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Abstract
Traditional network inference methods, such as
Gaussian Graphical Models, which are built
on continuity and homogeneity, face challenges
when modeling discrete data and heteroge-
neous frameworks. Furthermore, under high-
dimensionality, the parameter estimation of such
models can be hindered by the notorious in-
tractability of high-dimensional integrals. In this
paper, we introduce a new and flexible device
for graphical models, which accommodates di-
verse data types, including Gaussian, Poisson
log-normal, and latent Gaussian copula models.
The new device is driven by a new marginally
recoverable parametric family, which can be ef-
fectively estimated without evaluating the high-
dimensional integration in high-dimensional set-
tings thanks to the marginal recoverability. We
further introduce a mixture of marginally recover-
able models to capture ubiquitous heterogeneous
structures. We show the validity of the desirable
properties of the models and the effective esti-
mation methods, and demonstrate their advan-
tages over the state-of-the-art network inference
methods via extensive simulation studies and a
gene regulatory network analysis of real single-
cell RNA sequencing data.

1. Introduction
Graphical models (Lauritzen, 1996) are widely used to ex-
plore network structures and identify complex interactions
between random variables. Recent research has increas-
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ingly focused on high-dimensional settings, commonly en-
countered in applications such as microarray experiments
(Amaratunga et al., 2014) and single-cell RNA sequencing
(scRNA-seq) studies. However, parameter estimation in
such settings poses significant challenges due to the compu-
tational intractability of high-dimensional integrals, limiting
the efficiency of existing methods. This highlights the crit-
ical need for developing efficient estimation frameworks
tailored to high-dimensional graphical models.

Due to well-established theoretical properties and high inter-
pretability, Gaussian graphical model (GGM) (Meinshausen
& Bühlmann, 2006) has been extensively studied in recent
years. Notable methods include L1-penalized log-likelihood
maximization (Yuan & Lin, 2007; Banerjee et al., 2008;
Friedman et al., 2008), penalized regression (Meinshausen
& Bühlmann, 2006; Peng et al., 2009), adaptive thresholding
(Cai & Liu, 2011), and D-trace loss (a smooth convex loss
function) (Zhang & Zou, 2014), among others. To address
the limitations of the Gaussian assumption, semiparametric
Gaussian copula models (Liu et al., 2009; Xue & Zou, 2012;
Liu et al., 2012) have been developed to handle continuous
data, using monotonic univariate transformations. These
methods, based on Gaussian and Gaussian copula models,
are usually efficient but are only applicable to continuous
data and cannot handle discrete data.

In many applications, particularly in genomics studies, dis-
crete data are ubiquitous. The observed data are considered
to be generated from the discretization of underlying la-
tent variables (Skrondal & Rabe-Hesketh, 2007), which
naturally leads to the use of hierarchical models for data
modeling. For example, in scRNA-seq data, gene expres-
sion levels are count data, often featuring numerous zero
values (Islam et al., 2014; Zheng et al., 2017). To effectively
model the underlying dependencies in count data, the mul-
tivariate Poisson log-normal (PLN) distribution (Aitchison
& Ho, 1989) is plausible and popular, since it can capture
the conditional dependencies while accommodating over-
dispersion in the marginal distributions. However, compared
to GGM, maximizing the likelihood of the PLN model is
more challenging due to the high-dimensional integrals in-
volved, without a known closed-form solution. To address
this issue, Choi et al. (2017) used Laplace’s method for
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likelihood approximation and applied Alternating Direction
Method of Multipliers (ADMM) to compute the penalized
maximum likelihood estimator. Chiquet et al.(2019) in-
troduced a variational approximation method to infer the
network of the PLN model. However, these methods rely on
approximations of the likelihood function and lack theoreti-
cal guarantees.

In practice, samples often arise from mixed populations
exhibiting heterogeneous patterns. Traditional graphical
models usually assume that samples come from a single
population with a shared network, which limits their ability
to capture data heterogeneity. To address this, mixture mod-
els are widely utilized. For example, in scRNA-seq data,
samples comprise single cells from different cell types, each
with its own gene regulatory network. One of the arguably
most important tools for studying the mixture and count data
with different reglatory networks is the mixture Poisson log-
normal (MPLN). Silva et al.(2019) employed the MPLN
model for clustering count data and used Expectation-
Maximization (EM) algorithms with MCMC steps to maxi-
mize the computationally intractable log-likelihood. Tang
et al.(2024) adopted a variational inference approach for
inferring cell-type-specific gene regulatory networks. How-
ever, both EM algorithms with MCMC and variational in-
ference are computationally expensive.

To address the aforementioned challenges, this paper makes
the following contributions with theoretical guarantees.

1) To accommodate diverse data types, we propose a novel
class of distributions, the marginally recoverable para-
metric family, which unifies existing models and is not
restricted to a single data type. This family includes
the Gaussian, PLN, and latent Gaussian copula models
introduced by Fan et al. (2017) for binary data.

2) To overcome the computational intractability of high-
dimensional integration, we develop an efficient param-
eter estimation framework for this family based on the
Maximum Marginal Likelihood Estimator (MMLE).
Thanks to marginal recoverability, this method sim-
plifies high-dimensional integrals into multiple low-
dimensional integral computations.

3) To capture heterogeneous structures, we extend the
framework to a mixture of marginal recoverable mod-
els by integrating the EM algorithm to update the
MMLE to EM-MMLE.

We establish the consistency of MMLE for covariance matri-
ces and networks under mild conditions. Simulations show
our method outperforms existing ones for mixture count and
binary data. Furthermore, we apply the EM-MMLE to real
scRNA-seq data to infer cell-type-specific gene regulatory

networks, showcasing its practical utility. All code is avail-
able at https://github.com/XiDsLab/EMMMLE.

Our work balances diversity, efficiency, and heterogeneity,
whereas existing methods typically address at most two of
these aspects. For instance, Fan et al. (2017) proposed a
latent Gaussian copula model for mixed data, combining
continuous and binary variables, and introduced a gener-
alized rank-based method. While this approach ensures
diversity and efficiency, it does not account for heterogene-
ity as it cannot handle mixture models.

2. Flexible Marginally Recoverable Family
In this section, we propose the marginally recoverable para-
metric family to address diversity. First, we introduce some
notations. For a p-dimensional vector a with the i-th entry
ai, a[j,k] = (aj , ak)

⊤ represent the two-dimensional sub-
vector for 1 ≤ j<k ≤ p. For a p× p symmetric matrix A
with the (i, j)-th entry aij , the submatrix A[j,k] is defined
as:

A[j,k] =

(
ajj ajk
ajk akk

)
(1)

where 1 ≤ j<k ≤ p. This submatrix is constructed by
selecting the entries in the j-th and k-th rows and columns
of A. Let Mp denote the set of p × p symmetric positive
semi-definite matrices.

Our work is inspired by the properties of the Gaussian dis-
tribution (Lauritzen, 1996). For a p-dimensional random
vector X ∼ Np(µ,Σ), any of its two-dimensional marginal
distributions X[j,k] ∼ N2(µ[j,k],Σ[j,k]) for 1 ≤ j < k ≤ p.
The parameters of the p-dimensional distribution can be
fully characterized by the parameters of all two-dimensional
marginal distributions. Consequently, the model parameters
can be estimated independently through marginal likeli-
hoods. Inspired by this property, we define the marginally
recoverable parametric family as follows.

Definition 2.1 (Marginally recoverable parametric family).
Let {Hd}∞d=1 be a sequence of distribution functions, where
for each d ≥ 1, any p-dimensional marginal distribution
(1 ≤ p ≤ d) of Hd belongs to the family

Hp = {Hp(µ,Σ) : µ ∈ Rp,Σ ∈ Mp} .

For any p-dimensional random vector X = (X1, . . . , Xp)
⊤

with p ≥ 2 such that X ∼ Hp(µ,Σ) where µ =
(µ1, . . . , µp)

⊤ and Σ = [σjk]1≤j,k≤p , we say that X or
Hp is marginally recoverable if the following conditions
hold:

• For 1 ≤ j ≤ p, Xj ∼ H1(µj , σjj).

• For 1 ≤ j < k ≤ p, X[j,k] ∼ H2(µ[j,k],Σ[j,k]).
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The marginally recoverable parametric family includes
many of the most common distributions. For instance, we
have the following remark.
Remark 2.2. Elliptical distributions, including the Gaus-
sian distribution and the multivariate t-distribution, are
marginally recoverable.

The following proposition elucidates that hierarchical mod-
els with marginally recoverable inner layers also satisfy the
marginally recoverable condition in Definition 2.1.

Proposition 2.3. Let Q(λ) be a distribution function char-
acterized by a single parameter λ. If X is marginally re-
coverable and Y | X ∼

∏p
j=1Q(Xj), then Y is also

marginally recoverable.

Gaussian copula is a widely used semiparametric model,
overcoming the drawback of the Gaussian model’s reliance
on exact normality (Liu et al., 2009). It is easy to verify that
the Gaussian copula model is marginally recoverable.

Definition 2.4 (Gaussian copula model). Let X be a ran-
dom p-vector. X is sampled from the Gaussian copula
model, if there exists a monotonic transformation f such
that f(X) = (f (X1) , . . . , f (Xp))

⊤ ∼ Np(µ,Σ). Then
we denote X ∼ NPN(µ,Σ, f).

Despite its flexibility, the Gaussian copula model cannot be
directly applied to discrete data. For practical applications
in network inference, we introduce two hierarchical models
designed for count data, including binary data, both of which
are marginally recoverable according to Proposition 2.3.

Example 2.5 (Latent Gaussian copula model for count data).
Let X = (X1, . . . , Xp)

⊤ and Y = (Y1, . . . , Yp)
⊤ be two

random p-vectors. Y is sampled from the latent Gaussian
copula model for count data, if

Y | X ∼
p∏

j=1

Poisson (S exp (Xj)) ,

X ∼ NPN(µ,Σ, f).

(2)

This distribution is commonly used to model genomic data
(Sarkar & Stephens, 2021; Sinclair & Hooker, 2019). When
X ∼ Np(µ,Σ), we say that Y follows the PLN distribution,
denoted as PLN (S;µ,Σ). The PLN model is widely used
for single-cell RNA sequencing data, influenza-like illness
dataset and purchase frequency counts (Silva et al., 2019;
Wu et al., 2018; Trinh et al., 2014). In scRNA-seq data,
X denotes the underlying expression levels of genes and
S represents the sequencing depth of the cell, which can
be estimated by the sum of UMI counts across all genes
(Sarkar & Stephens, 2021; Hafemeister & Satija, 2019).

The binary data type is an important special class of count
data and is often observed in genetic and genomic studies. A

prominent example is DNA nucleotide data (Abbasy et al.,
2012). More concretely, genes that exhibit higher levels of
expression are represented as 1, whereas genes with lower
levels of expression are represented as 0. The latent Gaus-
sian copula model for binary data is proposed by Fan et al.
(2017).

Example 2.6 (Latent Gaussian copula model for binary
data). Let X = (X1, . . . , Xp)

⊤ be a random p-vector and
Y = (Y1, . . . , Yp)

⊤ represents p-dimensional binary vari-
ables. Y is sampled from the latent Gaussian copula model
for binary data, if

Yj = I (Xj > Cj) ,

X ∼ NPN(0,Σ, f),
(3)

where Cj is a constant, I(·) is the indicator function, and
σjj = 1 for any 1 ≤ j ≤ p.

In the latent Gaussian copula model for binary data, each
binary component Yj , which takes values of 0 or 1, is gener-
ated from a latent continuous random variable Xj truncated
at an unknown threshold value Cj .

Examples 2.5 and 2.6 can be regarded as two specific in-
stances of marginally recoverable distributions. In both
cases, Σ represents the covariance matrix of latent vari-
ables. In Example 2.5, µ is the mean of the Gaussian copula
distributions in the inner layer, while in Example 2.6, µ rep-
resents the threshold values. The inverse of the covariance
matrix Σ, denoted as Θ, reveals the network. Specifically,
in Example 2.5 and 2.6, Xi and Xj are independent given
the remaining variables if and only if Θij = 0. Conse-
quently, inferring the graph structure can be achieved by
estimating Θ. However, the likelihood function in hierarchi-
cal models, such as Example 2.5 and Example 2.6, involves
high-dimensional integrations that pose significant compu-
tational challenges, since these integrations seldom have
closed-form solutions, making the computation of max-
imum likelihood estimation infeasible. Fortunately, the
computational issue can be circumvented by leveraging the
properties of marginally recoverable distributions and sim-
plifying the problem of estimating the parameters of a high-
dimensional distribution into multiple lower-dimensional
parameter estimation problems.

3. Efficient Estimation
In this section, we introduce an efficient estimation frame-
work designed to estimate parameters, particularly Σ, which
is associated with the network structure in Hp(µ,Σ). Then,
we extend the estimation framework to accommodate mix-
ture distributions for inferring networks.
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3.1. The Maximum Marginal Likelihood Estimator

Let hp denote the density function of the distribution Hp.
Suppose that Yi, for i = 1, . . . , n, are n random p-
dimensional vectors sampled from Hp(µ,Σ). When p is
large, computing the maximum likelihood estimator is in-
feasible due to the intractable high-dimensional integration.
By leveraging the properties of the marginally recoverable
component as defined in Definition 2.1, we propose an effi-
cient estimation framework based on MMLE for parameter
estimation. This framework is inspired by the pairwise like-
lihood method (Cox & Reid, 2004; Varin, 2008), which com-
putes only the likelihoods of pairs of observations. There-
fore, this method significantly reduces the computational
cost compared to conventional likelihood. This reduction in
computation relies on evaluating a limited number of sets
of two-dimensional integrals instead of computing the full
high-dimensional likelihood integral, i.e.,

Lpair(µ,Σ;y) =

p−1∏
j=1

p∏
k=j+1

h2(yj , yk;µ[j,k],Σ[j,k]). (4)

Unfortunately, the pairwise maximum likelihood estimator
(PMLE) is often inconsistent (Varin et al., 2011). However,
for marginally recoverable distributions, the PMLE is con-
sistent because we can estimate the parameters from the
two-dimensional marginals.

Note that when µ and σjj(j = 1, . . . , p) are known,
maximizing Lpair(µ,Σ;y) is equivalent to maximizing
h2(yj , yk;µ[j,k],Σ[j,k]) for 1 ≤ j<k ≤ p. Motivated
by this and to avoid redundant computation of µ and
σjj , we first estimate µj and σjj by maximizing the one-
dimensional marginal log-likelihood. Then, σjk is estimated
by maximizing the two-dimensional marginal log-likelihood.
The MMLE Σ̂ = [σ̂jk]1≤j,k≤p is derived as follows:

σ̂jj = argmax
σjj

n∑
i=1

log h1 (Yij ;µj , σjj) ,

σ̂jk = argmax
σjk

n∑
i=1

log h2

(
Yi[j,k];µ[j,k],Σ[j,k]

)
,

(5)

where in the optimization for σ̂jk, σjj and σkk in Σ[j,k] are
fixed to σ̂jj and σ̂kk, respectively.

3.2. Mixture for Heterogeneity

The mixture model surpasses the limitations of the single-
component model and offers additional flexibility in mod-
eling complex data. In the following, we focus on the mix-
ture model within the marginally recoverable family. Let
π = (π1, . . . , πG) denote the mixing proportions, where∑G

g=1 πg = 1 and πg > 0 for g = 1, . . . , G. Suppose

that the distribution Hp is marginally recoverable. A G-
component mixture of marginally recoverable distributions
can be expressed as HM

p (π,Ω) =
∑G

g=1 πgHp(µg,Σg)
where Ω = {µ1, . . . ,µG,Σ1, . . . ,ΣG}.

However, due to the unknown sample categories, maximiz-
ing the marginal log-likelihood of mixed distributions is
computationally intractable in practice. Therefore, we pro-
pose the EM algorithm to update the MMLE for data from
mixed populations and name the estimator as EM-MMLE.

Assume that Yi, for i = 1, . . . , n, are n p-dimensional
random vectors generated from HM

p (π,Ω). To indicate
cluster membership, we introduce the indicator variable
Zi for the i-th sample, which follows a multinomial distri-
bution with proportion parameter π. For 1 ≤ j < k ≤ p,
let Φjk =

{
π,µg[j,k],Σg[j,k], g = 1, ..., G

}
containing the

unknown parameters of Y[j,k]. In the t-th iteration, the ex-
pected complete log-likelihood Q(Φjk,Φ

(t−1)
jk ) is taken as

the optimization objective, which is defined as

Q(Φjk,Φ
(t−1)
jk ) = E

p(Z|Y;Φ
(t−1)
jk )

[log p(Y,Z; Φjk)] .

We update Φ̂
(t)
jk = argmaxΦjk

Q(Φjk, Φ̂
(t−1)
jk ). The itera-

tion terminates when the change in the optimization objec-
tive between consecutive steps is negligible. The framework
of EM-MMLE is summarized in Algorithm 1.

A key application of the mixture distributions Hp(π,Ω) is
to infer networks from its parameters {Σg, g = 1, . . . , G}.
Therefore, with EM-MMLE Σ̂g (g = 1, . . . , G), we apply
the D-trace method to estimate the sparse precision matrix
Θg = Σ−1

g , i.e.,

Θ̂g = arg min
Θg⪰0

1

2
tr
(
Θ2

gΣg

)
− tr(Θg) + λg∥Θg∥1, off .

(6)
where Θg ⪰ 0 indicates that Θg is positive semi-definite,
and ∥Θg∥1,off =

∑
i ̸=j |Θgij |. This optimization problem

is efficiently solved using an alternating direction method as
described in Zhang & Zou (2014). To ensure the convexity
of the loss function, the D-trace approach requires the input
covariance matrix estimator to be positive semi-definite. To
satisfy this requirement, we propose the Σ̃g:

Σ̃g = Σ̌g + ∥Σ̌g − Σ̂g∥∞I, (7)

where I is the identity matrix and Σ̌g = argminA⪰0 ∥A−
Σ̂g∥∞ is the projection of Σ̂g onto the space of positive
semi-definite matrices, which can be solved by a splitting
conic solver (Fu et al., 2020).

The selection of the tuning parameter in Equation (6) is
achieved by minimizing the approximate Bayesian informa-
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Algorithm 1 Framework of EM-MMLE
Input: Observed data Y1, ...,Yn, the number of pop-
ulations G, the maximum iteration number T and the
convergence threshold ϵL.
Output: Σ̂1, ..., Σ̂G.
for j = 1 to p− 1 do

for k = j + 1 to p do
while t < T and L > ϵL do

for i = 1 to n do
for g = 1 to G do

P̂
(t)
gijk = h2

(
Yi[j,k]; µ̂

(t−1)
g[j,k] , Σ̂

(t−1)

g[j,k]

)
γ̂
(t)
gijk =

π̂(t−1)
g P̂

(t)
gijk∑G

g=1 π̂
(t−1)
g P̂

(t)
gijk

end for
end for
for g = 1 to G do
π̂
(t)
g = n−1

∑n
i=1 γ̂

(t)
gijk

Update µ̂
(t)
gj and σ̂

(t)
gjj by maximizing∑n

i=1 γ̂
(t)
gijk log h1(Yij ;µgj , σgjj).

Update µ̂
(t)
gk and σ̂

(t)
gkk by maximizing∑n

i=1 γ̂
(t)
gijk log h1(Yik;µgk, σgkk).

Update σ̂
(t)
gjk by maximizing∑n

i=1 γ̂
(t)
gijk log h2(Yi[j,k]; µ̂

(t)
g[j,k],Σg[j,k]).

end for
L = δ

(
Q(Φ̂

(t)
jk , Φ̂

(t)
jk ), Q(Φ̂

(t−1)
jk , Φ̂

(t−1)
jk )

)
,

where δ(x, y) = |x− y|/y.
end while

end for
end for

tion criterion∥∥∥∥12(Θ̂gΣ̂g + Σ̂gΘ̂g)− I

∥∥∥∥
F

+
(
∥Θ̂g∥0 log n

)
/n, (8)

where ∥Θ̂g∥0 denotes the number of nonzero entries in Θ̂g .

4. Theoretical Properties
In this section, we establish theoretical results concerning
the convergence rate of MMLE and the application to net-
work estimation. We focus on the mixture of marginally
recoverable distributions HM

p (π,Ω), which reduces to the
single-component model discussed in Section 3.1 when
G = 1. In theory, under the assumptions that the mixing
proportions πg and means µg (g = 1, . . . , G) are known,

we can estimate {Σg, g = 1, ..., G} as
{
Σ̂g, g = 1, ..., G

}
using the MMLE.

Before presenting the theoretical results, we first provide

the necessary conditions.

Let hM1 (y;ω1), hM2 (y;ω2) represent the one-dimensional
and two-dimensional marginal density functions of
HM

p (π,Ω), respectively, with parameters ω1 ∈ O1 and
ω2 ∈ O2, where O1,O2 are parameter spaces in finite-
dimensional Euclidean space. The Hellinger distance be-
tween two densities p1 and p2 is defined as: d(p1, p2) =[∫ (

p
1/2
1 − p

1/2
2

)2
dν

]1/2
=
∥∥∥p1/21 − p

1/2
2

∥∥∥
L2

.

Condition 4.1 (Lower boundedness condition). For
k = 1, 2, and for any ωk,ω

′
k ∈ Ok, there ex-

ists a positive constant c such that c ∥ωk − ω′
k∥2 ≤

d(hMk (y;ωk), h
M
k (y;ω′

k)).

Condition 4.2 (Upper boundedness condition). For k =
1, 2, and for any ωk,ω

′
k ∈ Ok, there exist a measurable

function m(y) and a constant c such that
∫
m2(y)dν =

c2 < ∞, and
∣∣∣hMk 1/2

(y;ωk)− hMk
1/2

(y;ω′
k)
∣∣∣ ≤

m(y) ∥ωk − ω′
k∥2.

Based on these boundedness conditions, we establish a the-
orem that elucidates the convergence rate of MMLE Σ̂.

Theorem 4.3 (Rate of convergence from MMLE Σ̂g). For
the mixture marginally recoverable model, assume that
Conditions 4.1 and 4.2 hold. Then, there exists a con-
stant c such that for any 1 ≤ g ≤ G and ϵ > 0 ,
pr
(∥∥∥Σ̂g −Σg

∥∥∥
∞

≥ ϵ
)
≤ 5Gp2 exp

(
−cnϵ2

)
.

Theorem 4.3 shows that if p < exp(c′n) for some constant
c′, or in other words, if p tends to infinity not faster than
exponential of n, then Σ̂g is a consistent estimator of Σg .

The precision matrix Θg = Σ−1
g encodes the network struc-

ture. Specifically, an edge exists between vertices i and j in
the g-th group if Θgij ̸= 0; otherwise, Θgij = 0 indicates
no edge. With the rate of convergence for Σ̂g, we apply
the Theorem 3 in Xiao et al. (2022) to each Σ̃g and then
estabilsh the sign consistency of the estimator Θ̂g .

Theorem 4.4 (Sign consistency for Θ̂g). Assume that for
each g = 1, ..., G, the true precision matrix Θg satisfies
the conditions described in the Appendix A.2. Then, for
some η > 2, pr

(
vec(Θ̂g)Gc

g
= 0
)
> 1 − p2−η, if n is

sufficiently large (depending on η, see Appendix A.2), where
vec(Θ̂g) denotes the vector formed by stacking the columns
of Θ̂g , and vec(Θ̂g)Gc

g
represents the subvector indexed by

Gc
g = {(i, j) : Θgij = 0}.

Theorem 4.4 demonstrates that the estimator Θ̂g recovers
all zeros and nonzeros in Θg with probability 1−p2−η . The
proof of Theorem 4.4 is similar to that of Theorem 3 in Xiao
et al. (2022) and is omitted here.

Notably, many mixture marginally recoverable distributions
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satisfy both Conditions 4.1 and 4.2. A crucial example is the
MPLN distribution, well-suited for gene regulatory network
inference in scRNA-seq studies. Unlike single-model ap-
proaches requiring prior knowledge of cell type labels, the
MPLN model handles network inference without such prior
knowledge. Additionally, it accounts for overdispersion in
scRNA-seq data and supports both positive and negative
correlations (Silva et al., 2019; Tunaru, 2002). Tang et al.
(2024) proposed VMPLN, a variational inference-based al-
gorithm for estimating the precision matrices of MPLN, but
it is time-consuming and lacks theoretical guarantees. In
contrast, our estimation method is supported by theoretical
guarantees. Under mild conditions, we show the following:

1) The MPLN distribution satisfies Conditions 4.1 and 4.2.
This nontrivial proof is provided in Appendix A.3.4.

2) The binary data model in Example 2.6 also satisfies both
conditions, with the proof detailed in Appendix A.4.

Thus, Theorem 4.3 and Theorem 4.4 demonstrate broad
applicability.

5. Simulation
To evaluate the performance of our method, we conduct
simulations on mixed count data and binary data.

5.1. Simulation for Mixed Count Data

We generate simulation data following the MPLN distribu-
tion and compare EM-MMLE with the available network
inference methods including PLNet (Xiao et al., 2022), VM-
PLN (Tang et al., 2024), and Glasso (Friedman et al., 2008).
EM-MMLE and VMPLN are developed to directly esti-
mate the precision matrices from the MPLN model, using
K-means clustering results as initial values. For PLNet and
Glasso, samples are clustered using the K-means algorithm,
and then the network is inferred separately for each cluster.

Simulation Settings. The number of populations G is set as
3, and the proportion parameter π is set as (1/3, 1/3, 1/3).
The synthetic datasets vary across different network struc-
tures (random, blocked random, banded, and scale-free),
dimensions (p = 100, 300), sample sizes (n = 1800, 3000),
population mixing levels (low, middle, and high), and zero-
proportion levels that represent the proportion of zeros in
the count matrix (low and high). In each scenario, we inde-
pendently repeat simulations 50 times. Details of the data
generation process are provided in Appendix B.1.

Performance Comparison. Table 1 shows the area un-
der the precision-recall curve (AUPR) of each estimator
for random graphs, calculated by varying the penalty pa-
rameters, while results for the other three graph structures

Figure 1. Mean networks predicted by EM-MMLE, PLNet, VM-
PLN, and Glasso for the banded graph with p = 100, n = 3000,
high mixing, and a high zero-proportion rate. False edges are
colored in red and true edges are in dark blue.

are provided in Tables 3–5 in the Appendix B.3. As ex-
pected, the AUPR decreases with an increase in the number
of genes or higher zero-proportion levels. Among the four
methods, EM-MMLE proves to be the most robust, consis-
tently outperforming PLNet, VMPLN, and Glasso in AUPR
across all simulated scenarios. This advantage is particu-
larly evident in high-dimensional settings, situations with
higher population mixing levels, or when zero-proportion
rates are high. As the sample size increases, the AUPR
of EM-MMLE improves significantly, aligning well with
theoretical expectations.

Moreover, the superiority of EM-MMLE over PLNet be-
comes more evident with increased population mixing.
For example, in simulations with a blocked random graph
(n = 3000, p = 300, low zero-proportion), EM-MMLE
achieves mean AUPRs of 0.84 and 0.94 in high and low
mixing scenarios, respectively, approximatelyy 15% and 8%
higher than PLNet’s AUPRs (0.73 and 0.87).

Additionally, compared to VMPLN, another network infer-
ence method based on the MPLN model, EM-MMLE shows
superior performance, especially in higher-dimensional set-
tings. For instance, in random graph simulations (n = 3000,
low mixing, low zero-proportion), EM-MMLE achieves
mean AUPRs of 0.96 (p = 300) and 0.99 (p = 100), outper-
forming VMPLN by 28% and 4%, respectively.

To further assess the performance of EM-MMLE, we vi-
sualize the average network predicted by the four methods
across 50 simulations. We computed the relative frequency
matrix F to capture the accuracy of network recovery. For
Θij ̸= 0, Fij represents the proportion of simulations in
which the edge was correctly recovered. Conversely, when
Θij = 0, Fij denotes the negative proportion of simulations
in which an edge between nodes i and j was incorrectly
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Table 1. Comparisons of EM-MMLE with PLNet, VMPLN and Glasso in terms of AUPR on simulation results for random graphs
generated by the MPLN model. The results are averages over 50 replicates with standard deviations in brackets.

Zero-proportion Low
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.95 (0.013) 0.94 (0.012) 0.91 (0.018) 0.86 (0.024) 0.81 (0.022) 0.72 (0.04)

PLNet 0.89 (0.03) 0.86 (0.046) 0.81 (0.047) 0.74 (0.061) 0.67 (0.066) 0.57 (0.085)
VMPLN 0.9 (0.023) 0.9 (0.022) 0.89 (0.037) 0.67 (0.026) 0.66 (0.017) 0.64 (0.022)
Glasso 0.83 (0.036) 0.8 (0.032) 0.76 (0.047) 0.72 (0.028) 0.69 (0.027) 0.61 (0.034)

n = 3000
EM-MMLE 0.99 (0.006) 0.98 (0.006) 0.98 (0.008) 0.96 (0.008) 0.94 (0.011) 0.87 (0.019)

PLNet 0.95 (0.047) 0.95 (0.033) 0.93 (0.03) 0.91 (0.052) 0.87 (0.063) 0.75 (0.052)
VMPLN 0.95 (0.028) 0.95 (0.021) 0.94 (0.016) 0.75 (0.021) 0.74 (0.013) 0.72 (0.019)
Glasso 0.89 (0.04) 0.88 (0.033) 0.85 (0.035) 0.82 (0.021) 0.79 (0.019) 0.72 (0.024)

Zero-proportion High
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.83 (0.026) 0.8 (0.037) 0.75 (0.03) 0.62 (0.041) 0.55 (0.028) 0.49 (0.03)

PLNet 0.72 (0.073) 0.69 (0.059) 0.61 (0.069) 0.55 (0.064) 0.47 (0.04) 0.41 (0.031)
VMPLN 0.77 (0.037) 0.75 (0.034) 0.72 (0.033) 0.47 (0.034) 0.45 (0.025) 0.44 (0.021)
Glasso 0.55 (0.045) 0.49 (0.046) 0.45 (0.045) 0.47 (0.032) 0.44 (0.028) 0.41 (0.026)

n = 3000
EM-MMLE 0.95 (0.01) 0.94 (0.013) 0.92 (0.017) 0.83 (0.028) 0.79 (0.025) 0.71 (0.037)

PLNet 0.89 (0.037) 0.87 (0.048) 0.81 (0.065) 0.77 (0.048) 0.71 (0.039) 0.62 (0.048)
VMPLN 0.86 (0.038) 0.84 (0.042) 0.81 (0.047) 0.56 (0.031) 0.55 (0.026) 0.54 (0.018)
Glasso 0.63 (0.04) 0.6 (0.06) 0.55 (0.063) 0.58 (0.029) 0.58 (0.033) 0.53 (0.043)

predicted. Figure 2 shows the results for the banded graph
with p = 100, n = 3000, high mixing, and a high zero-
proportion rate. EM-MMLE closely aligns with the true net-
work structure, detecting more true edges while maintaining
the lowest false positive rate compared to other methods.

5.2. Simulation for Binary Data

To evaluate the performance of MMLE in estimating the
inverse correlation matrix Θ for binary data, we follow a
similar data-generating procedure as described in Fan et al.
(2017). Specifically, we generate simulation data Y =

(Y1, . . . , Yp)
⊤, where Yj = I (Xj > Cj) for j = 1, . . . , p,

with X ∼ Np(0,Σ).

We then compare the performance of MMLE with three
estimation methods: the rank-based estimator by Fan
et al.(2017), AMLE (d’Aspremont et al., 2008), and an Ora-
cle estimator, which utilizes the Pearson correlation of the
latent variable X within the D-trace loss to benchmark the
information loss of estimators derived from observed data
Y. The rank-based estimator by Fan et al.(2017) is designed
to estimate the correlation matrix in a latent Gaussian copula
model. To estimate the precision matrix, we apply D-trace to
the correlation matrix from this estimator to assess its accu-
racy in estimating Θ. AMLE is a graphical lasso estimator
that takes the modified sample covariance matrix ΣA as

its input, where ΣA = 1
n

∑n
i=1

(
Xi − X̄

) (
Xi − X̄

)⊤
+ 1

3
and X̄ = 1

n

∑n
i=1 Xi.

Simulation Settings. We set p = 50, 200 and evaluate the
performance for three sample sizes: n = 200, 500, 3000.
Each simulation scenario is repeated 100 times. The data
generative process is detailed in Appendix B.2

Performance Comparison. Table 2 presents the average
estimation errors of Σ̂ − Σ and Θ̂ − Θ as measured by
the Frobenius norm. It is seen that the estimation errors of
MMLE and Fan’s method remain nearly identical across
different dimensions and both are significantly lower than
those of AMLE. When n is small, MMLE demonstrates
higher accuracy in estimating Σ compared to Fan’s method.
Notably, Fan’s method can only handle model (3), whereas
MMLE offers greater generalizability. Compared to the
benchmark Oracle estimator, the results in Table 2 indicates
that MMLE has almost no information loss at n = 200
and n = 500, and only moderate information loss in the
high-dimensional environment at n = 3000.

6. Application to a scRNA-seq Dataset
In this section, we evaluate the performance of EM-MMLE
for gene regulatory network inference using a real scRNA-
seq dataset (Zheng et al., 2017), comprising 6,952 cells

7
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Table 2. Average estimation error of MMLE, Fan et al.’s method, Oracle, and AMLE measured by the Frobenius norm on binary data.
The results are averages over 100 replicates with standard deviations in brackets.

p 50 200
n 200 500 3000 200 500 3000

Σ̂−Σ
Oracle 3.599 (0.02) 2.173 (0.01) 0.909 (0.01) 14.153 (0.03) 8.911 (0.02) 3.629 (0.01)
MMLE 6.343 (0.15) 3.978 (0.07) 1.597 (0.03) 25.84 (0.14) 15.869 (0.11) 6.529 (0.03)

Fan et al. 6.375 (0.15) 3.986 (0.07) 1.598 (0.03) 25.978 (0.14) 15.901 (0.11) 6.531 (0.03)
AMLE 31.254 (0.11) 31.247 (0.06) 31.036 (0.03) 125.278 (0.31) 123.72 (0.36) 124.367 (0.08)

Θ̂−Θ
Oracle 2.327 (0.03) 2.335 (0.03) 1.12 (0.08) 2.365 (0.02) 2.342 (0.03) 1.045 (0.03)
MMLE 2.328 (0.03) 2.334 (0.03) 1.335 (0.06) 2.365 (0.02) 2.363 (0.03) 2.332 (0.04)

Fan et al. 2.327 (0.03) 2.333 (0.03) 1.336 (0.09) 2.365 (0.02) 2.363 (0.03) 2.33 (0.04)
AMLE 2.684 (0.34) 2.834 (0.03) 2.198 (0.03) 2.365 (0.02) 3.564 (0.02) 2.871 (0.04)

Figure 2. AUPRC ratios of network inference algorithms on the
scRNA-seq dataset. Algorithms are ordered by decreasing median
AUPRC ratios. The color in each cell is proportional to the corre-
sponding value (scaled between 0 and 1, with values below those
of a random predictor shown as grey squares). The actual values
are displayed in the boxes.

across four cell types. The dataset includes two batches,
sequenced by 3’ and 5’ scRNA-seq technologies. One batch
is used to construct silver standards based on public regu-
latory network databases (Appendix C.1), while the other
batch is reserved for algorithm testing. We infer regulatory
interactions for the top 300 highly variable genes identi-
fied by Seurat (Stuart et al., 2019) and assess the results by
comparison to these silver standards.

To compare network predictions fairly, we use the AUPRC
ratio, a metric from a previous benchmark (Pratapa et al.,
2020) (see Appendix C.2). Algorithms are compared at
a fixed network density (5%), with AUPRC ratios calcu-
lated relative to the silver standards. Figure 2 presents the

heatmap of AUPRC ratios for six methods (four evaluated
in the simulation and two additional single-cell gene regula-
tory network inference methods: PPCOR (Kim, 2015) and
GENIE3 (Huynh-Thu et al., 2010)). EM-MMLE achieves
the highest AUPRC ratios in most cases and consistently
outperforms the random predictor across all cell types.

From a biological perspective, some interesting association
patternss are identified by EM-MMLE (Figure 3). It reveals
an association between the genes MYBL2 and TK1, which
is predicted across the regulatory networks of three cell
types. This finding is supported by the literature (Qiu et al.,
2022), which links these genes to N glycan biosynthesis and
p53 signaling pathways. Additionally, EM-MMLE predicts
an association between the genes MYBL2 and BIRC5, sup-
ported by Li et al. (2021). Interestingly, we also identified
a cell-type-specific hub gene ID3 in the gene regulatory
network of CD4+ T cells. Gene ontology analysis of ID3
target genes (Figure 4) reveals enrichment in terms related
to antigen processing and presentation, including exogenous
and endogenous peptide antigens via MHC class II. The rela-
tionship between CD4+ T cells and MHC class II is central
to adaptive immune responses in the immune system.

7. Discussion
In this paper, we introduce a new and generic family of
graphical models, the marginally recoverable family, which
is not limited to specific models or data types. We propose
MMLE for parameter estimation with theoretical guaran-
tees, avoiding high-dimensional integration, and introduce
EM-MMLE to handle mixture distributions and capture het-
erogeneous structures. The effectiveness of our method is
demonstrated through several specific distributions.

To facilitate intuitive network representation, we impose
certain restrictions on the form of the parameters within

8
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the marginally recoverable family and require that the one-
dimensional and two-dimensional marginal distributions
satisfy specific conditions. However, motivated by the un-
derlying principles of the family, we can provide a more
general definition that extends to distributions determined
by higher moments.

Let X be a p-dimensional random variable, and let d < p be
a fixed integer. We say that X is d-marginally recoverable
if any d-dimensional marginal distribution of X belongs to
the same distribution family, and the parameters of all d-
dimensional marginal distributions collectively characterize
the parameters of the full distribution.

This generalization improves the flexibility of the marginally
recoverable family and broadens its applicability to more
general parameter estimation problems. Future work will
explore additional distributions within this framework and
apply the proposed estimation method to diverse real-world
applications.
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A. Theoretical Results and Proofs
A.1. Proofs for Theorem 4.3

In this section, we first provide some lemmas concerning the Maximum Likelihood Estimator (MLE) and subsequently
prove Theorem 4.3.

Recall that hM1 (y;ω1), hM2 (y;ω2) denote the one-dimensional and two-dimensional marginal density functions of
HM

p (π,Ω), respectively, with parameters ω1 ∈ O1 and ω2 ∈ O2, where O1,O2 are parameter spaces in finite-dimensional
Euclidean space. For simplicity, we omit the subscripts and use hM (y;ω) to represent either the one-dimensional or
two-dimensional marginal density function of HM

p (π,Ω), where ω ∈ O is a k-dimensional parameter vector. Define
F =

{
hM (y;ω) : ω ∈ O

}
.

For any u > 0, if there exists a finite set {(fLj , fUj ), j = 1, . . . , N} such that
∥∥(fLj )1/2 − (fUj )1/2

∥∥
2
≤ u for j = 1, ..., N

and for any hM (y;ω) ∈ F , there exists a j such that fLj ≤ hM (y;ω) ≤ fUj , we say that {(fLj , fUj ), j = 1, . . . , N} is a
Hellinger u-bracketing of F , and N is the size of the Hellinger u-bracketing. Let Nu be the set of sizes of all Hellinger
u-bracketings. We define the bracketing Hellinger metric entropy of F as

H(u,F) = min
N∈Nu

logN.

A.1.1. LEMMAS

Lemma A.1. There exist positive constants c1, c2, c3, such that, for any ϵ > 0, if∫ √
2s

s2/28
H1/2

(
u/c2,

{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
})

du ≤ c3n
1/2s2 (9)

for all s ≥ ϵ, then for the MLE ω̂ of the true parameter ω using n independent samples, we have

pr

(∥∥∥hM 1/2
(y; ω̂)− hM

1/2
(y;ω)

∥∥∥
L2

≥ ϵ

)
≤ 5 exp(−c1nϵ2)

.

Lemma A.1 is a local version of Theorems 1 and 2 from Wong & Shen (1995).

Lemma A.2. Let ω̂ be the MLE of the true parameter ω restricted on O. Under Condition 4.1 and Condition 4.2, there
exists a positive constant c independent with parameters, such that, for any ϵ > 0, we have

pr (∥ω̂ − ω∥2 ≥ ϵ) ≤ 5 exp(−cnϵ2).

Proof. To prove Lemma A.2, we adopt a proof framework similar to that of Lemma S11 in Xiao et al. (2022). First we will
show that there exist postive constants c4, c5, such that,

H
(
u,
{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
})

≤ c4 log(c5s/u). (10)

According to the lower boundedness condition 4.1, the parameters whose index in
{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
}

can be covered by Fω,s =
{
ω′| ∥ω′ − ω∥2 ≤

√
2s/C1

}
, where C1 is a constant. Using the upper boundedness condition

4.2, for any ω,ω′ ∈ O, there exist a measurable function m(y) and a constant C2 such that
∫
m2(y)dν = C2

2 <∞, and∣∣∣hM 1/2
(y;ω)− hM

1/2
(y;ω′)

∣∣∣ ≤ m(y) ∥ω − ω′∥2. It is straightforward to verify that we can cover the set Fω,s by at

most
(
2
√
2C2s/C1u

)k
balls, while each ball has a radius of u/2C2. For any ball B with radius u/2C2, we define the centre

of B as ω0, then ∥ω′ − ω0∥2 ≤ u/2C2 for any ω′ ∈ B. Then, we have
∣∣∣hM 1/2

(y;ω′)− hM
1/2

(y;ω0)
∣∣∣ ≤ m(y)u/2C2.

Therefore, we can select the minimum and maximum density within each ball as follows:

f
1/2
L = max

{
hM

1/2
(y;ω0)−m(y)u/2C2, 0

}
, f

1/2
U = hM

1/2
(y;ω0) +m(y)u/2C2.

12
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Consequently, we have d(fL, fU ) ≤ (
∫
m2(y)u2/C2

2dy)
1/2 = u, thus we can derive (10).

Next, to apply Lemma A.1, we aim to prove the existence of positive constants c2 and c′ such that (9) holds for any

s ≥ c′n−1/2. The case that s < c′n−1/2 will be discussed later. According to the Cauchy inequality
(∫ b

a
f1/2 dx

)2
≤

(b− a)
∫ b

a
f dx, (∫ √

2s

s2/28
H1/2

(
u/c2,

{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
})

du

)2

≤(
√
2s− s2/28)

∫ √
2s

s2/28
H
(
u/c2,

{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
})

du

≤
√
2s

∫ √
2s

s2/28
H
(
u/c2,

{
p1 ∈ F : d(p1, h

M (y;ω)) ≤
√
2s
})

du

≤
√
2s

∫ √
2s

s2/28
c4 log(c2c5s/u)du

(11)

Thus, it suffices to show there exist positive constants c2 and c′ such that∫ √
2s

s2/28
log(c2c5s/u) du ≤ ns3, (12)

for all s ≥ c′n−1/2.

Let c2 ≥ c−1
5 . After calculating the left hand of (12), we have∫ √

2s

s2/28
log(c2c5s/u)du = log(c2c5s)(

√
2s− s2/28) + [u− u log u]|

√
2s

s2/28

≤ −
√
2s log(

√
2)− s2/28(log(s)− log(s2/28)) + (

√
2s− s2/28) + log(c2c5)

√
2s

=
√
2 log(c2c5e/

√
2)s− s2/28 log(28e/s).

(13)

Note that
√
2s ≥ s2/28 implies log(28e/s) > 0. Therefore, if ns2 ≥

√
2 log(c2c5e/

√
2), i.e., s ≥ c′n−1/2 where

c′ =
(√

2 log(c2c5e/
√
2)
)1/2

, inequality (12) will hold.

Then using Lemma A.1, there exists a positive constant c1 such that

pr

(∥∥∥hM 1/2
(y; ω̂)− hM

1/2
(y;ω)

∥∥∥
L2

≥ ϵ

)
≤ 5 exp(−c1nϵ2),

for any ϵ ≥ c′n−1/2. Notice that for 0 < ϵ < c′n−1/2, we can have a constant c0 to satisfy

pr

(∥∥∥hM 1/2
(y; ω̂)− hM

1/2
(y;ω)

∥∥∥
L2

≥ ϵ

)
≤ 5 exp(−c0nϵ2).

Choosing constant c = min{c0, c1}, we have for any ϵ > 0,

pr

(∥∥∥hM 1/2
(y; ω̂)− hM

1/2
(y;ω)

∥∥∥
L2

≥ ϵ

)
≤ 5 exp(−cnϵ2).

Noting that ω, ω̂ ∈ O, we apply the lower boundedness condition 4.1 to obtain{
d(hM (y; ω̂), hM (y;ω)) < ϵ

}
⊆ {∥ω̂ − ω∥2 < ϵ/C1} ,

where C1 is a constant. Thus,

pr (∥ω̂ − ω∥2 < ϵ/C1) ≥ pr
(
d(hM (y; ω̂), hM (y;ω)) < ϵ

)
≥ 1− 5 exp(−cnϵ2),

which implies that
pr (∥ω̂ − ω∥2 ≥ ϵ′) ≤ 5 exp(−Cnϵ′2),

for a constant C and all ϵ′ > 0. Then we finish our proof.

13
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A.1.2. PROOF OF THEOREM 4.3

Proof. Recall the definition of MMLE in Equation (5). Apply Lemma A.2 to Yj and Y[j,k] for any 1 ≤ j<k ≤ p,
we have pr (|σ̂gjk − σgjk| ≥ ϵ) ≤ 5 exp

(
−Cnϵ2

)
for any 1 ≤ j ≤ k ≤ p, 1 ≤ g ≤ G and ϵ > 0. Thus, we have

pr
(∥∥∥Σ̂g −Σg

∥∥∥
∞

≥ ϵ
)
≤ 5Gp2 exp

(
−cnϵ2

)
for any 1 ≤ g ≤ G and ϵ > 0 with a constant c and finish the proof.

A.2. Detailed Restatement of Theorem 4.4

For a vector a with the i-th entry ai, let ∥a∥1 =
∑

i |ai|. For a matrix A, let λmax(A) and λmin(A) be the largest and
smallest eigenvalues of A, vec(A) denote the vector formed by stacking the columns of A, ∥A∥0 =

∑
i,j I(Aij ̸= 0)

denote the number of nonzero entries, ∥A∥1,off =
∑

i ̸=j |Aij | and ∥A∥1,∞ = maxi(
∑

j |Aij |).

For each g = 1, ..., G, we introduce the following notation. Define Gg = {(i, j)|Θgij ̸= 0} as the set of positions
corresponding to nonzero elements in Θg and Gc

g = {(i, j)|Θgij = 0}. Let d denote the maximum node degree
in Θg, s = ∥Θg∥0, and θmin = min(i,j)∈Gg

|Θgij | be the minimal absolute value of nonzero elements of Θg. We
define Γ∗ = Γ(Σg) = (Σg ⊗ I + I ⊗ Σg)/2, where A ⊗ B is the Kronecker product. For two subsets T1 and T2 of
{(i, j) | 1 ≤ i, j ≤ p}, we define Γ(A)T1,T2

be the submatrix of Γ(A) whose rows and columns indexed by T1 and T2,
respectively. Other notations are as follows,

γ = 1− max
(i,j)∈Gc

g

∥∥∥Γ∗
(i,j),Gg

(Γ∗
Gg,Gg

)−1
∥∥∥
1
,

kΓ =
∥∥∥(Γ∗

Gg,Gg
)−1
∥∥∥
1,∞

, kΣ = ∥Σg∥1,∞ .

Recall that the precision matrix estimator Θ̂g is defined as:

Θ̂g = arg min
Θg⪰0

1

2
tr
(
Θ2

gΣg

)
− tr(Θg) + λg∥Θg∥1, off . (14)

We now provide a detailed restatement of Theorem 4.4, aligning the conditions with those in Theorem 3 of Xiao et al. (2022).
For each g = 1, ..., G, there exist constants ag and bg , such that for some η > 2, if the true precision matrix Θg satisfies the
following conditions:

n > b−1
g (η log p+ log ag)max

[
12dkΓ, 12γ

−1(kΣk
2
Γ + kΓ),

{
12γ−1

(
kΣk

3
Γ + k2Γ

)
+ 5dk2Γ

}
θ−1
min,

min
{
s1/2, d+ 1

}{
12γ−1

(
kΣk

3
Γ + k2Γ

)
+ 5dk2Γ

}
λ−1
min(Θg)

]2
,

and
λg = 12γ−1

(
kΣk

2
Γ + kΓ

)
b−1/2
g (η log p+ log ag)

1/2n−1/2,

then
pr
(
vec(Θ̂g)Gc

g
= 0
)
> 1− p2−η,

where vec(Θ̂g)Gc
g

represents the subvector indexed by Gc
g = {(i, j) : Θgij ̸= 0}.

The proof of Theorem 4.4 is similar to that of Theorem 3 in Xiao et al. (2022) and is omitted here.

A.3. Theoretical Results and Proofs for the MPLN Model

Recall the definition of the PLN distribution from the manuscript:

y | x ∼
p∏

j=1

Poisson {S exp (xj)} ,

x ∼ N(µ,Σ),

(15)
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where S denotes the total sequencing reads, which can be estimated as the sum of counts per cell or by other methods
(Anders & Huber, 2010; Hafemeister & Satija, 2019). Without loss of generality, we assume that S is known and constant.
For simplicity, we set S = 1 in the proof.

We hereafter represent the PLN distribution as PLN(Θ,µ), where Θ = Σ−1. For the MPLN distribution, defined as∑G
g=1 πg PLN

(
Θg,µg

)
, we assume that the true means µg and proportions πg (g = 1, . . . , G) are known.

We impose the following conditions:
Condition A.3. There exist positive constants m, M , and l, such that max1≤j,k≤p |σgjk| ≤ l and m ≤ λmin (Θg) ≤
λmax (Θg) ≤M for g = 1, . . . , G.
Condition A.4. The parameters (µ⊤

g , vech(Θg)
⊤)⊤ (g = 1, · · · , G) are different from each other.

Based on these conditions, we establish the following theoretical results for the MPLN model:
Theorem A.5. Under Conditions A.3 and A.4, the MPLN model is identifiable, and its Fisher information matrix is positive
definite.
Theorem A.6. Under Conditions A.3 and A.4, the MPLN model satisfies Conditions 4.1 and 4.2.

Theorem A.5 establishes the identifiability of the MPLN model and the positive definiteness of its Fisher information
matrix, ensuring that the model behaves well under relatively mild conditions. Building on Theorem A.5, we demonstrate
Theorem A.6, which represents a key theoretical contribution of this study.

In this section, we first introduce some notations, followed by the presentation of several lemmas. Finally, we provide proofs
for Theorem A.5 and Theorem A.6.

A.3.1. NOTATION

We define two vectorization operators, vech and vech2. For a symmetric matrix A = [ajk]1≤j,k≤p ∈ Rp×p, vech(A) is
defined as

vech(A) = (a11, a12, a13, . . . , a1p, a22, a23, . . . , a2p, . . . , a(p−1)(p−1), a(p−1)p, app)
⊤,

and vech2(A) is

vech2(A) = (a11, 2a12, 2a13, . . . , 2a1p, a22, 2a23, . . . , 2a2p, . . . , a(p−1)(p−1), 2a(p−1)p, app)
⊤.

Note that vech and vech2 only differ at i ̸= j elements.

We represent the MPLN distribution as MPLN
(
ν, {µg}Gg=1

)
, where ν = (ν⊤

1 ,ν
⊤
2 , . . . ,ν

⊤
G)

⊤ and νg = vech(Θg).

Define φ = (φ⊤
1 ,φ

⊤
2 , . . . ,φ

⊤
G)

⊤, where φg = vech(Σg). Since Σg is positive definite, the mapping between φ and ν is
bijective. In the following discussion, defining either φ or ν implicitly determines the other.

Additionally, we define the bounded sets:

DM
p = {ν =

(
ν⊤
1 , . . . ,ν

⊤
G

)⊤ | max
1≤j,k≤p

|Θgjk| ≤ l′,m ≤ λmin (Θg) ≤ λmax (Θg) ≤M, g = 1, . . . , G},

and

OM
p = {φ =

(
φ⊤

1 , . . . ,φ
⊤
G

)⊤ | max
1≤j,k≤p

|σgjk| ≤ l,m′ ≤ λmin(Σg) ≤ λmax(Σg) ≤M ′, g = 1, . . . , G}.

We assume the true parameter ν∗ is an interior point of DM
p and the true parameter φ∗ is restricted on OM

p .

We denote the density of the PLN distribution PLN(Θ,µ) by p(y;Θ,µ) or p(y;Σ,µ), and the density of the MPLN
distribution MPLN(ν, {µg}Gg=1) by p

(
y;ν, {µg}Gg=1

)
or p

(
y;φ, {µg}Gg=1

)
. In the following sections, we always write

h(y,x) =
∏p

j=1 exp(xjyj) exp(− exp(xj)). Given a single sample i, we write the log-likelihood function of the PLN at
yi as

ℓ(Θ,yi) = log p(yi;Θ,µ)

= log

∫
det(Θ)

1
2 exp

(
−1

2
(x− µ)⊤Θ(x− µ)

)
h(yi,x)dx+ C(y),

15
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where C(y) is a term that depends only on y. Also, we define ℓn(Θ) =
∑n

i=1 ℓ(Θ,yi) as the log-likelihood in the PLN.
For the MPLN, its log-likelihood function at yi is

ℓ(ν,yi) = log

(
G∑

g=1

πgp(yi;Θg,µg)

)

= log

(
G∑

g=1

πg

∫
det (Θg)

1
2 exp

(
−1

2
(x− µg)

⊤Θg(x− µg)

)
h(yi,x)dx

)
+ C(y).

The log-likelihood of the MPLN model is ℓn(ν) =
∑n

i=1 ℓ(ν,yi). If we define

Lg(νg,y) =

∫
det(Θg)

1
2 exp

(
−1

2
(x− µg)

⊤Θg(x− µg)

)
h(y,x)dx,

and LM (ν,y) =
∑G

g=1 πgLg(νg,y), then ℓ(ν,yi) = log
(
LM (ν,yi)

)
+ C(yi). Note that the function Lg(νg,y) is

proportional to the density p(y;Θg,µg).

For the PLN model, denote the derivative (the score function) and the second order derivative (the Hessian matrix) of its
log-likelihood as

S(Θ,y) = ∂ℓ(Θ,y)

∂vech(Θ)
,H(Θ,y) =

∂2ℓ(Θ,y)

∂vech(Θ)∂vech(Θ)⊤
. (16)

For the MPLN model, we can similarly define its score function SM (ν,y), its Hessian matrix HM (ν,y), and its Fisher
information matrix −D(ν∗).

D(ν) = Eν∗(HM (ν,y)). (17)

Finally, we denote Np as the set of all p-dimensional non-negative integer vector. For a vector a = (a1, . . . , ap)
⊤, we

denote ||a||2 =
√∑p

j=1 a
2
j as its L2-norm and ||a||∞ = maxj |aj | as its L∞-norm. For a matrix A, we denote ||A||2 as

its largest singular value of A. Given Θ and µ, we define an operator T that maps functions in x to functions in y,

T (f) =

∫
exp

(
−1

2
(x− µ)⊤Θ(x− µ)

)
f(x)h(y,x)dx.

In particular,

T (1) =

∫
exp

(
−1

2
(x− µ)⊤Θ(x− µ)

)
h(y,x)dx,

where 1 denotes the constant function 1(x) ≡ 1.

Definition A.7 (Good vector). We call a vector ξ = (ξ1, σ1, . . . , ξG, σG)
⊤ ∈ R2G as a good vector if there exists g such

that (ξg′ , σg′) ̸= (ξg, σg) for all g′ ̸= g. We call the index g a good index with respect to ξ.

A.3.2. LEMMAS

Lemma A.8. Let y ∼ PLN(Θ,µ). For any n, y ∈ N, we define

ϕ(n, y) =

{
1 n = 0,

y(y − 1) · · · (y − n+ 1) n > 0.

Then, for n = (n1, · · · , np)⊤, we have

E

 p∏
j=1

ϕ(nj , yj)

 = exp
(
n⊤µ+ n⊤Θ−1n/2

)
.
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Proof. By the property of conditional expectation, we have

E

 p∏
j=1

ϕ(nj , yj)

 = ExEy

 p∏
j=1

ϕ(nj , yj)|x

 .

From the moments of the Poisson distribution, we have

Ey

 p∏
j=1

ϕ(nj , yj)|x

 =

p∏
j=1

exp(njxj).

Further, since x ∼ N(µ,Θ−1), we have

Ex

 p∏
j=1

exp(njxj)

 = Ex(exp(n
⊤x)) = exp

(
n⊤µ+ n⊤Θ−1n/2

)
,

and the conclusion follows.

Lemma A.9. Let ξ = (ξ1, σ1, . . . , ξG, σG)
⊤ be a good vector with a good index s, satisfying σg > 0 for g = 1, · · · , G and

α = (α1, · · · , αG)
⊤. If for any z ∈ N

G∑
g=1

αg exp(ξgz + σgz
2) = 0,

then αs = 0.

Proof. Without loss of generality, we assume that (ξg, σg) (g = 1, · · · , G) are first sorted by σg in increasing order, and
for the same σg, they are further sorted by ξg in increasing order. We say that (ξg, σg) and (ξs, σs) are equivalent if
(ξg, σg) = (ξs, σs). By this equivalence relationship, {(ξg, σg)}Gg=1 can be partitioned into Q groups (Q ≥ 1). Let Sq be
the index set of the q-th group. We have

Q∑
q=1

∑
j∈Sq

αj exp(ξjz + σjz
2) = 0

for all z ∈ N. Dividing exp(ξGz + σGz
2) on both sides of the above equation, we get

Q−1∑
q=1

∑
j∈Sq

αj exp(ξjz + σjz
2 − ξGz − σGz

2) +
∑
j∈SQ

αj = 0 (18)

for all z ∈ N. By the choice of σG, ξG, the first summation of Equation (18) converges to zero when z goes to infinity. So,
we have

∑
j∈SQ

αj = 0. By mathematical induction, we have
∑

j∈Sq
αj = 0 for q = 1, . . . , Q. Since ξ is a good vector

with a good index s, (ξs, σs) itself forms a group, and hence αs = 0.

Lemma A.10. For any n > 0, let Mi ⊂ Rp, i = 1, · · · , n be n linear proper subspaces of Rp. Then, there exists a
non-negative integer vector γ ∈ Np such that γ ̸∈

⋃n
i=1 Mi.

Proof. We prove by mathematical induction. The conclusion clearly holds for n = 1. Now we assume that Lemma A.10
holds for n and we aim to prove that it also holds for n+ 1. Note that by linear algebra,

⋃n
i=1 Mi is a proper subspace of

Rp for all n.

By induction hypothesis, we can take α ∈ Np \
⋃n

i=1 Mi. If α ̸∈ Mn+1, we have α ̸∈
⋃n+1

i=1 Mi, and the proof is finished.
Thus, we only need to consider α ∈ Mn+1. Similarly, we can take β ∈ Np \

⋃n+1
i=2 Mi and β ∈ M1. For any i ̸= 1,

we can prove that there is at most one k1 such that α + k1β ∈ Mi. In fact, if there are k1, k2 such that k1 ̸= k2 and
α+ k1β ∈ Mi,α+ k2β ∈ Mi, then β ∈ Mi, which is contradictory to the fact that β ∈ Np \

⋃n+1
i=2 Mi. Furthermore,

there is no k ∈ N such that α + kβ ∈ M1. Otherwise, there exists a k ∈ N such that α + kβ ∈ M1. Then, we have
α ∈ M1, which is also a contradiction. So we could find at most n positive integers for k such that α+ kβ ∈

⋃n+1
i=1 Mi.

Since there are infinitely many non-negative numbers, we prove that there exists k ∈ N such that α+ kβ ̸∈
⋃n+1

i=1 Mi, and
Lemma A.10 is proved.
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Lemma A.11. Assume that Ai ∈ Rp×p (i = 1, . . . , n) are n non-zero matrix. For any n > 0, let Ni ={
x : x⊤Aix = 0,x ∈ Rp

}
(i = 1, . . . , n) be n proper subspaces of Rp. Then, there exists a non-negative integer vector γ

such that γ ̸∈
⋃n

i=1 Ni.

Proof. We prove by mathematical induction. The conclusion clearly holds for n = 1. Now we assume that Lemma A.11
holds for n and we aim to prove that it also holds for n+ 1.

By induction hypothesis, we can take β ∈ Np \
⋃n+1

i=2 Ni. If β /∈ N1, we have β ̸∈
⋃n+1

i=1 Ni, and the proof is finished.
Thus, we only need to consider β ∈ N1. Next, we can take α such that α ̸∈ N1. If i ̸= 1, then there are at most two integers
k ∈ N satisfying the quadratic equation (α+ kβ)⊤Ai(α+ kβ) = 0 (i ̸= 1) because of β⊤Aiβ ̸= 0. If i = 1, then there
are at most one integers k ∈ N satisfying the quadratic equation (α+ kβ)⊤A1(α+ kβ) = 0 because of β⊤Aiβ = 0 and
α⊤A1α ̸= 0. It follows that there are at most 2n+ 1 positive integers k ∈ N such that α+ kβ ∈

⋃n+1
i=1 Ni. Since there

are infinitely many non-negative numbers, we prove that there exists k ∈ N such that α+ kβ ̸∈
⋃n+1

i=1 Ni, and Lemma A.11
is proved.

Lemma A.12. Assume that Ai ∈ Rp×p (i = 1, . . . , n) are n non-zero matrices. For any n > 0, let Ni ={
x : x⊤Aix = 0,x ∈ Rp

}
(i = 1, . . . , n) be n proper subspaces of Rp. For any m > 0, let Mi ⊂ Rp, i = 1, · · · ,m be

m linear proper subspaces. Then, there exists a non-negative integer vector γ such that γ ̸∈ (
⋃n

i=1 Mi) ∪ (
⋃n

i=1 Ni).

Proof. By the proof of Lemma A.10, there exists α ̸∈
⋃n

i=1 Mi. We can assume α ∈
⋃n

i=1 Ni. Otherwise, we complete
the proof. By the proof of Lemma A.11, there exists γ ̸∈

⋃m
i=1 Ni. On the one hand, since γ ∈ Np \

⋃m
i=1 Ni, there are

at most two integers k ∈ N satisfying the quadratic equation (α + kγ)⊤Ai(α + kγ) = 0. On the other hand, for any
Mi, i = 1, . . . , n, there is at most one integer k such that α+ kβ ∈ Mi. Otherwise, if there exist k1 ̸= k2 and i satisfying

α+ k1γ ∈ Mi,α+ k2γ ∈ Mi,

then we have (k2 − k1)γ ∈ Mi. It follows that α ∈ Mi, which is contradictory to the fact that α ̸∈
⋃n

i=1 Mi. Hence,
there are at most 2m+ n positive integers k ∈ N such that α+ kγ ∈ (

⋃n
i=1 Mi) ∪ (

⋃n
i=1 Ni). Since there are infinitely

many non-negative integers, there exists an integer k such that α+ kγ ̸∈ (
⋃n

i=1 Mi) ∪ (
⋃m

i=1 Ni), and Lemma A.12 is
proved.

Lemma A.13. Let y and x be random variables as defined in (15) for the PLN model, and let ϕ(n, y) be the same as in
Lemma A.8. Let n = (n1, · · · , np)⊤ and T ∈ Rp×p be a p× p matrix. We have

E

 p∏
j=1

ϕ(nj , yj) tr
(
T
(
Θ−1 − (x− µ)(x− µ)⊤

))
=
(
n⊤Θ−1TΘ−1n

)
exp

(
n⊤µ+ n⊤Θ−1n/2

)
.

Proof. By Lemma A.8

E

 p∏
j=1

ϕ(nj , yj) tr
(
TΘ−1

) = tr
(
TΘ−1

)
exp

(
n⊤µ+ n⊤Θ−1n/2

)
.

Similar to the proof of Lemma A.8, by the moment generating function of the normal distribution, we have

E

 p∏
j=1

ϕ(nj , yj) tr
(
T(x− µ)(x− µ)⊤

)
= Ex

(
exp(n⊤x) tr

(
T(x− µ)(x− µ)⊤

))
=
{
tr
(
TΘ−1

)
+ n⊤Θ−1TΘ−1n

}
exp

(
n⊤µ+ n⊤Θ−1n/2

)
.

Lemma A.13 follows from the above two equations.
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Lemma A.14. For any (µ⊤
g , vech(Θg)

⊤)⊤ (g = 1, · · · , G) that are bounded and different from each other,
p (y;Θ1,µ1) , · · · , p (y;ΘG,µG) are linearly independent.

Proof. We prove this by mathematical induction. The independence for G = 1 is trivial. Now we assume that Lemma A.14
holds for G − 1. For any (µ⊤

g , vech(Θg)
⊤)⊤ (g = 1, · · · , G) that are bounded and different from each other, if we can

prove that there exist α = (α1, . . . , αG)
⊤ and an index s ∈ {1, . . . , G} such that

G∑
g=1

αgp
(
y;Θg,µg

)
= 0 and αs = 0, (19)

then by induction, we have α = 0 and hence p(y;Θg,µg) (g = 1, . . . , G) are linearly independent. So our goal is to prove
that if

∑G
g=1 αgp(y;Θg,µg) = 0, then we can always find an index s such that αs = 0.

Let n = (n1, · · · , np)⊤ be any non-negative integer vector. Then, for any positive integer z, by Lemma A.8, there exists a
polynomial function pz(y) =

∏p
j=1 ϕ(znj , yj) such that, if (19) holds, then

G∑
g=1

αgEg (pz(y)) = 0 and Eg (pz(y)) = exp
(
zn⊤µg + z2n⊤Θ−1

g n/2
)
,

where Eg represents taking expectation with respect to PLN
(
Θg,µg

)
. Let

ξ =
(
n⊤µ1,n

⊤Θ−1
1 n/2, . . . ,n⊤µG,n

⊤Θ−1
G n/2

)
.

By Lemma A.9, if there exists an n such that ξ is a good vector with good index s, then αs = 0 and we complete the
proof. If, on the other hand, ξ =

(
n⊤µ1,n

⊤Θ−1
1 n/2, . . . ,n⊤µG,n

⊤Θ−1
G n/2

)
is not a good vector for any non-negative

integer vector n. Therefore, for any n, there exists s ̸= 1 such that n⊤µ1 = n⊤µs and n⊤Θ−1
1 n = n⊤Θ−1

s n. Thus, n
is the solution to the linear equation x⊤(µ1 − µs) = 0 and the quadratic equation x⊤ (Θ−1

1 −Θ−1
s

)
x = 0. We define

Mg as the linear space consisting of solutions to the linear equation x⊤ (µ1 − µg

)
= 0 (g ̸= 1). We define Ng as the

space consisting of solutions to the quadratic equation x⊤ (Θ−1
1 −Θ−1

g

)
x = 0 (g ̸= 1). Define Q =

⋃G
g=2(Mg ∩ Ng).

Thus, for any non-negative integer vector n, we have n ∈ Q. Since (µ⊤
g , vech(Θg)

⊤)⊤, g = 1, . . . , G, are different from
each other, Mg ∩ Ng is a proper subspace of Rp. More precisely, if µ1 = µs, then we have Θ1 ̸= Θs, which means
Mg ∩Ng = Ng . Let I =

{
g : µ1 = µg

}
. Then, we have

n ∈ Q =

G⋃
g=2

(Mg ∩Ng) ⊂
⋃
g∈I

Ng ∪
⋃
g ̸∈I

Mg.

This contradicts Lemma A.12. Therefore, there exists a vector n such that ξ is a good vector. Consequently, for any
(µ⊤

g , vech(Θg)
⊤)⊤ (g = 1, . . . , G) that are different from each other, p(y;Θ1,µ1), . . . , p(y;ΘG,µG) are linearly inde-

pendent.

Lemma A.15. For any φ ∈ OM
p , there exist two functions fMlow(·) and fMup(·) of y such that fMlow(y) ≤ p(y;φ, {µg}Gg=1) ≤

fMup(y), and
∫
fMlow(y)K(y)dy <∞,

∫
fMup(y)K(y)dy <∞ for any polynomial K(y) of y.

Proof. By Remark 1 of Xiao et al. (2022).

A.3.3. PROOF OF THEOREM A.5

Proof. By Yakowitz & Spragins (1968), under Conditions A.3 and A.4, the identifiability of the MPLN model is equivalent
to the linear independence of the PLN components. By Lemma A.14, the first conclusion holds.

To establish the second conclusion of Theorem A.5, it is necessary to derive the explicit formulas for the score functions and
Fisher information matrices of the PLN and MPLN models. It is clear that the densities of the PLN and MPLN satisfy the
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regularity conditions in the literature (Shao, 2003). Then, we can calculate the score function and the Fisher information as
follows.

The Hessian matrix H (Θ,y) of the PLN model is a p(p+ 1)/2× p(p+ 1)/2 matrix. For notational convenience, let (i, j)
be the index of the element at position (2p− i+ 1)i/2− p+ j of the score function S and let H(i,j)(i′,j′) =

∂2ℓ(Θ,y)
∂Θi′j′∂Θij

,
(i ≤ j, i′ ≤ j′) be the element at row (2p− i+ 1)i/2− p+ j and column (2p− i′ + 1)i′/2− p+ j′ of the Hessian matrix.

Recall the Equation (16) above. The score function of the PLN model can be written as

S(Θ,y) = 1

2
vech2

(
Θ−1

)
− 1

2

∫
exp

(
− 1

2 (x− µ)⊤Θ(x− µ)
)
vech2

(
(x− µ)(x− µ)⊤

)
h(y,x)dx∫

exp
(
− 1

2 (x− µ)⊤Θ(x− µ)
)
h(y,x)dx

.

Especially, at the true parameter Θ∗ , we have S(Θ∗,y) = 1
2Ex

(
vech2

(
Θ∗−1 − (x− µ)(x− µ)⊤

)
|y
)
. By applying the

operator T , the score function element at position (2p− i+ 1)i/2− p+ j can be rewritten as

S(i,j) (Θ,y) =
1

2
vech2

(
Θ−1

)
(i,j)

− 1

2

T
(
vech2

(
(x− µ)(x− µ)⊤

)
(i,j)

)
T (1)

.

Using the operator T , the Hessian matrix can be written as follows. Let Σ = Θ−1.

When i = j, i′ = j′,

H(i,i)(i′,i′) (Θ,y) = −1

2
Σii′Σi′i +

1

4

T
(
(x− µ)

2
i (x− µ)2i′

)
T (1)

− 1

4

T
(
(x− µ)2i′

)
T
(
(x− µ)

2
i

)
T 2 (1)

.

When i ̸= j, i′ = j′,

H(i,j)(i′,i′) (Θ,y) = −Σii′Σi′j +
1

2

T
(
(x− µ)i(x− µ)j(x− µ)2i′

)
T (1)

− 1

2

T
(
(x− µ)2i′

)
T
(
(x− µ)i(x− µ)j

)
T 2 (1)

.

When i = j, i′ ̸= j′,

H(i,i)(i′,j′) (Θ,y) = −Σii′Σj′i +
1

2

T
(
(x− µ)i′(x− µ)j′(x− µ)2i

)
T (1))

− 1

2

T
(
(x− µ)2i

)
T
(
(x− µ)i′(x− µ)j′

)
T 2(1)

.

When i ̸= j, i′ ̸= j′,

H(i,j)(i′,j′) (Θ,y) = −(Σii′Σj′j +Σij′Σi′j) +
T
(
(x− µ)i′(x− µ)j′(x− µ)i(x− µ)j

)
T (1)

−
T ((x− µ)i(x− µ)j) T

(
(x− µ)i′(x− µ)j′

)
T 2 (1)

.

Now we consider the score function and the Fisher information matrix of the MPLN model. The score function of the
MPLN model can be written as

SM (ν,y) = LM (ν,y)−1

(
π1
∂L1(ν1,y)

∂ν1
, . . . , πG

∂LG(νG,y)

∂νG

)
:=
(
SM
1 (ν,y), · · · ,SM

G (ν,y)
)
.

Similarly, we use the triplet (g, i, j), with i ≤ j, to index SM . Recall that νg = vech(Θg). Let (g, i, j), (g′, i′, j′), i ≤
j, i′ ≤ j′ be the index of the element at the (g − 1)p(p+ 1)/2 + (2p− i+ 1)i/2− p+ j row and (g′ − 1)p(p+ 1)/2 +
(2p− i′ + 1)i′/2− p+ j′ column of HM (ν,y), respectively.
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When g = g′,

HM
(g,i,j),(g,i′,j′)(ν,y) =

∂

∂Θgi′j′
SM
(g,i,j)(ν,y)

=
πgLg(Θg,y)

LM (ν,y)

(
H(i,j)(i′,j′)(Θg,y) + S(i′,j′)(Θg,y)S(i,j)(Θg,y)

)
− (πgLg(Θg,y))

2

LM (ν,y)2
S(i′,j′)(Θg,y)S(i,j)(Θg,y). (20)

When g ̸= g′, we have

HM
(g,i,j),(g′,i′,j′)(ν,y) =

∂

∂Θg′i′j′
SM
(g,i,j)(ν,y)

= −
πgπ

′
gLg(Θg,y)Lg′(Θg′ ,y)

LM (ν,y)2
S(i′,j′)(Θg′ ,y)S(i,j)(Θg,y). (21)

Recall the definition (17) of D(ν). Then, −D(ν∗) = E
(
SM (ν∗,y)SM (ν∗,y)⊤

)
is the Fisher information matrix of the

MPLN at ν∗.

To establish positive definiteness, we show that there exists no non-zero vector t = (t1, · · · , tG)⊤ such
that E(t⊤SM (ν∗,y)SM (ν∗,y)⊤t) = 0. Assuming that there exists a vector t = (t1, · · · , tG)⊤ satisfying
E(t⊤SM (ν∗,y)SM (ν∗,y)⊤t) = 0, we aim to prove that t = 0. Since

E(t⊤SM (ν∗,y)SM (ν∗,y)⊤t) =
∑
y

p
(
y;ν∗, {µg}Gg=1

)
(t⊤SM (ν∗,y))2 = 0,

and under the assumption that p
(
y;ν∗, {µg}Gg=1

)
> 0 for all y, it follows that t⊤SM (ν∗,y) = 0 for any y.

Then, when ν = ν∗, we have

LM (ν,y)
−1

G∑
g=1

t⊤g πg
∂Lg(νg,y)

∂νg
= 0.

Since LM (ν,y) ̸= 0, we have
∑G

g=1 t
⊤
g πg

∂Lg(νg,y)
∂νg

= 0. Let n = (n1, · · · , np)⊤ be any non-negative integer vector and
ψ(y) =

∏p
j=1 ϕ(znj , yj), z ∈ N. Then

G∑
g=1

t⊤g πg
∂ logLg(νg,y)

∂νg
Lg(νg,y)ψ(y) = 0. (22)

Since Lg(νg,y) is proportional to the density of the PLN with parameters Θg and µg , (22) can be rewritten as

G∑
g=1

t⊤g πg
∂ logLg(νg,y)

∂νg
p(y;Θg,µg)ψ(y) = 0.

Summing over y, we get ∑
y

G∑
g=1

t⊤g πg
∂ logLg(νg,y)

∂νg
p(y;Θg,µg)ψ(y) = 0.

By Fubini ’s Theorem, we get

G∑
g=1

∑
y

t⊤g πg
∂ logLg(νg,y)

∂νg
p(y;Θg,µg)ψ(y) = 0. (23)
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Then, let Tg be the symmetric matrix such that vech(Tg) = tg . For a fixed g, we have∑
y

t⊤g
∂ logLg(νg,y)

∂νg
p(y;Θg,µg)ψ(y) = Eyg

(
ψ(yg)t

⊤
g

∂ logLg(νg,yg)

∂νg

)
=

1

2
Exg,yg

(
ψ(yg) tr

{
TgΘ

∗−1
g −Tg(xg − µ)(xg − µ)⊤

})
,

where yg follows the PLN distribution with parameters Θg and µg, and xg ∼ N
(
µg,Θ

−1
g

)
is the corresponding latent

variable. By Lemma A.13, we get

Eyg

(
ψ(yg)t

⊤
g

∂ logLg(νg,yg)

∂νg

)
=

1

2
z2
(
n⊤Θ−1

g TgΘ
−1
g n

)
exp

(
zn⊤µg + z2n⊤Θ−1

g n/2
)
.

Then, Equation (23) can be rewritten as, for all z ∈ N,

G∑
g=1

πgz
2
(
n⊤Θ−1

g TgΘ
−1
g n

)
exp

(
zn⊤µg + z2n⊤Θ−1

g n/2
)
= 0.

In order to show T1 = 0, similar to the proof of the first conclusion, We define Mg as the linear space consist-
ing of solutions to the linear equation x⊤ (µ1 − µg

)
= 0 (g ̸= 1). We define Ng as the space consisting of solu-

tions to the quadratic equation x⊤ (Θ−1
1 −Θ−1

s

)
x = 0 (g ̸= 1). Define Q =

⋃G
g=2(Mg ∩ Ng). For any n ̸∈ Q,(

n⊤µ1,n
⊤Θ−1

1 n/2, . . . ,n⊤µG,n
⊤Θ−1

G n/2
)

is a good vector with a good index 1. Since π1 > 0, we must have

n⊤Θ−1
1 T1Θ

−1
1 n = 0. (24)

By Lemma A.12, if Θ−1
1 T1Θ

−1
1 is not a zero matrix, then there exists an n such that n ̸∈ Q and n⊤Θ−1

1 T1Θ
−1
1 n ̸= 0,

which is contradictory to (24). Hence, we must have Θ−1
1 T1Θ

−1
1 = 0 and thus T1 = 0. Similarly, we get Tg = 0 for all

g = 1, . . . , G. It follows that t = 0, and we compete the proof.

A.3.4. PROOF OF THEOREM A.6

Proof. For the MPLN model, the marginal distribution is also an MPLN distribution. Therefore, it is unnecessary to
separately verify the one-dimensional and two-dimensional marginal density functions. Instead, it suffices to verify that
the p-dimensional density function of the MPLN distribution satisfies the inequalities stated in Conditions 4.1 and 4.2.
Specifically, there exist a measurable function m(y) and constants C1, C2, such that

∫
m2(y) dν = C2

1 < ∞, for any
φ1,φ2 ∈ OM

p , let p1 = p
(
y;ν1, {µg}Gg=1

)
and p2 = p

(
y;ν2, {µg}Gg=1

)
, we have

(i) C2 ∥φ1 −φ2∥2 ≤ d(p1, p2).

(ii) |p1/21 − p
1/2
2 | ≤ m(y) ∥φ1 −φ2∥2 .

To establish this result, we follow a proof framework similar to that of Lemma S9 in Xiao et al. (2022). Here we denote the
score function and Hessian matrix of the log-likelihood in the PLN model with respect to Σ as

S(Σ,y) = ∂ℓ(Θ,y)

∂vech(Σ)
,H(Σ,y) =

∂2ℓ(Θ,y)

∂vech(Σ)∂vech(Σ)⊤
.

For the MPLN model, we can similarly denote the score function and Hessian matrix with respect to φ as SM (φ,y) and
HM (φ,y).

First, we verify that (i) is satisfied. We get the Taylor expansion of p1/22 on φ1,

p
1/2
2 = p

1/2
1 + p

−1/2
1

(
∂p
(
y;φ, {µg}Gg=1

)
∂φ

∣∣∣∣∣
φ=φ1

⊤

(φ2 −φ1) /2 + (φ2 −φ1)
⊤
R(φ0,y) (φ2 −φ1) /2

= p
1/2
1 + p

1/2
1 SM (φ1,y)

⊤ (φ2 −φ1) /2 + (φ2 −φ1)
⊤
R(φ0,y) (φ2 −φ1) /2,

(25)
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where R(φ0,y) = p1/2(y;φ0, {µg}Gg=1)
[
SM (φ0,y)SM (φ0,y)

⊤/4 +HM (φ0,y)/2
]

and φ0 is between φ1 and φ2.
We define p∗ = p

(
y;φ0, {µg}Gg=1

)
and δ = φ2 −φ1, then we have

d(p1, p2) =

[∫ (
p
1/2
1 − p

1/2
2

)2
dν

]1/2

=

[∫ (
p
1/2
1 SM (φ1,y)

⊤δ + p
1/2
∗ δ⊤R(φ0,y)δ

)2
dν

]1/2
/2

=

[∫
p1δ

⊤SM (φ1,y)SM (φ1,y)
⊤δdν+∫

2p
1/2
1 p

1/2
∗ SM (φ1,y)

⊤δδ⊤R(φ0,y)δdν+∫
p∗δ

⊤R(φ0,y)δδ
⊤R(φ0,y)δdν

]1/2
/2

=: (I + II + III)1/2/2,

(26)

where I, II, and III are defined in an obvious way.

Define the minimum eigenvalue of Eφ1

(
SM (φ1,y)SM (φ1,y)

⊤) is λmin(φ1), then

I = δ⊤Eφ1

(
SM (φ1,y)SM (φ1,y)

⊤) δ ≥ λmin(φ1)∥δ∥22. (27)

Since φ1 ∈ OM
p is defined on a compact set, and Eφ1

(
SM (φ1,y)SM (φ1,y)

⊤) is positive definite and continuous for φ1,
there exists a positive constant Clow > 0, such that Clow ≤ λmin(φ1) for any φ1 ∈ OM

p , then we have

I ≥ Clow∥δ∥22. (28)

For part II, we have

|II| ≤
∫
p1

∣∣∣SM (φ1,y)
⊤δδ⊤R(φ0,y)δ

∣∣∣ dν + ∫ p∗

∣∣∣SM (φ1,y)
⊤δδ⊤R(φ0,y)δ

∣∣∣ dν
=Eφ1

(∣∣∣SM (φ1,y)
⊤δδ⊤R(φ0,y)δ

∣∣∣)+ ∫ p∗

∣∣∣SM (φ1,y)
⊤δδ⊤R(φ0,y)δ

∣∣∣ dν. (29)

For notational convenience, let (i, j) be the index of the element at position (2p − i + 1)i/2 − p + j in S, while
(g, i, j) is similar index for SM with i ≤ j. Similarly, for i ≤ j, i′ ≤ j′, (i, j)(i′, j′) refers to the element at row
(2p − i + 1)i/2 − p + j and column (2p − i′ + 1)i′/2 − p + j′ in H and (g, i, j), (g′, i′, j′) indexes the element at row
(g − 1)p(p+ 1)/2 + (2p− i+ 1)i/2− p+ j and column (g′ − 1)p(p+ 1)/2 + (2p− i′ + 1)i′/2− p+ j′ in HM .

We now claim that for y ∼ MPLN(ν, {µg}Gg=1), there exist two polynomial functions K1(y) and K2(y) sat-
isfying E[K1(y)] < ∞ and E[K2(y)] < ∞, such that for any g, i, j, g′, i′, j′,|SM

(g,i,j)(φ,y)| ≤ K1(y) and
|HM

(g,i,j),(g,i′,j′)(φ,y)| ≤ K2(y).

To prove this, first consider the case g = g′. Since πgLg(ν,y)/L
M (ν,y) ≤ 1, then we have,

|SM
(g,i,j)(φ,y)| ≤ |S(i,j)(Σg,y)|

and
|HM

(g,i,j),(g,i′,j′)(φ,y)| ≤ |H(i,j)(i′,j′)(Σg,y)|+ 2|S(i,j)(Σg,y)S(i′,j′)(Σg,y)|.

Then, by applying Remark 3 in Xiao et al. (2022), we know that, there exist two polynomial functions K1(y), K2(y) such
that |SM

(g,i,j)(φ,y)| ≤ K1(y) and |HM
(g,i,j),(g,i′,j′)(φ,y)| ≤ K2(y) with E(K1(y)) <∞ and E(K2(y)) <∞. The same

proof can be applied to the g ̸= g′ case. This completes the proof of the claim.
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Therefore, there exist two polynomial functions K1(y) and K2(y), such that∣∣SM (φ1,y)
⊤δ
∣∣ ≤ ∥∥SM (φ1,y)

∥∥
1
∥δ∥2 ≤ K1(y) ∥δ∥2 (30)

and ∣∣∣δ⊤R(φ0,y)δ
∣∣∣ ≤ ∥R(φ0,y)∥2 ∥δ∥

2
2 ≤ ∥R(φ0,y)∥F ∥δ∥22 ≤ K2(y) ∥δ∥22 . (31)

Using the fact that any MPLN distribution have any finite moments, we can derive that the first part of Equation (29) can be
bounded by C ∥δ∥32 with a constant C. Then using Lemma A.15, we know the second part of Equation (29) satisfies∫

p∗

∣∣∣SM (φ1,y)
⊤δδ⊤R(φ0,y)δ

∣∣∣ dν ≤
∫
fMup(y)K1(y)K2(y) ∥δ∥32 dν ≤ C ′ ∥δ∥32

with a constant C ′. Then we can derive
|II| ≤ (C + C ′) ∥δ∥32 . (32)

For III =
∫
p∗

[
δ⊤R(φ0,y)δδ

⊤R(φ0,y)δ
]
dν, using (31) and similar technique in II, we have

|III| ≤ C ′′ ∥δ∥42 (33)

with a constant C ′′.

Since the dominating functions fMup ,K1,K2 are all independent from parameters, then the constants C,C ′, C ′′ are all
independent from parameters. Thus, there exist positive constants K and C ′

2, both independent of the parameters, such that
for any ∥φ1 −φ2∥2 ≤ K, we have C ′

2 ∥φ1 −φ2∥2 ≤ d (p1, p2).

Next, we prove that (i) holds for any φ1,φ2 ∈ OM
p . Given that max1≤j,k≤p |σjk| ≤ l, there exists a positive constant K ′

such that ∥φ1 −φ2∥2 ≤ K ′ for any φ1,φ2 ∈ OM
p . Define the set W =

{
(φ1,φ2) | ∥φ1 −φ2∥2 ≥ K,φ1,φ2 ∈ OM

p

}
.

By the identifiability of the MPLN model, we have d (p1, p2) ̸= 0 when p1 ̸= p2. Since d (p1, p2) is a continuous function
and W is a closed and bounded domain, d (p1, p2) has a minimum value k1 > 0 on W . For any (φ1,φ2) ∈ W , we have
k1 ∥φ1 −φ2∥2 /K ′ ≤ d (p1, p2). Let C2 = min {C ′

2, k1/K
′}. Then, we have (i) holds for any φ1,φ2 ∈ OM

p .

Finally, we verify (ii). Let p1 =
∑G

g=1 πgp1g and p2 =
∑G

g=1 πgp2g, where p1g = p(y;Σg,µg) and p2i = p(y;Σ′
g,µg).

According to the Lemma S10 in Xiao et al. (2022), there exist measurable functions mg(y) and constants Cg, such that∫
m2

g(y)dν = C2
g <∞ and

∣∣∣p1/21g − p
1/2
2g

∣∣∣ ≤ mg(y)
∥∥φg −φ′

g

∥∥
2

for 1 ≤ g ≤ G. Using Cauchy-Schwarz inequality, we
have ∣∣∣p1/21 − p

1/2
2

∣∣∣2 =

G∑
g=1

πg (p1g + p2g)− 2

√√√√ G∑
g=1

πgp1g

√√√√ G∑
g=1

πgp2g

≤
G∑

g=1

πg (p1g + p2g)− 2

G∑
g=1

πgp
1/2
1g p

1/2
2g

=

G∑
g=1

πg

∣∣∣p 1
2
1g − p

1
2
2

∣∣∣2
≤

G∑
g=1

πgm
2
g(y)

∥∥φg −φ′
g

∥∥2
2
.

(34)

Let m2(y) = max1≤g≤G πgm
2
g(y), then

∫
m2(y)dν = C2

1 <∞ for a constant C1 and

∣∣∣p1/21 − p
1/2
2

∣∣∣2 ≤ m2(y)

G∑
g=1

∥∥φg −φ′
g

∥∥2
2
= m2(y) ∥φ−φ′∥22 .

So
∣∣∣p1/21 − p

1/2
2

∣∣∣ ≤ m(y) ∥φ−φ′∥2.
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A.4. Theoretical Results and Proofs for the Binary Data Model in Example 2.6

Let y = (y1, . . . , yp)
⊤ represent p-dimensional binary variables and x = (x1, . . . , xp)

⊤ be a p-dimensional random vector.
Assume that y follows the latent Gaussian copula model for binary data defined in Example 2.6, hereafter referred to as the
binary model, then we have

yj = I (xj > Cj)

x ∼ NPN(0,Σ, f)
(35)

where I (·) is the indicator function and Σjj = 1 for any 1 ≤ j ≤ p.

Let C = (C1, . . . , Cp)
⊤. The joint density function of y ∈ {0, 1}p is given by:

p(y;Σ,C) =
1

(2π)p/2 det(Σ)1/2

∫
x∈U(y)

exp

(
−1

2
x⊤Σ−1x

)
dx

where U(y) = U1(y1)× · · · × Up(yp), with:

Uj(yj) =

{
[f (Cj) ,∞) if yj = 1

(−∞, f (Cj)) if yj = 0

for 1 ≤ j ≤ p.

Given Σ and C, we define an operator K that maps functions in x to functions in y,

K(g) =

∫
x∈U(y)

exp

(
−1

2
x⊤Σ−1x

)
g(x)dx.

In particular,

K(1) =

∫
x∈U(y)

exp

(
−1

2
x⊤Σ−1x

)
dx,

where 1 denotes the constant function 1(x) ≡ 1.

Let Θ = Σ−1 denote the precision matrix. Assuming that C is known, we establish the following theoretical results for the
binary model:

Condition A.16. There exist positive constants m and M , such that m ≤ λmin (Θ) ≤ λmax (Θ) ≤M .

Theorem A.17. Under Condition A.16, the binary model satisfies Conditions 4.1 and 4.2.

Proof. For the binary model, marginal distributions of any dimension remain consistent with the binary model framework.
One-dimensional marginal density functions do not depend on any parameters. Thus, we focus on the two-dimensional case,
where y = (y1, y2)

⊤.
yj = I (xj > Cj) , j = 1, 2

x ∼ NPN(0,Σ, f),
(36)

where x = (x1, x2) and

Σ =

(
1 σ
σ 1

)
. (37)

For notational simplicity, we denote the density function as h2(y;σ). According to the Condition A.16, we have −1 < c ≤
σ ≤ C < 1 for some constants c and C. Define the bounded set D = {σ | −1 < c ≤ σ ≤ C < 1}.

We only need to prove that there exist a measurable function m(y) and constants C1, C2, such that
∫
m2(y) dν = C2

1 <∞,
and for any σ1, σ2 ∈ D, let p1 = h2 (y;σ1) and p2 = h2 (y;σ2), we have:

(i) C2|σ1 − σ2| ≤ d(p1, p2).
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(ii) |p1/21 − p
1/2
2 | ≤ m(y)|σ1 − σ2|.

First, we demonstrate that (i) is satisfied, following the proof of Theorem A.6.

We denote the score function and Hessian matrix of the log-likelihood. Straightforward calculation shows that

S(σ,y) =log h2(y;σ)

∂σ

=
(1 + σ2)K(x1x2)− σK(x21 + x22)

(1− σ2)2K(1)
+

σ

1− σ2
,

H(σ,y) =
∂2 log h2(y;σ)

∂σ2

=
(1 + σ2)2K(x21x

2
2) + σ2K((x21 + x22)

2)− 2σ(1 + σ2)K(x1x2(x
2
1 + x22))

(1− σ2)4K(1)

− ((1 + σ2)K(x1x2)− σK(x21 + x22))
2

(1− σ2)4K2(1)
+

1 + σ2

(1− σ2)2

+
(6σ + 2σ3)K(x1x2)− (1 + 3σ2)K(x21 + x22)

(1− σ2)3K(1)
.

(38)

We get the Taylor expansion of p1/22 on σ1,

p
1/2
2 = p

1/2
1 + p

1/2
1 S(σ1,y) (σ2 − σ1) /2 +R(σ0,y) (σ2 − σ1)

2
/2, (39)

where R(σ0,y) = p1/2(y;σ0)
[
S(σ0,y)2/4 +H(σ0,y)/2

]
and σ0 is between σ1 and σ2. We define p0 = h2 (y;σ0) and

δ = σ2 − σ1, then we have

d(p1, p2) =

[∫
p1S(σ1,y)2δ2dν +

∫
2p

1/2
1 p

1/2
0 S(σ1,y)R(σ0,y)δ3dν +

∫
p0R(σ0,y)

2δ4dν

]1/2
/2

=: (I + II + III)1/2/2,

(40)

where I, II, and III are defined in an obvious way.

Since σ1 ∈ D is defined on a compact set, and Eσ1

(
S(σ1,y)2

)
is positive definite and continuous for σ1, there exists a

positive constant Clow > 0, such that for any σ1 ∈ D,

I ≥ Clow|δ|2. (41)

For part II, we have

|II| ≤
∫
p1
∣∣S(σ1,y)R(σ0,y)δ3∣∣ dν + ∫ p0

∣∣S(σ1,y)R(σ0,y)δ3∣∣ dν.
=Eσ1

(∣∣S(σ1,y)R(σ0,y)δ3∣∣)+ ∫ p0
∣∣S(σ1,y)R(σ0,y)δ3∣∣ dν. (42)

Since y takes a finite number of values, according to Equation (38), there exist constants K1 and K2, independent of the
parameters, such that |S(σ,y)| ≤ K1 and |H(σ,y)| ≤ K2 for any σ ∈ D. Similarly, we have h2(y;σ) ≤ K3, where K3 is
a constant.

Then we can derive
|II| ≤ C ′|δ|3 (43)

with a constant C ′.

For part III =
∫
p0R(σ0,y)

2δ4dν, using similar technique in II, we have

|III| ≤ C ′′|δ|4 (44)
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with a constant C ′′.

Since the constants K1,K2, C
′, C ′′ are all independent from parameters, there exist positive constants K and C ′

2, both
independent of the parameters, such that C ′

2|σ1 − σ2| ≤ d (p1, p2) for any |σ1 − σ2| ≤ K.

Next, we prove that (i) holds for any σ1, σ2 ∈ D. Given that −1 < c ≤ σ ≤ C < 1, there exists a positive constant K ′

such that |σ1 − σ2| ≤ K ′ for any σ1, σ2 ∈ D. Define W = {(σ1, σ2) | |σ1 − σ2| ≥ K,σ1, σ2 ∈ D}. By the identifiability
of the binary model, d (p1, p2) ̸= 0 when p1 ̸= p2. Since d(p1, p2) is continuous and W is compact, it attains a minimum
value k1 > 0 on W . For any (σ1, σ2) ∈ W , k1|σ1 − σ2|/K ′ ≤ d(p1, p2). Let C2 = min{C ′

2, k1/K
′}. Thus, (i) holds for

all σ1, σ2 ∈ D.

Finally, we verify (ii). For any σ1, σ2 ∈ D, let p1 = h2 (y;σ1) and p2 = h2 (y;σ2). Similarly, we have Taylor expansion of
p
1/2
2 on σ1,

p
1/2
2 = p

1/2
1 + p

−1/2
∗

(
∂p∗
∂σ∗

)
(σ2 − σ1) /2

where σ∗ is between σ1 and σ2, and p∗ = h2 (y;σ
∗). Let η = σ2 − σ1, we have,

∣∣∣p1/22 − p
1/2
1

∣∣∣ = 1

2
p
1/2
∗ |S (σ∗,y) η| ≤ 1

2
K

1/2
3 K1|η|

So we finish the proof.

B. Simulation
B.1. Details of the Data Generation Process for the MPLN Model

The network structures are generated based on the following procedures.

• Random Graph: Pairs of nodes are connected with probability 0.016 and the nonzero edges are randomly set as 0.3 or
-0.3.

• Blocked Random Graph: The blocked random graph comprises 5 independent groups of randomly connected nodes.
Pairs of nodes within the same group are connected with probability 0.016, while nodes belonging to separate groups
are not related. The nonzero edges are randomly set as 0.3 or -0.3.

• Banded Graph: Pairs (i, j) of nodes are connected if |i− j| ≤ 2, i = j. All nonzero edges are set as 0.3.

• Scale-free Graph: A scale-free network follows a power law which suggests that the central node have more connections.
The scale-free graphs are generated with power 1 and the nonzero edges are randomly set as 0.3 or -0.3.

For each simulation dataset, we independently generate the precision matrix for each of the three latent normal distributions
based on one of four graph structures. To ensure positive definiteness, the diagonal elements of the precision matrix are set
to 1 plus a small positive value. The mean vectors µg = (µg1, . . . , µgp)

⊤ for each latent normal distribution (g = 1, 2, 3)
are then generated as follows: the first pd elements of µg are independently sampled from {v1, (v1 + v2)/2, v2}, and the
remaining p−pd elements are shared across µ1,µ2,µ3, independently sampled from {v3, v4}. The values of (v1, v2, v3, v4)
are set to (1.9,−0.6, 0.4,−0.6) for the low zero-proportion case (about 20% zeros) and (1.1,−1.4,−0.4,−1.4) for the
high zero-proportion case (about 40% zeros). We vary pd to control the mixing degree of the three populations.

The scaling factors S = (S1, . . . , Sn)
⊤ are independently sampled from a distribution defined as Si = exp(Zi), where

Zi ∼ N(log(log 10), 0.052) for i = 1, . . . , n. Using these model parameters, the observed expression values Y1, . . . ,Yn

are generated from the MPLN model. We then compute the Adjusted Rand Index (ARI) between the true population labels
and the labels obtained from K-means clustering of the normalized data

Ỹi = log(
Yi + 1

Ŝi

),
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Table 3. Comparisons of EM-MMLE with PLNet, VMPLN and Glasso in terms of AUPR on simulation results for blocked random graphs
generated by the MPLN model. The results are averages over 50 replicates with standard deviations in brackets.

Zero-proportion Low
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.95 (0.011) 0.93 (0.017) 0.9 (0.016) 0.82 (0.028) 0.78 (0.023) 0.67 (0.043)

PLNet 0.86 (0.05) 0.79 (0.084) 0.79 (0.074) 0.7 (0.033) 0.65 (0.056) 0.52 (0.054)
VMPLN 0.91 (0.028) 0.88 (0.037) 0.89 (0.024) 0.62 (0.024) 0.62 (0.019) 0.6 (0.025)
Glasso 0.82 (0.038) 0.78 (0.038) 0.75 (0.05) 0.66 (0.032) 0.64 (0.027) 0.56 (0.037)

n = 3000
EM-MMLE 0.99 (0.005) 0.98 (0.005) 0.98 (0.006) 0.94 (0.014) 0.91 (0.013) 0.84 (0.047)

PLNet 0.96 (0.02) 0.95 (0.041) 0.91 (0.057) 0.87 (0.062) 0.83 (0.048) 0.73 (0.068)
VMPLN 0.95 (0.03) 0.93 (0.036) 0.94 (0.021) 0.7 (0.021) 0.7 (0.02) 0.7 (0.024)
Glasso 0.89 (0.037) 0.87 (0.043) 0.85 (0.041) 0.75 (0.03) 0.74 (0.021) 0.68 (0.039)

Zero-proportion High
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.8 (0.029) 0.78 (0.028) 0.74 (0.035) 0.58 (0.048) 0.53 (0.048) 0.45 (0.045)

PLNet 0.7 (0.064) 0.67 (0.049) 0.63 (0.045) 0.49 (0.054) 0.44 (0.049) 0.35 (0.055)
VMPLN 0.76 (0.054) 0.74 (0.034) 0.71 (0.036) 0.43 (0.034) 0.42 (0.031) 0.41 (0.036)
Glasso 0.52 (0.045) 0.47 (0.036) 0.45 (0.048) 0.44 (0.037) 0.42 (0.031) 0.36 (0.038)

n = 3000
EM-MMLE 0.95 (0.012) 0.93 (0.014) 0.91 (0.018) 0.79 (0.037) 0.75 (0.037) 0.68 (0.039)

PLNet 0.87 (0.061) 0.86 (0.034) 0.8 (0.062) 0.73 (0.057) 0.67 (0.057) 0.6 (0.047)
VMPLN 0.86 (0.048) 0.84 (0.043) 0.83 (0.046) 0.53 (0.028) 0.53 (0.023) 0.51 (0.019)
Glasso 0.62 (0.058) 0.59 (0.041) 0.54 (0.067) 0.55 (0.034) 0.54 (0.028) 0.49 (0.029)

where Ŝi =
∑p

j=1 Yij/10
3 for i = 1, 2, . . . , n. The ARI values are adjusted as follows: low-level mixing data correspond

to an ARI in (0.9, 1], middle-level mixing data to an ARI in (0.75, 0.85], and high-level mixing data to an ARI in (0.6, 0.7].

B.2. Details of the Data Generation Process for Binary Data

The threshold parameter Cj is sampled from uniform distribution on [−1, 1]. We construct the inverse correlation matrix Θ
such that Θjj = 1 and Θjk = α1zjk for j ̸= k. Here, we set α1 = 0.15 to ensure the positive definiteness of Θ, and zjk is
a Bernoulli random variable with success probability

pjk =
400

p(p− 1)
exp

(
−∥tj − tk∥2

2α2

)
,

where tj and tk are independently drawn from a bivariate uniform distribution on [0, 1]. The constant α2 is adjusted to
generate approximately 200 edges in the graph, and the covariance matrix Σ is rescaled so that all diagonal elements equal
1.

B.3. Additional Results

Tables 3–5 present the AUPR performance of EM-MMLE, PLNet, VMPLN, and Glasso for blocked random graphs, banded
graphs, and scale-free graphs, respectively.

C. Real Data Analysis
C.1. Silver Standard Construction for Benchmarking on scRNA-seq Data

The databases utilized in this study include STRING (Szklarczyk et al., 2019), HumanTFDB (Hu et al., 2019), hTFtarget
(Zhang et al., 2020), ChEA (Lachmann et al., 2010), ChIP-Atlas (Oki et al., 2018), ChIPBase (Zhou et al., 2016), ESCAPE
(Xu et al., 2013), TRRUST (Han et al., 2018), and RegNetwork (Liu et al., 2015).
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Table 4. Comparisons of EM-MMLE with PLNet, VMPLN and Glasso in terms of AUPR on simulation results for banded graphs
generated by the MPLN model. The results are averages over 50 replicates with standard deviations in brackets.

Zero-proportion Low
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.87 (0.017) 0.88 (0.017) 0.85 (0.022) 0.87 (0.01) 0.83 (0.017) 0.76 (0.021)

PLNet 0.8 (0.019) 0.77 (0.03) 0.72 (0.017) 0.73 (0.027) 0.67 (0.052) 0.6 (0.031)
VMPLN 0.71 (0.02) 0.71 (0.021) 0.71 (0.019) 0.71 (0.012) 0.71 (0.014) 0.69 (0.016)
Glasso 0.65 (0.037) 0.63 (0.034) 0.6 (0.03) 0.72 (0.018) 0.7 (0.018) 0.65 (0.021)

n = 3000
EM-MMLE 0.93 (0.015) 0.93 (0.016) 0.93 (0.017) 0.95 (0.008) 0.93 (0.01) 0.88 (0.019)

PLNet 0.88 (0.014) 0.85 (0.023) 0.81 (0.03) 0.85 (0.037) 0.82 (0.025) 0.75 (0.052)
VMPLN 0.76 (0.024) 0.75 (0.024) 0.76 (0.025) 0.77 (0.014) 0.77 (0.015) 0.77 (0.012)
Glasso 0.69 (0.028) 0.67 (0.034) 0.66 (0.044) 0.79 (0.018) 0.78 (0.019) 0.74 (0.02)

Zero-proportion High
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.79 (0.019) 0.79 (0.023) 0.77 (0.025) 0.74 (0.015) 0.7 (0.018) 0.64 (0.022)

PLNet 0.72 (0.028) 0.69 (0.031) 0.65 (0.035) 0.62 (0.033) 0.59 (0.031) 0.53 (0.03)
VMPLN 0.62 (0.021) 0.61 (0.034) 0.61 (0.028) 0.59 (0.019) 0.57 (0.017) 0.57 (0.021)
Glasso 0.5 (0.023) 0.48 (0.035) 0.46 (0.037) 0.55 (0.015) 0.54 (0.019) 0.5 (0.025)

n = 3000
EM-MMLE 0.88 (0.012) 0.89 (0.022) 0.87 (0.019) 0.87 (0.01) 0.84 (0.015) 0.79 (0.015)

PLNet 0.81 (0.023) 0.79 (0.033) 0.75 (0.03) 0.79 (0.034) 0.74 (0.039) 0.69 (0.036)
VMPLN 0.67 (0.025) 0.67 (0.036) 0.66 (0.029) 0.66 (0.015) 0.65 (0.019) 0.65 (0.017)
Glasso 0.53 (0.028) 0.52 (0.042) 0.49 (0.037) 0.64 (0.018) 0.62 (0.024) 0.59 (0.024)

Table 5. Comparisons of EM-MMLE with PLNet, VMPLN and Glasso in terms of AUPR on simulation results for scale-free graphs
generated by the MPLN model. The results are averages over 50 replicates with standard deviations in brackets.

Zero-proportion Low
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.74 (0.036) 0.71 (0.035) 0.64 (0.05) 0.64 (0.034) 0.58 (0.04) 0.5 (0.04)

PLNet 0.68 (0.044) 0.6 (0.042) 0.54 (0.043) 0.57 (0.049) 0.49 (0.046) 0.43 (0.045)
VMPLN 0.54 (0.025) 0.53 (0.03) 0.52 (0.029) 0.48 (0.028) 0.48 (0.029) 0.43 (0.042)
Glasso 0.52 (0.038) 0.48 (0.037) 0.44 (0.04) 0.53 (0.035) 0.49 (0.037) 0.42 (0.033)

n = 3000
EM-MMLE 0.84 (0.029) 0.85 (0.035) 0.78 (0.045) 0.83 (0.025) 0.78 (0.031) 0.68 (0.033)

PLNet 0.78 (0.045) 0.75 (0.053) 0.67 (0.042) 0.78 (0.042) 0.71 (0.05) 0.63 (0.04)
VMPLN 0.59 (0.027) 0.59 (0.025) 0.57 (0.034) 0.59 (0.021) 0.58 (0.018) 0.56 (0.023)
Glasso 0.56 (0.044) 0.56 (0.037) 0.5 (0.038) 0.66 (0.031) 0.62 (0.03) 0.54 (0.03)

Zero-proportion High
Dimension p = 100 p = 300

Mixing degree Low Middle High Low Middle High

n = 1800
EM-MMLE 0.56 (0.037) 0.55 (0.033) 0.49 (0.047) 0.37 (0.039) 0.32 (0.04) 0.28 (0.043)

PLNet 0.5 (0.04) 0.47 (0.035) 0.41 (0.032) 0.33 (0.04) 0.29 (0.039) 0.25 (0.043)
VMPLN 0.42 (0.026) 0.42 (0.025) 0.4 (0.031) 0.3 (0.026) 0.28 (0.029) 0.27 (0.036)
Glasso 0.36 (0.032) 0.35 (0.033) 0.31 (0.031) 0.31 (0.032) 0.29 (0.034) 0.25 (0.035)

n = 3000
EM-MMLE 0.7 (0.032) 0.7 (0.031) 0.65 (0.052) 0.58 (0.046) 0.53 (0.05) 0.47 (0.073)

PLNet 0.63 (0.035) 0.61 (0.034) 0.53 (0.043) 0.54 (0.042) 0.49 (0.047) 0.42 (0.067)
VMPLN 0.46 (0.02) 0.46 (0.023) 0.44 (0.02) 0.39 (0.025) 0.38 (0.028) 0.37 (0.043)
Glasso 0.4 (0.038) 0.39 (0.038) 0.35 (0.032) 0.42 (0.034) 0.41 (0.037) 0.35 (0.056)
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Silver standards are derived from the 3’ batch data, with gene pairs from public gene regulatory network databases considered
as potential regulatory relationships. Each identified regulatory relationship involves at least one transcription factor. For
each cell type in the 3’ batch, Spearman’s ρ correlation is calculated between gene pairs with potential regulatory connections.
Gene pairs showing significant Spearman’s ρ correlations are designated as true regulatory relationships and included in the
silver standard edge set for the respective cell type.

C.2. Description of the AUPRC Ratio

First, given a network estimation Θ̂ from an algorithm, we define an edge score for each edge. For EM-MMLE, VMPLN,
PLNet, and Glasso, the edge score for the edge (i, j) is defined as:∣∣∣∣−(Θ̂iiΘ̂jj

)− 1
2

Θ̂ij

∣∣∣∣ .
For PPCOR and GENIE3, the edge score is defined as the estimated connected weight for each edge.

Since the network inferred by the method contains connected edges with varying scores and unconnected edges, we calculate
the area under the partial precision-recall curve (AUPRC) by applying different thresholds to the edge scores. To mitigate
the impact of varying network densities across methods, we define the AUPRC ratio as the ratio between the AUPRC of a
given method and the expected AUPRC of a random network prediction. The precision of the random predictor is the edge
density of the ground-truth network.

C.3. Supporting Figures

Figure 3 shows the gene regulatory networks inferred by EM-MMLE for the top 300 highly variable genes. ID3 is identified
as a cell-type-specific hub gene in the CD4+ T cell network. Figure 4 presents the top 10 biological processes from a gene
ontology analysis of ID3 target genes, highlighting the most significant biological processes associated with these genes.
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Figure 3. Inferred gene regulatory networks for four cell types. The size of each node represents its weighted node degree, while the edge
width indicates the correlation weight. Genes highlighted in red represent the transcription factors of interest.
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Figure 4. Gene ontology enrichment analysis of ID3 target genes within the gene regulatory network of CD4+ T cells.

32


