LEARNING EQUIVARIANT TENSOR FUNCTIONS WITH APPLICATIONS TO SPARSE VECTOR RECOVERY

Anonymous authors

Paper under double-blind review

ABSTRACT

This work characterizes equivariant polynomial functions from tuples of tensor inputs to tensor outputs. Loosely motivated by physics, we focus on equivariant functions with respect to the diagonal action of the orthogonal group on tensors. We show how to extend this characterization to other linear algebraic groups, including the Lorentz and symplectic groups.

016Our goal behind these characterizations is to define equivariant machine learning017models. In particular, we focus on the sparse vector estimation problem. This018problem has been broadly studied in the theoretical computer science literature,019and explicit spectral methods, derived by techniques from sum-of-squares, can be020shown to recover sparse vectors under certain assumptions. Our numerical results021show that the proposed equivariant machine learning models can learn spectral021methods that outperform the best theoretically known spectral methods in some022regimes. The experiments also suggest that learned spectral methods can solve the023problem in settings that have yet to be theoretically analyzed.024This is an example of a promising direction in which theory can inform machine

This is an example of a promising direction in which theory can inform machine learning models and machine learning models can inform theory.

- 027 028 1 INT
- 029

025

026

004

010 011

012

013

014

015

1 INTRODUCTION

Many recent theoretical and applied efforts have focused on the implementation of symmetries and other structural constraints in the design of machine learning models. This is the case of graph 031 neural networks Scarselli et al. (2008); Maron et al. (2019), geometric deep learning Bronstein et al. (2021); Weiler et al. (2021), and AI for science Zhang et al. (2023). The goal is to design a 033 hypothesis class of functions with good *inductive bias* that is aligned with the theoretical framework 034 of the physical, mathematical, or algorithmic objects it aims to represent. This includes respecting coordinate freedoms Villar et al. (2023a), conservation laws Alet et al. (2021), or internal symmetries (e.g. in the implicit neural representations framework Lim et al. (2023)). Symmetries have also been 037 used to provide interpretability to learned data representations Suau et al. (2023); Gupta et al. (2023). 038 Mathematically, it has been shown that imposing symmetries can improve the generalization error and sample complexity of machine learning models Elesedy (2021b); Wang et al. (2021b); Elesedy (2021a); Bietti et al. (2021); Petrache & Trivedi (2024); Tahmasebi & Jegelka (2023); Huang et al. 040 (2024).041

042 In this work, we focus on implementing equivariant functions of tensor inputs and tensor outputs. 043 Tensors are the subjects of study in many theoretical computer science and applied mathematics 044 problems, including tensor factorization or decomposition Rabanser et al. (2017), and planted tensor models Hopkins et al. (2016). Many of the algorithms to address these problems have underlying symmetries like the ones we study here. Tensors also have a broad set of uses in the natural sciences, 046 where tensor-valued data appears as polarizations Melrose & Stoneham (1977), permeabilities 047 Durlofsky (1991), and stresses Levitas et al. (2019), for instance. Finally, tensors are the preferred 048 way to represent data for machine learning, where both models and multidimensional data with batches, channels, etc, are implemented as tensors. Sometimes, these tensor objects have underlying symmetries, like in implicit neural representations Li et al. (2022). 051

In this paper, we consider classical Lie groups acting diagonally on tensors. The groups we study arise naturally in physics and other settings, including the orthogonal group O(d) (which typically appears in coordinate transformations), the indefinite orthogonal group O(s, k - s) (which includes as a particular case the Lorentz group, a fundamental group for special relativity), and the symplectic group Sp(d) (the underlying group in much of classical and quantum mechanics).

A variety of methods can be used for implementing invariances or equivariances, including group convolutions Cohen & Welling (2016; 2017); Wang et al. (2021a), irreducible representations Fuchs et al. (2020); Kondor (2018); Weiler et al. (2018); Cohen et al. (2018); Weiler & Cesa (2019), constraints on optimization Finzi et al. (2021), canonicalization Kaba et al. (2023), and invariant theory Gripaios et al. (2021); Haddadin (2022); Villar et al. (2021); Blum-Smith & Villar (2023); Villar et al. (2023b). This work is closer to the line of research that constructs explicit equivariant functions from invariant features, and it generalizes results from Villar et al. (2021) to tensors.

Closest to us is the concurrent work of Kunisky, Moore, and Wein on tensor cumulants Kunisky et al. (2024). Their focus is primarily on symmetric tensors, although they show that O(d)-invariant polynomials on symmetric tensors can be turned into O(d)-invariant polynomials over general tensors by symmetrizing over O(d). Our results for equivariant tensor polynomials are slightly more general for inputs of tensors of different orders and parities as well as handling the indefinite orthogonal group and the symplectic group.

As an application, we consider the problem of sparse vector estimation. Let there be a sparse vector v_0 and vectors v_1, \ldots, v_{d-1} sampled independently at random from some prior distribution. If we are given an orthonormal basis w_0, \ldots, w_{d-1} of span($\{v_0, \cdots, v_{d-1}\}$), can we recover the sparse vector v_0 ? The problem has roots in tensor PCA, also known as the spiked tensor model Montanari & Richard (2014), as well as dictionary learning Spielman et al. (2012). Solutions for this problem using sum-of-squares and spectral methods were investigated in Barak et al. (2014) and further improvements were made in Hopkins et al. (2015; 2016); Ge & Ma (2015); Mao & Wein (2022).

076 In Hopkins et al. (2016), the authors propose an algorithm that constructs a $d \times d$ matrix A, then 077 uses the top eigenvector of A to estimate v_0 . They prove that this method recovers the planted vector under certain assumptions. A crucial observation is that the input to the problem is any orthonormal 079 basis w_0, \ldots, w_{d-1} of span $(\{v_0, \ldots, v_{d-1}\})$. This implies that a function that estimates v_0 should 080 be invariant to certain transformations of the input basis. In this paper, we learn algorithms to recover 081 planted sparse vectors from data. To this end, we use a machine learning model that learns an 082 equivariant 2-tensor A from data, and the estimator for the planted sparse vector \hat{v} is obtained using 083 \hat{A} 's top eigenvector following the same procedure as Hopkins et al. (2016). We empirically show that 084 this approach can learn spectral methods for sparse vector recovery that can work under more general 085 assumptions than the state-of-the-art.

The approach employed here can be seen as a particular case of the more ambitious research program of algorithmic alignment or algorithmic reasoning Veličković & Blundell (2021); Gavranović et al. (2024). In algorithmic alignment contexts, researchers design machine learning models that match known algorithmic strategies that are known to succeed at solving certain problems, such as dynamic programming Xu et al. (2020); Dudzik & Veličković (2022). Here, the machine learning approach is structurally aligned with equivariant spectral methods arising from sum-of-squares. We believe that the connection between sum-of-squares and machine learning (in particular equivariant machine learning and graph neural networks) is a promising direction to be explored.

094

096

1.1 OUR CONTRIBUTIONS

097 We provide a generic recipe to define equivariant machine learning models mapping from tensors 098 to tensors. To this end, we give explicit parameterizations for polynomials (Sec. 3) and analytic 099 functions with globally convergent Taylor series (Sec. 4) from tuples of tensor inputs to tensor outputs that are equivariant with respect to the orthogonal (Sec. 3), indefinite orthogonal (which includes 100 Lorentz), and symplectic groups (Sec. 4). This generalizes the existing results of Villar et al. (2021) 101 and leverages the tensor equivariant theory Appleby et al. (1987); Jeffreys (1973); Roe Goodman 102 (2009) into a format useful for machine learning frameworks. On first reading and for those primarily 103 interested in practical applications, we suggest focusing on Corollary 1 in Section 3 from which all 104 our experiments follow. 105

As a proof of concept, we applied the resulting models to learning algorithms for the sparse vector
 recovery problem (Section 5). Our learned algorithm outperforms state-of-the-art sum-of-squares
 methods for this problem in several regimes with both synthetic data and an image denoising problem.

108 2 DEFINITIONS

To simplify the exposition, we start by focusing on the case of the orthogonal group before extending the result to the indefinite orthogonal and symplectic groups. We consider the orthogonal group O(d), the isometries of Euclidean space \mathbb{R}^d that fix the origin. It acts on vectors and pseudovectors $v \in \mathbb{R}^d$ in the following way:

$$g \cdot v = \det(M(g))^{\frac{1-p}{2}} M(g) v, \tag{1}$$

116 117 where $g \in O(d)$, $M(g) \in \mathbb{R}^{d \times d}$ is the standard matrix representation of g (i.e. $M(g)^{\top} M(g) = \mathbb{I}_d$, 118 where \mathbb{I}_d is the identity matrix), and $p \in \{-1, +1\}$ is the parity of v. If p = +1 we obtain the 119 standard O(d) action on \mathbb{R}^d vectors. If p = -1 we obtain the O(d) action on what in physics are 120 known as *pseudovectors*. For a common pseudovector, consider a rotating Ferris wheel with angular 121 velocity whose direction is given by the right-hand rule. A reflection of the wheel, which will have 122 $\det(M(g)) = -1$ in (1), does not change the direction of rotation or, therefore, the direction of the 123 angular velocity.

Definition 1 $(k_{(p)}$ -tensors). We define the space of $1_{(p)}$ -tensors to be \mathbb{R}^d equipped with the action O(d) defined by (1). If v_i is a $1_{(p_i)}$ -tensor for i = 1, ..., k, then $a := v_1 \otimes ... \otimes v_k \in (\mathbb{R}^d)^{\otimes k}$ is a rank-1 $k_{(p)}$ -tensor, where $p = \prod_{i=1}^k p_i$ and the action of O(d) is the diagonal action:

$$g \cdot (v_1 \otimes \ldots \otimes v_k) = (g \cdot v_1) \otimes \ldots \otimes (g \cdot v_k) .$$
⁽²⁾

This definition generalizes to higher rank $k_{(p)}$ -tensors by linearity (see (5) below). The space of $k_{(p)}$ -tensors in d dimensions is denoted $\mathcal{T}_k(\mathbb{R}^d, p)$.

Remark 1. Note that the definition of $k_{(p)}$ -tensor includes the selection of the O(d)-action on the tensor. In this way, if a is a $k_{(+)}$ -tensor, we can see a as a $k_{(-)}$ -tensor by redefining the action as $g \cdot a = \det(M(g))(g \cdot a)$, where on the left we have the action as a $k_{(-)}$ -tensor and on the right the action as a $k_{(+)}$ -tensor.

Definition 2 (Einstein summation notation). Suppose that a is a $k_{(p)}$ -tensor. Let $[a]_{i_1,...,i_k}$ denote the (i_1, \ldots, i_k) -th entry of a, where i_1, \ldots, i_k range from 1 to d. The *Einstein summation notation* is used to represent tensor products¹ where repeated indices are summed over. In each product, a given index can appear either exactly once, in which case it appears in the result, or exactly twice, in which case it is summed over and does not appear in the result.

For example, in Einstein summation notation, the product of two $2_{(+)}$ -tensors (i.e., the matrix product *ab* of two *d* × *d* matrices *a* and *b*) is written as

115

127

128

144 145

150 151

152 153 154 $[a b]_{i,j} = [a]_{i,\ell} [b]_{\ell,j} := \sum_{\ell=1}^{d} [a]_{i,\ell} [b]_{\ell,j}.$ (3)

Using Einstein summation notation, the action of $g \in O(d)$ on rank-1 tensors can be extended to general tensors by linearity by expressing $b \in \mathcal{T}_k(\mathbb{R}^d, p)$ as a linear combination of (rank-1) standard basis tensors $e_{i_1,\ldots,i_k} = e_{i_1} \otimes \cdots \otimes e_{i_k}$, where $[e_i]_i = 1$ and $[e_i]_j = 0$ for $i \neq j$

$$[g \cdot b]_{i_1,\dots,i_k} = [b]_{j_1,\dots,j_k} [g \cdot (e_{j_1} \otimes \dots \otimes e_{j_k})]_{i_1,\dots,i_k} = [b]_{j_1,\dots,j_k} [g \cdot e_{j_1}]_{i_1} \cdots [g \cdot e_{j_k}]_{i_k}.$$
 (4)

Note that the action (1) on a $k_{(p)}$ -tensor b can be written as

$$[g \cdot b]_{i_1,\dots,i_k} = \det(M(g))^{\frac{1-p}{2}} [b]_{j_1,\dots,j_k} [M(g)]_{i_1,j_1} \cdots [M(g)]_{i_k,j_k}$$
(5)

for all $g \in O(d)$. For example, a $2_{(+)}$ -tensor has the transformation property $[g \cdot b]_{i,j} = [b]_{k,\ell} [M(g)]_{i,k} [M(g)]_{j,\ell}$, which, in normal matrix notation, is written as $g \cdot b = M(g) b M(g)^{\top}$.

When multiple tensors are combined, and all their indices appear in the result, we refer to that as the tensor product or outer product. When indices are summed over, we refer to that as the contraction or scalar product. We will further focus on a specific case of multiple tensor contractions that we will refer to as a *k*-contraction.

¹We will identify vectors with co-vectors in the usual way and will not distinguish lower vs upper scripts.

Definition 4 (k-contraction). Given a tensor $a \in \mathcal{T}_{2k+k'}(\mathbb{R}^d, p)$, the k-contraction of a, denoted $\iota_k(a)$, is the $k'_{(p)}$ -tensor defined as follows using Einstein summation:

$$[\iota_k(a)]_{j_1,\dots,j_{k'}} := [a]_{i_1,\dots,i_k,i_1,\dots,i_k,j_1,\dots,j_{k'}}.$$
(6)

For instance, if $a = u \otimes v \otimes x \otimes y \otimes z \in \mathcal{T}_{4+1}(\mathbb{R}^d, p)$ then $\iota_1(a) = \langle u, x \rangle \langle v, y \rangle z$.

Since $k_{(p)}$ -tensors are elements of the vector space $(\mathbb{R}^d)^{\otimes k}$, tensor addition and scalar multiplication are defined in the usual way. The final operation on tensors is the permutation of the indices.

Definition 5 (Permutations of tensor indices). Given $a \in \mathcal{T}_k(\mathbb{R}^d, p)$ and permutation $\sigma \in S_k$, the *permutation of tensor indices* of a by σ , denoted a^{σ} , is defined by **176** $\begin{bmatrix} \alpha^{\sigma} \end{bmatrix}_{a \to a} := \begin{bmatrix} \alpha \end{bmatrix}$ (7)

$$[a^{\sigma}]_{i_1,\dots,i_k} := [a]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} .$$
⁽⁷⁾

Definition 6 (Invariant and equivariant functions). We say that $f : \mathcal{T}_k(\mathbb{R}^d, p) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ is *O(d)*-invariant if

$$f(g \cdot a) = f(a), \quad \text{for all} \quad g \in O(d).$$
(8)
We say that $f : \mathcal{T}_k(\mathbb{R}^d, p) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ is $O(d)$ -equivariant if

$$f(g \cdot a) = g \cdot f(a), \text{ for all } g \in O(d).$$
 (9)

184 If f were instead a function with multiple inputs, then the same group element g would act on all 185 inputs simultaneously.

Definition 7 (Isotropic tensors). We say that a tensor $a \in \mathcal{T}_k(\mathbb{R}^d, p)$ is O(d)-isotropic if $g \cdot a = a$, for all $g \in O(d)$.

There are two special tensors, the Kronecker delta, and the Levi-Civita symbol. These tensors are O(d)-isotropic and, as we will show in Section 3, we can construct all O(d)-isotropic tensors using only Kronecker deltas and Levi-Civita symbols.

Definition 8 (Kronecker delta). The *Kronecker delta*, δ , is the O(d)-isotropic $2_{(+)}$ -tensor such that $[\delta]_{ij} = 1$ if i = j and 0 otherwise. When considered as a matrix, it is the identity matrix \mathbb{I}_d .

Definition 9 (Levi-Civita symbol). The Levi-Civita symbol, ϵ , in dimension $d \ge 2$ is the O(d)isotropic $d_{(-)}$ -tensor such that $[\epsilon]_{i_1,\ldots,i_d} = 0$ if any two of the i_1,\ldots,i_d are equal, $[\epsilon]_{i_1,\ldots,i_d} = +1$ if i_1,\ldots,i_d is an even permutation of $1,\ldots,d$, and $[\epsilon]_{i_1,\ldots,i_d} = -1$ if i_1,\ldots,i_d is an odd permutation of $1,\ldots,d$. For example, when d = 2 this is simply the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

198 199

200

169 170

171

177

180

181 182 183

3 O(d)-EQUIVARIANT POLYNOMIAL FUNCTIONS

In this section, we characterize O(d)-equivariant polynomial functions mapping multiple tensor inputs to tensor outputs. This result generalizes the results of Villar et al. (2021) from $1_{(+)}$ -tensors to general $k_{(p)}$ -tensors in the case of polynomials for the group O(d). On first reading and for those primarily interested in practical applications, we advise focusing on Example 1 and Corollary 1 below.

Each term in the theorem below should be viewed as combining r of the input tensors with the tensor product, then mapping them to the appropriate output with a linear map. Since a linear map between tensors can always be written as a tensor product followed by a sequence of contractions [Dimitrienko (2013),Theorem 5.1], that is what we do with the new tensor c_{ℓ_1,\ldots,ℓ_r} . However, since the function is also O(d)-equivariant, the tensor c_{ℓ_1,\ldots,ℓ_r} must be O(d)-isotropic. The theorem merely says that this polynomial is enough to construct all the tensor equivariant polynomials.

Theorem 1. Let $f : \prod_{i=1}^{n} \mathcal{T}_{k_i}(\mathbb{R}^d, p_i) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ be an O(d)-equivariant polynomial function of degree at most R. Then we may write f as follows:

215
$$f(a_1,\ldots,a_n) = \sum_{r=0}^{\infty} \sum_{1 \le \ell_1 \le \cdots \le \ell_r \le n} \iota_{k_{\ell_1},\ldots,\ell_r}(a_{\ell_1} \otimes \ldots \otimes a_{\ell_r} \otimes c_{\ell_1},\ldots,\ell_r)$$
(10)

where $c_{\ell_1,...,\ell_r}$ is an O(d)-isotropic $(k_{\ell_1,...,\ell_r} + k')_{(p_{\ell_1,...,\ell_r},p')}$ -tensor for $k_{\ell_1,...,\ell_r} = \sum_{q=1}^r k_{\ell_q}$ and 217 $p_{\ell_1,...,\ell_r} = \prod_{q=1}^r p_{\ell_q}.$ 218 219 Here is an example of Theorem 1 in action, expressing a given equivariant polynomial in terms of 220 invariant functions and tensors. A longer example appears in Appendix E. 221 **Example 1.** Let $f: \mathcal{T}_1(\mathbb{R}^d, +) \to \mathcal{T}_2(\mathbb{R}^d, +)$ be an O(d)-equivariant polynomial of degree at most 222 2. By Theorem 1, we can write f in the form 223 $f(a) = \iota_0(a^{\otimes 0} \otimes c_0) + \iota_1(a^{\otimes 1} \otimes c_1) + \iota_2(a^{\otimes 2} \otimes c_2),$ (11)224 where c_r is an O(d)-isotropic $(r+2)_{(+)}$ -tensor for r=0,1,2. Lemma 1 (proven below) character-225 226 izes such isotropic tensors $c_r: c_0 = \beta_0 \delta$, $c_1 = 0$ is trivial, and c_2 is a linear combination of $(\delta^{\otimes 2})^{\sigma}$ for $\sigma \in G_4 = \{\sigma_1, \sigma_2, \sigma_3\}$ where $\sigma_1 := (1, 2, 3, 4), \sigma_2 = (1, 3, 2, 4), \sigma_3 = (1, 3, 4, 2)$, see Appendix D. 227 228 Thus the final term $\iota_2(a^{\otimes 2} \otimes c_2)$ is 229 $\iota_2(a^{\otimes 2} \otimes (\beta_1(\delta^{\otimes 2})^{\sigma_1} + \beta_2(\delta^{\otimes 2})^{\sigma_2} + \beta_3(\delta^{\otimes 2})^{\sigma_3})) = \beta_1 \langle a, a \rangle + \beta_2 a \otimes a + \beta_3 a \otimes a,$ (12)230 231 where the terms associated with β_2 and β_3 are the same due to the symmetry of $a^{\otimes 2}$. We conclude 232 $f(a) = \beta_0 \delta + \beta_1 \langle a, a \rangle \delta + \beta_2 a \otimes a,$ (13)233 for some scalars β_0, β_1 , and β_2 . 234 235 While the sums in Lemma 1 are over the full symmetric group, in Example 1 we reduced the number 236 of terms by considering the symmetries of the summands. We develop this in detail in Appendix D. 237 The proof of Theorem 1 is given in Appendix B. The condition that c_{ℓ_1,\ldots,ℓ_r} is O(d)-isotropic is quite 238 restrictive; the following lemma says that all such tensors can be constructed from the Kronecker 239 delta δ (def. 8) and the Levi-Civita symbol (def. 9). This lemma, originally from Pastori, follows 240 from Jeffreys (1973). 241 **Lemma 1** (Characterization of O(d)-isotropic $k_{(p)}$ -tensors). Suppose $c \in \mathcal{T}_k(\mathbb{R}^d, p)$ is O(d)-242 isotropic. Then the following holds: 243 Case p = +1: Assume p = +1. If k is even, then c can be written in the form 244 245 $c = \sum_{\sigma \in S_{\epsilon}} \alpha_{\sigma} \left(\delta^{\otimes \frac{k}{2}} \right)^{\sigma}, \quad \text{for any } \alpha_{\sigma} \in \mathbb{R},$ (14)246 247 Otherwise, if k is odd, then c = 0 is the zero tensor. 248 249 Case p = -1: Assume p = -1. If k - d is even and $k \ge d$, then c can be written in the form 250 $c = \sum_{\sigma \in S_i} \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon \right)^{\sigma}$ (15)251 252 for any $\beta_{\sigma} \in \mathbb{R}$. Otherwise, if k - d is odd or k < d, then c = 0 is the zero tensor. 253 254 The result of Theorem 1 is a clean theoretical characterization of O(d)-equivariant polynomial 255 tensor functions with arbitrary order tensor inputs. However, computing large polynomials with all 256 possible O(d)-isotropic tensors is impractical. One option is considering low-degree polynomials 257 as in Example 2. Alternatively, in many applications we only need a function that has $1_{(+)}$ -tensors 258 (i.e. vectors) as input and a $k_{(+)}$ -tensor as output, and the problem takes on a form more amenable to 259 computation. 260 The following corollary says that when the inputs of the O(d)-equivariant function are only vectors, 261 we can write the function as a linear combination where the basis elements are permutations of the 262 input vectors and Kronecker deltas, and the coefficients are scalar functions that only depend on the 263 pairwise inner products of the vectors. The proofs of this corollary and Lemma 1 are in Appendix C. 264 **Corollary 1.** Let $f: \prod_{i=1}^{n} \mathcal{T}_1(\mathbb{R}^d, +) \to \mathcal{T}_{k'}(\mathbb{R}^d, +)$ be an O(d)-equivariant polynomial function. 265 Then, we may write it as 266 $\left|\frac{k'}{2}\right|$ 267 68

$$f(v_1, \dots, v_n) = \sum_{t=0}^{\lfloor 2 \rfloor} \sum_{\sigma \in S_{k'}} \sum_{1 \le J_1 \le \dots \le J_{k'-2t} \le n} q_{t,\sigma,J} \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) \left(v_{J_1} \otimes \dots \otimes v_{J_{k'-2t}} \otimes \delta^{\otimes t} \right)^{\sigma}$$

$$(16)$$

where $J = (J_1, \ldots, J_{k'-2t})$, and the function $q_{t,\sigma,J}$ depends on the tuple (t, σ, J) and is a polynomial of all n^2 possible inner products between the input vectors.

The second factor is a permutation of the outer product of t Kronecker deltas and k' - 2t of the input vectors v_1, \ldots, v_n , possibly with repeats. The first sum is over the possible numbers of Kronecker deltas 0 to $\lfloor \frac{k'}{2} \rfloor$, where $\lfloor \cdot \rfloor$ is the floor function. The second sum is over the possible permutations of the k' axes, and the third sum is over choosing k' - 2t vectors from v_1 to v_n , allowing repeated vectors.

278 **Remark 2.** Note that Corollary 1 characterizes polynomial functions, but if we allow the $q_{t,\sigma,J}$ to be 279 more general (e.g. in the class of continuous or smooth functions), then we obtain a parameterization 280 of a larger class of O(d)-equivariant functions. In the experiments in Section 5, we set the $q_{t,\sigma,J}$ to be learnable multi-layer perceptrons (MLPs). We are unsure if a characterization of this sort can be 281 stated for all continuous O(d)-equivariant functions. However, by the Stone–Weierstrass theorem any 282 continuous function can be approximated by a polynomial function to arbitrary accuracy on any fixed 283 compact set, so constructing an architecture that can represent equivariant polynomial functions is 284 sufficient to approximately represent equivariant continuous functions (see Yarotsky (2022)). 285

Remark 3. One interesting potential extension of Corollary 1 is to parameterize the polynomials 286 f that are simultaneously O(d)-equivariant and S_n -invariant, where S_n is the symmetric group of 287 order n acting by permuting the inputs v_1, \ldots, v_n . Implementations of such models may be possible 288 by adapting techniques from DeepSets Zaheer et al. (2017) or graph neural networks Scarselli et al. 289 (2008). However, parameterizing all permutation invariant polynomial functions q may be as hard as 290 solving the graph isomorphism problem, which is currently intractable. Recent work gives an efficient 291 parameterization of a class of invariant functions that is almost separating and could potentially be 292 used to implement the q functions Blum-Smith et al. (2024). 293

4 GENERALIZATIONS TO OTHER GROUPS

The results regarding O(d)-equivariant tensor maps from Section 3 are a particular case of a more general result involving algebraic groups. We work the full generalization in Appendix F where we give all the details of the proofs.

300 Recall that we can define O(d) as follows:

$$O(d) := \{ g \in \operatorname{GL}(\mathbb{R}^d) \mid g^\top g = \mathbb{I}_d \},\tag{17}$$

where I is the identity matrix. In other words, O(d) is the subgroup of linear transformations preserving the Euclidean inner product. However, in some contexts, we might be interested in preserving more general bilinear products on \mathbb{R}^d , such as the *Minkowski inner product*

$$\langle u,v
angle_s:=u^{ op}\mathbb{I}_{s,d-s}u$$

where $\mathbb{I}_{s,d-s} := \begin{pmatrix} \mathbb{I}_s & \\ & -\mathbb{I}_{d-s} \end{pmatrix}$, or, for d even, the symplectic product $\langle u, v \rangle_{\text{symp}} := u^{\top} J_d v$

313

314

315 316 317

319 320

294

295 296

297

298

299

301

302

306 307

308

where $J_d := \begin{pmatrix} \mathbb{I}_{d/2} \\ -\mathbb{I}_{d/2} \end{pmatrix}$. The subgroups of linear maps preserving these bilinear products give respectively the *indefinite orthogonal group* (which is the linear part of the *Lorentz group* when d = 4 and $s \in \{1,3\}$) given by

$$O(s, d-s) := \{ g \in \operatorname{GL}(\mathbb{R}^d) \mid g^\top \mathbb{I}_{s,d-s} g = \mathbb{I}_{s,d-s} \},$$
(18)

and, when d is even, the symplectic group given by

$$Sp(d) := \{ g \in \operatorname{GL}(\mathbb{R}^d) \mid g^\top J_d g = J_d \}.$$
(19)

For any of these groups G, we can consider the modules $\mathcal{T}_k(\mathbb{R}^d, \chi) := (\mathbb{R}^d)^{\otimes k}$, where $\chi : G \to \mathbb{R}^*$ is an algebraic group homomorphism, where the action is given by the linear extension of

$$g \cdot (v_1 \otimes \cdots \otimes v_k) = \chi(g)(g \cdot v_1) \otimes \cdots \otimes (g \cdot v_k).$$
⁽²⁰⁾

When G = O(s, d - s), with $s \neq 0, d$, we have four possible $\chi: \chi_{+,+}$ being always equal to 1, $\chi_{+,-}$ being the sign of the determinant of the bottom-right $(d - s) \times (d - s)$ submatrix, $\chi_{-,+}$ being the sign of the determinant of the top-left $s \times s$ submatrix, and $\chi_{-,-}$ being the determinant of the matrix. Hence, we can represent them by (p_1, p_2) , where $p_i \in \{-1, +1\}$. When G = Sp(d), we have that χ can only be the trivial group-homomorphism. (It follows, for instance, from the representation theory of simple Lie algebras from (Fulton & Harris, 2013, Part III) and a standard abelianization argument).

Additionally, we have G-equivariant contractions $\iota_k^G : \mathcal{T}_{2k+k'}(\mathbb{R}^d, \chi) \to \mathcal{T}_{2k+k'}(\mathbb{R}^d, \chi)$ given by

$$\iota_{k}^{O(s,d-s)}(a) := [a]_{i_{1},\dots,i_{k},j_{1},\dots,j_{k},\ell_{1},\dots,\ell_{k'}} \left[\mathbb{I}_{s,d-s}\right]_{i_{1},j_{1}} \cdots \left[\mathbb{I}_{s,d-s}\right]_{i_{k},j_{k}}$$
(21)

333 334

and

332

335

340341342343

344

345

346

361

362

370

372

$$\iota_k^{Sp(d)}(a) := [a]_{i_1,\dots,i_k,j_1,\dots,j_k,\ell_1,\dots,\ell_{k'}} [J_d]_{i_1,j_1} \cdots [J_d]_{i_k,j_k}.$$
(22)

Under these notations, we can state the generalization of Theorem 1 as follows. Recall that an *entire function* is a function that is analytic and whose Taylor series converges globally at any point.

Theorem 2. Let G be either O(s, d - s) or Sp(d) and $f : \prod_{i=1}^{n} \mathcal{T}_{k_i}(\mathbb{R}^d, \chi_i) \to \mathcal{T}_{k'}(\mathbb{R}^d, \chi')$ be a G-equivariant entire function. Then we may write f as follows:

$$f(a_1,\ldots,a_n) = \sum_{r=0}^{\infty} \sum_{1 \le \ell_1 \le \cdots \le \ell_r \le n} \iota^G_{k_{\ell_1,\ldots,\ell_r}} \left(a_{\ell_1} \otimes \ldots \otimes a_{\ell_r} \otimes c_{\ell_1,\ldots,\ell_r} \right)$$
(23)

where $c_{\ell_1,\ldots,\ell_r} \in \mathcal{T}_{k_{\ell_1},\ldots,\ell_r+k'}(\mathbb{R}^d,\chi_{\ell_1,\ldots,\ell_r}\chi')$ is a *G*-isotropic tensor, i.e., a tensor in $\mathcal{T}_{k_{\ell_1},\ldots,\ell_r+k'}(\mathbb{R}^d,\chi_{\ell_1,\ldots,\ell_r}\chi')$ invariant under the action of *G*; for $k_{\ell_1,\ldots,\ell_r} := \sum_{q=1}^r k_{\ell_q}$ and $\chi_{\ell_1,\ldots,\ell_r} = \prod_{q=1}^r \chi_{\ell_q}$.

Using the above theorem and an analogous version of Lemma 1 ((Roe Goodman, 2009, Theorem 5.3.3), see Proposition 7 in Appendix F), we can then prove the following corollary, which generalizes Corollary 1.

Corollary 2. Let G be either O(s, d - s) or Sp(d) and $f : \prod_{i=1}^{n} \mathcal{T}_1(\mathbb{R}^d, \chi_0) \to \mathcal{T}_k(\mathbb{R}^d, \chi_0)$, with χ_0 the constant map to 1, be a G-equivariant entire function. Then we may write f as follows:

$$f(v_1,\ldots,v_n) = \sum_{t=0}^{\lfloor \frac{\kappa}{2} \rfloor} \sum_{\sigma \in S_k} \sum_{1 \le J_1 \le \cdots \le J_{k-2t} \le n} q_{t,\sigma,J} \left((\langle v_i, v_j \rangle_G)_{i,j=1}^n \right) \left(v_{J_1} \otimes \ldots \otimes v_{J_{k-2t}} \otimes \theta_G^{\otimes t} \right)^{\sigma}$$

where $\langle \cdot, \cdot \rangle_G = \langle \cdot, \cdot \rangle_s$ and $\theta_G = [\mathbb{I}_{s,d-s}]_{i,j}$ if G = O(s, d-s), and $\langle \cdot, \cdot \rangle_G = \langle \cdot, \cdot \rangle_{\text{symp}}$ and $\theta_G = [J_d]_{i,j}$ if G = Sp(d), and $q_{t,\sigma,J}$ is an entire function that depends on the tuple (t, σ, J) and whose inputs are all possible inner products between the input vectors and whose output is a scalar.

5 NUMERICAL EXPERIMENTS

With the preceding theory in place, we can define a machine learning model to learn a new algorithm of interest. The sum of squares solution to the sparse vector recovery problem reduces to finding the optimal O(d)-equivariant function with vector inputs and a $2_{(+)}$ -tensor output, and the form of this function is given by Corollary 1. The learned algorithms outperform state-of-the-art methods for this problem in several regimes, and operate in settings where theoretical guarantees have yet to be developed. As such, they may point towards conjectures for more general classes of spectral algorithms. The code is open-source and will be released after anonymous review.

371 5.1 PROBLEM SETUP

We consider the problem of finding a planted sparse vector in a linear subspace. This problem was introduced by Spielman, Wang, and Wright in Spielman et al. (2012) in the context of dictionary learning. It was further studied in Hopkins et al. (2016) and Mao & Wein (2022).

Problem 1. Let $v \in \mathbb{R}^n$ be an (approximately) sparse vector of unit length. Construct $v_0, \ldots, v_{d-1} \in \mathbb{R}^n$ from v using some noise strategy. We consider S to be an $n \times d$ matrix whose columns form an orthonormal basis of span $\{v_0, \ldots, v_{d-1}\}$. The problem is to recover v from S.

The methods developed in Hopkins et al. (2016) and Mao & Wein (2022) assume that for sparsity parameter $\varepsilon \leq 1/3$, $||v||_4^4 \geq \frac{1}{\varepsilon n}$ and that $v_0 = v$ and $v_1, \ldots, v_{d-1} \sim \mathcal{N}(\mathbf{0}_n, \frac{1}{n}\mathbb{I}_n)$. We will violate some or all of these assumptions in our experiments on synthetic data and MNIST digits.

In synthetic data experiments, we sample v using one of four methods: Accept/Reject (AR), Bernoulli-Gaussian (BG), Corrected Bernoulli-Gaussian (CBG), and Bernoulli-Rademacher (BR). Vectors sampled using AR are rejected if they do not satisfy $||v||_4^4 \ge \frac{1}{\varepsilon n}$, while vectors sampled by the other methods only satisfy that bound in expectation (Appendix I.1). We set $v_0 = v$ and sample $v_1, \ldots, v_{d-1} \sim \mathcal{N}(\mathbf{0}_n, \Sigma)$ where Σ can be the identity, a non-identity diagonal covariance, or a random covariance from a Wishart distribution (Appendix I.2). We then get a random orthonormal basis of v_0, \ldots, v_{d-1} (Appendix I.4).

For experiments on more realistic data, we turn to MNIST. Since the background of each image consists of 0 values and the digit of nonzero values is on average 20% of the pixels, we can consider each MNIST image as our sparse target vector $v \in \mathbb{R}^n$, where $n = 28^2$. We construct a subspace from several noisy copies, and Problem 1 is equivalent to recovering the original, denoised image from the noisy copies. We stress that this is an illustrative example of the sparse vector recovery problem; we make no claims that this is a state-of-the-art method for the image denoising problem in general.

To construct v_0, \ldots, v_{d-1} for the MNIST data, we use four different noise strategies. In the first noise scheme, the Random Subspace (RND), we let $v_0 = v$ and $v_1, \ldots, v_{d-1} \sim \mathcal{N}(\mathbf{0}_n, \mathbb{I}_n)$ so that this method is directly comparable to the synthetic data experiments above. In the next three noise schemes, each v_i , *including* v_0 , is a noisy copy of v so that v is not necessarily in the subspace of v_0, \ldots, v_{d-1} . We use additive Gaussian noise (GAU), Bernoulli pixel noise (BER), and a random block mask (BLK). See Figure 1 for a depiction of the noise and I.3 for further details.

5.2 MODELS

402

403

409

416 417

420

421

We consider a matrix $S \in \mathbb{R}^{n \times d}$ whose columns are an orthonormal basis for span $\{v_0, \ldots, v_{d-1}\}$ and denote its rows by $a_1^{\top}, \ldots, a_n^{\top} \in \mathbb{R}^d$. Let S_d be the space of $d \times d$ symmetric matrices. We consider $h : (\mathbb{R}^d)^n \to S_d$ and let $\lambda_{\text{vec}} : S_d \to \mathbb{R}^d$ be the function that takes a symmetric matrix as input and outputs a normalized eigenvector corresponding to the top eigenvalue. Then, the estimate of the planted sparse vector will be given by

$$\hat{v} = S \lambda_{\text{vec}}(h(a_1, \dots, a_n)) , \qquad (25)$$

for an appropriate h that can be learned from data or derived by other means.

411 412 Since S may be any orthogonal basis of span $\{v_0, \ldots, v_{d-1}\}$, we would like (25) to be invariant to O(d). It is sufficient for h to be O(d)-equivariant to guarantee this invariance – see Appendix G.

The models we consider differ in their choice of function h. In Hopkins et al. (2016) (SOS-I), the function h is

$$h(a_1, \dots, a_n) := \sum_{i=1}^n \left(\|a_i\|_2^2 - \frac{d}{n} \right) a_i a_i^\top , \qquad (26)$$

and in Mao & Wein (2022) (SOS-II) h is defined as

$$h(a_1, \dots, a_n) := \sum_{i=1}^n \left(\|a_i\|_2^2 - \frac{d-1}{n} \right) a_i a_i^\top - \frac{3}{n} \mathbb{I}_n .$$
(27)

Both models are proven to recover the planted sparse vector under different sampling assumptions described in Appendix I.1. Note that equations (26) and (27) are O(d)-equivariant and a special case of Corollary 1 since they define a sum of outer products of the inputs with coefficients that are polynomial functions of inner products of the inputs.

In comparison to these fixed methods, we propose two machine learning-based models defined using the results of Section 3. The first model, SparseVectorHunter (SVH), will parameterize

$$h(a_1, \dots, a_n) = \left[\sum_{i=1}^n \sum_{j=i}^n q_{i,j} \Big((\langle a_\ell, a_m \rangle)_{\ell,m=1}^n \Big) \frac{1}{2} \Big(a_i a_j^\top + a_j a_i^\top \Big) \right] + q_{\mathbb{I}} \Big((\langle a_\ell, a_m \rangle)_{\ell,m=1}^n \Big) \mathbb{I}_d ,$$

$$(28)$$

440 441 442

443 444

445

446

447

448

449 450

456

457

458

459

460

461

462

468

470

432

433

Figure 1: MNIST target v (left), noise inputs from different schemes per row (middle), and the corresponding model predictions \hat{v} (right): Our methods (SVH-Diag, SVH) outperform existing sum-of-squares methods (SOS-I, SOS-II) and the non-equivariant baseline (BL) across all noise schemes including Random Subspace (RND), Gaussian noise (GAU), Bernoulli noise (BER), and Block Noise (BLK).

and the second model, SparseVectorHunterDiagonal (SVH-Diag), will parameterize

$$h(a_1, \dots, a_n) = \left[\sum_{i}^{n} q_i \left(\left(\|a_\ell\|_2^2 \right)_{\ell=1}^n \right) a_i a_i^{\top} \right] + q_{\mathbb{I}} \left(\left(\|a_\ell\|_2^2 \right)_{\ell=1}^n \right) \mathbb{I}_d , \qquad (29)$$

where $q_{i,j}$, q_i , and $q_{\mathbb{I}}$ are O(d)-invariant scalar functions. The form of equation (28) follows from Corollary 1 as shown in Appendix G. By averaging the general form of a matrix valued O(d)equivariant function with its transpose, we obtain the form of any O(d)-equivariant polynomial function that outputs a symmetric matrix. Equation (29) follows the scheme of (28) but only includes inner and outer products of the same vectors to be more directly comparable to (26) and (27). Corollary 1 specifies that $q_{i,j}$, q_i , and $q_{\mathbb{I}}$ should be polynomials, but we will approximate them with dense neural networks. The networks themselves are multi-layer perceptrons (MLP) with 2 hidden layers, width of 128, and ReLU activation functions.

To demonstrate the benefits of equivariance, we also implement a non-equivariant baseline model (BL) which takes as input the *nd* components of *S* and outputs the $d + \binom{d}{2}$ components of a symmetric *d* × *d* matrix. This is implemented as a multi-layer perceptron with 2 hidden layers, width of 128, and ReLU activation functions to match the architecture of the SVH. For training details on all these models, see Appendix I.5.

469 5.3 RESULTS

The synthetic data results on the test data are displayed in Table 1. The SOS-I and SOS-II methods perform best when their assumptions are met, such as identity covariance for the noise vectors, but perform worse than the SVH models when using Random or Diagonal covariance. One exception to this trend is the Bernoulli-Gaussian sampling for the sparse vectors. This is likely because if $v \sim BG$, then $\mathbb{E}\left[\|v\|_{4}^{4}\right] = \frac{3}{\varepsilon n}$ (Appendix I.1). This is significantly above the required sparsity condition of $\|v\|_{4}^{4} \geq \frac{1}{\varepsilon n}$, so the vectors are more sparse and therefore easier to estimate. By contrast, the Corrected Bernoulli-Gaussian has $\mathbb{E}\left[\|v\|_{4}^{4}\right] = \frac{1}{\varepsilon n}$ (Appendix I.1) and we once again see that the learned SVH models perform better when we can't rely on stringent data assumptions.

This story is even more pronounced in the MNIST data experiments, shown in Figure 1 and Table 2. The learned SVH models outperform the SOS methods across every noise type for both d = 10 and d = 20. The Gaussian, Bernoulli, and Block noise schemes break almost all of the assumptions of the SOS methods, including the fact that the sparse vector is not explicitly in the subspace v_0, \ldots, v_{d-1} . The block noise scheme, essentially an image inpainting task, is particularly egregious because not only is the noise in nearby pixels highly correlated, the noise itself is sparse in a sense. The learned models are able to adapt to all these new settings and perform well.

sampling	Σ	SOS-I	SOS-II	BL	SVH-Diag	SVH
A/R	Random Diagonal Identity	$\begin{array}{c} 0.610 \pm 0.009 \\ 0.448 \pm 0.012 \\ \textbf{0.606} \pm \textbf{0.014} \end{array}$	$\begin{array}{c} 0.610 \pm 0.009 \\ 0.448 \pm 0.012 \\ \textbf{0.606} \pm \textbf{0.014} \end{array}$	$\begin{array}{c} 0.241 \pm 0.019 \\ 0.196 \pm 0.011 \\ 0.196 \pm 0.008 \end{array}$	$\begin{array}{c} 0.493 \pm 0.005 \\ \textbf{0.589} \pm \textbf{0.026} \\ 0.351 \pm 0.065 \end{array}$	$\begin{array}{c} \textbf{0.938} \pm \textbf{0.002} \\ 0.465 \pm 0.027 \\ 0.190 \pm 0.008 \end{array}$
BG	Random Diagonal Identity	$\begin{array}{c} 0.962 \pm 0.002 \\ 0.949 \pm 0.005 \\ 0.962 \pm 0.002 \end{array}$	$\begin{array}{c} 0.962 \pm 0.002 \\ 0.949 \pm 0.005 \\ 0.962 \pm 0.002 \end{array}$	$\begin{array}{c} 0.242 \pm 0.006 \\ 0.205 \pm 0.013 \\ 0.196 \pm 0.009 \end{array}$	$\begin{array}{c} 0.917 \pm 0.004 \\ 0.914 \pm 0.006 \\ 0.908 \pm 0.006 \end{array}$	$\begin{array}{c} 0.937 \pm 0.002 \\ 0.463 \pm 0.018 \\ 0.342 \pm 0.043 \end{array}$
CBG	Random Diagonal Identity	$\begin{array}{c} 0.412 \pm 0.017 \\ 0.288 \pm 0.018 \\ \textbf{0.412} \pm \textbf{0.011} \end{array}$	$\begin{array}{c} 0.412 \pm 0.017 \\ 0.288 \pm 0.018 \\ \textbf{0.412} \pm \textbf{0.011} \end{array}$	$\begin{array}{c} 0.239 \pm 0.012 \\ 0.206 \pm 0.003 \\ 0.198 \pm 0.005 \end{array}$	$\begin{array}{c} 0.372 \pm 0.011 \\ \textbf{0.550} \pm \textbf{0.026} \\ 0.239 \pm 0.025 \end{array}$	$\begin{array}{c} \textbf{0.935} \pm \textbf{0.002} \\ 0.460 \pm 0.022 \\ 0.197 \pm 0.011 \end{array}$
BR	Random Diagonal Identity	$\begin{array}{c} 0.526 \pm 0.020 \\ 0.334 \pm 0.024 \\ 0.524 \pm 0.010 \end{array}$	$\begin{array}{c} 0.526 \pm 0.020 \\ 0.334 \pm 0.024 \\ 0.524 \pm 0.010 \end{array}$	$\begin{array}{c} 0.923 \pm 0.004 \\ 0.864 \pm 0.005 \\ 0.845 \pm 0.006 \end{array}$	$\begin{array}{c} 0.437 \pm 0.034 \\ 0.588 \pm 0.011 \\ 0.317 \pm 0.046 \end{array}$	$\begin{array}{c} \textbf{0.957} \pm \textbf{0.001} \\ \textbf{0.903} \pm \textbf{0.004} \\ \textbf{0.889} \pm \textbf{0.003} \end{array}$

Table 1: Test error comparison on synthetic data averaged over 5 trials ($n = 100, d = 5, \epsilon = 0.25$) with the standard deviation given by $\pm 0.xxx$. The metric $\langle v, \hat{v} \rangle^2$ ranges from 0 to 1 with 1 indicating the estimate \hat{v} identical to the true v. For each row, the best value is **bolded**.

	Noise Type	SOS-I	SOS-II	BL	SVH-Diag	SVH
d = 10	Random Gaussian Bernoulli Block	$\begin{array}{c} 0.966 \pm 0.003 \\ 0.776 \pm 0.005 \\ 0.091 \pm 0.006 \\ 0.096 \pm 0.012 \end{array}$	$\begin{array}{c} 0.966 \pm 0.003 \\ 0.776 \pm 0.005 \\ 0.091 \pm 0.006 \\ 0.096 \pm 0.012 \end{array}$	$\begin{array}{c} 0.509 \pm 0.086 \\ 0.632 \pm 0.009 \\ 0.680 \pm 0.004 \\ 0.623 \pm 0.020 \end{array}$	$\begin{array}{c} \textbf{1.000} \pm \textbf{0.000} \\ \textbf{0.835} \pm \textbf{0.001} \\ \textbf{0.745} \pm \textbf{0.001} \\ \textbf{0.451} \pm \textbf{0.014} \end{array}$	$\begin{array}{c} 0.993 \pm 0.000 \\ 0.829 \pm 0.001 \\ 0.743 \pm 0.001 \\ \textbf{0.872} \pm \textbf{0.006} \end{array}$
d = 20	Random Gaussian Bernoulli Block	$\begin{array}{c} 0.886 \pm 0.004 \\ 0.749 \pm 0.005 \\ 0.031 \pm 0.004 \\ 0.069 \pm 0.006 \end{array}$	$\begin{array}{c} 0.886 \pm 0.004 \\ 0.749 \pm 0.005 \\ 0.031 \pm 0.004 \\ 0.069 \pm 0.006 \end{array}$	$\begin{array}{c} 0.061 \pm 0.013 \\ 0.448 \pm 0.034 \\ 0.635 \pm 0.007 \\ 0.556 \pm 0.023 \end{array}$	$\begin{array}{c} \textbf{1.000} \pm \textbf{0.000} \\ \textbf{0.910} \pm \textbf{0.000} \\ \textbf{0.774} \pm \textbf{0.000} \\ \textbf{0.440} \pm \textbf{0.026} \end{array}$	$\begin{array}{c} 0.991 \pm 0.000 \\ 0.903 \pm 0.000 \\ 0.773 \pm 0.000 \\ \textbf{0.917} \pm \textbf{0.004} \end{array}$

Table 2: MNIST test performance averaged over 5 trials with the standard deviation $\pm 0.xxx$. The metric is $\langle v_0, \hat{v} \rangle^2$, ranging from 0 to 1, with values closer to 1 meaning that the vectors are closer. For each row, the best value is **bolded**.

Finally, we see that in all experiments, the baseline learned model generalizes poorly, despite doing well on the training data (Table 4 in Appendix). This is consistent with the claim that enforcing symmetries improves generalization performance Bietti et al. (2021); Petrache & Trivedi (2024); Elesedy (2021a).

6 DISCUSSION

524 525 526

527

528

500

501

502

514

515

516 517

518

519

520

521 522 523

> This paper provides a characterization of polynomial functions from multiple tensor inputs to tensor outputs that are equivariant with respect to the diagonal action by classical Lie groups, including the orthogonal group, the symplectic group, and the Lorentz group.

529 Our main goal behind this characterization is to define equivariant machine learning models. We 530 applied the resulting models to learning algorithms for the sparse vector recovery problem. In the 531 spirit of the neural algorithmic reasoning framework Veličković & Blundell (2021), the proposed machine learning methods are "aligned" to known algorithms with provable performance guarantees. 532 The learned algorithms outperform state-of-the-art algorithms for this problem in several regimes, 533 including those where there are no known algorithms with theoretical guarantees. 534

The application of our characterization is especially useful when the input consists of $1_{(+)}$ -tensors, 536 and the output is a $k_{(+)}$ -tensor. For these problems, a parameterization based on invariant scalars, 537 similar to Villar et al. (2021), is available and easy to implement. For problems where the input tensors have higher order, the implementation would be less efficient. We also assume no additional 538 structure on the relationship between the input tensors; in those situations, other techniques may be required.

540 REFERENCES 541

547

552

553

554

577

579

580 581

582

- Ferran Alet, Dylan Doblar, Allan Zhou, Josh Tenenbaum, Kenji Kawaguchi, and Chelsea Finn. 542 Noether networks: meta-learning useful conserved quantities. Advances in Neural Information 543 Processing Systems, 34:16384–16397, 2021. 544
- P. G. Appleby, B. R. Duffy, and R. W. Ogden. On the classification of isotropic tensors. *Glasgow* 546 Mathematical Journal, 29(2):185–196, 1987.
- 548 Boaz Barak, Jonathan A. Kelner, and David Steurer. Dictionary learning and tensor decomposition via the sum-of-squares method. Proceedings of the forty-seventh annual ACM symposium on 549 Theory of Computing, 2014. URL https://api.semanticscholar.org/CorpusID: 550 14463887. 551
 - Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under geometric stability. Advances in neural information processing systems, 34:18673–18684, 2021.
- Ben Blum-Smith and Soledad Villar. Machine learning and invariant theory. Notices of the American 555 Mathematical Society, 70(8):1205–1213, 2023. 556
- Ben Blum-Smith, Ningyuan Huang, Marco Cuturi, and Soledad Villar. Learning functions on symmet-558 ric matrices and point clouds via lightweight invariant features. arXiv preprint arXiv:2405.08097, 559 2024.
- Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: 561 Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. 562
- 563 Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina Balcan 564 and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine 565 Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2990–2999, New York, 566 New York, USA, 20-22 Jun 2016. PMLR. URL https://proceedings.mlr.press/ v48/cohenc16.html. 567
- 568 Taco S. Cohen and Max Welling. Steerable CNNs. In International Conference on Learning 569 *Representations*, 2017. URL https://openreview.net/forum?id=rJQKYt511. 570
- 571 Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International 572 Conference on Learning Representations, 2018. URL https://openreview.net/forum? 573 id=Hkbd5xZRb.
- 574 David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to 575 Computational Algebraic Geometry and Commutative Algebra. Springer International Publishing, 576 2015. ISBN 9783319167213. doi: 10.1007/978-3-319-16721-3. URL http://dx.doi.org/ 10.1007/978-3-319-16721-3. 578
 - Yu. I. Dimitrienko. Tensor Analysis and Nonlinear Tensor Functions. Springer Dordrecht, 1 edition, June 2013.
 - Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. Advances in neural information processing systems, 35:20635–20647, 2022.
- 584 Louis J Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water resources research, 27(5):699–708, 1991. 585
- 586 Bryn Elesedy. Provably strict generalisation benefit for invariance in kernel methods. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-588 cessing Systems, 2021a. URL https://openreview.net/forum?id=yKdYdQbo22W. 589
- Bryn Elesedy. Provably strict generalisation benefit for invariance in kernel methods. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 17273–17283. Curran Associates, Inc., 592 2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/ file/8fe04df45a22b63156ebabbb064fcd5e-Paper.pdf.

594 595 596 597 598	Marc Finzi, Max Welling, and Andrew Gordon Gordon Wilson. A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups. In Marina Meila and Tong Zhang (eds.), <i>Proceedings of the 38th International Conference on Machine Learning</i> , volume 139 of <i>Proceedings of Machine Learning Research</i> , pp. 3318–3328. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/finzi21a.html.
599 600 601 602 603 604	Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto- translation equivariant attention networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1970– 1981. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_ files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf.
605 606	William Fulton and Joe Harris. <i>Representation theory: a first course</i> , volume 129. Springer Science & Business Media, 2013.
607 608 609	Bruno Gavranović, Paul Lessard, Andrew Dudzik, Tamara von Glehn, João GM Araújo, and Petar Veličković. Categorical deep learning: An algebraic theory of architectures. <i>arXiv preprint arXiv:2402.15332</i> , 2024.
610 611 612 613 614 615 616 617	 Rong Ge and Tengyu Ma. Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim (eds.), <i>Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)</i>, volume 40 of <i>Leibniz International Proceedings in Informatics (LIPIcs)</i>, pp. 829–849, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-939897-89-7. doi: 10.4230/LIPIcs.APPROX-RANDOM. 2015.829. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.829.
618 619 620 621	Ben Gripaios, Ward Haddadin, and Christopher G Lester. Lorentz- and permutation-invariants of particles. <i>Journal of Physics A: Mathematical and Theoretical</i> , 54(15):155201, March 2021. ISSN 1751-8121. doi: 10.1088/1751-8121/abe58c. URL http://dx.doi.org/10.1088/ 1751-8121/abe58c.
622 623 624	Sharut Gupta, Joshua Robinson, Derek Lim, Soledad Villar, and Stefanie Jegelka. Structuring repre- sentation geometry with rotationally equivariant contrastive learning. In <i>The Twelfth International</i> <i>Conference on Learning Representations</i> , 2023.
626 627	Ward Issa Jereis Haddadin. <i>Invariant polynomials and machine learning</i> . PhD thesis, Cambridge U., 2022.
628 629 630 631 632	Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via sum-of-square proofs. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.), Proceedings of The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research, pp. 956–1006, Paris, France, 03–06 Jul 2015. PMLR. URL https://proceedings.mlr. press/v40/Hopkins15.html.
633 634 635 636 637	Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors. In <i>Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing</i> , STOC '16, pp. 178–191, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341325. doi: 10.1145/2897518.2897529. URL https://doi.org/10.1145/2897518.2897529.
638 639 640	Roger A. Horn and Charles R. Johnson. <i>Matrix Analysis</i> . Cambridge University Press, 1990. ISBN 0521386322.
641 642	Ningyuan Huang, Ron Levie, and Soledad Villar. Approximately equivariant graph networks. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
643 644 645	Harold Jeffreys. On isotropic tensors. <i>Mathematical Proceedings of the Cambridge Philosophical Society</i> , 73(1):173–176, 1973. doi: 10.1017/S0305004100047587.
646 647	Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh. Equivariance with learned canonicalization functions. In <i>International Conference on Machine Learning</i> , pp. 15546–15566. PMLR, 2023.

648 649	Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
650 651 652	Risi Kondor. N-body networks: a covariant hierarchical neural network architecture for learning atomic potentials. <i>CoRR</i> , abs/1803.01588, 2018. URL http://arxiv.org/abs/1803.01588.
653 654 655	Dmitriy Kunisky, Cristopher Moore, and Alexander S. Wein. Tensor cumulants for statistical inference on invariant distributions, 2024.
656 657 658	Valery I Levitas, Mehdi Kamrani, and Biao Feng. Tensorial stress- strain fields and large elastoplas- ticity as well as friction in diamond anvil cell up to 400 gpa. <i>NPJ Computational Materials</i> , 5(1): 94, 2019.
659 660 661	Xingyi Li, Chaoyi Hong, Yiran Wang, Zhiguo Cao, Ke Xian, and Guosheng Lin. Symmnerf: Learning to explore symmetry prior for single-view view synthesis. In <i>Proceedings of the Asian conference on computer vision</i> , pp. 1726–1742, 2022.
663 664 665	Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks for processing diverse neural architectures. In <i>The Twelfth International Conference on Learning Representations</i> , 2023.
666 667 668	Cheng Mao and Alexander S. Wein. Optimal spectral recovery of a planted vector in a subspace, 2022.
669 670 671 672	Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum? id=Syx72jC9tm.
673 674 675	DB Melrose and RJ Stoneham. The polarization tensor for a magnetized vacuum. <i>Journal of Physics</i> A: Mathematical and General, 10(7):1211, 1977.
676 677 678	Andrea Montanari and Emile Richard. A statistical model for tensor pca. In <i>Proceedings of the 27th</i> <i>International Conference on Neural Information Processing Systems - Volume 2</i> , NIPS'14, pp. 2897–2905, Cambridge, MA, USA, 2014. MIT Press.
679 680	Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approximate) group equivariance. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
682 683	Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. Introduction to tensor decompositions and their applications in machine learning. <i>arXiv preprint arXiv:1711.10781</i> , 2017.
684 685 686 687	Nolan R. Wallach Roe Goodman. Symmetry, Representations, and Invariants. Springer International Publishing, 2009. ISBN 978-0-387-79852-3. doi: 10.1007/978-0-387-79852-3. URL https://doi.org/10.1007/978-0-387-79852-3.
688 689	Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. <i>IEEE transactions on neural networks</i> , 20(1):61–80, 2008.
690 691 692 693 694	Daniel A. Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In Shie Mannor, Nathan Srebro, and Robert C. Williamson (eds.), <i>Proceedings of the 25th Annual</i> <i>Conference on Learning Theory</i> , volume 23 of <i>Proceedings of Machine Learning Research</i> , pp. 37.1–37.18, Edinburgh, Scotland, 25–27 Jun 2012. PMLR.
695 696 697 698	 Xavier Suau, Federico Danieli, T Anderson Keller, Arno Blaas, Chen Huang, Jason Ramapuram, Dan Busbridge, and Luca Zappella. Duet: 2d structured and approximately equivariant representations. In <i>Proceedings of the 40th International Conference on Machine Learning</i>, pp. 32749–32769, 2023.
699 700 701	Behrooz Tahmasebi and Stefanie Jegelka. The exact sample complexity gain from invariances for kernel regression. <i>Advances in Neural Information Processing Systems</i> , 36, 2023.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021.

- 702 Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are 703 universal: Equivariant machine learning, structured like classical physics. Advances in Neural 704 Information Processing Systems, 34:28848–28863, 2021. 705 Soledad Villar, David W Hogg, Weichi Yao, George A Kevrekidis, and Bernhard Schölkopf. Towards 706 fully covariant machine learning. Transactions on Machine Learning Research, 2023a. 707 708 Soledad Villar, Weichi Yao, David W Hogg, Ben Blum-Smith, and Bianca Dumitrascu. Dimensionless 709 machine learning: Imposing exact units equivariance. Journal of Machine Learning Research, 24 710 (109):1-32, 2023b. 711 Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of graph 712 neural networks against adversarial structural perturbation. In Proceedings of the 27th ACM 713 SIGKDD Conference on Knowledge Discovery & amp; Data Mining, KDD '21. ACM, August 714 2021a. doi: 10.1145/3447548.3467295. URL http://dx.doi.org/10.1145/3447548. 715 3467295. 716 Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for 717 improved generalization. In International Conference on Learning Representations, 2021b. URL 718 https://openreview.net/forum?id=wta_8Hx2KD. 719 720 Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In H. Wal-721 lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-722 vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 723 2019. URL https://proceedings.neurips.cc/paper files/paper/2019/ 724 file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf. 725 Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable 726 cnns: learning rotationally equivariant features in volumetric data. In Proceedings of the 32nd 727 International Conference on Neural Information Processing Systems, NIPS'18, pp. 10402–10413, 728 Red Hook, NY, USA, 2018. Curran Associates Inc. 729 Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent convolutional 730 networks-isometry and gauge equivariant convolutions on riemannian manifolds. arXiv preprint 731 arXiv:2106.06020, 2021. 732 733 Keylu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 734 What can neural networks reason about? ICLR 2020, 2020. 735 Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive 736 Approximation, 55(1):407-474, 2022. 737 738 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and 739 Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017. 740 Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao 741 Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, 742 Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra 743 Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas 744 Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya 745 Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. 746 Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, 747 Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, 748 Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, 749 Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji. Artificial 750 intelligence for science in quantum, atomistic, and continuum systems, 2023. 751 752 753 754
- 755

756 A BASIC PROPERTIES OF O(d) ACTIONS ON TENSORS

In this section, we will show that the basic operations are O(d)-equivariant and linear by direct computation. We do so explicitly by performing routine computations. However, the universal property of tensor products, which we use in Appendix F, would give immediate proofs of these statements.

Proposition 1. The outer product is a O(d)-equivariant bilinear map. In other words, for $g \in O(d)$, $a, a' \in \mathcal{T}_k(\mathbb{R}^d, p), b, b' \in \mathcal{T}_{k'}(\mathbb{R}^d, p')$ and $\alpha, \beta \in \mathbb{R}$, we have $g \cdot (a \otimes b) = (g \cdot a) \otimes (g \cdot b)$, $(\alpha a + \beta a') \otimes b = \alpha(a \otimes b) + \beta(a' \otimes b)$, and $a \otimes (\alpha b + \beta b') = \alpha(a \otimes b) + \beta(a \otimes b')$. In particular, if $c \in \mathcal{T}_{k'}(\mathbb{R}^d, p')$ is an O(d)-isotropic tensor, then the function mapping

$$\mathcal{T}_k(\mathbb{R}^d, p) \to \mathcal{T}_{k+k'}(\mathbb{R}^d, pp') \quad \text{by} \quad a \mapsto a \otimes c$$
(30)

is an O(d)-equivariant linear map.

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Proposition 2. The *k*-contraction $\iota_k : \mathcal{T}_{2k+k'}(\mathbb{R}^d, p) \to \mathcal{T}_{k'}(\mathbb{R}^d, p)$, see Definition 4, is an O(d)equivariant linear map.

Proposition 3. For fixed $\sigma \in S_k$, the tensor index permutation mapping $\mathcal{T}_k(\mathbb{R}^d, p) \to \mathcal{T}_k(\mathbb{R}^d, p)$ by $a \mapsto a^{\sigma}$ is an O(d)-equivariant linear map.

Proof of Proposition 1. First, we establish equivariance. Let $a \in \mathcal{T}_k(\mathbb{R}^d, p)$, $b \in \mathcal{T}_{k'}(\mathbb{R}^d, p')$, and $g \in O(d)$. We have

$$\begin{split} [g \cdot (a \otimes b)]_{j_1, \dots, j_{k+k'}} &= \det(M(g))^{\frac{1-p \cdot p'}{2}} \left[(a \otimes b) \right]_{i_1, \dots, i_{k+k'}} [M(g)]_{j_1, i_1} \cdots [M(g)]_{j_{k+k'}, i_{k+k'}} \\ &= \det(M(g))^{\frac{1-p}{2}} \det(M(g))^{\frac{1-p'}{2}} \left[a \right]_{i_1, \dots, i_k} [b]_{i_{k+1}, \dots, i_{k+k'}} [M(g)]_{j_1, i_1} \cdots \\ &\cdots [M(g)]_{j_k, i_k} [M(g)]_{j_{k+1}, i_{k+1}} \cdots [M(g)]_{j_{k+k'}, i_{k+k'}} \\ &= \left(\det(M(g))^{\frac{1-p'}{2}} \left[a \right]_{i_1, \dots, i_k} [M(g)]_{j_1, i_1} \cdots [M(g)]_{j_k, i_k} \right) \\ &\qquad \left(\det(M(g))^{\frac{1-p'}{2}} \left[b \right]_{i_{k+1}, \dots, i_{k+k'}} [M(g)]_{j_{k+1}, i_{k+1}} \cdots [M(g)]_{j_{k+k'}, i_{k+k'}} \right) \\ &= \left[g \cdot a \right]_{j_1, \dots, j_k} [g \cdot b]_{j_{k+1}, \dots, j_{k+k'}} \\ &= \left[g \cdot a \otimes g \cdot b \right]_{j_1, \dots, j_{k+k'}}, \end{split}$$

where the second equality uses the fact that

$$\det(M(g))^{\frac{1-p\,p'}{2}} = \det(M(g))^{\frac{1-p}{2}} \,\det(M(g))^{\frac{1-p'}{2}},$$

which is straightforward to verify via a case analysis over possible parameter values (i.e., $p, p' \in \{+1, -1\}$ and $\det(M(g)) \in \{+1, -1\}$).

Next, we verify linearity. Let $a, a' \in \mathcal{T}_k(\mathbb{R}^d, p), b \in \mathcal{T}_{k'}(\mathbb{R}^d, p')$, and $\alpha, \beta \in \mathbb{R}$. Then,

$$\begin{aligned} [(\alpha a + \beta a') \otimes b]_{i_1,\dots,i_{k+k'}} &= [(\alpha a + \beta a')]_{i_1,\dots,i_k} [b]_{i_{k+1},\dots,i_{k+k'}} \\ &= \alpha [a]_{i_1,\dots,i_k} [b]_{i_{k+1},\dots,i_{k+k'}} + \beta [a']_{i_1,\dots,i_k} [b]_{i_{k+1},\dots,i_{k+k'}} \\ &= \alpha [a \otimes b]_{i_1,\dots,i_{k+k'}} + \beta [a' \otimes b]_{i_1,\dots,i_{k+k'}}. \end{aligned}$$

The linearity in the second argument follows in the same manner.

Finally, (30) follows immediately from the fact that the bilinear O(d)-equivariance.

Proof of Proposition 2. To establish equivariance, let $a \in \mathcal{T}_{2k+k'}(\mathbb{R}^d, p)$ and let $g \in O(d)$. Then, $[g \cdot \iota_k(a)]_{j_1,\ldots,j_{k'}}$ $= \det(M(g))^{\frac{1-p}{2}} [a]_{\ell_1,\dots,\ell_k,\ell_1,\dots,\ell_k,i_1,\dots,i_{k'}} [M(g)]_{j_1,i_1} \cdots [M(g)]_{j_{k'},i_{k'}}$ $= \det(M(g))^{\frac{1-p}{2}} [a]_{\ell_1, \dots, \ell_{2k}, i_1, \dots, i_{k'}} [\delta]_{\ell_1, \ell_{k+1}} \cdots [\delta]_{\ell_k, \ell_{2k}} [M(g)]_{j_1, i_1} \cdots [M(g)]_{j_{k'}, i_{k'}}$ $= \det(M(g))^{\frac{1-p}{2}} [a]_{\ell_1,\dots,\ell_{2k},i_1,\dots,i_{k'}} [M(g)]_{\ell_1,m_1} [M(g)]_{\ell_{k+1},m_1} \cdots$ $\cdots [M(g)]_{\ell_k, m_k} [M(g)]_{\ell_{2k}, m_k} [M(g)]_{j_1, i_1} \cdots [M(g)]_{j_{k'}, i_{k'}}$ $= [g \cdot a]_{m_1, \dots, m_k, m_1, \dots, m_k, j_1, \dots, j_{k'}}$ $= [\iota_k(g \cdot a)]_{j_1,\ldots,j_{k'}},$

where the third equality uses the fact that $\delta = M(g) M(g)^{\top}$.

Next, to establish linearity, let $a, b \in \mathcal{T}_{2k+k'}(\mathbb{R}^d, p)$ and let $\alpha, \beta \in \mathbb{R}$. Then,

$$\begin{split} [\iota_k(\alpha a + \beta b)]_{j_1,...,j_{k'}} &= [\alpha a + \beta b]_{i_1,...,i_k,i_1,...,i_k,j_1,...,j_{k'}} \\ &= \alpha [a]_{i_1,...,i_k,i_1,...,i_k,j_1,...,j_{k'}} + \beta [b]_{i_1,...,i_k,i_1,...,i_k,j_1,...,j_{k'}} \\ &= \alpha [\iota_k(a)]_{j_1,...,j_{k'}} + \beta [\iota_k(b)]_{j_1,...,j_{k'}}. \end{split}$$

This completes the proof.

Proof of Proposition 3. Fix $\sigma \in S_k$. To establish equivariance, let $a \in \mathcal{T}_k(\mathbb{R}^d, p)$ and $g \in O(d)$. Then,

$$\begin{split} [g \cdot (a^{\sigma})]_{j_1,\dots,j_k} &= \det(M(g))^{\frac{1-p}{2}} [a^{\sigma}]_{i_1,\dots,i_k} [M(g)]_{j_1,i_1} \cdots [M(g)]_{j_k,i_k} \\ &= \det(M(g))^{\frac{1-p}{2}} [a]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} [M(g)]_{j_1,i_1} \cdots [M(g)]_{j_k,i_k} \\ &= \det(M(g))^{\frac{1-p}{2}} [a]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} [M(g)]_{j_{\sigma^{-1}(1)},i_{\sigma^{-1}(1)}} \cdots [M(g)]_{j_{\sigma^{-1}(k)},i_{\sigma^{-1}(k)}} \\ &= [g \cdot a]_{j_{\sigma^{-1}(1)},\dots,j_{\sigma^{-1}(k)}} \\ &= [(g \cdot a)^{\sigma}]_{j_1,\dots,j_k}, \end{split}$$

where the third equality holds since we are merely reordering the M(g) components—which is allowed because they are scalars.

To show linearity, let $a, b \in \mathcal{T}_k(\mathbb{R}^d, p)$ and $\alpha, \beta \in \mathbb{R}$. We have

$$\begin{split} [(\alpha a + \beta b)^{\sigma}]_{i_1,\dots,i_k} &= [\alpha a + \beta b]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} \\ &= \alpha [a]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} + \beta [b]_{i_{\sigma^{-1}(1)},\dots,i_{\sigma^{-1}(k)}} \\ &= \alpha [a^{\sigma}]_{i_1,\dots,i_k} + \beta [b^{\sigma}]_{i_1,\dots,i_k}. \end{split}$$

B PROOF OF THEOREM 1

The main idea of the proof of Theorem 1 is to write out the polynomial f in a way that takes advantage of the tensor operations of Section 2, then show that each term must be O(d)-equivariant (Lemmas 2 and 3). We then use a group averaging argument to show that c_{ℓ_1,\ldots,ℓ_r} can be written as an O(d)-isotropic tensor. We state the lemmas, prove the theorem, then prove the lemmas.

Lemma 2. Let $f: \prod_{i=1}^{n} \mathcal{T}_{k_i}(\mathbb{R}^d, p_i) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ be a polynomial map of degree R, and write

$$f(a_1,\ldots,a_n) = \sum_{r=0}^R f_r(a_1,\ldots,a_n),$$

where $f_r : \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ is homogeneous degree r polynomial. If f is O(d)-equivariant, then each f_r is O(d)-equivariant.

Lemma 3. Let $f_r : \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ be a homogeneous polynomial of degree r. Then, we can write f_r as

$$f_r(a_1, \dots, a_n) = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}),$$
(31)

where $f_{\ell_1,\ldots,\ell_r}:\prod_{i=1}^r \mathcal{T}_{k_{\ell_i}}(\mathbb{R}^d,p_{\ell_i}) \to \mathcal{T}_{k'}(\mathbb{R}^d,p')$ is the composition of the map

$$\prod_{i=1}^{r} \mathcal{T}_{k_{\ell_i}}(\mathbb{R}^d, p_{\ell_i}) \to \mathcal{T}_{\sum_{i=1}^{r} k_{\ell_i}}\left(\mathbb{R}^d, \prod_{i=1}^{r} p_{\ell_i}\right)$$
$$(a_{\ell_1}, \dots, a_{\ell_r}) \mapsto a_{\ell_1} \otimes \dots \otimes a_{\ell_r}$$

with a linear map $\mathcal{T}_{\sum_{i=1}^{r} k_{\ell_i}}(\mathbb{R}^d, \prod_{i=1}^{r} p_{\ell_i}) \to \mathcal{T}_{k'}(\mathbb{R}^d, p').$

Moreover, if f_r is O(d)-equivariant, then so are the f_{ℓ_1,\ldots,ℓ_r} .

Remark 4. Note that Lemma 3 is nothing more than the decomposition of f_r as a sum of multihomogeneous maps in the inputs a_1, \ldots, a_n .

Proof of Theorem 1. Combining Lemmas 2 and 3, we can write f as follows:

$$f(a_1, \dots, a_n) = \sum_{r=0}^{n} \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}),$$
(32)

where the $f_{\ell_1,...,\ell_r}$ is the composition of a linear map $\mathcal{T}_{k_{\ell_1,...,\ell_r}}(\mathbb{R}^d, p_{\ell_1,...,\ell_r}) \to \mathcal{T}_{k'}(\mathbb{R}^d, p')$ with the map $(a_1, \ldots, a_\ell) \mapsto a_{\ell_1} \otimes \cdots \otimes a_{\ell_r}$. Recall that $k_{\ell_1,...,\ell_r} = \sum_{q=1}^r k_{\ell_q}$ and $p_{\ell_1,...,\ell_r} = \prod_{q=1}^r p_{\ell_q}$. Moreover, by the lemmas, each $f_{\ell_1,...,\ell_r}$ is O(d)-equivariant. Hence, without loss of generality, it is enough to prove the theorem in the special case

$$f(a_1,\ldots,a_n) = \lambda(a_{\ell_1} \otimes \cdots \otimes a_{\ell_r}), \tag{33}$$

where $\lambda : \mathcal{T}_{\sum_{i=1}^{r} k_{\ell_i}} \left(\mathbb{R}^d, \prod_{i=1}^{r} p_{\ell_i} \right) \to \mathcal{T}_{k'} \left(\mathbb{R}^d, p' \right)$ is linear.

Now, in coordinates, we can write this map as

$$[f(a_1,\ldots,a_n)]_{j_1,\ldots,j_{k'}} = \lambda_{i_1,\ldots,i_{k_{\ell_1},\ldots,\ell_r},j_1,\ldots,j_{k'}} [a_{\ell_1} \otimes \cdots \otimes a_{\ell_r}]_{i_1,\ldots,i_{k_{\ell_1},\ldots,\ell_r}}.$$
 (34)

Consider now the tensor $c \in \mathcal{T}_{k_{\ell_1,\ldots,\ell_r}+k'}(\mathbb{R}^d, p_{\ell_1,\ldots,\ell_r}p')$ given by

$$[c]_{i_1,\dots,i_{k_{\ell_1},\dots,\ell_r}+k'} = \lambda_{i_1,\dots,i_{k_{\ell_1},\dots,\ell_r},i_{k_{\ell_1},\dots,\ell_r}+1,\dots,i_{k_{\ell_1},\dots,\ell_r}+k'}$$
(35)

Then we have that

867 868

874

878

879 880

881

883 884

892

893 894

897

904 905 906

907 908

909

$$[f(a_1,\ldots,a_n)]_{j_1,\ldots,j_{k'}} = [c]_{i_1,\ldots,i_{\ell_1},\ldots,\ell_r}, j_1,\ldots,j_{k'} [a_{\ell_1} \otimes \cdots \otimes a_{\ell_r}]_{i_1,\ldots,i_{\ell_1},\ldots,\ell_r}$$
(36)

$$= [a_{\ell_1} \otimes \cdots \otimes a_{\ell_r} \otimes c]_{i_1, \dots, i_{k_{\ell_1}, \dots, \ell_r}, i_1, \dots, i_{k_{\ell_1}, \dots, \ell_r}, j_1, \dots, j_{k'}}$$
(37)

$$= [\iota_{k_{\ell_1,\ldots,\ell_r}}(a_{\ell_1}\otimes\cdots\otimes a_{\ell_r}\otimes c)]_{j_1,\ldots,j_{k'}},$$
(38)

after using the definition of k-contraction. Hence

$$f(a_1,\ldots,a_n) = \iota_{k_{\ell_1},\ldots,\ell_r}(a_{\ell_1}\otimes\cdots\otimes a_{\ell_r}\otimes c).$$
(39)

Since f is O(d)-equivariant, we have that for all $g \in O(d)$,

$$f(a_1,\ldots,a_n) = \iota_{k_{\ell_1},\ldots,\ell_r}(a_{\ell_1}\otimes\cdots\otimes a_{\ell_r}\otimes g\cdot c).$$
(40)

To see this, we argue as follows:

 $\begin{array}{ll} \text{ for see tails, we algae as removed} \\ \text{for equivariant} \\ \text{$

Hence, by taking the expectation with respect to the Haar probability measure of O(d) and linearity of contractions, we have that

$$f(a_1,\ldots,a_n) = \iota_{k_{\ell_1},\ldots,\ell_r} \left(a_{\ell_1} \otimes \cdots \otimes a_{\ell_r} \otimes \left(\underset{\mathfrak{g} \in O(d)}{\mathbb{E}} \mathfrak{g} \cdot c \right) \right), \tag{41}$$

where $\mathbb{E}_{\mathfrak{g}\in O(d)}$ is the expectation with respect the Haar probability measure of O(d). This holds because

$$f(a_1, \dots, a_n) = \underset{\mathfrak{g} \in O(d)}{\mathbb{E}} f(a_1, \dots, a_n)$$
$$= \underset{\mathfrak{g} \in O(d)}{\mathbb{E}} \iota_{k_{\ell_1, \dots, \ell_r}} (a_{\ell_1} \otimes \dots \otimes a_{\ell_r} \otimes (\mathfrak{g} \cdot c))$$
$$= \iota_{k_{\ell_1, \dots, \ell_r}} \left(a_{\ell_1} \otimes \dots \otimes a_{\ell_r} \otimes \left(\underset{\mathfrak{g} \in O(d)}{\mathbb{E}} \mathfrak{g} \cdot c \right) \right).$$

Now, $\mathbb{E}_{\mathfrak{g}\in O(d)}\mathfrak{g}\cdot c$ is an O(d)-isotropic tensor. Hence, we have shown that we can write f in the desired form.

Proof of Lemma 2. Let $t \in \mathbb{R}$, since each f_r is homogeneous of degree r, we have

$$f(t a_1, \dots, t a_n) = \sum_{r=0}^R f_r(t a_1, \dots, t a_n) = \sum_{r=1}^R t^r f_r(a_1, \dots, a_n)$$

Let now $g \in O(d)$, then, by equivariance of f, we have

$$\sum_{r=0}^{R} t^{r} f_{r}(g \cdot a_{1}, \dots, g \cdot a_{n}) = \sum_{r=0}^{R} t^{r} g \cdot f_{r}(a_{1}, \dots, a_{n}),$$
(42)

945 since

$$\sum_{r=0}^{R} t^{r} f_{r}(g \cdot a_{1}, \dots, g \cdot a_{n}) = f(t (g \cdot a_{1}), \dots, t (g \cdot a_{n}))$$
$$= f(g \cdot t a_{1}, \dots, g \cdot t a_{n})$$
$$= g \cdot f(t a_{1}, \dots, t a_{n})$$
$$= g \cdot \sum_{r=0}^{R} t^{r} f_{r}(a_{1}, \dots, a_{n})$$
$$= \sum_{r=0}^{R} t^{r} g \cdot f_{r}(a_{1}, \dots, a_{n}).$$

Hence, for all $g \in O(d)$, $t \in \mathbb{R}$ and $(a_1, \ldots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i)$, we have that

$$0 = \sum_{r=0}^{R} t^{r} \left(g \cdot f_{r}(a_{1}, \dots, a_{n}) - f_{r}(g \cdot a_{1}, \dots, g \cdot a_{n}) \right).$$
(43)

Now, the only way in which the univariate polynomial in t of degree R is identically zero is if it is the zero polynomial (cf. (Cox et al., 2015, Chapter 1 §1 Proposition 5)). Therefore for all $r \in \mathbb{N}$, $g \in O(d)$ and $(a_1, \ldots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i)$,

$$f_r(g \cdot a_1, \dots, g \cdot a_n) = g \cdot f_r(a_1, \dots, a_n), \tag{44}$$

i.e., for each r, f_r is O(d)-equivariant, as we wanted to show.

Proof of Lemma 3. First, we will show that if the decomposition exists, each summand is equivariant. Then, we will show that the decomposition exists.

Provide the provided at $t_1, \ldots, t_n \in \mathbb{R}$. Then, by the linearity, we have that

 $(1, \dots, 1, \dots)$

$$f_r(t_1 a_1, \dots, t_n a_n) = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}),$$
(45)

since

$$f_r(t_1 a_1, \dots, t_n a_n) = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} f_{\ell_1, \dots, \ell_r}(t_{\ell_1} a_{\ell_1}, \dots, t_{\ell_r} a_{\ell_r})$$
$$= \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}) \cdot$$

Now, let $g \in O(d)$. Then, by the equivariance of f_r , we have

$$\sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} f_{\ell_1,\dots,\ell_r} (g \cdot a_{\ell_1},\dots,g \cdot a_{\ell_r}) = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} g \cdot f_{\ell_1,\dots,\ell_r} (a_{\ell_1},\dots,a_{\ell_r}) = (46)$$

since

$$\sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} f_{\ell_1, \dots, \ell_r} (g \cdot a_{\ell_1}, \dots, g \cdot a_{\ell_r})$$

$$= f_r (t_1 (g \cdot a_1), \dots, t_n (g \cdot a_n))$$

$$= f_r (g \cdot t_1 a_1, \dots, g \cdot t_n a_n)$$

$$= g \cdot f_r (t_1 a_1, \dots, t_n a_n)$$

$$= g \cdot \left(\sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} f_{\ell_1, \dots, \ell_r} (a_{\ell_1}, \dots, a_{\ell_r}) \right)$$

$$= \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} g \cdot f_{\ell_1, \dots, \ell_r} (a_{\ell_1}, \dots, a_{\ell_r}).$$

Hence, for all
$$g \in O(d)$$
, $t \in \mathbb{R}$ and $(a_1, \dots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i)$, we have that

$$0 = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t_{\ell_1} \cdots t_{\ell_r} \left[g \cdot f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}) - f_{\ell_1, \dots, \ell_r}(g \cdot a_{\ell_1}, \dots, g \cdot a_{\ell_r})\right]_{i_1, \dots, i_k}$$

(47) Now, each of these is a polynomial in t_1, \ldots, t_n that vanishes on \mathbb{R}^n . Moreover, note that no two $t_{\ell_1} \cdots t_{\ell_r}$ give the same monomial. Hence, by (Cox et al., 2015, Chapter 1 §1 Proposition 5), all these polynomials are the zero polynomial, i.e., their coefficients are zero. In this way, we conclude that for each f_{ℓ_1,\ldots,ℓ_r} , and all $g \in O(d)$, $t \in \mathbb{R}$ and $(a_1,\ldots,a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(\mathbb{R}^d, p_i)$,

$$f_{\ell_1,\dots,\ell_r}(g \cdot a_{\ell_1},\dots,g \cdot a_{\ell_r}) = g \cdot f_{\ell_1,\dots,\ell_r}(a_{\ell_1},\dots,a_{\ell_r}),$$
(48)

1013 i.e., each f_{ℓ_1,\ldots,ℓ_r} is O(d)-equivariant.

1014 Now, we show how to obtain the decomposition. Recall that f_r is homogeneous of degree r. Therefore 1015 each entry of $f_r(a_1, \ldots, a_n)$ is an homogeneous polynomial of degree r in the $[a_i]_{j_1,\ldots,j_{k_i}}$, i.e., a 1016 linear combination of products of the form

$$\prod_{q=1}^{r} [a_{\ell_q}]_{j_{q,1},\dots,j_{q,k_{\ell_q}}},$$

where, without loss of generality, we can assume that $\ell_1 \leq \cdots \leq \ell_q$. Hence, in coordinates, we have

1023 $[f_r(a_1, \dots, a_n)]_{i_1, \dots, i_{k'}}$

1024
1025
$$= \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} \lambda_{\ell_1, \dots, \ell_r; i_1, \dots, i_{k'}; j_{1,1}, \dots, j_{1,k_{\ell_1}}, \dots, j_{r,1}, \dots, j_{r,k_{\ell_r}}} \prod_{q=1}^r [a_{\ell_q}]_{j_{q,1}, \dots, j_{q,k_{\ell_q}}}$$
(49)

1026 And so, we can consider the map f_{ℓ_1,\ldots,ℓ_r} given in coordinates by 1027

1028
1029
$$[f_{\ell_1,...,\ell_r}(a_{\ell_1},...,a_{\ell_r})]_{i_1,...,i_{k'}} := \lambda_{\ell_1,...,\ell_r;i_1,...,i_{k'};j_{1,1},...,j_{1,k_{\ell_1}},...,j_{r,1},...,j_{r,k_{\ell_r}}} \prod_{q=1}^r [a_{\ell_q}]_{j_{q,1},...,j_{q,k_{\ell_q}}},$$
1030
1031 which by construction is the composition of the linear map given by
(50)

which, by construction, is the composition of the linear map given by

 $b \mapsto \lambda_{\ell_1, \dots, \ell_r; i_1, \dots, i_{k'}; j_1, \dots, j_{\sum_{q=1}^r k_{\ell_q}}}[b]_{j_1, \dots, j_{\sum_{q=1}^r k_{\ell_q}}},$

in coordinates, and $(a_{\ell_1}, \ldots, a_{\ell_r}) \mapsto a_{\ell_1} \otimes \cdots \otimes a_{\ell_r}$. Hence the desired decomposition of f_r has been obtained.

PROOF OF COROLLARY 1 С

1040 In this section, we will prove Corollary 1 using Lemma 1, which we prove afterward.

Proof of Corollary 1. By Theorem 1 and Lemma 1, we can assume, without loss of generality, it 1043 suffices to consider the special case where f consists of a single term

$$f(v_1, \dots, v_n) = \iota_r \left(v_{\ell_1} \otimes \dots \otimes v_{\ell_r} \otimes \left(\delta^{\otimes \frac{r+k'}{2}} \right)^{\sigma} \right), \tag{51}$$

1047 for some $\sigma \in S_{r+k'}$ and r+k' even. To simplify notation, set $t := \frac{r+k'}{2}$. 1048

Now, note that 1049

1032

1033 1034

1035

1036 1037

1039

1041

1044 1045 1046

1050

1052 1053

1055

1059

1073 1074

$$\delta = e_i \otimes e_i,$$

1051 where $\{e_1, \ldots, e_d\}$ is the canonical basis of \mathbb{R}^d . Hence we get

$$f(v_1, \dots, v_n) = \iota_r(v_{\ell_1} \otimes \dots \otimes v_{\ell_r} \otimes (e_{i_1} \otimes e_{i_1} \otimes \dots \otimes e_{i_t} \otimes e_{i_t})^{\sigma})$$
(52)

1054 Let's write

$$(e_{i_1} \otimes e_{i_1} \otimes \cdots \otimes e_{i_t} \otimes e_{i_t})^{\sigma} = e_{j_1} \otimes \cdots \otimes e_{j_{2t}}$$

1056 where each (j_1, \ldots, j_{2t}) is some permutation of $(i_1, i_1, \ldots, i_t, i_t)$ and so, by Einstein notation, we 1057 are still adding over repeated indexes. Then we have that 1058

$$f(v_1, \dots, v_n) = \langle v_{\ell_1}, e_{j_1} \rangle \cdots \langle v_{\ell_r}, e_{j_r} \rangle e_{j_{r+1}} \otimes \cdots \otimes e_{j_{2t}}.$$
(53)

1060 Now, we can freely rearrange the $\langle v_{\ell}, e_j \rangle$ as they are scalars. There are three cases for each of the 1061 original indices i_q : (a) e_{i_q} appears in an inner product twice, (b) e_{i_q} appears in an inner product once, 1062 or (c) e_{i_a} does not appear in an inner product.

In the case (a), we will get 1064

$$\langle v_{\ell}, e_i \rangle \langle v_{\ell'}, e_i \rangle = \langle v_{\ell}, v_{\ell'} \rangle.$$
$$\langle v_{\ell}, e_i \rangle e_i = v_{\ell}.$$

 $e_i \otimes e_i = \delta.$

1067 1068

In the case (b), we will get

And, in the case (c), we will get 1069

1070 Now, assume that we have α of the case (a), β of the case (b) and γ of the case (c). By permuting 1071 the i_q , which does not change the result, we can write for some permutation $\tilde{\sigma} \in S_{\beta+\gamma}$ and some 1072 permutation J_1, \ldots, J_r some permutation of ℓ_1, \ldots, ℓ_r that

$$f(v_1,\ldots,v_n) = \langle v_{J_1}, e_{i_1} \rangle \langle v_{J_2}, e_{i_1} \rangle \cdots \langle v_{J_{2\alpha-1}}, e_{i_\alpha} \rangle \langle v_{J_{2\alpha}}, e_{i_\alpha} \rangle$$

1075
$$(\langle v_{J_{2\alpha+1}}, e_{i_{\alpha+1}}\rangle e_{i_{\alpha+1}} \otimes \cdots \otimes \langle v_{J_{2\alpha+\beta}}, e_{i_{\alpha+\beta}}\rangle e_{i_{\alpha+\beta}})$$

1076
1077
$$\otimes e_{i_{\alpha+\beta+1}} \otimes e_{i_{\alpha+\beta+1}} \otimes \cdots \otimes e_{i_{\alpha+\beta+\gamma}} \otimes e_{i_{\alpha+\beta+\gamma}} \rangle^{\tilde{\sigma}}$$

1078

$$= \langle v_{J_1}, v_{J_2} \rangle \cdots \langle v_{J_{2\alpha-1}}, v_{J_{2\alpha}} \rangle (v_{J_{2\alpha+1}} \otimes \cdots \otimes v_{2\alpha+\beta} \otimes \delta^{\otimes \gamma})^{\tilde{\sigma}}.$$
1079

Hence, the desired claim follows, and we finish the proof.

1080
1081
1081Proof of Lemma 1. We will prove each case separately. However, note that no matter the value of p, an
O(d)-isotropic tensor is always an SO(d)-isotropic tensor since det(M(g)) = 1 for all $g \in SO(d)$.1082
1083Now, by (Jeffreys, 1973, Theorem §2) (cf. (Appleby et al., 1987, Eq. (4.10))), any SO(d)-isotropic
tensor z can be written as a linear combination of the form

$$z = \sum_{\sigma \in S_k} \alpha_\sigma \left(\delta^{\otimes \frac{k}{2}} \right)^\sigma + \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon \right)^\sigma, \tag{54}$$

where δ is the Kronecker delta (Definition 8), and ϵ is the Levi-Civita symbol (Definition 9), with the convention that the coefficients α_{σ} and β_{σ} are zero when the expressions $\delta^{\otimes \frac{k}{2}}$ and $\delta^{\otimes \frac{k-d}{2}}$ do not make sense. More precisely, the $\alpha_{\sigma} = 0$ if k is odd, and the $\beta_{\sigma} = 0$ if k - d is odd.

1091 Note that under the SO(d)-action, we don't need to worry about the parity, and so both δ and ϵ are 1092 SO(d)-invariant. However, for the O(d)-action, the parity matters. Suppose $\gamma \in O(d)$ is a hyperplane 1093 reflection, and let T be an O(d)-isotropic $k_{(-)}$ -tensor. If \hat{T} is a $k_{(+)}$ -tensor whose components equal 1094 T, then

 $\gamma \cdot \hat{T} = -\hat{T}$.

Likewise, if T is an O(d)-isotropic $k_{(+)}$ -tensor and \hat{T} is a $k_{(-)}$ -tensor whose components equal T, then

 $\gamma \cdot \hat{T} = -\hat{T} \, .$

 $\gamma \cdot z = z.$

1099 1100

1095

1084

Note that being isotropic depends on the parity because it affects the considered action.

1102 *Case* p = -1: Let $z \in \mathcal{T}_k(\mathbb{R}^d, +)$ be O(d)-isotropic. In particular, z is also SO(d)-isotropic, and so 1103 we can write it using (54).

Recall that O(d) is generated by all the (hyperplane) reflections. Hence, to show that z is an O(d)isotropic, we need only to show that for every (hyperplane) reflection $\gamma \in O(d)$,

1107

1110

1111

Now, by our observation above, inside $\mathcal{T}_k(\mathbb{R}^d, +)$, we have that

 $\gamma \cdot \delta^{\otimes \frac{k-d}{2}} \otimes \epsilon = -\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon, \tag{55}$

1112 since $\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon$ is an O(d)-isotropic $k_{(-)}$ -tensor. Hence

$$\gamma \cdot z = \gamma \cdot \sum_{\sigma \in S_k} \alpha_\sigma \left(\delta^{\otimes \frac{k}{2}}\right)^{\sigma} + \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right)^{\sigma}$$

$$= \sum_{\sigma \in S_k} \alpha_\sigma \left((\gamma \cdot \delta)^{\otimes \frac{k}{2}}\right)^{\sigma} + \beta_\sigma \left((\gamma \cdot \delta)^{\otimes \frac{k-d}{2}} \otimes \gamma \cdot \epsilon\right)^{\sigma}$$

$$= \sum_{\sigma \in S_k} \alpha_\sigma \left(\delta^{\otimes \frac{k}{2}}\right)^{\sigma} - \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right)^{\sigma}$$

$$= \sum_{\sigma \in S_k} \alpha_\sigma \left(\delta^{\otimes \frac{k}{2}}\right)^{\sigma} - \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right)^{\sigma}$$

1124

1131

1125 Now, by assumption, z is O(d)-isotropic, so we can conclude $\sum_{\sigma \in S_k} \beta_\sigma \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right)^{\sigma} = 0$, and so z has the desired form.

 $= z - 2 \sum_{\sigma \in S_{k}} \beta_{\sigma} \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon \right)^{\sigma}.$

1128 *Case* p = -1: We argue as above, but using that for a (hyperplane) reflection $\gamma \in O(d)$, we have, 1129 inside $\mathcal{T}_k(\mathbb{R}^d, -)$, 1130 $S^{\otimes \underline{k}} = S^{\otimes \underline{k}}$

$$\cdot \cdot \delta^{\otimes \frac{k}{2}} = -\delta^{\otimes \frac{k}{2}},\tag{56}$$

since $\delta^{\otimes \frac{k}{2}}$ is an O(d)-isotropic $k_{(+)}$ -tensor. Hence, arguing similarly as in the previous case, we conclude that $\sum_{\sigma \in S_k} \alpha_\sigma \left(\delta^{\otimes \frac{k}{2}} \right)^{\sigma} = 0$, and so that z has the desired form.

¹¹³⁴ D SMALLER PARAMETERIZATION OF O(d)-ISOTROPIC TENSORS

In Lemma 1, the sum does not have to be over all permutations. The reason for this is that the tensors $\delta^{\otimes \frac{k}{2}}$ and $\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon$ do not have a trivial stabilizer under the action of S_k . One can easily see the following proposition. Recall that the *stabilizer of a k-tensor* $\pm T$ *in* S_k is the following subgroup: $\operatorname{Stab}_{S_k}(\pm T) := \{ \sigma \in S_k \mid T^{\sigma} = \pm T \},\$ (57)where $T^{\sigma} = \pm T$ means that either $T^{\sigma} = T$ or $T^{\sigma} = -T$. Note that the laxity in the signs comes from the fact that positive summands and their negative counterparts can be combined. **Proposition 4.** (a) If k is even, $\operatorname{Stab}_{S_k}\left(\pm\delta^{\otimes \frac{k}{2}}\right)$ is generated by the transpositions $(1,2), (3,4), \ldots, (k-1,k)$ and all permutations of the form (i, j)(i+1, j+1)with i, j < k odd. In particular, $\# \operatorname{Stab}_{S_k}\left(\pm \delta^{\otimes \frac{k}{2}}\right) = (k/2)! 2^{k/2}$. (b) If k - d is even, $\operatorname{Stab}_{S_k}\left(\pm \delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right)$ is generated by the transpositions $(1,2), (3,4), \ldots, (k-d-1, k-d),$ all permutations of the form (i, j)(i + 1, j + 1)with i, j < k - d odd, and all transpositions of the form (i, j)with k - d < i, j. In particular, $\# \operatorname{Stab}_{S_k}\left(\pm \delta^{\otimes \frac{k-d}{2}} \otimes \epsilon\right) = ((k-d)/2)! 2^{(k-d)/2} d!$. *Proof.* This follows from (Roe Goodman, 2009, Theorem 5.3.4). Using these proposition, we can write any O(d)-isotropic $k_{(+)}$ -tensor as $\sum_{\sigma \in \Omega} \alpha_{\sigma} \left(\delta^{\otimes \frac{k}{2}} \right)^{o}$ with the α_{σ} real and $G_k = \left\{ \sigma \in S_k : \sigma(1) < \sigma(3) < \dots < \sigma(k-1) \text{ and for all } i \le \frac{k}{2}, \ \sigma(2i-1) < \sigma(2i) \right\}$ of size $\frac{k!}{(k/2)!2^{k/2}}$; and any O(d)-isotropic $k_{(-)}$ -tensor as $\sum_{\sigma \in H_{\tau}} \beta_{\sigma} \left(\delta^{\otimes \frac{k-d}{2}} \otimes \epsilon \right)^{\sigma}$ (58)with the β_{σ} real and $H_k = \left\{ \sigma \in S_k : \sigma(1) < \sigma(3) < \dots < \sigma(k-d-1), \text{ for all } i \leq \frac{k-d}{2}, \, \sigma(2i-1) < \sigma(2i) \right\}$ and for all j > k - d, $\sigma(j) < \sigma(j+1)$.

of size $\frac{k!}{\left(\frac{k-d}{2}\right)!2^{\frac{k-d}{2}}d!}$.

¹¹⁸⁸ E EXAMPLE OF THEOREM 1 1189

¹¹⁹⁰ In this section, we give a second example of Theorem 1.

Example 2. Let $f : \mathcal{T}_1(\mathbb{R}^d, +) \times \mathcal{T}_2(\mathbb{R}^d, +) \to \mathcal{T}_2(\mathbb{R}^d, +)$ be O(d)-equivariant polynomial of degree at most 2. By Theorem 1 we can write f in the form

$$f(a_1, a_2) = \sum_{r=0}^{2} \sum_{1 \le \ell_1 \le \dots \le \ell_r \le 2} \iota_{k_{\ell_1, \dots, \ell_r}}(a_{\ell_1} \otimes \dots \otimes a_{\ell_r} \otimes c_{\ell_1, \dots, \ell_r}),$$
(59)

where $c_{\ell_1,...,\ell_r}$ is an O(d)-isotropic $(k_{\ell_1,...,\ell_r} + 2)_{(+)}$ -tensor. By Lemma 1, $c_{\ell_1,...,\ell_r}$ is nontrivial only when $k_{\ell_1,...,\ell_r} + 2$ is even. Recall that $k_{\ell_1,...,\ell_r} = \sum_{q=1}^r k_{\ell_q}$. The inputs are a $1_{(+)}$ -tensor and $2_{(+)}$ -tensor. The even combinations of 1 and 2 with at most 2 terms are $\emptyset, 2, 1 + 1, 2 + 2$ so we have

$$f(a_1, a_2) = \beta_0 \delta + \iota_2(a_2 \otimes c_2) + \iota_2(a_1 \otimes a_1 \otimes c_2') + \iota_4(a_2 \otimes a_2 \otimes c_3),$$
(60)

where c_2, c'_2 are O(d)-isotropic $4_{(+)}$ -tensors and c_3 is an O(d)-isotropic $6_{(+)}$ -tensor. By similar reasoning to Example 1, we can write

$$\iota_2(a_2 \otimes c_2) = \beta_1 \operatorname{tr}(a_2)\delta + \beta_2 a_2 + \beta_3 a_2^{\top}$$
(61)

1204 for constants $\beta_1, \beta_2, \beta_3$ and

$$\iota_2(a_1 \otimes a_1 \otimes c'_2) = \beta_4 \langle a_1, a_1 \rangle \delta + \beta_5 a_1 \otimes a_1 , \qquad (62)$$

for constants β_4, β_5 (there are only two terms due to the symmetry of $a_1 \otimes a_1$). It remains to consider $\iota_4(a_2 \otimes a_2 \otimes c_3)$. By Lemma 1, we can write

$$c_3 = \sum_{\sigma \in G_6} \beta_\sigma (\delta^{\otimes 3})^\sigma , \qquad (63)$$

where $|G_6| = 6!/(3!2^3) = 15$. In particular, we have

$$G_{6} = \left\{ (1, 2, 3, 4, 5, 6), (1, 2, 3, 5, 4, 6), (1, 2, 3, 5, 6, 4), (1, 3, 2, 4, 5, 6), (1, 3, 2, 5, 4, 6), (1, 3, 2, 5, 6, 4), (1, 3, 4, 2, 5, 6), (1, 3, 4, 5, 2, 6), (1, 3, 4, 5, 6, 2), (1, 3, 5, 2, 4, 6), (1, 3, 5, 2, 6, 4), (1, 3, 5, 4, 2, 6), (1, 3, 5, 4, 6, 2), (1, 3, 5, 6, 2, 4), (1, 3, 5, 6, 4, 2) \right\}.$$

However, due to the symmetry of $a_2 \otimes a_2$, when we compute $\iota_4(a_2 \otimes a_2(\delta^{\otimes 3})^{\sigma})$ for $\sigma \in G_6$, there are only 7 distinct terms

1218
$$\iota_4(a_2\otimes a_2\otimes c_3) =$$

1219 1220 1220 1221 $\beta_6 \operatorname{tr}(a_2)^2 \delta + \beta_7 \operatorname{tr}(a_2) a_2 + \beta_8 \operatorname{tr}(a_2) a_2^\top + \beta_9 a_2^\top a_2 + \beta_{10} a_2 a_2^\top + \beta_{11} a_2 a_2 + \beta_{12} a_2^\top a_2^\top$. (64) In summary,

$$f(a_1, a_2) = \beta_0 \delta + \beta_1 \operatorname{tr}(a_2) \delta + \beta_2 a_2 + \beta_3 a_2^\top + \beta_3 \langle a_1, a_1 \rangle \delta + \beta_4 a_1 \otimes a_1 + \beta_5 \operatorname{tr}(a_2)^2 \delta + \beta_6 \operatorname{tr}(a_2) a_2 + \beta_7 \operatorname{tr}(a_2) a_2^\top + \beta_8 a_2^\top a_2 + \beta_9 a_2 a_2^\top + \beta_{10} a_2 a_2 + \beta_{11} a_2^\top a_2^\top$$

for some coefficients $\beta_0, \beta_1, \dots, \beta_{11}$.

1226 1227 F Generalization to other linear algebraic groups

1227 1228

1222 1223

1194 1195

1200

1203

1205

1209 1210

1212 1213 1214

1215

In this section, we will show how Theorem 1 and Corollary 1 can be extended to the indefinite orthogonal and the symplectic group as Theorem 2 and Corollary 2.

1231 The main idea to extend Theorem 1 to other groups is to use some form of averaging. On O(d), the 1232 compactness guarantees the existence of a Haar probability measure. However, to apply the same 1233 trick over non-compact groups such as O(s, d - s) and Sp(d), we need to use technical machinery to 1234 imitate the averaging strategy.

First, we introduce some definitions and examples regarding complex and real linear algebraic groups. The main point will be to establish how to get a compact subgroup over which to average. Basically the results will generalize to real linear algebraic groups such that their complexifications have a Zariski-dense compact subgroup. For instance reductive connected complex algebraic groups satisfy this assumption. Second, we prove a generalization of Theorem 1 for complex linear algebraic groups with a Zariski-dense compact subgroup acting on complex tensors. Third, we prove a generalization of Theorem 1 for real linear algebraic groups that are compact or such that their complexification has a Zariski-dense compact subgroup. Finally, we prove Corollary 2.

1242 F.1 REDUCTIVE COMPLEX AND REAL LINEAR ALGEBRAIC GROUPS

1244 Recall that a *complex linear algebraic group* is a subgroup G of GL(V), where V is a finite-1245 dimensional complex vector space, such that G is the zero set of some set of complex polynomial 1246 functions over End(V), the set of (complex) linear maps $V \to V$. Recall also that a *rational* 1247 *G-module* of G is a vector space U together with a linear action of G on U such that the map 1248 $G \times U \ni (g, x) \mapsto g \cdot x \in U$ is polynomial², and that a *G*-submodule U_0 of U is a vector subspace 1249 $U_0 \subseteq U$ such that for all $g \in G, g \cdot U_0 \subseteq U_0$.

Definition 10. (Roe Goodman, 2009, Def. 3.3.1) A reductive complex linear algebraic group is a complex linear algebraic group $G \subset GL(V)$ such that every rational *G*-module *U* is completely reducible, i.e., for every *G*-submodule U_0 of *U*, there is a *G*-submodule U_1 such that $U = U_0 + U_1$ and $U_0 \cap U_1 = 0$.

Example 3. Given any finite-dimensional vector space, the classical complex groups GL(V) and SL(V) are reductive complex linear algebraic groups.

Example 4. Given any finite-dimensional vector space V together with a symmetric non-degenerate bilinear form³ $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$, the (complex) orthogonal group

$$O(V, \langle \cdot, \cdot \rangle) := \{ g \in GL(V) \mid \text{for all } v, w \in V, \ \langle g \cdot v, g \cdot w \rangle = \langle v, w \rangle \}$$
(65)

is a reductive complex linear algebraic group. We will pay special attention to the following family of complex orthogonal groups:

$$O^{\mathbb{C}}(s,d-s) := \{g \in GL(\mathbb{C}^d) \mid g^{\top} \mathbb{I}_{s,d-s}g = \mathbb{I}_{s,d-s}\} = O(\mathbb{C}^d, \langle \cdot, \cdot \rangle_s)$$
(66)

where $\langle u, v \rangle_s := u^\top \mathbb{I}_{s,d-s} v$. Note that all these groups are isomorphic, satisfying that

1264 1265 1266

1272

1276

1281 1282

1290

1295

1262

1258

$$O^{\mathbb{C}}(s, d-s) = \begin{pmatrix} \mathbb{I}_s & \\ & i\mathbb{I}_{d-s} \end{pmatrix} O^{\mathbb{C}}(d, 0) \begin{pmatrix} \mathbb{I}_s & \\ & i\mathbb{I}_{d-s} \end{pmatrix}^{\mathsf{T}}$$

Moreover, this is true in general: any two complex orthogonal groups are isomorphic if they are of the same order—this follows from the fact that all symmetric non-degenerate bilinear forms are equivalent over the complex numbers.

Example 5. Given any finite-dimensional vector space V together with an anti-symmetric nondegenerate bilinear form $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$, the (complex) symplectic group

$$Sym(V, \langle \cdot, \cdot \rangle) := \{ g \in GL(V) \mid \text{for all } v, w \in V, \ \langle g \cdot v, g \cdot w \rangle = \langle v, w \rangle \}$$
(67)

is a reductive complex linear algebraic group. We will pay special attention to the following special case:

$$Sp^{\mathbb{C}}(d) := \{g \in GL(\mathbb{C}^d) \mid g^{\top}J_dg = J_d\} = Sp(\mathbb{C}^d, \langle \cdot, \cdot \rangle_{\text{symp}})$$
(68)

where $\langle u, v \rangle_{\text{symp}} := u^{\top} J_d v$. Note that any symplectic group of order d is isomorphic to $Sp^{\mathbb{C}}(d)$ because any two antisymmetric non-degenerate bilinear forms are equivalent over the complex numbers.

1280 **Example 6.** The complex linear algebraic group

$$H = \left\{ \begin{pmatrix} 1 & t \\ & 1 \end{pmatrix} \mid t \in \mathbb{C} \right\}$$

is not reductive, since \mathbb{C}^2 is an *H*-module that is not completely reducible. Note that $\mathbb{C} \times 0$ is the only *H*-submodule of \mathbb{C}^2 , so we cannot find a complementary *H*-submodule.

1286 Recall that a subset X of a set \tilde{X} is *Zariski-dense* in \tilde{X} if every polynomial function that vanishes 1287 in X vanishes in \tilde{X} , i.e. if every polynomial function that does not vanish on \tilde{X} does not vanish in 1288 X. The following theorem allows us to use the power of averaging for reductive connected complex 1289 linear algebraic groups.

³Recall that this means that for all $u, v, w \in V$ and $t, s \in \mathbb{C}$: (a) $\langle u, v \rangle = \langle v, u \rangle$, (b) for all $x \in V$, $\langle u, x \rangle = 0$ if and only if u = 0, and (c) $\langle tu + sv, w \rangle = t \langle u, w \rangle + s \langle v, w \rangle$.

²To be precise, we mean that the map $G \times U \to U$ is a morphism of algebraic varieties. Choose basis for Uand V, so that we can identify V with \mathbb{C}^d and U with \mathbb{C}^n . Then, being a morphism between algebraic varieties, just means that the map $G \times \mathbb{C}^n \to \mathbb{C}^n$ is the restriction of a map $\mathbb{C}^{d \times d} \times \mathbb{C}^n \to \mathbb{C}^n$ that can be written componentwise as $(p_l((g_{i,j})_{i,j}, (u_k)_k)/(\det g)^{a_l})_l$ where each p_l is a polynomial in the $g_{i,j}$ and u_k and each a_l an integer.

Theorem 3. (Roe Goodman, 2009, Theorem 11.5.1) Let G be a reductive connected complex algebraic group. Then there exists a Zariski-dense compact subgroup K. More precisely, there is a subgroup U(G) of G that is Zariski-dense in G and that, with respect to the usual topology⁴, is compact.

Remark 5. Note that using this compact subgroup K, we can consider expressions of the form

$$\mathbb{E}_{\mathfrak{u}\in U(G)}\mathfrak{u}\cdot T$$

by taking the expectation with respect to the unique Haar probability measure of K. Now, since U(G)is Zariski-dense in G, we have that the fact that for all $u \in U(G)$, $u \cdot (\mathbb{E}_{u \in U(G)} u \cdot T) = \mathbb{E}_{u \in U(G)} u \cdot T$ implies that for all $g \in G$,

1312

1315

1316

1318 1319 1320

1325

1337 1338

1302 1303

$$g \cdot \left(\underset{\mathfrak{u} \in U(G)}{\mathbb{E}} \mathfrak{u} \cdot T \right) = \underset{\mathfrak{u} \in U(G)}{\mathbb{E}} \mathfrak{u} \cdot T$$

1309 Note that U(G) is not necessarily unique. 1310 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$

Example 7. In $GL(\mathbb{C}^d)$, the Zariski-dense compact subgroup is the group of unitary matrices:

$$U(\mathbb{C}^d) := \{ g \in GL(\mathbb{C}^d) \mid g^*g = \mathbb{I}_d \}$$

where * denotes the conjugate transpose. In $SL(\mathbb{C}^d)$, it is the group of special unitary transformations:

 $SU(\mathbb{C}^d) := \{ g \in U(\mathbb{C}^d) \mid \det g = 1 \}.$

Example 8. In $O^{\mathbb{C}}(s, d-s)$, the Zariski-dense compact subgroup is

$$\begin{pmatrix} \mathbb{I}_s & \\ & i\mathbb{I}_{d-s} \end{pmatrix} O(d) \begin{pmatrix} \mathbb{I}_s & \\ & i\mathbb{I}_{d-s} \end{pmatrix}^{-1}$$

Note that when s = 0 or s = d, this is the orthogonal group over the reals. Moreover, this does not follow from Theorem 3 as $O^{\mathbb{C}}(s, d - s)$ is not connected.

Example 9. In $Sp^{\mathbb{C}}(d)$, the Zariski-dense compact subgroup is the so-called compact symplectic group:

$$USp(d) := Sp^{\mathbb{C}}(d) \cap U(\mathbb{C}^d).$$

Recall that a *real linear algebraic group* is a subgroup G of GL(V), where V is a finite-dimensional real vector space, such that G is the zero set of some set of real polynomial functions over $\mathbb{R}^{d \times d}$. Similarly, as we did with complex linear algebraic groups, we can talk about *rational modules* and about *reductive real linear algebraic groups*.

However, given a reductive real linear algebraic group we cannot necessarily guarantee the existence
of a Zariski-dense compact subgroup. This means that we cannot apply the averaging trick directly,
but we can do so by passing to the Zariski-dense compact subgroup of the complexification of the
real linear algebraic group.

Definition 11. Let $G \subset GL(V)$ be a real linear algebraic group. The *complexification* $G^{\mathbb{C}}$ of G is the complex linear algebraic group given by

$$G^{\mathbb{C}} := \{ g \in GL(V^{\mathbb{C}}) \mid \text{for every polynomial } f \text{ such that } f(G) = 0, \ f(g) = 0 \}$$
(69)

where $V^{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$ is the complexification of V, i.e., the complex vector space obtained from Vby extending scalars.

Remark 6. In essence, we complexify the underlying real algebraic variety. Group multiplication preserves its structure as a complex variety as it is given by polynomial functions of the matrix entries.

Definition 12. A real linear algebraic group *G* is *complexly averageable* if it's Zariski-dense in its complexification and its complexification admits a Zariski-dense compact subgroup closed under complex conjugation.

1346 **Remark 7.** Recall that the complexification of \mathbb{R}^d is naturally isomorphic to \mathbb{C}^d .

1347 1348 1349 Example 10. The complexification of $GL(\mathbb{R}^d)$ is $GL(\mathbb{C}^d)$, and the complexification of $SL(\mathbb{R}^d)$ is $SL(\mathbb{R}^d)$.

⁴The topology inherited from the Euclidean topology of $GL(\mathbb{C}^d)$.

1350 **Example 11.** We have that 1351 $O(s, d-s)^{\mathbb{C}} = O^{\mathbb{C}}(s, d-s)$ 1352 and that 1353 $Sp(d)^{\mathbb{C}} = Sp^{\mathbb{C}}(d).$ 1354 Hence, both the indefinite orthogonal group and symplectic group are complexly averageable. The 1355 symplectic group is connected but the indefinite orthogonal group is not connected. However, it does 1356 have a Zariski-dense compact subgroup (see Example 8). 1357 1358 The following proposition shows that complexly averageable real linear algebraic groups are common. 1359 **Proposition 5.** Let $G \subseteq GL(V)$ be a real linear algebraic group. (1) G is Zariski-dense in $G^{\mathbb{C}}$. (2) If 1360 the complexification $G^{\mathbb{C}}$ of G is connected and reductive, then G is complexly averageable. 1361 1362 *Proof.* (1) Let f be a complex polynomial vanishing on G. Then, we can write this polynomial as 1363 $f = f_r + i f_i$ for some polynomials f_r and f_i with real coefficients. Now, since f vanishes on G, then f_r and f_i vanish also on G—as otherwise there would be $g \in G$ such that either $f_r(g) \neq 0$ or $f_i(g) \neq 0$, contradicting f(g) = 0. But then, by definition of $G^{\mathbb{C}}$, f_r and f_i vanish on G and so $f = f_r + if_i$ vanishes on $G^{\mathbb{C}}$. Hence we have just proven that a complex polynomial vanishes on Gif and only if vanishes on $G^{\mathbb{C}}$, i.e., we have proven that G is Zariski-dense in $G^{\mathbb{C}}$. 1364 1365 1366 1367 1368 (2) This follows from Theorem 3. 1369 **Example 12.** Observe that the Zariski-dense compact subgroups of $O^{\mathbb{C}}(s, d-s)$ and $Sp^{\mathbb{C}}(d)$ that 1370 have been given satisfy that they are closed under the complex conjugation. 1371 1372 F.2 COMPLEX EQUIVARIANT TENSOR MAPS 1373 1374 We will consider vector spaces on which a non-degenerate bilinear form has been chosen. 1375 **Definition 13.** A self-paired vector space $(V, \langle \cdot, \cdot \rangle)$ is a finite-dimensional vector space V together 1376 with a non-degenerate bilinear form $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$. 1377 1378 Recall the *universal property* of tensor products of vector spaces, by which multilinear maps $V_1 \times$ 1379 $\cdots \times V_k \to W$ can be lifted to linear maps $V_1 \otimes \cdots \otimes V_k \to W$. Using the universal property, we 1380 can see that from a self-paired vector space $(V, \langle \cdot, \cdot \rangle)$, we get the family 1381 $(V^{\otimes k}, \langle \cdot, \cdot \rangle)$ 1382 of self-paired spaces of tensors, by extending by linearity the expression 1383 1384 $\langle v_1 \otimes \cdots \otimes v_k, \tilde{v}_1 \otimes \cdots \otimes \tilde{v}_k \rangle = \langle v_1, \tilde{v}_1 \rangle \cdots \langle v_k, \tilde{v}_k \rangle.$ (70)1385 And again, by the universal property, we get a k-contraction 1386 1387 $\iota_k: V^{\otimes (2k+k')} \cong V^{\otimes k} \otimes V^{\otimes k} \otimes V^{k'} \to V^{k'}$ (71)1388 by extending by linearity, the expression 1389 1390 $a \otimes b \otimes c \mapsto \langle a, b \rangle c.$ (72)1391 1392 Now, in the above setting, let G be a group acting in a structure-preserving way on $(V, \langle \cdot, \cdot \rangle)$, meaning that the action is linear and preserves $\langle \cdot, \cdot \rangle$, i.e., for all $g \in G, v, \tilde{v} \in V, \langle v, \tilde{v} \rangle = \langle g \cdot v, g \cdot \tilde{v} \rangle$. 1393 Then, by the universal property, we get that G acts also on $(V^{\otimes k}, \langle \cdot, \cdot \rangle)$ by extending linearly the 1394 expression 1395 $g(v_1 \otimes \cdots \otimes v_k) = \chi(g)(gv_1) \otimes \cdots \otimes (gv_k).$ (73)1396 Moreover, by considering all (rational)⁵ unidimensional representations $\chi: G \to \mathbb{C}^*$ of G, we get 1397 the following family of self-paired (rational) G-modules: 1398 1399 $\mathcal{T}_k(V,\chi) := (V^{\otimes k}, \langle \cdot, \cdot \rangle)$ (74)1400 where the action by G is given by 1401 1402 $g \cdot T := \chi(g)M(g) \cdot T$ (75)1403 ⁵Recall that rational means that the homomorphism is given by polynomials.

1404 in a structure-preserving way. For the sake of distinction, we will denote the k-contraction as 1405 $\iota_k^G: \mathcal{T}_{2k+k'}(V,\chi) \to \mathcal{T}_{k'}(V,\chi)$ 1406 (76)1407 in this setting to emphasize the dependence on the group G, as we will be choosing the original $\langle \cdot, \cdot \rangle$ 1408 in terms of the group. Using the universal property, we can easily see the following: 1409 **Proposition 6.** The following statements hold: 1410 1411 (a) The outer product map 1412 $\mathcal{T}_k(V,\chi) \times \mathcal{T}_{k'}(V,\chi') \to \mathcal{T}_{k+k'}(V,\chi\chi')$ 1413 1414 is a G-equivariant bilinear map. 1415 1416 (b) The k-contraction $\iota_k^G : \mathcal{T}_{2k+k'}(V,\chi) \to \mathcal{T}_{k'}(V,\chi)$ is a G-equivariant linear map. 1417 (c) For any $\sigma \in S_k$, the tensor index permutation by $\sigma, \mathcal{T}_k(V,\chi) \to \mathcal{T}_k(V,\chi)$ given by 1418 $v_1 \otimes \cdots \otimes v_k \mapsto v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}$, is a *G*-equivariant linear map. 1419 1420 Finally, recall that a G-isotropic tensor of $\mathcal{T}_{\ell}(V,\chi)$ is a G-invariant tensor in $\mathcal{T}_{\ell}(V,\chi)$. Further, recall 1421 that an entire function is an analytic function whose Taylor series at any point has an infinite radius 1422 of convergence. We can now state the theorem. 1423 **Theorem 4.** Let $G \subset GL(V)$ be a reductive connected complex linear algebraic group (or more 1424 generally, a complex linear algebraic group with a Zariski-dense compact subgroup) acting ra-1425 tionally on an structure-preserving way on a self-paired complex vector space $(V, \langle \cdot, \cdot \rangle)$ and 1426 $f:\prod_{i=1}^{n}\mathcal{T}_{k_{i}}(V,\chi_{i})\to\mathcal{T}_{k'}(V,\chi')$ a *G*-equivariant entire function. Then we may write *f* as follows: 1427 1428 (77)1429

$$f(a_1,\ldots,a_n) = \sum_{r=0} \sum_{1 \le \ell_1 \le \cdots \le \ell_r \le n} \iota^G_{k_{\ell_1},\ldots,\ell_r} \left(a_{\ell_1} \otimes \ldots \otimes a_{\ell_r} \otimes c_{\ell_1,\ldots,\ell_r} \right) \tag{6}$$

where $c_{\ell_1,\dots,\ell_r} \in \mathcal{T}_{k_{\ell_1},\dots,\ell_r+k'}(\mathbb{R}^d,\chi_{\ell_1,\dots,\ell_r}\chi')$ is a *G*-isotropic tensor for $k_{\ell_1,\dots,\ell_r} := \sum_{q=1}^r k_{\ell_q}$ and $\chi_{\ell_1,\dots,\ell_r} = \prod_{q=1}^r \chi_{\ell_q}$.

To prove this, we proceed as in the orthogonal case: we reduce to the multihomogeneous case and
 then prove the result using averaging over the Zariski-dense compact subgroup.

Lemma 4. Let $G \in GL(V)$ be any subgroup acting linearly on a self-paired complex vector space $(V, \langle \cdot, \cdot, \cdot \rangle)$ and $f : \prod_{i=1}^{n} \mathcal{T}_{k_i}(V, \chi_i) \to \mathcal{T}_{k'}(V, \chi')$ an entire function. Then, we can write f as

 $f_r(a_1, \dots, a_n) = \sum_{r=0}^{\infty} \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} f_{\ell_1, \dots, \ell_r}(a_{\ell_1}, \dots, a_{\ell_r}),$ (78)

where $f_{\ell_1,\ldots,\ell_r}:\prod_{i=1}^r \mathcal{T}_{k_{\ell_i}}(V,\chi_i) \to \mathcal{T}_{k'}(V,\chi')$ is the composition of the map

$$\prod_{i=1}^{r} \mathcal{T}_{k_{\ell_i}}(V, \chi_{\ell_i}) \to \mathcal{T}_{\sum_{i=1}^{r} k_{\ell_i}}\left(V, \prod_{i=1}^{r} \chi_{\ell_i}\right)$$
$$(a_{\ell_1}, \dots, a_{\ell_r}) \mapsto a_{\ell_1} \otimes \dots \otimes a_{\ell_r}$$

with a linear map $\mathcal{T}_{\sum_{i=1}^{r} k_{\ell_i}}(V, \prod_{i=1}^{r} \chi_{\ell_i}) \to \mathcal{T}_{k'}(\mathbb{R}^d, \chi').$

1430

1439

1440 1441

1453

1454 1455

1456

Moreover, for the above decomposition, if f is G-equivariant, then so are the f_{ℓ_1,\ldots,ℓ_r} .

Remark 8. Note that we don't need to assume anything about G in the above lemma.

Proof of Theorem 4. By Lemma 4, we can assume without loss of generality that f is of the form

 $f(a_1,\ldots,a_n) = \lambda(a_{\ell_1} \otimes \cdots \otimes a_{\ell_r})$

for some non-negative integer $r, 1 \le \ell_1 \le \cdot \le \ell_r \le r$ and $\lambda : \mathcal{T}_{\sum_{i=1}^r k\ell_i}(V, \prod_{i=1}^r \chi_{\ell_i}) \to \mathcal{T}_{k'}(V, \chi')$ is linear.

The above map can be written as a linear combination of maps of the form

$$(a_1,\ldots,a_n)\mapsto \left(\prod_{i=1}^r \lambda_i(a_{\ell_i})\right)v_{j_1}\otimes\cdots\otimes v_{j_{k'}}$$

where the $\lambda_{i,j}$ are linear and $v_j \in V$, due to the universal property—the factor $(\prod_{i=1}^r \lambda_{i,j}(a_{\ell_i}))$ just corresponds to a linear map $\mathcal{T}_{\sum_{i=1}^r k_{\ell_i}}(V, \prod_{i=1}^r \chi_{\ell_i}) \to \mathbb{C}$. Moreover,

$$\left(\prod_{i=1}^r \lambda_i(a_{\ell_i})\right) v_{j_1} \otimes \cdots \otimes v_{j_{k'}} = \iota_{\sum_{i=1}^r k_{\ell_i} + k'}^G \left(a_{\ell_1} \otimes \cdots \otimes a_{\ell_r} \otimes c_1 \otimes \cdots \otimes c_r \otimes v_{j_1} \otimes \cdots \otimes v_{j_{k'}}\right)$$

where the $c_i \in \mathcal{T}_{k_i}(V, \chi_i)$ are the unique tensors so that for all $a_{\ell_i} \in \mathcal{T}_{k_i}(V, \chi_i)$,

$$\lambda_i(a_{\ell_i}) = \langle a_{\ell_i}, c_i \rangle$$

These c_i exist, because $\langle \cdot, \cdot \rangle$ is non-degenerate. Hence for some $c \in \mathcal{T}_{\sum_{i=1}^r k_{\ell_i} + k'}(V, \prod_{i=1}^r \chi_i \chi')$, we have

$$f(a_1,\ldots,a_n) = \iota_{\sum_{i=1}^r k_{\ell_i} + k'}^G(a_{\ell_1} \otimes \cdots \otimes a_{\ell_r} \otimes c).$$
(79)

Since f and $\iota_{k_{\ell}+k'}(\cdot)$ are G-equivariant, we have that for all $g \in G$ and $a \in \prod_{i=1}^{n} \mathcal{T}_{k_i}(V, \chi_i)$,

$$\iota_{k_{\ell}+k'}(a_{\ell_1}\otimes\cdots\otimes a_{\ell_r}\otimes c_{\ell})=f(a_1,\ldots,a_n)$$

1478
1479
1480

$$= f(g \cdot (g^{-1} \cdot a_1), \dots, g \cdot (g^{-1} \cdot a_n))$$

$$= g \cdot f((g^{-1} \cdot a_1), \dots, (g^{-1} \cdot a_n))$$

1480
$$= g \cdot f((g^{-1} \cdot a_1), \dots, (g^{-1} \cdot a_n))$$

$$= g \cdot \iota_{k_{\ell}+k'} \left(\left(g^{-1} \cdot a_{\ell_1} \right) \otimes \cdots \otimes \left(g^{-1} \cdot a_{\ell_r} \right) \otimes c_{\ell} \right)$$

1483
$$= \iota_{k_\ell+k'}(a_{\ell_1}\otimes\cdots\otimes a_{\ell_r}\otimes (g\cdot c_\ell)) \ .$$

Finally, G has a Zariski-dense compact subgroup U(G). Hence, averaging over U(G), we can substitute c by the U(G)-isotropic tensor

$$\mathop{\mathbb{E}}_{\mathfrak{u}\in U(G)}\mathfrak{u}\cdot c$$

where the expectation is taken with respect the unique Haar probability measure of U(G). But, since U(G) is Zariski-dense in G and the action rational, $\mathbb{E}_{\mathfrak{u}\in U(G)}\mathfrak{u}\cdot c$ is also G-isotropic, as we wanted to show.

Proof of Lemma 4. Recall that, since f in entire, we have, by Taylor's theorem, that

$$f(a) = \sum_{r=0}^{\infty} \frac{1}{r!} D_0^r f(a, \dots, a)$$
(80)

where $a = (a_1, \ldots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(V, \chi_i)$ and $D_0^k f : (\prod_{i=1}^n \mathcal{T}_{k_i}(V, \chi_i))^k \to \mathcal{T}_{k'}(V, \chi')$ is the *k*-multilinear map given by *k*th order partial derivatives of *f* at 0. Now, write $a = a_1 + \cdots + a_n$ as an abuse of notation for

$$a = (a_1, 0, \dots, 0) + \dots + (0, \dots, 0, a_n)$$

We will further use this abuse of notation to write a_i instead of $(0, \ldots, 0, a_i, 0, \ldots, 0)$. Now, since $D_0^k f$ is k-multilinear and symmetric, we have that

$$\frac{1}{r!} \mathcal{D}_0^r f(a, \dots, a) = \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} \frac{1}{\alpha_{\ell_1, \dots, \ell_r}!} \mathcal{D}_0^r f(a_{\ell_1}, \dots, a_{\ell_r})$$
(81)

where $\alpha_{\ell_1,\ldots,\ell_r} \in \mathbb{N}^r$ is the vector given by $(\alpha_{\ell_1,\ldots,\ell_r})_i := \#\{j \mid \ell_j = i\}$ and $\alpha! := \alpha_1! \cdots \alpha_r!$. Note that this terms appears when we reorder $(a_{\ell_1}, \ldots, a_{\ell_r})$ so that the subindices are in order.

Summing up, we can write f as (78), with

> $f_{\ell_1,\dots,\ell_r}(a_1,\dots,a_n) = \frac{1}{\alpha_{\ell_1,\dots,\ell_r}!} D_0^r f(a_{\ell_1},\dots,a_{\ell_r}),$ (82)

where this has the desired form by the universal property of tensor products. Now, observe that for $t_1, \ldots, t_n \in \mathbb{C}$ and $(a_1, \ldots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(V, \chi_i)$,

$$f_{\ell_1,\dots,\ell_r}(t_1a_1,\dots,t_na_n) = t^{\alpha_{\ell_1},\dots,\ell_r} f_{\ell_1,\dots,\ell_r}(a_1,\dots,a_n)$$
(83)

where $t^{\alpha_{\ell_1,\ldots,\ell_r}} := t_1^{\alpha_1} \cdots t_n^{\alpha_n}$. Hence, arguing as in Lemma 3, we have that for any $g \in G$ and all $(a_1,\ldots,a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(V,\chi_i)$,

$$\sum_{r=0}^{\infty} \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t^{\alpha_{\ell_1,\dots,\ell_r}} g \cdot f_{\ell_1,\dots,\ell_r}(a_1,\dots,a_n)$$
$$= \sum_{r=0}^{\infty} \sum_{1 \le \ell_1 \le \dots \le \ell_r \le n} t^{\alpha_{\ell_1,\dots,\ell_r}} f_{\ell_1,\dots,\ell_r}(g \cdot a_1,\dots,g \cdot a_n).$$
(84)

Hence, by the uniqueness of coefficients for entire functions functions that are equal⁶, we conclude that for any $g \in G$ and all $(a_1, \ldots, a_n) \in \prod_{i=1}^n \mathcal{T}_{k_i}(V, \chi_i)$,

$$f_{\ell_1,\dots,\ell_r}(a_1,\dots,a_n) = f_{\ell_1,\dots,\ell_r}(g \cdot a_1,\dots,g \cdot a_n),$$
(85)
are *G*-equivariant.

and so that the f_{ℓ_1,\ldots,ℓ_r} are *G*-equivariant.

1529 F.3 REAL EQUIVARIANT TENSOR MAPS (AND PROOF OF THEOREM 2)

All the definitions in the previous subsection can be specialized to the real case. Hence we will have a self-paired real vector space $(V, \langle \cdot, \cdot \rangle)$ on which a group *G* acts (rationally) in a structure-preserving way. Then we get the family of (rational) *G*-modules:

$$\mathcal{T}_k(V,\chi) := (V^{\otimes k}, \langle \,\cdot\,,\,\cdot\,
angle)$$

where $\chi: G \to \mathbb{R}^*$ is a one-dimensional (rational) group-homomorphism of G. Together with this family, we have the *k*-contractions given by

$$\iota_k^G : \mathcal{T}_{2k+k'}(V,\chi) \to \mathcal{T}_{k'}(V,\chi), \tag{86}$$

which are *G*-equivariant linear maps. Then we get a very similar theorem to Theorem 4 from which Theorem 2 follows.

Theorem 5. Let $G \subset GL(V)$ be either a compact or a complexly averagable real linear algebraic group acting rationally in a structure-preserving way on a self-paired vector space $(V, \langle \cdot, \cdot \rangle)$ and $f: \prod_{i=1}^{n} \mathcal{T}_{k_i}(V, \chi_i) \to \mathcal{T}_{k'}(V, \chi')$ a *G*-equivariant entire function. Then we may write *f* as follows: 1543 1543 1543

$$f(a_1,\ldots,a_n) = \sum_{r=0} \sum_{1 \le \ell_1 \le \cdots \le \ell_r \le n} \iota^G_{k_{\ell_1},\ldots,\ell_r} \left(a_{\ell_1} \otimes \ldots \otimes a_{\ell_r} \otimes c_{\ell_1,\ldots,\ell_r} \right)$$
(87)

where $c_{\ell_1,\ldots,\ell_r} \in \mathcal{T}_{k_{\ell_1},\ldots,\ell_r+k'}(\mathbb{R}^d,\chi_{\ell_1,\ldots,\ell_r}\chi')$ is a *G*-isotropic tensor for $k_{\ell_1,\ldots,\ell_r} := \sum_{q=1}^r k_{\ell_q}$ and $\chi_{\ell_1,\ldots,\ell_r} = \prod_{q=1}^r \chi_{\ell_q}$.

1548

1551

1559 1560

1544 1545

1526

1528

1537

1549 *Proof of Theorem 2.* This is just a particular case of Theorem 5 as both O(s, d-s) and Sp(d) are both 1550 real linear algebraic groups and their complexifications have a Zariski-dense compact subgroup. \Box

Proof of Theorem 5. When G is compact, we can just repeat the proof for the orthogonal group. When G is a linear algebraic group such that its complexification has a Zariski-dense compact subgroup, we can extend, using the same analytic expression evaluated in the complex tensors, the G-equivariant map $f : \prod_{i=1}^{n} \mathcal{T}_{k_i}(V, \chi_i) \to \mathcal{T}_{k'}(V, \chi')$ to a complex $G^{\mathbb{C}}$ -equivariant map $f_{\mathbb{C}}$: $\prod_{i=1}^{n} \mathcal{T}_{k_i}(V^{\mathbb{C}}, \chi_i) \to \mathcal{T}_{k'}(V^{\mathbb{C}}, \chi')$. The map becomes $G^{\mathbb{C}}$ -equivariant, because G is Zariski-dense inside $G_{\mathbb{C}}$ by Proposition 5.

1558 But for $a \in \prod_{i=1}^{n} \mathcal{T}_{k_i}(V, \chi_i)$, we have that

$$f(a) = \frac{1}{2}f^{\mathbb{C}}(a) + \frac{1}{2}\overline{f^{\mathbb{C}}(a)},$$
(88)

by reality of the input and output. Hence, by linearity, we can change the non-necessarily real c_{ℓ_1,\ldots,ℓ_r} by the still *G*-isotropic and real $\frac{1}{2}c_{\ell_1,\ldots,\ell_r} + \frac{1}{2}c_{\ell_1,\ldots,\ell_r}$. The latter is *G*-isotropic, finishing the proof.

 ⁶The statement is qualitatively different from (Cox et al., 2015, Chapter 1 §1 Proposition 5), but its proof
 is similar. We only need to use that a univariate entire function which vanishes in an infinite set with an accumulation point has to vanish everywhere.

1566 F.4 PROOF OF COROLLARY 2

¹⁵⁶⁸ The following proposition is needed to prove the above corollary.

1569 **Proposition 7.** (Roe Goodman, 2009, Theorem 5.3.3) Let G be either O(s, k - s) or Sp(d) and 1570 $\langle \cdot, \cdot \rangle$ be the corresponding non-degenerate bilinear form fixed by the usual action of G on \mathbb{R}^d , i.e., 1571 $\langle \cdot, \cdot \rangle_s$ for O(s, k-s) and $\langle \cdot, \cdot \rangle_{symp}$ for Sp(d). The subspace of G-isotropic tensors in $\mathcal{T}_k(\mathbb{R}^d, \chi_0)$, 1572 where χ_0 the constant map to 1, consist only of the zero tensor if k is odd, and it is of the form 1573 $\sum_{\sigma \in S_{i}} \alpha_{\sigma} \left(\theta_{G}^{\otimes k/2} \right)^{\sigma}$ (89)1574 1575 1576 with the $\alpha_{\sigma} \in \mathbb{R}$ and $\theta_G \in (\mathbb{R}^d)^{\otimes 2}$ the only tensor such that for all $v \in \mathbb{R}^d$, $\iota_1^G(v \otimes \theta_G) = v$, if k is 1577 even. **Remark 9.** Recall that $\theta_G = [\mathbb{I}_{s,d-s}]_{i,j}$ if G = O(s, d-s) and $\theta_G = [J_d]_{i,j}$ if G = Sp(d). 1579 **Remark 10.** Note that the above sum can be written with less summands using the methods of 1580 Appendix D. 1581 Proof of Corollary 2. By Theorem 2, Proposition 7 and linearity, we can assume, without loss of generality, that 1584 $f(v_1,\ldots,v_n) = \iota_{r+k}\left(v_{\ell_1}\otimes\cdots\otimes v_{\ell_r}\otimes\theta_G^{\frac{r+k'}{2}}\right)$ 1585 with $1 \leq \ell_1 \leq \cdots \leq \ell_r \leq n$ and r + k' even. 1587 1588 Now, the proof is very similar to that of Corollary 1. However, note that now, we write 1589 $\theta = e_i \otimes \tilde{e}_i,$ 1590 1591 where $\{e_i \mid i \in [d]\}$ and $\{\tilde{e}_i \mid i \in [d]\}$ are dual basis to each other, i.e., for all $i, j, \langle e_i, \tilde{e}_i \rangle = \delta_{i,j}$. 1592 The reason we have to pick a couple of bases is that the bilinear form is not necessarily an inner 1593 product. 1594 Now, the proof becomes the same as that of Corollary 1, but we have to be careful regarding the e_i 1595 and the \tilde{e}_i . However, after making the pairings for contraction, we get four cases: 1596 1597 1. $\langle v, e_j \rangle \langle w, \tilde{e}_j \rangle = \pm \langle v, w \rangle$, where the sign depends on whether $\langle \cdot, \cdot \rangle$ is symmetric or 1598 antisymmetric. 2. $\langle v, \tilde{e}_i \rangle e_i = v$. 3. $\langle v, e_i \rangle \tilde{e}_i = \pm v$, where the sign depends on whether $\langle \cdot, \cdot \rangle$ is symmetric or antisymmetric. 4. $e_j \otimes \tilde{e}_j = \pm \theta$, where the sign depends on whether $\langle \cdot, \cdot \rangle$ is symmetric or antisymmetric, or $\sum_j \tilde{e}_j \otimes e_j = \theta_G$. 1604 Now, putting these back together as we did in the proof of Corollary 1 gives the desired statement. \Box 1607 1608 G EQUIVARIANCE IN SPARSE VECTOR RECOVERY 1609 1610 In this section, we show a sufficient condition for the Q(d)-invariance of sparse vector estimation. 1611 We start with a lemma on the equivariance of finding an eigenvector. 1612 **Lemma 5.** Let b be a $2_{(+)}$ -tensor and let $g \in O(d)$. If u is an eigenvector for eigenvalue λ of 1613 $M(g) b M(g)^{\top}$, then $M(g)^{\top} u$ is an eigenvector for eigenvalue λ of b. 1614 1615 *Proof.* Let b be a $2_{(+)}$ -tensor, let $q \in O(d)$, and let λ, u be an eigenvalue, eigenvector pair of 1616 $M(q) b M(q)^{\perp}$. 1617 1618 $(M(g) b M(g)^{\top}) u = \lambda u \Rightarrow b(M(g)^{\top} u) = \lambda (M(g)^{\top} u).$ 1619

Thus $M(g)^{\top} u$ is an eigenvector for eigenvalue λ of b.

Proposition 8. Let $S \in \mathbb{R}^{n \times d}$ with rows $a_i^{\top} \in \mathbb{R}^d$ so that a_i are column vectors. We define the action of O(d) on S for all $g \in O(d)$ as SM(g), and therefore $M(g)^{\top}a_i$ for the rows. Let $f : \mathbb{R}^{n \times d} \to \mathbb{R}^n, h : (\mathbb{R}^d)^n \to \mathbb{R}^{d \times d}$ symmetric such that $f(S) = S\lambda_{\text{vec}}(h(a_1, \ldots, a_n))$ where $\lambda_{\text{vec}}(\cdot)$ returns a normalized eigenvector for the top eigenvalue of the input symmetric matrix. If h is O(d)-equivariant, then f is O(d)-invariant.

1626 1627 1628 Proof. Let S, h, and f be defined as above. Suppose that h is O(d)-equivariant. Suppose $\lambda_{\text{vec}}(M(g)^{\top} h(a_1, \dots, a_n) M(g)) = u$, then by lemma 5, up to a sign flip, we have:

$$\lambda_{\text{vec}}\left(M(g)^{\top} h(a_1,\ldots,a_n) M(g)\right) = u = M(g)^{\top} M(g) u = M(g)^{\top} \lambda_{\text{vec}}(h(a_1,\ldots,a_n))$$
(90)

1631 Thus,

1629 1630

1639

1642 1643 1644

1645

1652 1653

$$f(g \cdot S) = (g \cdot S) \lambda_{\text{vec}} \left(h \left(g^{-1} \cdot a_1, \dots, g^{-1} \cdot a_n \right) \right)$$

$$= (g \cdot S) \lambda_{\text{vec}} \left(g^{-1} \cdot h(a_1, \dots, a_n) \right)$$

$$= S M(g) \lambda_{\text{vec}} \left(M(g)^\top h(a_1, \dots, a_n) M(g) \right)$$

$$= S M(g) M(g)^\top \lambda_{\text{vec}} (h(a_1, \dots, a_n))$$

$$= S \lambda_{\text{vec}} (h(a_1, \dots, a_n))$$

$$= f(S) .$$

1640 This completes the proof. 1641

H DERIVATION OF SPARSEVECTORHUNTER (28)

1646 1647 In the following, we derive the general form of an O(d)-equivariant function $h: (\mathbb{R}^d)^n \to S_d$ stated 1648 in (28) from Corollary 1.

1649 First, we use Corollary 1 to write the arbitrary form of an O(d)-equivariant function $g: (\mathbb{R}^d)^n \to \mathbb{R}^{d \times d}$ that takes values in the space of $d \times d$ matrices that are not necessarily symmetric. Given the 1651 general form of g, it follows that

$$h = \frac{1}{2}(g + g^{\top}) \tag{91}$$

is the general form of an O(d)-equivariant function $h: (\mathbb{R}^d)^n \to S_d$.

1655 1656 In the notation of Corollary 1, we seek an O(d)-equivariant function $g: (\mathcal{T}_1(\mathbb{R}^d, +))^n \to \mathcal{T}_2(\mathbb{R}^d, +)$. 1657 From Corollary 1 with k' = 2, it follows that g can be written in the form

$$g(v_1, \dots, v_n) = \sum_{t=0}^{1} \sum_{\sigma \in S_2} \sum_{1 \le J_1 \le \dots \le J_{2-2t} \le n} q_{t,\sigma,J} \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) \left(v_{J_1} \otimes \dots \otimes v_{J_{2-2t}} \otimes \delta^{\otimes t} \right)^{\sigma} .$$

$$\tag{92}$$

Expanding the sum of the t = 0 and t = 1 terms, we have

$$g(v_1, \dots, v_n) = \left(\sum_{\sigma \in S_2} \sum_{1 \le J_1 \le J_2 \le n} q_{0,\sigma,J} \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) (v_{J_1} \otimes v_{J_2})^{\sigma} \right) + \sum_{\sigma \in S_2} q_{1,\sigma} \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) \delta^{\sigma}.$$
(93)

1667 1668

1669 1670 The set of permutation S_2 consists of (1,2) and (2,1). Using the fact that $(u \otimes v)^{(1,2)} = u \otimes v$, 1671 $(u \otimes v)^{(2,1)} = v \otimes u$, and $\delta^{\sigma} = \delta$ for all $\sigma \in S_2$, we can write the above expression as

1672
1673
$$g(v_1, \dots, v_n) = \sum_{J_1=1}^n \sum_{J_2=1}^n q_{0,J} \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) (v_{J_1} \otimes v_{J_2}) + q_1 \left((\langle v_i, v_j \rangle)_{i,j=1}^n \right) \delta, \quad (94)$$

where the double sum over J_1 and J_2 accounts for both the sum over $J_1 \leq J_2$ and the sum over the permutations in S_2 . Next, we swap to standard matrix and vector notation as well as more simple indices to make the equations clearer for readers who are primarily interested in the application. Thus $u \otimes v \Rightarrow uv^{\top}, \delta \Rightarrow \mathbb{I}_d$ and J_1, J_2, i, j become i, j, ℓ, m , and we have

$$g(v_1, \dots, v_n) = \sum_{i=1}^n \sum_{j=1}^n q_{i,j} \left((\langle a_\ell, a_m \rangle)_{\ell,m=1}^n \right) a_i a_j^\top + q_{\mathbb{I}} \left((\langle a_\ell, a_m \rangle)_{\ell,m=1}^n \right) \mathbb{I}_d .$$
(95)

1682 Finally, setting $h = \frac{1}{2}(g + g^{\top})$ gives the desired form of h stated in (28).

1683 I EXPERIMENTAL DETAILS

1685 1686 I.1 Synthetic Data Sparse Vector Samplings

1687 We consider the following sampling procedures for v_0 . All these procedures use the same sparsity 1688 parameter $\varepsilon \le 1/3$.

1690 Accept/Reject (A/R). A random vector $v_0 \sim \mathcal{N}(\mathbf{0}_n, \mathbb{I}_n)$ is sampled and normalized to unit ℓ_2 1691 length. We accept it if $||v_0||_4^4 \ge \frac{1}{\varepsilon n}$ and otherwise reject it. Note that the sparsity of v_0 is not explicitly 1692 imposed, but the 4-norm condition suggests that v_0 is approximately sparse. The 4-norm condition of 1693 sparsity is used in Hopkins et al. (2016).

Bernoulli-Gaussian (BG) This sampling procedure, considered in Mao & Wein (2022), defines v_0 as

 $\begin{cases} [v_0]_i = 0 & \text{with probability } 1 - \varepsilon \\ [v_0]_i \sim \mathcal{N}(0, \frac{1}{\varepsilon n}) & \text{with probability } \varepsilon. \end{cases}$ (96)

1699 Note that under this sampling procedure $\mathbb{E} \|v_0\|_4^4 = \frac{3}{\varepsilon n}$.

Corrected Bernoulli-Gaussian (CBG) We consider a modified version of the Bernoulli-Gaussian that replaces the values set to exactly 0 in the Bernoulli-Gaussian distribution with values sampled from a Gaussian with small variance. Under this distribution we have $\mathbb{E}||v_0||_2 = 1$ and $\mathbb{E}||v_0||_4^4 = \frac{1}{\varepsilon n}$.

1694

1697

1698

 $\begin{cases} [v_0]_i \sim \mathcal{N}\left(0, \frac{1-\varepsilon - \sqrt{\frac{1}{3}(1-\varepsilon)(1-3\varepsilon)}}{(1-\varepsilon)n}\right) & \text{with probability } 1-\varepsilon \\ [v_0]_i \sim \mathcal{N}\left(0, \frac{\varepsilon + \sqrt{\frac{1}{3}(1-\varepsilon)(1-3\varepsilon)}}{\varepsilon n}\right) & \text{with probability } \varepsilon. \end{cases},$

1707 1708 1709

1723 1724

1725 1726

1710Bernoulli-Rademacher (BR)This sampling procedure, studied in Mao & Wein (2022), defines v_0 1711as

$$[v_0]_i = \begin{cases} 0 & \text{with probability } 1 - \varepsilon \\ \frac{1}{\sqrt{\varepsilon n}} & \text{with probability } \frac{\varepsilon}{2} \\ \frac{-1}{\sqrt{\varepsilon n}} & \text{with probability } \frac{\varepsilon}{2}. \end{cases}$$
(98)

(97)

1716 Under this distribution we have $\mathbb{E} \|v_0\|_2 = 1$ and $\mathbb{E} \|v_0\|_4^4 \ge \frac{1}{\varepsilon n}$.

Since the BG, CBG, and BR distributions have $\mathbb{E} ||v_0||_2 = 1$, we also normalize these vectors to unit ℓ_2 length after generating them.

Proposition 9. Let v_0 be a Bernoulli-Gaussian vector. Then $\mathbb{E}\left[\|v_0\|_2^2\right] = 1$ and $\mathbb{E}\left[\|v_0\|_4^4\right] = \frac{3}{\varepsilon n}$.

1722 Proof. Let $\varepsilon \in (0, 1]$ and let v_0 be a Bernoulli-Gaussian sparse vector. Thus

$$\mathbb{E}\Big[\|v_0\|_2^2\Big] = \mathbb{E}\left[\sum_{i=1}^n [v_0]_i^2\right] = \sum_{i=1}^n \mathbb{E}\Big[[v_0]_i^2\Big].$$
(99)

1727 Thus, we need to find the 2nd moment of an entry of $[v_0]_i$, which we will do by first calculating its moment generating function. If Z is a Bernoulli-Gaussian random variable, then Z = XY where X

and Y are random variables with $X \sim \text{Bern}(\varepsilon)$ and $Y \sim \mathcal{N}(0, \frac{1}{\varepsilon n})$. Then

$$\mathbb{E}[\exp\{tXY\}] = \mathbb{E}[\mathbb{E}[\exp\{tXY\}|X]]$$

= $\mathbb{E}[\exp\{tXY\}|X=0]P(X=0) + \mathbb{E}[\exp\{tXY\}|X=1]P(X=1)$
= $\mathbb{E}[\exp\{0\}](1-\varepsilon) + \varepsilon \mathbb{E}[\exp\{tY\}]$
= $(1-\varepsilon) + \varepsilon \mathbb{E}[\exp\{tY\}]$.

1736 Since $\mathbb{E}[\exp\{tY\}]$ is the moment generating function of Y, a Gaussian random variable, we can see 1737 that the 2nd moment of Z is the 2nd moment of Y multiplied by ε . Then

$$\sum_{i=1}^{n} \mathbb{E}\left[\left[v_{0}\right]_{i}^{2}\right] = \sum_{i=1}^{n} \varepsilon\left(\frac{1}{\varepsilon n}\right) = \sum_{i=1}^{n} \frac{1}{n} = 1.$$
(100)

1742 Now, for the sparsity condition, we have

$$\mathbb{E}\left[\|v_0\|_4^4\right] = \sum_{i=1}^n \mathbb{E}\left[\left[v_0\right]_i^4\right] = \sum_{i=1}^n \varepsilon \left(3\left(\frac{1}{\varepsilon n}\right)^2\right) = \sum_{i=1}^n \frac{3}{\varepsilon n^2} = \frac{3}{\varepsilon n} .$$
(101)

1748 This follows because our previous analysis shows that the 4th moment of an entry of $[v_0]_i$ is 1749 $3\sigma^4 = 3\left(\frac{1}{\varepsilon n}\right)^2$. This completes the proof.

Proposition 10. Let v_0 be a Corrected Bernoulli-Gaussian vector. Then $\mathbb{E}\left[\|v_0\|_2^2\right] = 1$ and $\mathbb{E}\left[\|v_0\|_4^4\right] = \frac{1}{\varepsilon n}$.

1758 Proof. Let $\varepsilon \in \left(0, \frac{1}{3}\right]$ and let $v_0 \in \mathbb{R}^n$ be a Corrected Bernoulli-Gaussian sparse vector. Thus

$$\mathbb{E}\Big[\|v_0\|_2^2\Big] = \mathbb{E}\left[\sum_{i=1}^n [v_0]_i^2\right] = \sum_{i=1}^n \mathbb{E}\Big[[v_0]_i^2\Big] .$$
(102)

Thus, we need to find the 2nd moment of an entry of $[v_0]_i$, which we will do by first calculating its moment-generating function. If Z is a Corrected Bernoulli-Gaussian random variable, then Z = XY + (1-X)W where X, Y, and W are random variables with $X \sim \text{Bern}(\varepsilon), Y \sim \mathcal{N}(0, \frac{\varepsilon+q}{\varepsilon n})$, and $W \sim \mathcal{N}\left(0, \frac{1-\varepsilon-q}{n(1-\varepsilon)}\right)$ where $q = \sqrt{\frac{1}{3}(1-\varepsilon)(1-3\varepsilon)}$. Then

$$\begin{split} & \mathbb{E}[\exp\{t(XY + (1 - X)W)\}] = \mathbb{E}[\mathbb{E}[\exp\{t(XY + (1 - X)W)\}|X]] \\ & = \mathbb{E}[\exp\{tW\}|X = 0]P(X = 0) + \mathbb{E}[\exp\{tY\}|X = 1]P(X = 1) \\ & = (1 - \varepsilon)\mathbb{E}[\exp\{tW\}] + \varepsilon\mathbb{E}[\exp\{tY\}] \\ \end{split}$$

1773 Since $\mathbb{E}[\exp\{tW\}]$ is the moment generating function of W and $\mathbb{E}[\exp\{tY\}]$ is the moment generat-1774 ing function of Y, we can immediately get the moments of Z. Then

1776
1777
$$\sum_{i=1}^{n} \mathbb{E}\left[\left[v_{0}\right]_{i}^{2}\right] = \sum_{i=1}^{n} \varepsilon\left(\frac{\varepsilon+q}{n\varepsilon}\right) + (1-\varepsilon)\left(\frac{1-\varepsilon-q}{n(1-\varepsilon)}\right)$$

$$1778$$
 $i-1$ $i-1$ n $i-1$

1779
1780
$$= \sum \frac{\varepsilon + q + 1 - \varepsilon - q}{n}$$

For the sparsity condition, we use the same result above but now for the 4th moment $\mathbb{E}\Big[\|v_0\|_4^4\Big] = \sum^n \mathbb{E}\Big[[v_0]_i^4\Big]$ $=\sum_{n=1}^{n}\varepsilon\left(3\left(\frac{\varepsilon+q}{n\varepsilon}\right)^{2}\right)+(1-\varepsilon)\left(3\left(\frac{1-\varepsilon-q}{n(1-\varepsilon)}\right)^{2}\right)$ $=\sum_{i=1}^{n} 3\varepsilon \left(\frac{\varepsilon^2 + 2\varepsilon q + q^2}{n^2 \varepsilon^2}\right) + 3(1-\varepsilon) \left(\frac{(1-\varepsilon)^2 - 2(1-\varepsilon)q + q^2}{n^2 (1-\varepsilon)^2}\right)$ $=\sum_{i=1}^{n}\left(\frac{3\varepsilon^{2}(1-\varepsilon)+6\varepsilon(1-\varepsilon)q+3(1-\varepsilon)q^{2}+3\varepsilon(1-\varepsilon)^{2}-6\varepsilon(1-\varepsilon)q+3\varepsilon q^{2}}{n^{2}\varepsilon(1-\varepsilon)}\right)$ $=\sum_{i=1}^{n}\left(\frac{3\varepsilon(1-\varepsilon)+3q^2}{n^2\varepsilon(1-\varepsilon)}\right)$ $=\sum_{i=1}^{n}\left(\frac{3\varepsilon(1-\varepsilon)+3\left(\frac{1}{3}(1-\varepsilon)(1-3\varepsilon)\right)}{n^{2}\varepsilon(1-\varepsilon)}\right)$ $=\sum_{i=1}^{n} \left(\frac{3\varepsilon + (1-3\varepsilon)}{n^2\varepsilon}\right)$ $=\frac{1}{n\varepsilon}$. This completes the proof. **Proposition 11.** Let v_0 be a Bernoulli-Rademacher vector. Then $\mathbb{E}\left[\|v_0\|_2^2\right] = 1$ and $\mathbb{E}\left[\|v_0\|_4^4\right] = \frac{1}{\varepsilon n}$.

1809 Proof. Let
$$\epsilon \in (0, 1]$$
 and let v_0 be a Bernoulli-Rademacher sparse vector. Thus
1810
$$\mathbb{E}\left[\|v_0\|_2^2\right] = \mathbb{E}\left[\sum_{i=1}^n [v_0]_i^2\right]$$
1813
$$= \sum_{i=1}^n \mathbb{E}\left[[v_0]_i^2\right]$$
1816
$$= \sum_{i=1}^n (1-\epsilon)(0)^2 + \frac{\epsilon}{2}\left(\frac{1}{\sqrt{\epsilon n}}\right)^2 + \frac{\epsilon}{2}\left(\frac{-1}{\sqrt{\epsilon n}}\right)^2$$
1818
1819
$$= \sum_{i=1}^n \frac{\epsilon}{\epsilon n}$$
1820
$$= 1.$$
We also have

We also have

$$\mathbb{E}\left[\|v_0\|_4^4\right] = \mathbb{E}\left[\sum_{i=1}^n [v_0]_i^4\right]$$
$$= \sum_{i=1}^n \mathbb{E}\left[[v_0]_i^4\right]$$
$$= \sum_{i=1}^n (1-\epsilon)(0)^4 + \frac{\epsilon}{2}\left(\frac{1}{\sqrt{\epsilon n}}\right)^4 + \frac{\epsilon}{2}\left(\frac{-1}{\sqrt{\epsilon n}}\right)^4$$
$$= \sum_{i=1}^n \frac{\epsilon}{\epsilon^2 n^2}$$
$$= \frac{1}{\epsilon n}.$$

1836 This completes the proof.

1838 I.2 Synthetic Data Noise Vector Covariance

1840 All noise vectors for a single experiment trial are sampled from $\mathcal{N}(0, \Sigma)$ with the same $n \times n$ 1841 covariance matrix Σ . Suppose we want Σ that is diagonal but not necessarily the identity matrix. We 1842 generate Σ by sampling the diagonal entries $[\Sigma]_{i,j} \sim \text{Unif}(\frac{1}{2}, \frac{3}{2})$ and setting the off-diagonal entries 1843 to 0. Instead, suppose we want Σ to be a random covariance matrix. First, we sample an $n \times n$ matrix 1844 M with entries $[M]_{i,j} \sim \mathcal{N}(0, 1)$. Then we set $\Sigma = M M^{\top} + 0.00001 \mathbb{I}_n$ which ensures that Σ is 1845 symmetric and positive definite. In all cases, we don't worry about the scaling because the sampled 1846 vectors v_1, \ldots, v_{d-1} will be normalized to unit length.

- 1847 1848 I.3 MNIST NOISE SCHEMES
- Given a sparse vector v MNIST digit, we construct v_0, \ldots, v_{d-1} using one of the following 4 methods.

1851 1852 Random Subspace (RND) Let $v_0 = v$, and sample $v_1, \ldots, v_{d-1} \sim \mathcal{N}(\mathbf{0}_n, \mathbb{I}_n)$, so this method is identical to the synthetic data experiments.

1854 Gaussian Noise (GAU) Let $v_i = \frac{v}{\|v\|} + w_i$, where $w_i \sim \mathcal{N}(\mathbf{0}_n, \frac{1}{20}\mathbb{I}_n)$.

Bernoulli Noise (BER) Each pixel in each v_i has a 70% chance of taking the value as v and a 30% chance being selected from Uniform(0, 255), the range of pixel values in the original image.

Block Noise (BLK) We select the location of the 12×12 block uniformly at random and then select the color uniformly from [0, 255]. Note that the location of the block is uniformly chosen, so it is more likely that pixels in the middle, where many blocks overlap, will be chosen. The middle of the image is also where the digit pixels are primarily located. One further factor that makes this noise interesting is that the noise itself is sparse in a sense, unlike the other noise schemes.

1864

1866

1882

1865 I.4 GENERATING A RANDOM ORTHONORMAL BASIS

Now suppose we have a set of vectors $v_0, \ldots, v_{d-1} \in \mathbb{R}^n$, and we would like to get a random orthonormal basis of span $\{v_0, \ldots, v_{d-1}\}$. To do this, we form the matrix B whose columns are the vectors v_0, \ldots, v_{d-1} . If we right multiply B by a random orthogonal matrix and take the Q-R factorization, then Q is a random orthonormal basis of v_0, \ldots, v_{d-1} as we show below. We will add an assumption that the v_0, \ldots, v_{d-1} are linearly independent, which is reasonable given that $d \ll n$ and we are generating these vectors randomly.

Proposition 12. Let $n \ge d$, and let *B* be the $n \times d$ matrix with v_0, \ldots, v_{d-1} as the columns. Assume that v_0, \ldots, v_{d-1} are linearly independent, so rank B = d. Let *O* be a $d \times d$ orthogonal matrix and QR = BO be a Q-R factorization of BO. Then the columns of *Q* form an orthonormal basis of span $\{v_0, \ldots, v_{d-1}\}$.

1877 *Proof.* The Q-R factorization gives us that the columns of Q are orthonormal. Thus we just have to 1878 show that $span\{v_0, \ldots, v_{d-1}\} = span\{Q_0, \ldots, Q_{d-1}\}$

1879 1880 Let $a \in \text{span}\{v_0, \dots, v_{d-1}\}$, so for some $\alpha_0, \dots, \alpha_{d-1}$ we have $a = \alpha_0 v_0 + \dots + \alpha_{d-1} v_{d-1}$. Let $\alpha \in \mathbb{R}^d$ be the vector of these coefficients, and then we have,

$$a = B \alpha = B O O^{\top} \alpha = Q R O^{\top} \alpha = Q \hat{\alpha} .$$
(103)

Thus $\hat{\alpha} \in \mathbb{R}^d$ is a vector of coefficients, so $a \in \text{span}\{Q_0, \dots, Q_{d-1}\}$. Therefore, span $\{v_0, \dots, v_{d-1}\} \subseteq \text{span}\{Q_0, \dots, Q_{d-1}\}$.

Now let $b \in \text{span}\{Q_0, \dots, Q_{d-1}\}$, so for some $\beta_0, \dots, \beta_{d-1}$ we have $b = \beta_0 Q_0 + \dots + \beta_{d-1} Q_{d-1}$. Let $\beta \in \mathbb{R}^d$ be a vector of the coefficients $\beta_0, \dots, \beta_{d-1}$. Now, since rank B = d, rank B O = d, so in the Q-R factorization, the upper triangular R has positive diagonal entries, so it is invertible [Horn & Johnson (1990), Theorem 2.1.14]. Then we have,

$$b = Q \beta = Q R R^{-1} \beta = B O R^{-1} \beta = B \hat{\beta}.$$
(104)

Thus $\hat{\beta} \in \mathbb{R}^d$ is a vector of coefficients, so $b \in \operatorname{span}\{v_0, \ldots, v_{d-1}\}$. Therefore, span $\{Q_0, \ldots, Q_{d-1}\} \subseteq$ span $\{v_0, \ldots, v_{d-1}\}$ which completes the proof.

I.5 TRAINING DETAILS

For synthetic data experiments, the train dataset had $5\,000$ vectors and the validation and test datasets had 500 vectors. For MNIST, we used a train dataset of 900 images and validation and test datasets of 100 images each, all from random classes of digits.

For training our models, we used $1 - \langle \hat{v}, v_0 \rangle^2$ as the loss function. We used the Adam optimizer Kingma & Ba (2017) with exponential decay of 0.999 per epoch. For the synthetic data experiments, we used a batch size of 100 and trained until the validation error had not improved for 20 epochs. For the MNIST experiments, we used a batch size of 10 and trained for 30 epochs. See Table 3 for the learning rate and number of parameters for each model. We did a small exploration to find these hyper-parameters. These hyper-parameters seemed to work well, but it is always possible that better ones could be found with more exploration.

experiment	model	parameter count	learning rate
synthetic	Baseline SVH-Diag SVH	99 087 58 981 1 331 131	1e-3 5e-4 3e-4
MNIST	Baseline SVH-Diag SVH	2 067 282 234 769 79 117 321	1e-3 5e-4 3e-4

Table 3: Parameter count and learning rate for each model. Since all models have the same number of hidden layers of the same width, the difference in the number of parameters is driven by the different inputs and outputs of each model.

The experiments were run on a single RTX 6000 Ada GPU and took 18 hours.

I.6 FURTHER RESULTS

923	sampling	Σ	SOS-I	SOS-II	BL	SVH-Diag	SVH
924		Random	0.610 ± 0.011	0.610 ± 0.011	0.647 ± 0.177	0.768 ± 0.045	$\textbf{0.966} \pm \textbf{0.001}$
1025	A/R	Diagonal	0.444 ± 0.012	0.444 ± 0.012	0.561 ± 0.262	0.698 ± 0.034	$\textbf{0.755} \pm \textbf{0.057}$
1929		Identity	0.611 ± 0.002	0.611 ± 0.002	0.494 ± 0.285	0.622 ± 0.201	$\textbf{0.647} \pm \textbf{0.289}$
1926		Random	0.963 ± 0.001	0.963 ± 0.001	0.783 ± 0.090	$\textbf{0.970} \pm \textbf{0.003}$	0.965 ± 0.002
1927	BG	Diagonal	0.949 ± 0.002	0.949 ± 0.002	0.672 ± 0.260	$\textbf{0.974} \pm \textbf{0.004}$	0.775 ± 0.078
1928		Identity	0.963 ± 0.000	0.963 ± 0.000	0.681 ± 0.241	0.966 ± 0.004	$\textbf{0.999} \pm \textbf{0.001}$
1929		Random	0.409 ± 0.005	0.409 ± 0.005	0.836 ± 0.149	0.490 ± 0.089	$\textbf{0.965} \pm \textbf{0.002}$
1930	CBG	Diagonal	0.292 ± 0.005	0.292 ± 0.005	$\textbf{0.835} \pm \textbf{0.150}$	0.597 ± 0.027	0.722 ± 0.013
1024		Identity	0.418 ± 0.006	0.418 ± 0.006	0.558 ± 0.216	0.368 ± 0.119	$\textbf{0.750} \pm \textbf{0.288}$
1931		Random	0.523 ± 0.006	0.523 ± 0.006	$\textbf{0.975} \pm \textbf{0.005}$	0.669 ± 0.150	0.970 ± 0.002
1932	BR	Diagonal	0.340 ± 0.010	0.340 ± 0.010	$\textbf{0.943} \pm \textbf{0.008}$	0.701 ± 0.041	0.913 ± 0.002
1933		Identity	0.526 ± 0.005	0.526 ± 0.005	$\textbf{0.949} \pm \textbf{0.006}$	0.570 ± 0.199	0.898 ± 0.001

Table 4: Synthetic data train error comparison of different methods under different sampling schemes for v_0 and different covariances for v_1, \ldots, v_{d-1} . The metric is $\langle v_0, \hat{v} \rangle^2$, which ranges from 0 to 1 with values closer to 1, meaning that the vectors are closer. For each row, the best value is **bolded**. For these experiments, $n = 100, d = 5, \epsilon = 0.25$, and the results were averaged over 5 trials with the standard deviation given by $\pm 0.xxx$.