω) · dBt,

(32)
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Figure 2: comparison of ODE integration and many SGD runs for p = 5 (left) and p = 20 (right).
Both the experiments have d = 5000.

without providing explicit expressions for σm(Ω) and σQ(Ω); see Appendix G for that.
The derivation is basically following the steps of the previous Section. Starting from the

unconstrainted update rule for the weights

wν+1
j = wν

j − γ∇wjℓ
ν ,

we can find an expression for the two unconstrained differentials

dq =
−2γw · ∇ℓν + γ2 ∥∇ℓν∥2

d

dm =
−γw⋆ · ∇ℓν

d
.

(33)

Since we are forcing the weight on the sphere, the update rule that actually has to be used is

wν+1
j =

wν
j − γ∇wjℓ

ν

wν
j − γ∇wjℓ

ν

√
d;

multiplying both sides by w⋆ and subtracting m we get

dmS =
m+ dm

∥w − γ∇ℓν∥
√
d−m,

where we introduce mS to differentiate the constrained variable from m. Let’s estimate the normal-
ization factor

∥w − γ∇ℓν∥ =
√

(w − γ∇ℓν)2 =

√
w2 − 2w · γ∇ℓν + γ2 ∥∇ℓν∥2

=
√
d

√
w2

d
+

−2w · γ∇ℓν + γ2 ∥∇ℓν∥2

d
=

√
d
√

q + dq

=
√
d
√

1 + dq,
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where in the last step we used the constraint q = 1. We can now plug it back in dmS

dmS =
m+ dm√
1 + dq

−m,

and expanding up to leading orders we get

dmS =(m+ dm)(1 + dq)−
1
2 −m = (m+ dm)

(
1− 1

2
dq +

3

8
dq2
)
−m

=dm− m

2
dq − 1

2
dm dq +

3

8
mdq2

In principle, we can now use the Itô Lemma on differentials Equations (32), obtaining

dm2 =
γ

d
σ2
m(Ω) dt, dq2 =

γ

d
σ2
m(Ω) dt, and dm dq =

γ

d
σm(Ω) · σQ(Ω) dt.

It’s interesting to note that these lead to a drift correction (and not just stochastic), but it’s of second
order. As expected, in numerical simulations we can’t see the effect for these corrections, hence
we neglet them in what follows. Finally, we write the explicit Brownian motion for the constrained
dynamic

dmS =

(
Ψ1(Ω)−

mS

2
Φ11(Ω)

)
dt+

√
γ

d

(
σm(Ω)− mS

2
σQ(Ω)

)
· dBt. (34)

Of course, all functions depending on Ω should be evaluated at m = mS , q = 1.
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Appendix E. Derivation of the expected exit time formulas

E.1. Linearization of the equations

The linear approximation of Ψ around mj ≈ 0 is given by

Ψj = 4

(
mj −

mj

p

)
= 4

(
1− 1

p

)
mj , (35)

while for Φ we distinguish the cases j = l or not

j ̸= l Φjl = 4

[
2

(
−2

Qjl

p

)]
+

+
4γ

p

{
3Qjl −

2

p

[
pQjl + 4Qjl

]
+

1

p2

[(
p2 + 2p

)
Qjl + 8pQjl + 24Qjl

]
+∆Qjl

}

= −16

p
Qjl +

4γ

p

{
3− 2− 8

p
+ 1 +

2

p
+

8

p
+

24

p2
+∆

}
Qjl

= −16

p
Qjl +

4γ

p

{
2 +

2

p
+

24

p2
+∆

}
Qjl

(36)

j = l Φjj = 4

[
2

(
−1

p

)]
+

4γ

p

{
3− 2

p

[
p+ 2

]
+

1

p2

[(
p2 + 2p

)
+ 4p+ 8

]
+∆

}

= −8

p
+

4γ

p

{
3− 2− 4

p
+ 1 +

2

p
+

4

p
+

8

p2
+∆

}
= −8

p
+

4γ

p

{
2 +

2

p
+

8

p2
+∆

} (37)

Given these linear approximations, we are ready to write down the equations valid as long as the
risk stays in the first plateau

d
[
m(t)

]
j

dt
=

[
4

(
1− 1

p

)
+

4

p
− 2γ

p

(
2 +

2

p
+

8

p2
+∆

)] [
m(t)

]
j

=

[
4− 2γ

p

(
2 +

2

p
+

8

p2
+∆

)] [
m(t)

]
j

= 4

[
1− γ

p

(
1 +

1

p
+

4

p2
+

∆

2

)] [
m(t)

]
j
,

(38)

d
[
Q(t)

]
jl

dt
=

[
−16

p
+

4γ

p

(
2 +

2

p
+

24

p2
+∆

)
+

8

p
− 4γ

p

(
2 +

2

p
+

8

p2
+∆

)] [
Q(t)

]
jl

=

[
−8

p
+

4γ

p

(
16

p2

)] [
Q(t)

]
jl

= −8

p

[
1− 8γ

p2

] [
Q(t)

]
jl
.

(39)
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We observe that the evolution of the sufficient statistics is uncoupled in the starting saddle. We can
shorthand the notation by introducing ωQ and ωM

dmj

dt
= ωMmj

dQjl

dt
= −ωQQjl when j ̸= l.

(40)

These equations admit a simple solution given by

mj(t) = mj(0) exp[ωM t]

Qjl(t) = Qjl(0) exp[−ωQt].
(41)

E.2. Solving the approximated risk equation

From Eq. (27) when the weights are on the sphere, it follows that the risk is given by

R(Q,m)− ∆

2
= 1 +

1

p
+

1

p2

p∑
j,l=1;j ̸=l

Q2
jl −

2

p

p∑
j=1

m2
j (42)

Eqs. (41) can be used to obtain a deterministic time evolution of the risk. The only source of
randomness left is from the initial conditions, we can define two random variables as

µ0

d
:=

p∑
j=1

[
mj(0)

]2 and
τ0
d

:=

p∑
j,l=1;j ̸=l

[
Qjl(0)

]2
, (43)

and get an expression for the risk in function of time

R(t)− ∆

2
= 1 +

1

p
+

dτ0
p2

exp[−2ωQt]−
2dµ0

p
exp[2ωM t] (44)

This equation is not polished enough to be solved analytically yet. First of all we need to assume that
the risk is decreasing by forcing ωm > 0. Secondly, we want the exponential proportional to τ0 to be
negligible when t > 0: this follow from ωQ > 0. In principle, this last condition is not needed for
the process to converge like the first one, but without it is not possible to find an analytical solution
for the cross -threshold equation. Moreover, when p > 6: ωm > 0 =⇒ ωQ > 0, so we can see that
the request is not unreasonable.

Wrapping all this consideration together, Eq. (9) is

(1− T )

(
1 +

1

p
+

τ0
dp2

− 2µ0

dp

)
= 1 +

1

p
− 2µ0

dp
exp[2ωM text], (45)

from where we can compute the exit time

text =
log
[
Tp(p+1)d+(2µ0p−τ0)(1−T )

2µ0p

]
2ωm

.
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E.3. Averaging on initial conditions

As of now text is still depending on the initial conditions through the random variables µ0 and τ0.
Following from the choosen initial conditions, and taking into account the dependence between the
two random variables

µ0, τ0 ∼ Pd
p where Pd

p ≡

d

p∑
j=1

(uj · v)2, 2d
p∑

j=1

p∑
l=j+1

(uj · ul)2
 with v, uj ∼ Sd−1(1).

We have now two possibility to get the expectation of text. The first one is known in statistical physics
literature as quenched formula leaves us with an unexpressed expected value

t
(qnc)
ext = Eµ0,τ0∼Pd

p

 log
[
Tp(p+1)d+(2µ0p−τ0)(1−T )

2µ0p

]
2ωm

 . (46)

The second one, often referred as the annealed formula, is obtain by simply replacing the random
variables with their expected values

t(anl)
ext =

log
[
T (p+1)d+(p+1)(1−T )

2p

]
2ωm

. (47)

Case p = 1 For completeness, let’s reduce these formulas to the simplest case p = 1. In this case
τ0 does not appear, and from Eq. (19) we find that µ0 ∼ χ2(1), so the quenched formula reduces to

t
(qnc)
ext = Eµ0∼χ2(1)

 log
[
Td
µ0

+ (1− T )
]

8(1− 6γ)− 4γ∆)

 . (48)

E.4. Overparameterization Gain

Let introduce the number of gradient step needed to escape the threshold. Remembering t = νγ/pd,
we define

sext(p, d, γ,∆, T ) :=
pd

γ
text. (49)

In the domain of our interest, namely sext > 0, sext is and convex function in γ. Therefore, it exist a
unique minimum that correspond to the minimum number of steps required to cross the threshold
when p, d are fixed

0 =
∂sext(p, d, γ,∆, T )

∂γ

∣∣∣∣∣
γ=γopt(p,d,∆)

=⇒ γopt(p, d,∆) =
p3

8 + 2p+ (2 +∆)p2

Note that this learning rate correspond to an exit time whose log’s prefactor is constant to 1
4 , as

reported in the main. We can also compute the optimal number of steps; we choose to stick with the
annealed formula: for large p both the estimation lead to the same result, while for small p we are
underestimating the exit time of a small factor. Hence, the annealed minimum number of steps is

smin
ext (p, d,∆, T ) := sanl

ext(p, d, γopt(p, d,∆),∆, T ) =
d
[
8 + 2p+ (2 +∆)p2

]
log
[
T (p+1)d+(p+1)(1−T )

2p

]
4p2

.
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This formula can be used to estimate the overparametrization gain. Noting that smin
ext is monotonically

decrising in p, we can define the gain as

lim
d→+∞

smin
ext (p = 1, d,∆, T )

limp→+∞ smin
ext (p, d,∆, T )

=
12 +∆

2 +∆
.
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Appendix F. Stochastic correction to exit time formula

In this section we derive a new exit time formula for the case p = 1, that takes into account the
stochastic corrections of the dynamics.

At first, we require the further assumption w0 ⊥ w0
⋆. Obviously, this is not realistic, since to

achieve this initialization we should know w⋆ exactly. Still, this case is could arise interest, since
it corresponds to m0 = 0, that is a fixed point of Equation (7). Thus, there is no dynamics in the
ODE description, while the SDE are able to jump out from the fixed point and reach the point of
convergence of the SGD. Lastly, the following analysis can be generalized to be used with the usual
initial conditions.

The key observation is approximating both the noise and the drift of Equation (34) to the first non-
zero order, when evaluated at m = 0. As we pointed out above, the drift term is null at initialization,
so the leading order is the first; this corresponds to the linearization of Equation (7), and the linear
factor is

µ :=
[
4(1− 6γ)− 2γ∆

]
. (50)

Instead, the noise term is not vanishing at m = 0. Of course, σQ(Ω) does not contribute because
is proportional to mS . Moreover, looking at the expression for Σ in Appendix G, we can observe
that the covariance matrix is diagonal since the non-diagonal term is proportional to mS as well. All
considered, the only term is contributing is the variance of m: the two-dimensional Brownian motion
can be reduced to one in dimension 1, with variance

σ2 :=
γ

pd
(48 + 4∆).

Summarizing, the SDE near the initialization can be described as

dm = µmdt+ σ dbt, (51)

where bt is a one-dimensional Wiener process with unit variance. The approximated evolution of m
is a expansive Ornstein–Uhlenbeck process, since µ > 0. We have already shown in the main that
there is a direct map between m and the population risk; we can deal just with m for measuring the
exit time. Given an expansive OU-process staring at m = 0, the mean first exit time from the interval
(−

√
T ,

√
T ) is given by [44]

t
(SDE)
ext =

T

σ2 2F 2

(
1, 1; 3/2, 2;− µ

σ2
T

)
(52)

where 2F 2 is a generalized hypergeometric function; see [44] for reference. The formula does not
have a closed form like the one derived earlier, and it works only when T is small enough that the exit
point is not too far from initial conditions, otherwise the approximation we did do not hold anymore.

As reported in [44], the formula can be generalized also to the initial condition we used in the rest
of the manuscript, where m ∼ N

(
0, 1/

√
d
)
. Again, we have to average over the initial conditions:

(52) coincides with the annealed version, while we do not present here the quenched one to be
concise.
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Appendix G. SDEs for arbitrary width

In this appendix we generalize the discussion of the spherical constrained SDE to network of arbitrary
width. As we already did at beginning of Section 3, we fix the second layer to aj = 1 for everything
follow.

G.1. Unconstrained SDE with p > 1

The updates of overlapping matrixes elements can be written as

dQjl =
−γ(wj · ∇wl

ℓ+ wl · ∇wjℓ) + γ2∇wjℓ
ν · ∇wl

ℓν

d
=

γ

pd
Qjl,

dmj =
−γw⋆ · ∇wjℓ

d
=

γ

pd
Mj .

where we recalled the definition of the random variables Mj and Qjl; the factor 1/p is missing, but
it will come out from the gradients ∇wj . As we already seen, the usual argument provides setting
dt = γ/pd and say that the remaining factor is concentrating to its expected value

dmj = Ψj dt

dQjl = Φjl dt,

where Φjl = E
[
Qjl

]
and Ψj = E

[
Mj

]
. We can now go beyond this and add corrections to

concentration, namely adding a Brownian motion, following [8]:

dmj = Ψj dt+

√
γ

pd
σm
j · dBt

dQjl = Φjl dt+

√
γ

pd
σQ
jl · dBt.

(53)

The σm
j and σQ

jl are the rows of the matrix obtained by taking the square root of the covariance matrix
of all the p+ p2 random variable Mj and Qjl:

σm
1
...

σm
p

σQ
11
...

σQ
pp


:=

√√√√√√√√√√√√√√



Var [M1] · · · Cov
[
M1,Mp

]
Cov [M1,Q11] · · · Cov

[
M1,Qpp

]
...

. . .
...

...
. . .

...
Cov

[
Mp,M1

]
· · · Var

[
Mp

]
Cov

[
Mp,Q11

]
· · · Cov

[
Mp,Qpp

]
Cov [Q11,M1] · · · Cov

[
Q11,Mp

]
Var [Q11] · · · Cov

[
Q11,Qpp

]
...

. . .
...

...
. . .

...
Cov

[
Qpp,M1

]
· · · Cov

[
Qpp,Mp

]
Cov

[
Qpp,Q11

]
· · · Var

[
Qpp

]


,

(54)
and dBt is a p(1 + p)-dimensional Wiener process.

G.2. Spherical Constrained SDE

Let’s move now to the actual spherical derivation. The steps used are exaclty the same we did in D,
Since we are forcing the weight on the sphere, the update rule that has to be used is

wν+1
j =

wν
j − γ∇wjℓ

ν∥∥∥wν
j − γ∇wjℓ

ν
∥∥∥
√
d;
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We introduce now Mj and Qjl to discriminate between the spherical variable and the unconstrained
ones. Multiplying both sides of the update rule by w⋆ and subtracting Mj we get

dMj =
Mj + dmjr∥∥∥wj − γ∇wjℓ

ν
∥∥∥
√
d−Mj .

Similarly, the product of two update rules brings us to

dQjl =
wj − γ∇wjℓ

ν∥∥∥wj − γ∇wjℓ
ν
∥∥∥ wl − γ∇wl

ℓν∥∥wl − γ∇wl
ℓν
∥∥ −Qjl

=
Qjl + dQjl∥∥∥wj − γ∇wjℓ

ν
∥∥∥∥∥wl − γ∇wl

ℓν
∥∥d−Qjl

Let’s estimate the normalization factor∥∥∥wj − γ∇wjℓ
ν
∥∥∥ =

√
(wj − γ∇wjℓ

ν)2 =

√
w2
j − 2wj · γ∇wjℓ

ν + γ2
∥∥∥∇wjℓ

ν
∥∥∥2

=
√
d

√√√√w2
j

d
+

−2wj · γ∇wjℓ
ν + γ2

∥∥∥∇wjℓ
ν
∥∥∥2

d
=

√
d
√
Qjj + dQjj

=
√
d
√

1 + dQjj ,

Expanding up to leading orders we get

dMj =(Mj + dmjr)(1 + dQjj)
− 1

2 −Mj

=(Mj + dmjr)

(
1− 1

2
dQjj +

3

8
dq2jj

)
−Mj

=dmjr −
Mj

2
dQjj −

1

2
dmjr dQjj +

3

8
Mj dQ

2
jj

dQjl =(Qjl + dQjl)(1 + dQjj)
− 1

2 (1 + dQll)
− 1

2 −Qjl

=(Qjl + dQjl)

(
1− 1

2
dQjj +

3

8
dq2jj

)(
1− 1

2
dQll +

3

8
dq2ll

)
−Qjl

=dQjl −
Qjl

2
(dQjj + dQll) +

Qjl

8
(3 dQ2

jj + 3dQ2
ll + 2dQjj dQll)−

1

2
(dQjl dQjj + dQjl dQll)

We can now use the Itô Lemma on differentials Equations (53), obtaining

dxa dxb =
γ

pd
σxa · σxb

dt,

so we have some extra drift terms at an higher order.
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Figure 3: multiple run of the simulated SGD and the numerically integrated SDE, always starting
from the same initial condition, with d = 3000. All the text presented are obtained by
solving numerically (9). The SDE captures the variance that the ODE doesn’t exhibit, but
the text do not change considerably.

G.3. Special cases

Computing explicitly the variance in Equation (54) is not conceptually different from what exposed in
Appendix C: expanding all the expression we are left expectations of polynomials of the preactivations.
Even if not complex, it is required to compute up to twelfth moments of a multivariate normal
distributions, that could lead to very long results. We developed a Mathematica script for addressing
this computation, available in the GitHub repository; it can be used for the covariance of arbitrary
network width. In the same repository, we provide the code for numerically integrating the SDE, in
the cases p = 1, 2. These two special case are briefly discussed here.

Explicit expression for p = 1 We report here the expression for the variances and covariance
introduced in (32)

Var [Q11] =576γ2∆m4 − 2496γ2∆m2 − 11520γ2m6 + 54144γ2m4 − 73728γ2m2

+ 544γ∆m2 − 11136γm4 + 22272γm2 + 320m4 − 1600m2 + 32γ2∆2

+ 1920γ2∆+ 31104γ2 − 544γ∆− 11136γ + 48∆ + 1280

Cov [M1,Q11] =72γ∆m3 − 72γ∆m− 1440γm5 + 2880γm3

− 1440γm+ 24∆m− 480m3 + 480m

Var [M1] =8∆m2 − 192m4 + 144m2 + 4∆+ 48

(55)

Numerical experiments for p = 2 In Figure 3 we show the same numerical experiment we
presented in Section 2, repeated in the case p = 2. Again, we show there is no benefit including
the stochasticity in the analysis. All the evidence indicate that even for larger p there is no effect in
including the correction and the time estimation based on the ODE is accurate.
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Appendix H. Landscape geometry

In this appendix we discuss the landscape of the population risk for the phase retrieval problem
p = 1. We start by discussing the Euclidean case first, moving to the sphere next.

We recall the reader that the loss function is given by given by:

ℓ(w) := ℓ(y, fΘ(x)) =
1

2

(
(w⊤

⋆ x)
2 +

√
∆z − (w⊤x)2

)2
(56)

As before, we define the pre-activations (or local fields):

λ⋆ = w⊤
⋆ x, λ = w⊤x (57)

and the displacement vector:

E(w) := (w⊤
⋆ x)

2 +
√
∆z − (w⊤x)2

= λ2
⋆ +

√
∆z − λ2 (58)

Note that:

∇wE(w) = −2λx (59)

Therefore, the Euclidean gradient of the loss is given by:

∇wℓ(w) = −2E(w)λx (60)

And the Euclidean Hessian is:

∇2ℓ(w) = 2
(
2λ2 − E(w)

)
xx⊤

= 2(3λ2 − λ2
⋆ +

√
∆z)xx⊤ (61)

Averaged geometry — We now compute the expected geometry by taking population averages of
the above. It will be useful to define the correlation variables:

ρ =
||w⋆||2

d
, m =

w⊤
⋆ w

d
, q =

||w||2

d
(62)

which we recall are the second moments of the pre-activations (λ⋆, λ). With this notation, the
population risk (the expected value of (56)) reads:

R(m, q) = ∆/2 + 3ρ2 + 3q2 − 4m2 − 2ρq (63)

In order to compute the expected gradient, we need the following moments:

E[λ2
⋆λx] = ρθ + 2mw⋆, E[λ3

⋆x] = 3qw (64)

Which gives:

∇wR(w) = −2E
[
E(w)λx

]
= −2((ρ− 3q)w + 2mw⋆) (65)
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Finally, let’s compute the expected Hessian. For that, we will need the following moments:

E[λ2
⋆xx

⊤] = ρId + w⋆w
⊤
⋆ , E[λ2xx⊤] = qId + ww⊤ (66)

Therefore:

∇2
wR(w) = 2E

[
(3λ2 − λ2

⋆ +
√
∆z)xx⊤

]
= 2

(
−(ρ− 3q)Id + 3ww⊤ − w⋆w

⊤
⋆

)
(67)

We are now ready to compute the critical points of the Euclidean landscape and evaluate their nature.
By definition, the critical points are defined as solutions of ∇wR(w) = 0. These are:

• w = 0 ((m, q) = (0, 0)): The Hessian of this critical point is given by:

∇2
wR(0) = −2(ρId + w⋆w

⊤
⋆ ) ≺ 0 (68)

This is a negative-definite matrix with d − 1 negative eigenvalues −2ρ and one negative
eigenvalue −2(ρ + 1) with eigenvector θ⋆. Therefore, this is a local maximum. The risk
associated is given by:

R(0) =
∆

2
+ 3ρ2 (69)

• (m, q) = (0, ρ/3): This defines a line of critical points {w ∈ Rd : w ⊥ w⋆ and ||w|| =
1/
√
3||w⋆||}. The Hessian is given by:

∇2
wR = 2(3ww⊤ − w⋆w

⊤
⋆ ) (70)

Note this is a rank-two matrix with d − 2 zero eigenvalues (associated to flat directions),
one negative eigenvalue with eigenvector w⋆ and a positive eigenvalue with eigenvector
perpendicular to the minima. This is a saddle-point, and have population risk:

R(0, ρ/3) =
∆

2
+

10

3
ρ2 (71)

• w = ±w⋆ ((m, q) = (±ρ, ρ)): From the definition of our problem, this is the global minima.
The expected Hessian is given by:

∇2
wR(±w⋆) = 4(ρId + w⋆w

⊤
⋆ ) ≻ 0 (72)

which is indeed a positive definite matrix. This defines the minimum achievable population
risk:

min
w∈Rd

R(w) = R(±ρ, ρ) =
∆

2
(73)

This is consistent with the discussion in [14], where the critical points and their nature were reported,
but explicit expressions for the expected gradient and Hessian were not given. From this geometry, a
neat picture for the one-pass SGD dynamics in the unconstrained problem can be drawn. Consider
w⋆ ∈ Sd−1 with a random initialization at high-dimensions:

w0 ∼ N (0, Id). (74)
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Note that with high-probability the random initial weights is almost orthogonal to the signal, and we
have (m, q) ≈ (0, 1). Note this is not a critical point, and the initial gradient ∇wR(w0) = 4w0 is
orthogonal to w⋆. Indeed, for p = 1 and ∆ = 0 the unconstrained ODEs (17) are given by:

ṁ(t) = 6m(t)(ρ− q(t)) (75)

q̇(t) = 4
(
q(t)(ρ− 3q(t)) + 2m(t)2

)
+ 12γ

(
q(t)(ρ2 + 5q(t)2 − 2ρq(t)) + 4m2(ρ− 2q(t))

)
(76)

where ˙ := d/dt and we dropped the bars for clarity. Therefore, in the initial stage of the dynamics
ṁ ≈ 0 remains almost constant, while q decreases, and the dynamics flow in the direction of the
saddle-point (0, ρ/3). As we have seen, the saddle is mostly flat, with a single negative curvature
direction pointing towards w⋆. This is precisely the mediocrity stage, where the dynamics slows
down and SGD gets stuck for a long time before being able to develop significant correlation with
w⋆ and escape.

H.1. Landscape in the sphere

Recall that the orthogonal projector on a vector u ∈ Sd−1 is given by:

Proju = Id − uu⊤ (77)

Therefore, the gradient on the sphere is given by:

gradSd−1ℓ(w) = ProjSd−1(∇wℓ(w)) = (Id − ww⊤)∇wℓ(w)

= −2E(w)λ(x− λw) (78)

Similarly, the Hessian on the sphere can be written as:

HessSd−1ℓ(w) = ProjSd−1

(
∇2

wℓ(w)
)
− ⟨w,∇wℓ(w)⟩Id

= (3λ2 − λ2
⋆)(xx

⊤ − λθx⊤) + E(w)λ2Id (79)

Averaged geometry — Recall that in the sphere we have ρ = q = 1. Therefore, the population
risk now only depends on the correlation m = ⟨w⋆, w⟩, and reads:

R(w) = 2(1−m2) +
∆

2
(80)

Luckily, half of the moments we need have been already computed above. To get the gradient on the
sphere, we just need to compute:

E[λ2
⋆λ

2] = 1 + 2m2, E[λ4] = 3 (81)

Therefore, the averaged spherical gradient is given by:

gradSd−1R(w) = 4m (mw − w⋆) (82)
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Figure 4: Low-dimensional illustration of mediocrity at initialization. As discussed in Sec. H.1,
the expected Hessian at initialization is a strict saddle-point with d − 1 flat directions
and a single negative direction pointing towards the global minimum. This scenario is
particularly hard for descent based algorithms such as SGD, that require n = (d log d)
samples / steps to develop significant correlation with the signal.

We also have all moments required to compute the expected spherical Hessian:

HessSd−1R(w) = 4
[
m2Id +mww⊤

⋆ − w⋆w
⊤
⋆

]
(83)

As before, we can now analyze the critical points and their nature.

• w ⊥ w⋆ (m = 0): The Hessian is given by:

HessSd−1R(w) = −4w⋆w
⊤
⋆ (84)

Which is a rank one matrix with d − 1 eigenvalues 0 (flat directions) and a single negative
eigenvalue −4 with negative curvature pointing towards the signal w⋆. Therefore, this is a
strict saddle-point. However, since the risk is a decreasing function of m2 ∈ [0, 1], this is also
the global maximum of the risk.

• w = ±w⋆ (m = ±1): As before, these are the global minima, and define the minimal
achievable risk R(±w⋆) = ∆/2. Indeed, the Hessian is given by:

HessSd−1R(±w⋆) = 4Id ≻ 0 (85)

which is positive-define.

Therefore, the landscape now resembles a golf course: completely flat with a single whole corre-
sponding with the global minimum w⋆, see Fig. 4 for an illustration. This is the prototypical image
of mediocrity. In particular, differently from the unconstrained case, random initialization

w0 ∼ Unif(Sd−1(
√
d)) (86)

now corresponds to initializing close to the saddle-point point m0 = 0: with high-probability the
initial weights are orthogonal to the signal at high-dimensions:

m0 = 1/d⟨w0, w⋆⟩ ≈ 1/
√
d ≪ 1. (87)

31



ESCAPING MEDIOCRITY: HOW TWO-LAYER NETWORKS LEARN HARD GENERALIZED LINEAR MODELS

For the reader convenience, we recall that the ODEs (7) describing the evolution of the correlation m
is given by:

ṁ(t) = m(t)
[
4(1− 6γ)(1−m2(t))− 2γ∆

]
(88)

Close to initialization we now have ṁ(0) ≈ 0, slowing down the dynamics close to initialization.
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Appendix I. Training the second layer

In the previous section, we have derived analytical expressions for the exit time in the particular case
of fixed first layer weights a0j = 1. Here, we provide numerical evidence that training the first layer
does not significantly change our conclusions.

The key challenge is that by training the first layer we can’t measure text as the time needed
to escape the risk at initialization. Indeed, from equation (9) it can be seen that in the very first
steps of the learning the vector a changes slightly to adapt to the initial conditions, thereby fitting
the noise. In this scenario, instead of looking directly at the risk, we can instead use the largest
component of the correlation vector m as a measure on how much the network has learned. At
random initialization, this is of order 1/

√
d, grows to 1 as the neural network correlates with the target

weights. A natural choice for initializing the second layer weights is a0j = 1, ∀j ∈ [p]. In principle,
this initial condition guarantees that the risk at initialization is exactly equal to the case where aj is
fixed. On the other hand, as we already point out, the initial plateau where the dynamics gets stuck
depends on the particular first layer initial condition. Even for other choices of initialization, e.g.
aj ∼ Bernoulli(1/2), the dynamics quickly goes the a plateau, so it does not really matter which a0j is
used. Therefore, for simplicity we choose an homogeneous initialization a0j = 1. Figure 5 compares
the evolution of the maximum correlation when learning the second layer or not, for different values
of p.

It is important to stress that we are not claiming that the time needed to reach the minimum of the
population risk is the same when training or not the second layer, as can be seen in Fig. 5. Instead,
our result highlights that the time needed to escape the flat directions at initialization are close. In
fact, after the two layer neural network has escaped mediocrity, the dynamics can be very different
whether the second layer weights are trained or not. For instance, a could become sparse with just a
few neurons contributes to the output, or it could remain close to homogeneous aj = 1, and with all
neurons correlating with the target. Although studying the dynamics after escaping mediocrity is
surely an interesting endeavor, it’s out of the scope of this manuscript.
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Figure 5: p = 20 (left), p = 50 (right), d = 1000. Comparison between the growth of maxm
throughout the learning process, when the second layer is fixed (blue) and trained (green).
The dynamics is obviously different far from the starting point, but when we zoom close
to the exit point, the two processes have the same behavior, text included.
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