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ABSTRACT

This work characterizes equivariant polynomial functions from tuples of tensor
inputs to tensor outputs. Loosely motivated by physics, we focus on equivariant
functions with respect to the diagonal action of the orthogonal group on tensors. We
show how to extend this characterization to other linear algebraic groups, including
the Lorentz and symplectic groups.
Our goal behind these characterizations is to define equivariant machine learning
models. In particular, we focus on the sparse vector estimation problem. This
problem has been broadly studied in the theoretical computer science literature,
and explicit spectral methods, derived by techniques from sum-of-squares, can be
shown to recover sparse vectors under certain assumptions. Our numerical results
show that the proposed equivariant machine learning models can learn spectral
methods that outperform the best theoretically known spectral methods in some
regimes. The experiments also suggest that learned spectral methods can solve the
problem in settings that have yet to be theoretically analyzed.
This is an example of a promising direction in which theory can inform machine
learning models and machine learning models can inform theory.

1 INTRODUCTION

Many recent theoretical and applied efforts have focused on the implementation of symmetries and
other structural constraints in the design of machine learning models. This is the case of graph
neural networks Scarselli et al. (2008); Maron et al. (2019), geometric deep learning Bronstein
et al. (2021); Weiler et al. (2021), and AI for science Zhang et al. (2023). The goal is to design a
hypothesis class of functions with good inductive bias that is aligned with the theoretical framework
of the physical, mathematical, or algorithmic objects it aims to represent. This includes respecting
coordinate freedoms Villar et al. (2023a), conservation laws Alet et al. (2021), or internal symmetries
(e.g. in the implicit neural representations framework Lim et al. (2023)). Symmetries have also been
used to provide interpretability to learned data representations Suau et al. (2023); Gupta et al. (2023).
Mathematically, it has been shown that imposing symmetries can improve the generalization error
and sample complexity of machine learning models Elesedy (2021b); Wang et al. (2021b); Elesedy
(2021a); Bietti et al. (2021); Petrache & Trivedi (2024); Tahmasebi & Jegelka (2023); Huang et al.
(2024).

In this work, we focus on implementing equivariant functions of tensor inputs and tensor outputs.
Tensors are the subjects of study in many theoretical computer science and applied mathematics
problems, including tensor factorization or decomposition Rabanser et al. (2017), and planted tensor
models Hopkins et al. (2016). Many of the algorithms to address these problems have underlying
symmetries like the ones we study here. Tensors also have a broad set of uses in the natural sciences,
where tensor-valued data appears as polarizations Melrose & Stoneham (1977), permeabilities
Durlofsky (1991), and stresses Levitas et al. (2019), for instance. Finally, tensors are the preferred
way to represent data for machine learning, where both models and multidimensional data with
batches, channels, etc, are implemented as tensors. Sometimes, these tensor objects have underlying
symmetries, like in implicit neural representations Li et al. (2022).

In this paper, we consider classical Lie groups acting diagonally on tensors. The groups we study
arise naturally in physics and other settings, including the orthogonal group O(d) (which typically
appears in coordinate transformations), the indefinite orthogonal group O(s, k − s) (which includes
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as a particular case the Lorentz group, a fundamental group for special relativity), and the symplectic
group Sp(d) (the underlying group in much of classical and quantum mechanics).

A variety of methods can be used for implementing invariances or equivariances, including group
convolutions Cohen & Welling (2016; 2017); Wang et al. (2021a), irreducible representations Fuchs
et al. (2020); Kondor (2018); Weiler et al. (2018); Cohen et al. (2018); Weiler & Cesa (2019),
constraints on optimization Finzi et al. (2021), canonicalization Kaba et al. (2023), and invariant
theory Gripaios et al. (2021); Haddadin (2022); Villar et al. (2021); Blum-Smith & Villar (2023);
Villar et al. (2023b). This work is closer to the line of research that constructs explicit equivariant
functions from invariant features, and it generalizes results from Villar et al. (2021) to tensors.

Closest to us is the concurrent work of Kunisky, Moore, and Wein on tensor cumulants Kunisky
et al. (2024). Their focus is primarily on symmetric tensors, although they show that O(d)-invariant
polynomials on symmetric tensors can be turned into O(d)-invariant polynomials over general tensors
by symmetrizing over O(d). Our results for equivariant tensor polynomials are slightly more general
for inputs of tensors of different orders and parities as well as handling the indefinite orthogonal
group and the symplectic group.

As an application, we consider the problem of sparse vector estimation. Let there be a sparse vector
v0 and vectors v1, . . . , vd−1 sampled independently at random from some prior distribution. If we
are given an orthonormal basis w0, . . . , wd−1 of span({v0, · · · , vd−1}), can we recover the sparse
vector v0? The problem has roots in tensor PCA, also known as the spiked tensor model Montanari
& Richard (2014), as well as dictionary learning Spielman et al. (2012). Solutions for this problem
using sum-of-squares and spectral methods were investigated in Barak et al. (2014) and further
improvements were made in Hopkins et al. (2015; 2016); Ge & Ma (2015); Mao & Wein (2022).

In Hopkins et al. (2016), the authors propose an algorithm that constructs a d × d matrix A, then
uses the top eigenvector of A to estimate v0. They prove that this method recovers the planted vector
under certain assumptions. A crucial observation is that the input to the problem is any orthonormal
basis w0, . . . , wd−1 of span({v0, . . . , vd−1}). This implies that a function that estimates v0 should
be invariant to certain transformations of the input basis. In this paper, we learn algorithms to recover
planted sparse vectors from data. To this end, we use a machine learning model that learns an
equivariant 2-tensor Â from data, and the estimator for the planted sparse vector v̂ is obtained using
Â’s top eigenvector following the same procedure as Hopkins et al. (2016). We empirically show that
this approach can learn spectral methods for sparse vector recovery that can work under more general
assumptions than the state-of-the-art.

The approach employed here can be seen as a particular case of the more ambitious research program
of algorithmic alignment or algorithmic reasoning Veličković & Blundell (2021); Gavranović et al.
(2024). In algorithmic alignment contexts, researchers design machine learning models that match
known algorithmic strategies that are known to succeed at solving certain problems, such as dynamic
programming Xu et al. (2020); Dudzik & Veličković (2022). Here, the machine learning approach
is structurally aligned with equivariant spectral methods arising from sum-of-squares. We believe
that the connection between sum-of-squares and machine learning (in particular equivariant machine
learning and graph neural networks) is a promising direction to be explored.

1.1 OUR CONTRIBUTIONS

We provide a generic recipe to define equivariant machine learning models mapping from tensors
to tensors. To this end, we give explicit parameterizations for polynomials (Sec. 3) and analytic
functions with globally convergent Taylor series (Sec. 4) from tuples of tensor inputs to tensor outputs
that are equivariant with respect to the orthogonal (Sec. 3), indefinite orthogonal (which includes
Lorentz), and symplectic groups (Sec. 4). This generalizes the existing results of Villar et al. (2021)
and leverages the tensor equivariant theory Appleby et al. (1987); Jeffreys (1973); Roe Goodman
(2009) into a format useful for machine learning frameworks. On first reading and for those primarily
interested in practical applications, we suggest focusing on Corollary 1 in Section 3 from which all
our experiments follow.

As a proof of concept, we applied the resulting models to learning algorithms for the sparse vector
recovery problem (Section 5). Our learned algorithm outperforms state-of-the-art sum-of-squares
methods for this problem in several regimes with both synthetic data and an image denoising problem.
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2 DEFINITIONS

To simplify the exposition, we start by focusing on the case of the orthogonal group before extending
the result to the indefinite orthogonal and symplectic groups. We consider the orthogonal group O(d),
the isometries of Euclidean space Rd that fix the origin. It acts on vectors and pseudovectors v ∈ Rd

in the following way:

g · v = det(M(g))
1−p
2 M(g) v, (1)

where g ∈ O(d), M(g) ∈ Rd×d is the standard matrix representation of g (i.e. M(g)⊤ M(g) = Id,
where Id is the identity matrix), and p ∈ {−1,+1} is the parity of v. If p = +1 we obtain the
standard O(d) action on Rd vectors. If p = −1 we obtain the O(d) action on what in physics are
known as pseudovectors. For a common pseudovector, consider a rotating Ferris wheel with angular
velocity whose direction is given by the right-hand rule. A reflection of the wheel, which will have
det(M(g)) = −1 in (1), does not change the direction of rotation or, therefore, the direction of the
angular velocity.
Definition 1 (k(p)-tensors). We define the space of 1(p)-tensors to be Rd equipped with the action
O(d) defined by (1). If vi is a 1(pi)-tensor for i = 1, . . . , k, then a := v1 ⊗ . . .⊗ vk ∈ (Rd)⊗k is a
rank-1 k(p)-tensor, where p =

∏k
i=1 pi and the action of O(d) is the diagonal action:

g · (v1 ⊗ . . .⊗ vk) = (g · v1)⊗ . . .⊗ (g · vk) . (2)

This definition generalizes to higher rank k(p)-tensors by linearity (see (5) below). The space of
k(p)-tensors in d dimensions is denoted Tk

(
Rd, p

)
.

Remark 1. Note that the definition of k(p)-tensor includes the selection of the O(d)-action on the
tensor. In this way, if a is a k(+)-tensor, we can see a as a k(−)-tensor by redefining the action as
g · a = det (M(g)) (g · a), where on the left we have the action as a k(−)-tensor and on the right the
action as a k(+)-tensor.

Definition 2 (Einstein summation notation). Suppose that a is a k(p)-tensor. Let [a]i1,...,ik denote
the (i1, . . . , ik)-th entry of a, where i1, . . . , ik range from 1 to d. The Einstein summation notation is
used to represent tensor products1 where repeated indices are summed over. In each product, a given
index can appear either exactly once, in which case it appears in the result, or exactly twice, in which
case it is summed over and does not appear in the result.

For example, in Einstein summation notation, the product of two 2(+)-tensors (i.e., the matrix product
ab of two d× d matrices a and b) is written as

[a b]i,j = [a]i,ℓ [b]ℓ,j :=

d∑
ℓ=1

[a]i,ℓ [b]ℓ,j . (3)

Using Einstein summation notation, the action of g ∈ O(d) on rank-1 tensors can be extended to
general tensors by linearity by expressing b ∈ Tk

(
Rd, p

)
as a linear combination of (rank-1) standard

basis tensors ei1,...,ik = ei1 ⊗ · · · ⊗ eik , where [ei]i = 1 and [ei]j = 0 for i ̸= j

[g · b]i1,...,ik = [b]j1,...,jk [g · (ej1 ⊗ · · · ⊗ ejk)]i1,...,ik = [b]j1,...,jk [g · ej1 ]i1 · · · [g · ejk ]ik . (4)

Note that the action (1) on a k(p)-tensor b can be written as

[g · b]i1,...,ik = det(M(g))
1−p
2 [b]j1,...,jk [M(g)]i1,j1 · · · [M(g)]ik,jk (5)

for all g ∈ O(d). For example, a 2(+)-tensor has the transformation property [g · b]i,j =

[b]k,ℓ [M(g)]i,k [M(g)]j,ℓ, which, in normal matrix notation, is written as g · b = M(g) bM(g)⊤.

When multiple tensors are combined, and all their indices appear in the result, we refer to that as the
tensor product or outer product. When indices are summed over, we refer to that as the contraction or
scalar product. We will further focus on a specific case of multiple tensor contractions that we will
refer to as a k-contraction.

1We will identify vectors with co-vectors in the usual way and will not distinguish lower vs upper scripts.
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Definition 3 (Outer product of tensors). Given a ∈ Tk
(
Rd, p

)
and b ∈ Tk′

(
Rd, p′

)
, the outer product,

denoted a⊗ b, is a tensor in Tk+k′
(
Rd, p p′

)
defined as [a⊗ b]i1,...,ik+k′ = [a]i1,...,ik [b]ik+1,...,ik+k′ .

We write a⊗k to denote the outer product of a with itself k times and use the convention for k = 0
that a⊗0 ⊗ b = b.
Definition 4 (k-contraction). Given a tensor a ∈ T2k+k′

(
Rd, p

)
, the k-contraction of a, denoted

ιk(a), is the k′(p)-tensor defined as follows using Einstein summation:

[ιk(a)]j1,...,jk′ := [a]i1,...,ik,i1,...,ik,j1,...,jk′ . (6)

For instance, if a = u⊗ v ⊗ x⊗ y ⊗ z ∈ T4+1

(
Rd, p

)
then ι1(a) = ⟨u, x⟩⟨v, y⟩z.

Since k(p)-tensors are elements of the vector space (Rd)⊗k, tensor addition and scalar multiplication
are defined in the usual way. The final operation on tensors is the permutation of the indices.
Definition 5 (Permutations of tensor indices). Given a ∈ Tk

(
Rd, p

)
and permutation σ ∈ Sk, the

permutation of tensor indices of a by σ, denoted aσ , is defined by
[aσ]i1,...,ik := [a]iσ−1(1),...,iσ−1(k)

. (7)

Definition 6 (Invariant and equivariant functions). We say that f : Tk
(
Rd, p

)
→ Tk′

(
Rd, p′

)
is

O(d)-invariant if
f(g · a) = f(a), for all g ∈ O(d). (8)

We say that f : Tk
(
Rd, p

)
→ Tk′

(
Rd, p′

)
is O(d)-equivariant if

f(g · a) = g · f(a), for all g ∈ O(d). (9)

If f were instead a function with multiple inputs, then the same group element g would act on all
inputs simultaneously.
Definition 7 (Isotropic tensors). We say that a tensor a ∈ Tk

(
Rd, p

)
is O(d)-isotropic if g · a = a,

for all g ∈ O(d).

There are two special tensors, the Kronecker delta, and the Levi-Civita symbol. These tensors are
O(d)-isotropic and, as we will show in Section 3, we can construct all O(d)-isotropic tensors using
only Kronecker deltas and Levi-Civita symbols.
Definition 8 (Kronecker delta). The Kronecker delta, δ, is the O(d)-isotropic 2(+)-tensor such that
[δ]ij = 1 if i = j and 0 otherwise. When considered as a matrix, it is the identity matrix Id.
Definition 9 (Levi-Civita symbol). The Levi-Civita symbol, ϵ, in dimension d ≥ 2 is the O(d)-
isotropic d(−)-tensor such that [ϵ]i1,...,id = 0 if any two of the i1, . . . , id are equal, [ϵ]i1,...,id = +1 if
i1, . . . , id is an even permutation of 1, . . . , d, and [ϵ]i1,...,id = −1 if i1, . . . , id is an odd permutation
of 1, . . . , d. For example, when d = 2 this is simply the matrix

[
0 1
−1 0

]
.

3 O(d)-EQUIVARIANT POLYNOMIAL FUNCTIONS

In this section, we characterize O(d)-equivariant polynomial functions mapping multiple tensor
inputs to tensor outputs. This result generalizes the results of Villar et al. (2021) from 1(+)-tensors to
general k(p)-tensors in the case of polynomials for the group O(d). On first reading and for those
primarily interested in practical applications, we advise focusing on Example 1 and Corollary 1
below.

Each term in the theorem below should be viewed as combining r of the input tensors with the tensor
product, then mapping them to the appropriate output with a linear map. Since a linear map between
tensors can always be written as a tensor product followed by a sequence of contractions [Dimitrienko
(2013),Theorem 5.1], that is what we do with the new tensor cℓ1,...,ℓr . However, since the function is
also O(d)-equivariant, the tensor cℓ1,...,ℓr must be O(d)-isotropic. The theorem merely says that this
polynomial is enough to construct all the tensor equivariant polynomials.
Theorem 1. Let f :

∏n
i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be an O(d)-equivariant polynomial function

of degree at most R. Then we may write f as follows:

f(a1, . . . , an) =

R∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (10)
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where cℓ1,...,ℓr is an O(d)-isotropic (kℓ1,...,ℓr + k′)(pℓ1,...,ℓr p′)-tensor for kℓ1,...,ℓr =
∑r

q=1 kℓq and
pℓ1,...,ℓr =

∏r
q=1 pℓq .

Here is an example of Theorem 1 in action, expressing a given equivariant polynomial in terms of
invariant functions and tensors. A longer example appears in Appendix E.
Example 1. Let f : T1

(
Rd,+

)
→ T2

(
Rd,+

)
be an O(d)-equivariant polynomial of degree at most

2. By Theorem 1, we can write f in the form
f(a) = ι0

(
a⊗0 ⊗ c0

)
+ ι1

(
a⊗1 ⊗ c1

)
+ ι2

(
a⊗2 ⊗ c2

)
, (11)

where cr is an O(d)-isotropic (r + 2)(+)-tensor for r = 0, 1, 2. Lemma 1 (proven below) character-
izes such isotropic tensors cr: c0 = β0δ, c1 = 0 is trivial, and c2 is a linear combination of (δ⊗2)σ for
σ ∈ G4 = {σ1, σ2, σ3} where σ1 := (1, 2, 3, 4), σ2 = (1, 3, 2, 4), σ3 = (1, 3, 4, 2), see Appendix D.

Thus the final term ι2
(
a⊗2 ⊗ c2

)
is

ι2
(
a⊗2 ⊗

(
β1(δ

⊗2)σ1 + β2(δ
⊗2)σ2 + β3(δ

⊗2)σ3
))

= β1⟨a, a⟩+ β2a⊗ a+ β3a⊗ a, (12)

where the terms associated with β2 and β3 are the same due to the symmetry of a⊗2. We conclude
f(a) = β0δ + β1⟨a, a⟩δ + β2a⊗ a, (13)

for some scalars β0, β1, and β2.

While the sums in Lemma 1 are over the full symmetric group, in Example 1 we reduced the number
of terms by considering the symmetries of the summands. We develop this in detail in Appendix D.

The proof of Theorem 1 is given in Appendix B. The condition that cℓ1,...,ℓr is O(d)-isotropic is quite
restrictive; the following lemma says that all such tensors can be constructed from the Kronecker
delta δ (def. 8) and the Levi-Civita symbol (def. 9). This lemma, originally from Pastori, follows
from Jeffreys (1973).
Lemma 1 (Characterization of O(d)-isotropic k(p)-tensors). Suppose c ∈ Tk

(
Rd, p

)
is O(d)-

isotropic. Then the following holds:

Case p = +1: Assume p = +1. If k is even, then c can be written in the form

c =
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
, for any ασ ∈ R, (14)

Otherwise, if k is odd, then c = 0 is the zero tensor.

Case p = −1: Assume p = −1. If k − d is even and k ≥ d, then c can be written in the form

c =
∑
σ∈Sk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(15)

for any βσ ∈ R. Otherwise, if k − d is odd or k < d, then c = 0 is the zero tensor.

The result of Theorem 1 is a clean theoretical characterization of O(d)-equivariant polynomial
tensor functions with arbitrary order tensor inputs. However, computing large polynomials with all
possible O(d)-isotropic tensors is impractical. One option is considering low-degree polynomials
as in Example 2. Alternatively, in many applications we only need a function that has 1(+)-tensors
(i.e. vectors) as input and a k(+)-tensor as output, and the problem takes on a form more amenable to
computation.

The following corollary says that when the inputs of the O(d)-equivariant function are only vectors,
we can write the function as a linear combination where the basis elements are permutations of the
input vectors and Kronecker deltas, and the coefficients are scalar functions that only depend on the
pairwise inner products of the vectors. The proofs of this corollary and Lemma 1 are in Appendix C.
Corollary 1. Let f :

∏n
i=1 T1

(
Rd,+

)
→ Tk′

(
Rd,+

)
be an O(d)-equivariant polynomial function.

Then, we may write it as

f(v1, . . . , vn) =

⌊ k′
2 ⌋∑

t=0

∑
σ∈Sk′

∑
1≤J1≤...≤Jk′−2t≤n

qt,σ,J

(
(⟨vi, vj⟩)ni,j=1

)(
vJ1

⊗ . . .⊗ vJk′−2t
⊗ δ⊗t

)σ
,

(16)
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where J = (J1, . . . , Jk′−2t), and the function qt,σ,J depends on the tuple (t, σ, J) and is a polynomial
of all n2 possible inner products between the input vectors.

The second factor is a permutation of the outer product of t Kronecker deltas and k′ − 2t of the input
vectors v1, . . . , vn, possibly with repeats. The first sum is over the possible numbers of Kronecker
deltas 0 to ⌊k′

2 ⌋, where ⌊·⌋ is the floor function. The second sum is over the possible permutations
of the k′ axes, and the third sum is over choosing k′ − 2t vectors from v1 to vn, allowing repeated
vectors.
Remark 2. Note that Corollary 1 characterizes polynomial functions, but if we allow the qt,σ,J to be
more general (e.g. in the class of continuous or smooth functions), then we obtain a parameterization
of a larger class of O(d)-equivariant functions. In the experiments in Section 5, we set the qt,σ,J to
be learnable multi-layer perceptrons (MLPs). We are unsure if a characterization of this sort can be
stated for all continuous O(d)-equivariant functions. However, by the Stone–Weierstrass theorem any
continuous function can be approximated by a polynomial function to arbitrary accuracy on any fixed
compact set, so constructing an architecture that can represent equivariant polynomial functions is
sufficient to approximately represent equivariant continuous functions (see Yarotsky (2022)).
Remark 3. One interesting potential extension of Corollary 1 is to parameterize the polynomials
f that are simultaneously O(d)-equivariant and Sn-invariant, where Sn is the symmetric group of
order n acting by permuting the inputs v1, . . . , vn. Implementations of such models may be possible
by adapting techniques from DeepSets Zaheer et al. (2017) or graph neural networks Scarselli et al.
(2008). However, parameterizing all permutation invariant polynomial functions q may be as hard as
solving the graph isomorphism problem, which is currently intractable. Recent work gives an efficient
parameterization of a class of invariant functions that is almost separating and could potentially be
used to implement the q functions Blum-Smith et al. (2024).

4 GENERALIZATIONS TO OTHER GROUPS

The results regarding O(d)-equivariant tensor maps from Section 3 are a particular case of a more
general result involving algebraic groups. We work the full generalization in Appendix F where we
give all the details of the proofs.

Recall that we can define O(d) as follows:

O(d) := {g ∈ GL(Rd) | g⊤g = Id}, (17)

where I is the identity matrix. In other words, O(d) is the subgroup of linear transformations
preserving the Euclidean inner product. However, in some contexts, we might be interested in
preserving more general bilinear products on Rd, such as the Minkowski inner product

⟨u, v⟩s := u⊤Is,d−sv,

where Is,d−s :=

(
Is

−Id−s

)
, or, for d even, the symplectic product

⟨u, v⟩symp := u⊤Jdv

where Jd :=

(
Id/2

−Id/2

)
. The subgroups of linear maps preserving these bilinear products give

respectively the indefinite orthogonal group (which is the linear part of the Lorentz group when d = 4
and s ∈ {1, 3}) given by

O(s, d− s) := {g ∈ GL(Rd) | g⊤Is,d−sg = Is,d−s}, (18)

and, when d is even, the symplectic group given by

Sp(d) := {g ∈ GL(Rd) | g⊤Jdg = Jd}. (19)

For any of these groups G, we can consider the modules Tk(Rd, χ) := (Rd)⊗k, where χ : G → R∗

is an algebraic group homomorphism, where the action is given by the linear extension of

g · (v1 ⊗ · · · ⊗ vk) = χ(g)(g · v1)⊗ · · · ⊗ (g · vk). (20)

6
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When G = O(s, d− s), with s ̸= 0, d, we have four possible χ: χ+,+ being always equal to 1, χ+,−
being the sign of the determinant of the bottom-right (d− s)× (d− s) submatrix, χ−,+ being the
sign of the determinant of the top-left s× s submatrix, and χ−,− being the determinant of the matrix.
Hence, we can represent them by (p1, p2), where pi ∈ {−1,+1}. When G = Sp(d), we have that χ
can only be the trivial group-homomorphism. (It follows, for instance, from the representation theory
of simple Lie algebras from (Fulton & Harris, 2013, Part III) and a standard abelianization argument).

Additionally, we have G-equivariant contractions ιGk : T2k+k′(Rd, χ) → T2k+k′(Rd, χ) given by

ιO
(s,d−s)

k (a) := [a]i1,...,ik,j1,...,jk,ℓ1,...,ℓk′ [Is,d−s]i1,j1 · · · [Is,d−s]ik,jk (21)

and
ι
Sp(d)
k (a) := [a]i1,...,ik,j1,...,jk,ℓ1,...,ℓk′ [Jd]i1,j1 · · · [Jd]ik,jk . (22)

Under these notations, we can state the generalization of Theorem 1 as follows. Recall that an entire
function is a function that is analytic and whose Taylor series converges globally at any point.
Theorem 2. Let G be either O(s, d − s) or Sp(d) and f :

∏n
i=1 Tki

(
Rd, χi

)
→ Tk′

(
Rd, χ′) be a

G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (23)

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor, i.e., a tensor in

Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) invariant under the action of G; for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

Using the above theorem and an analogous version of Lemma 1 ((Roe Goodman, 2009, Theorem
5.3.3), see Proposition 7 in Appendix F), we can then prove the following corollary, which generalizes
Corollary 1.
Corollary 2. Let G be either O(s, d− s) or Sp(d) and f :

∏n
i=1 T1

(
Rd, χ0

)
→ Tk

(
Rd, χ0

)
, with

χ0 the constant map to 1, be a G-equivariant entire function. Then we may write f as follows:

f(v1, . . . , vn) =

⌊ k
2 ⌋∑

t=0

∑
σ∈Sk

∑
1≤J1≤···≤Jk−2t≤n

qt,σ,J

(
(⟨vi, vj⟩G)ni,j=1

) (
vJ1 ⊗ . . .⊗ vJk−2t

⊗ θ⊗t
G

)σ
(24)

where ⟨ · , · ⟩G = ⟨ · , · ⟩s and θG = [Is,d−s]i,j if G = O(s, d − s), and ⟨ · , · ⟩G = ⟨ · , · ⟩symp and
θG = [Jd]i,j if G = Sp(d), and qt,σ,J is an entire function that depends on the tuple (t, σ, J) and
whose inputs are all possible inner products between the input vectors and whose output is a scalar.

5 NUMERICAL EXPERIMENTS

With the preceding theory in place, we can define a machine learning model to learn a new algorithm
of interest. The sum of squares solution to the sparse vector recovery problem reduces to finding
the optimal O(d)-equivariant function with vector inputs and a 2(+)-tensor output, and the form of
this function is given by Corollary 1. The learned algorithms outperform state-of-the-art methods
for this problem in several regimes, and operate in settings where theoretical guarantees have yet
to be developed. As such, they may point towards conjectures for more general classes of spectral
algorithms. The code is open-source and will be released after anonymous review.

5.1 PROBLEM SETUP

We consider the problem of finding a planted sparse vector in a linear subspace. This problem was
introduced by Spielman, Wang, and Wright in Spielman et al. (2012) in the context of dictionary
learning. It was further studied in Hopkins et al. (2016) and Mao & Wein (2022).
Problem 1. Let v ∈ Rn be an (approximately) sparse vector of unit length. Construct v0, . . . , vd−1 ∈
Rn from v using some noise strategy. We consider S to be an n× d matrix whose columns form an
orthonormal basis of span{v0, . . . , vd−1}. The problem is to recover v from S.

7
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The methods developed in Hopkins et al. (2016) and Mao & Wein (2022) assume that for sparsity
parameter ε ≤ 1/3, ∥v∥44 ≥ 1

εn and that v0 = v and v1, . . . , vd−1 ∼ N
(
0n,

1
n In
)
. We will violate

some or all of these assumptions in our experiments on synthetic data and MNIST digits.

In synthetic data experiments, we sample v using one of four methods: Accept/Reject (AR), Bernoulli-
Gaussian (BG), Corrected Bernoulli-Gaussian (CBG), and Bernoulli-Rademacher (BR). Vectors
sampled using AR are rejected if they do not satisfy ∥v∥44 ≥ 1

εn , while vectors sampled by the
other methods only satisfy that bound in expectation (Appendix I.1). We set v0 = v and sample
v1, . . . , vd−1 ∼ N (0n,Σ) where Σ can be the identity, a non-identity diagonal covariance, or a
random covariance from a Wishart distribution (Appendix I.2). We then get a random orthonormal
basis of v0, . . . , vd−1 (Appendix I.4).

For experiments on more realistic data, we turn to MNIST. Since the background of each image
consists of 0 values and the digit of nonzero values is on average 20% of the pixels, we can consider
each MNIST image as our sparse target vector v ∈ Rn, where n = 282. We construct a subspace
from several noisy copies, and Problem 1 is equivalent to recovering the original, denoised image
from the noisy copies. We stress that this is an illustrative example of the sparse vector recovery
problem; we make no claims that this is a state-of-the-art method for the image denoising problem in
general.

To construct v0, . . . , vd−1 for the MNIST data, we use four different noise strategies. In the first
noise scheme, the Random Subspace (RND), we let v0 = v and v1, . . . , vd−1 ∼ N (0n, In) so that
this method is directly comparable to the synthetic data experiments above. In the next three noise
schemes, each vi, including v0, is a noisy copy of v so that v is not necessarily in the subspace of
v0, . . . , vd−1. We use additive Gaussian noise (GAU), Bernoulli pixel noise (BER), and a random
block mask (BLK). See Figure 1 for a depiction of the noise and I.3 for further details.

5.2 MODELS

We consider a matrix S ∈ Rn×d whose columns are an orthonormal basis for span{v0, . . . , vd−1}
and denote its rows by a⊤1 , . . . a

⊤
n ∈ Rd. Let Sd be the space of d × d symmetric matrices. We

consider h : (Rd)n → Sd and let λvec : Sd → Rd be the function that takes a symmetric matrix as
input and outputs a normalized eigenvector corresponding to the top eigenvalue. Then, the estimate
of the planted sparse vector will be given by

v̂ = S λvec(h(a1, . . . , an)) , (25)

for an appropriate h that can be learned from data or derived by other means.

Since S may be any orthogonal basis of span{v0, . . . , vd−1}, we would like (25) to be invariant to
O(d). It is sufficient for h to be O(d)-equivariant to guarantee this invariance – see Appendix G.

The models we consider differ in their choice of function h. In Hopkins et al. (2016) (SOS-I), the
function h is

h(a1, . . . , an) :=

n∑
i=1

(
∥ai∥22 −

d

n

)
aia

⊤
i , (26)

and in Mao & Wein (2022) (SOS-II) h is defined as

h(a1, . . . , an) :=

n∑
i=1

(
∥ai∥22 −

d− 1

n

)
aia

⊤
i − 3

n
In . (27)

Both models are proven to recover the planted sparse vector under different sampling assumptions
described in Appendix I.1. Note that equations (26) and (27) are O(d)-equivariant and a special
case of Corollary 1 since they define a sum of outer products of the inputs with coefficients that are
polynomial functions of inner products of the inputs.

In comparison to these fixed methods, we propose two machine learning-based models defined using
the results of Section 3. The first model, SparseVectorHunter (SVH), will parameterize

h(a1, . . . , an) =

 n∑
i=1

n∑
j=i

qi,j

(
(⟨aℓ, am⟩)nℓ,m=1

)1
2

(
aia

⊤
j + aja

⊤
i

)+ qI

(
(⟨aℓ, am⟩)nℓ,m=1

)
Id ,

(28)
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Figure 1: MNIST target v (left), noise inputs from different schemes per row (middle), and the
corresponding model predictions v̂ (right): Our methods (SVH-Diag, SVH) outperform existing
sum-of-squares methods (SOS-I, SOS-II) and the non-equivariant baseline (BL) across all noise
schemes including Random Subspace (RND), Gaussian noise (GAU), Bernoulli noise (BER), and
Block Noise (BLK).

and the second model, SparseVectorHunterDiagonal (SVH-Diag), will parameterize

h(a1, . . . , an) =

[
n∑
i

qi

((
∥aℓ∥22

)n
ℓ=1

)
aia

⊤
i

]
+ qI

((
∥aℓ∥22

)n
ℓ=1

)
Id , (29)

where qi,j , qi, and qI are O(d)-invariant scalar functions. The form of equation (28) follows from
Corollary 1 as shown in Appendix G. By averaging the general form of a matrix valued O(d)-
equivariant function with its transpose, we obtain the form of any O(d)-equivariant polynomial
function that outputs a symmetric matrix. Equation (29) follows the scheme of (28) but only includes
inner and outer products of the same vectors to be more directly comparable to (26) and (27).
Corollary 1 specifies that qi,j , qi, and qI should be polynomials, but we will approximate them with
dense neural networks. The networks themselves are multi-layer perceptrons (MLP) with 2 hidden
layers, width of 128, and ReLU activation functions.

To demonstrate the benefits of equivariance, we also implement a non-equivariant baseline model
(BL) which takes as input the nd components of S and outputs the d+

(
d
2

)
components of a symmetric

d× d matrix. This is implemented as a multi-layer perceptron with 2 hidden layers, width of 128,
and ReLU activation functions to match the architecture of the SVH. For training details on all these
models, see Appendix I.5.

5.3 RESULTS

The synthetic data results on the test data are displayed in Table 1. The SOS-I and SOS-II methods
perform best when their assumptions are met, such as identity covariance for the noise vectors, but
perform worse than the SVH models when using Random or Diagonal covariance. One exception to
this trend is the Bernoulli-Gaussian sampling for the sparse vectors. This is likely because if v ∼ BG,
then E

[
∥v∥44

]
= 3

εn (Appendix I.1). This is significantly above the required sparsity condition of

∥v∥44 ≥ 1
εn , so the vectors are more sparse and therefore easier to estimate. By contrast, the Corrected

Bernoulli-Gaussian has E
[
∥v∥44

]
= 1

εn (Appendix I.1) and we once again see that the learned SVH
models perform better when we can’t rely on stringent data assumptions.

This story is even more pronounced in the MNIST data experiments, shown in Figure 1 and Table 2.
The learned SVH models outperform the SOS methods across every noise type for both d = 10 and
d = 20. The Gaussian, Bernoulli, and Block noise schemes break almost all of the assumptions of the
SOS methods, including the fact that the sparse vector is not explicitly in the subspace v0, . . . , vd−1.
The block noise scheme, essentially an image inpainting task, is particularly egregious because not
only is the noise in nearby pixels highly correlated, the noise itself is sparse in a sense. The learned
models are able to adapt to all these new settings and perform well.
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sampling Σ SOS-I SOS-II BL SVH-Diag SVH

Random 0.610 ± 0.009 0.610 ± 0.009 0.241 ± 0.019 0.493 ± 0.005 0.938 ± 0.002
A/R Diagonal 0.448 ± 0.012 0.448 ± 0.012 0.196 ± 0.011 0.589 ± 0.026 0.465 ± 0.027

Identity 0.606 ± 0.014 0.606 ± 0.014 0.196 ± 0.008 0.351 ± 0.065 0.190 ± 0.008

Random 0.962 ± 0.002 0.962 ± 0.002 0.242 ± 0.006 0.917 ± 0.004 0.937 ± 0.002
BG Diagonal 0.949 ± 0.005 0.949 ± 0.005 0.205 ± 0.013 0.914 ± 0.006 0.463 ± 0.018

Identity 0.962 ± 0.002 0.962 ± 0.002 0.196 ± 0.009 0.908 ± 0.006 0.342 ± 0.043

Random 0.412 ± 0.017 0.412 ± 0.017 0.239 ± 0.012 0.372 ± 0.011 0.935 ± 0.002
CBG Diagonal 0.288 ± 0.018 0.288 ± 0.018 0.206 ± 0.003 0.550 ± 0.026 0.460 ± 0.022

Identity 0.412 ± 0.011 0.412 ± 0.011 0.198 ± 0.005 0.239 ± 0.025 0.197 ± 0.011

Random 0.526 ± 0.020 0.526 ± 0.020 0.923 ± 0.004 0.437 ± 0.034 0.957 ± 0.001
BR Diagonal 0.334 ± 0.024 0.334 ± 0.024 0.864 ± 0.005 0.588 ± 0.011 0.903 ± 0.004

Identity 0.524 ± 0.010 0.524 ± 0.010 0.845 ± 0.006 0.317 ± 0.046 0.889 ± 0.003

Table 1: Test error comparison on synthetic data averaged over 5 trials (n = 100, d = 5, ϵ = 0.25)
with the standard deviation given by ±0.xxx. The metric ⟨v, v̂⟩2 ranges from 0 to 1 with 1 indicating
the estimate v̂ identical to the true v. For each row, the best value is bolded.

Noise Type SOS-I SOS-II BL SVH-Diag SVH

d = 10

Random 0.966 ± 0.003 0.966 ± 0.003 0.509 ± 0.086 1.000 ± 0.000 0.993 ± 0.000
Gaussian 0.776 ± 0.005 0.776 ± 0.005 0.632 ± 0.009 0.835 ± 0.001 0.829 ± 0.001
Bernoulli 0.091 ± 0.006 0.091 ± 0.006 0.680 ± 0.004 0.745 ± 0.001 0.743 ± 0.001

Block 0.096 ± 0.012 0.096 ± 0.012 0.623 ± 0.020 0.451 ± 0.014 0.872 ± 0.006

d = 20

Random 0.886 ± 0.004 0.886 ± 0.004 0.061 ± 0.013 1.000 ± 0.000 0.991 ± 0.000
Gaussian 0.749 ± 0.005 0.749 ± 0.005 0.448 ± 0.034 0.910 ± 0.000 0.903 ± 0.000
Bernoulli 0.031 ± 0.004 0.031 ± 0.004 0.635 ± 0.007 0.774 ± 0.000 0.773 ± 0.000

Block 0.069 ± 0.006 0.069 ± 0.006 0.556 ± 0.023 0.440 ± 0.026 0.917 ± 0.004

Table 2: MNIST test performance averaged over 5 trials with the standard deviation ±0.xxx. The
metric is ⟨v0, v̂⟩2, ranging from 0 to 1, with values closer to 1 meaning that the vectors are closer. For
each row, the best value is bolded.

Finally, we see that in all experiments, the baseline learned model generalizes poorly, despite doing
well on the training data (Table 4 in Appendix). This is consistent with the claim that enforcing
symmetries improves generalization performance Bietti et al. (2021); Petrache & Trivedi (2024);
Elesedy (2021a).

6 DISCUSSION

This paper provides a characterization of polynomial functions from multiple tensor inputs to tensor
outputs that are equivariant with respect to the diagonal action by classical Lie groups, including the
orthogonal group, the symplectic group, and the Lorentz group.

Our main goal behind this characterization is to define equivariant machine learning models. We
applied the resulting models to learning algorithms for the sparse vector recovery problem. In the
spirit of the neural algorithmic reasoning framework Veličković & Blundell (2021), the proposed
machine learning methods are “aligned” to known algorithms with provable performance guarantees.
The learned algorithms outperform state-of-the-art algorithms for this problem in several regimes,
including those where there are no known algorithms with theoretical guarantees.

The application of our characterization is especially useful when the input consists of 1(+)-tensors,
and the output is a k(+)-tensor. For these problems, a parameterization based on invariant scalars,
similar to Villar et al. (2021), is available and easy to implement. For problems where the input
tensors have higher order, the implementation would be less efficient. We also assume no additional
structure on the relationship between the input tensors; in those situations, other techniques may be
required.
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A BASIC PROPERTIES OF O(d) ACTIONS ON TENSORS

In this section, we will show that the basic operations are O(d)-equivariant and linear by direct
computation. We do so explicitly by performing routine computations. However, the universal
property of tensor products, which we use in Appendix F, would give immediate proofs of these
statements.

Proposition 1. The outer product is a O(d)-equivariant bilinear map. In other words, for g ∈ O(d),
a, a′ ∈ Tk

(
Rd, p

)
, b, b′ ∈ Tk′

(
Rd, p′

)
and α, β ∈ R, we have g · (a ⊗ b) = (g · a) ⊗ (g · b),

(αa+ βa′)⊗ b = α(a⊗ b) + β(a′ ⊗ b), and a⊗ (αb+ βb′) = α(a⊗ b) + β(a⊗ b′). In particular,
if c ∈ Tk′

(
Rd, p′

)
is an O(d)-isotropic tensor, then the function mapping

Tk
(
Rd, p

)
→ Tk+k′

(
Rd, pp′

)
by a 7→ a⊗ c (30)

is an O(d)-equivariant linear map.

Proposition 2. The k-contraction ιk : T2k+k′
(
Rd, p

)
→ Tk′

(
Rd, p

)
, see Definition 4, is an O(d)-

equivariant linear map.

Proposition 3. For fixed σ ∈ Sk, the tensor index permutation mapping Tk
(
Rd, p

)
→ Tk

(
Rd, p

)
by

a 7→ aσ is an O(d)-equivariant linear map.

Proof of Proposition 1. First, we establish equivariance. Let a ∈ Tk
(
Rd, p

)
, b ∈ Tk′

(
Rd, p′

)
, and

g ∈ O(d). We have

[g · (a⊗ b)]j1,...,jk+k′

= det(M(g))
1−p p′

2 [(a⊗ b)]i1,...,ik+k′ [M(g)]j1,i1 · · · [M(g)]jk+k′ ,ik+k′

= det(M(g))
1−p
2 det(M(g))

1−p′
2 [a]i1,...,ik [b]ik+1,...,ik+k′ [M(g)]j1,i1 · · ·

· · · [M(g)]jk,ik [M(g)]jk+1,ik+1
· · · [M(g)]jk+k′ ,ik+k′

=
(
det(M(g))

1−p
2 [a]i1,...,ik [M(g)]j1,i1 · · · [M(g)]jk,ik

)
(
det(M(g))

1−p′
2 [b]ik+1,...,ik+k′ [M(g)]jk+1,ik+1

· · · [M(g)]jk+k′ ,ik+k′

)
= [g · a]j1,...,jk [g · b]jk+1,...,jk+k′

= [g · a⊗ g · b]j1,...,jk+k′ ,

where the second equality uses the fact that

det(M(g))
1−p p′

2 = det(M(g))
1−p
2 det(M(g))

1−p′
2 ,

which is straightforward to verify via a case analysis over possible parameter values (i.e., p, p′ ∈
{+1,−1} and det(M(g)) ∈ {+1,−1}).

Next, we verify linearity. Let a, a′ ∈ Tk
(
Rd, p

)
, b ∈ Tk′

(
Rd, p′

)
, and α, β ∈ R. Then,

[(αa+ βa′)⊗ b]i1,...,ik+k′ = [(αa+ βa′)]i1,...,ik [b]ik+1,...,ik+k′

= α[a]i1,...,ik [b]ik+1,...,ik+k′ + β[a′]i1,...,ik [b]ik+1,...,ik+k′

= α[a⊗ b]i1,...,ik+k′ + β[a′ ⊗ b]i1,...,ik+k′ .

The linearity in the second argument follows in the same manner.

Finally, (30) follows immediately from the fact that the bilinear O(d)-equivariance.
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Proof of Proposition 2. To establish equivariance, let a ∈ T2k+k′
(
Rd, p

)
and let g ∈ O(d). Then,

[g · ιk(a)]j1,...,jk′

= det(M(g))
1−p
2 [a]ℓ1,...,ℓk,ℓ1,...,ℓk,i1,...,ik′ [M(g)]j1,i1 · · · [M(g)]jk′ ,ik′

= det(M(g))
1−p
2 [a]ℓ1,...,ℓ2k,i1,...,ik′ [δ]ℓ1,ℓk+1

· · · [δ]ℓk,ℓ2k [M(g)]j1,i1 · · · [M(g)]jk′ ,ik′

= det(M(g))
1−p
2 [a]ℓ1,...,ℓ2k,i1,...,ik′ [M(g)]ℓ1,m1 [M(g)]ℓk+1,m1 · · ·

· · · [M(g)]ℓk,mk
[M(g)]ℓ2k,mk

[M(g)]j1,i1 · · · [M(g)]jk′ ,ik′

= [g · a]m1,...,mk,m1,...,mk,j1,...,jk′

= [ιk(g · a)]j1,...,jk′ ,

where the third equality uses the fact that δ = M(g)M(g)⊤.

Next, to establish linearity, let a, b ∈ T2k+k′
(
Rd, p

)
and let α, β ∈ R. Then,

[ιk(αa+ βb)]j1,...,jk′ = [αa+ βb]i1,...,ik,i1,...,ik,j1,...,jk′

= α[a]i1,...,ik,i1,...,ik,j1,...,jk′ + β[b]i1,...,ik,i1,...,ik,j1,...,jk′

= α[ιk(a)]j1,...,jk′ + β[ιk(b)]j1,...,jk′ .

This completes the proof.

Proof of Proposition 3. Fix σ ∈ Sk. To establish equivariance, let a ∈ Tk
(
Rd, p

)
and g ∈ O(d).

Then,

[g · (aσ)]j1,...,jk = det(M(g))
1−p
2 [aσ]i1,...,ik [M(g)]j1,i1 · · · [M(g)]jk,ik

= det(M(g))
1−p
2 [a]iσ−1(1),...,iσ−1(k)

[M(g)]j1,i1 · · · [M(g)]jk,ik

= det(M(g))
1−p
2 [a]iσ−1(1),...,iσ−1(k)

[M(g)]jσ−1(1),iσ−1(1)
· · · [M(g)]jσ−1(k),iσ−1(k)

= [g · a]jσ−1(1),...,jσ−1(k)

= [(g · a)σ]j1,...,jk ,

where the third equality holds since we are merely reordering the M(g) components—which is
allowed because they are scalars.

To show linearity, let a, b ∈ Tk
(
Rd, p

)
and α, β ∈ R. We have

[(αa+ βb)
σ
]i1,...,ik = [αa+ βb]iσ−1(1),...,iσ−1(k)

= α[a]iσ−1(1),...,iσ−1(k)
+ β[b]iσ−1(1),...,iσ−1(k)

= α[aσ]i1,...,ik + β[bσ]i1,...,ik .

B PROOF OF THEOREM 1

The main idea of the proof of Theorem 1 is to write out the polynomial f in a way that takes
advantage of the tensor operations of Section 2, then show that each term must be O(d)-equivariant
(Lemmas 2 and 3). We then use a group averaging argument to show that cℓ1,...,ℓr can be written as
an O(d)-isotropic tensor. We state the lemmas, prove the theorem, then prove the lemmas.

Lemma 2. Let f :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be a polynomial map of degree R, and write

f(a1, . . . , an) =

R∑
r=0

fr(a1, . . . , an),

where fr :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
is homogeneous degree r polynomial. If f is O(d)-

equivariant, then each fr is O(d)-equivariant.
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Lemma 3. Let fr :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be a homogeneous polynomial of degree r.

Then, we can write fr as

fr(a1, . . . , an) =
∑

1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (31)

where fℓ1,...,ℓr :
∏r

i=1 Tkℓi

(
Rd, pℓi

)
→ Tk′

(
Rd, p′

)
is the composition of the map

r∏
i=1

Tkℓi

(
Rd, pℓi

)
→ T∑r

i=1 kℓi

(
Rd,

r∏
i=1

pℓi

)
(aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ . . .⊗ aℓr

with a linear map T∑r
i=1 kℓi

(
Rd,

∏r
i=1 pℓi

)
→ Tk′

(
Rd, p′

)
.

Moreover, if fr is O(d)-equivariant, then so are the fℓ1,...,ℓr .
Remark 4. Note that Lemma 3 is nothing more than the decomposition of fr as a sum of multiho-
mogeneous maps in the inputs a1, . . . , an.

Proof of Theorem 1. Combining Lemmas 2 and 3, we can write f as follows:

f(a1, . . . , an) =

R∑
r=0

∑
1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (32)

where the fℓ1,...,ℓr is the composition of a linear map Tkℓ1,...,ℓr

(
Rd, pℓ1,...,ℓr

)
→ Tk′

(
Rd, p′

)
with

the map (a1, . . . , aℓ) 7→ aℓ1 ⊗ · · · ⊗ aℓr . Recall that kℓ1,...,ℓr =
∑r

q=1 kℓq and pℓ1,...,ℓr =
∏r

q=1 pℓq .
Moreover, by the lemmas, each fℓ1,...,ℓr is O(d)-equivariant. Hence, without loss of generality, it is
enough to prove the theorem in the special case

f(a1, . . . , an) = λ(aℓ1 ⊗ · · · ⊗ aℓr ), (33)

where λ : T∑r
i=1 kℓi

(
Rd,

∏r
i=1 pℓi

)
→ Tk′

(
Rd, p′

)
is linear.

Now, in coordinates, we can write this map as

[f(a1, . . . , an)]j1,...,jk′ = λi1,...,ikℓ1,...,ℓr
,j1,...,jk′ [aℓ1 ⊗ · · · ⊗ aℓr ]i1,...,ikℓ1,...,ℓr

. (34)

Consider now the tensor c ∈ Tkℓ1,...,ℓr+k′
(
Rd, pℓ1,...,ℓrp

′) given by

[c]i1,...,ikℓ1,...,ℓr
+k′ = λi1,...,ikℓ1,...,ℓr

,ikℓ1,...,ℓr
+1,...,ikℓ1,...,ℓr

+k′ (35)

Then we have that

[f(a1, . . . , an)]j1,...,jk′ = [c]i1,...,ikℓ1,...,ℓr
,j1,...,jk′ [aℓ1 ⊗ · · · ⊗ aℓr ]i1,...,ikℓ1,...,ℓr

(36)

= [aℓ1 ⊗ · · · ⊗ aℓr ⊗ c]i1,...,ikℓ1,...,ℓr
,i1,...,ikℓ1,...,ℓr

,j1,...,jk′ (37)

= [ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c)]j1,...,jk′ , (38)

after using the definition of k-contraction. Hence

f(a1, . . . , an) = ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c). (39)

Since f is O(d)-equivariant, we have that for all g ∈ O(d),

f(a1, . . . , an) = ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ g · c). (40)

To see this, we argue as follows:

f(a1, . . . , an)

= f(g · (g−1 · a1), . . . , g · (g−1 · an))
= g · f((g−1 · a1), . . . , (g−1 · an)) (f O(d)-equivariant)

= g · ιkℓ1,...,ℓr

(
(g−1 · aℓ1)⊗ · · · ⊗ (g−1 · aℓr )⊗ c

)
= ιkℓ1,...,ℓr

(
g · (g−1 · aℓ1)⊗ · · · ⊗ g · (g−1 · aℓr )⊗ (g · c)

)
(ιkℓ1,...,ℓr

O(d)-equivariant)

= ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · c)).
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Hence, by taking the expectation with respect to the Haar probability measure of O(d) and linearity
of contractions, we have that

f(a1, . . . , an) = ιkℓ1,...,ℓr

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗

(
E

g∈O(d)
g · c

))
, (41)

where Eg∈O(d) is the expectation with respect the Haar probability measure of O(d). This holds
because

f(a1, . . . , an) = E
g∈O(d)

f(a1, . . . , an)

= E
g∈O(d)

ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · c))

= ιkℓ1,...,ℓr

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗

(
E

g∈O(d)
g · c

))
.

Now, Eg∈O(d) g · c is an O(d)-isotropic tensor. Hence, we have shown that we can write f in the
desired form.

Proof of Lemma 2. Let t ∈ R, since each fr is homogeneous of degree r, we have

f(t a1, . . . , t an) =

R∑
r=0

fr(t a1, . . . , t an) =

R∑
r=1

trfr(a1, . . . , an).

Let now g ∈ O(d), then, by equivariance of f , we have

R∑
r=0

tr fr(g · a1, . . . , g · an) =
R∑

r=0

tr g · fr(a1, . . . , an), (42)

since
R∑

r=0

tr fr(g · a1, . . . , g · an) = f(t (g · a1), . . . , t (g · an))

= f(g · t a1, . . . , g · t an)
= g · f(t a1, . . . , t an)

= g ·
R∑

r=0

trfr(a1, . . . , an)

=

R∑
r=0

tr g · fr(a1, . . . , an).

Hence, for all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈
∏n

i=1 Tki

(
Rd, pi

)
, we have that

0 =

R∑
r=0

tr (g · fr(a1, . . . , an)− fr(g · a1, . . . , g · an)). (43)

Now, the only way in which the univariate polynomial in t of degree R is identically zero is if it is
the zero polynomial (cf. (Cox et al., 2015, Chapter 1 §1 Proposition 5)). Therefore for all r ∈ N,
g ∈ O(d) and (a1, . . . , an) ∈

∏n
i=1 Tki

(
Rd, pi

)
,

fr(g · a1, . . . , g · an) = g · fr(a1, . . . , an), (44)

i.e., for each r, fr is O(d)-equivariant, as we wanted to show.

Proof of Lemma 3. First, we will show that if the decomposition exists, each summand is equivariant.
Then, we will show that the decomposition exists.
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Let t1, . . . , tn ∈ R. Then, by the linearity, we have that

fr(t1 a1, . . . , tn an) =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (45)

since

fr(t1 a1, . . . , tn an) =
∑

1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (tℓ1 aℓ1 , . . . , tℓr aℓr )

=
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr ) .

Now, let g ∈ O(d). Then, by the equivariance of fr, we have∑
1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (g·aℓ1 , . . . , g·aℓr ) =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr g·fℓ1,...,ℓr (aℓ1 , . . . , aℓr ),

(46)
since ∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr )

= fr(t1 (g · a1), . . . , tn (g · an))
= fr(g · t1 a1, . . . , g · tn an)
= g · fr(t1 a1, . . . , tn an)

= g ·

 ∑
1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr )


=

∑
1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr ).

Hence, for all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈
∏n

i=1 Tki

(
Rd, pi

)
, we have that

0 =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr [g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr )− fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr )]i1,...,ik′
.

(47)
Now, each of these is a polynomial in t1, . . . , tn that vanishes on Rn. Moreover, note that no two
tℓ1 · · · tℓr give the same monomial. Hence, by (Cox et al., 2015, Chapter 1 §1 Proposition 5), all these
polynomials are the zero polynomial, i.e., their coefficients are zero. In this way, we conclude that for
each fℓ1,...,ℓr , and all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈

∏n
i=1 Tki

(
Rd, pi

)
,

fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr ) = g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (48)

i.e., each fℓ1,...,ℓr is O(d)-equivariant.

Now, we show how to obtain the decomposition. Recall that fr is homogeneous of degree r. Therefore
each entry of fr(a1, . . . , an) is an homogeneous polynomial of degree r in the [ai]j1,...,jki

, i.e., a
linear combination of products of the form

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
,

where, without loss of generality, we can assume that ℓ1 ≤ · · · ≤ ℓq . Hence, in coordinates, we have

[fr(a1, . . . , an)]i1,...,ik′

=
∑

1≤ℓ1≤···≤ℓr≤n

λℓ1,...,ℓr;i1,...,ik′ ;j1,1,...,j1,kℓ1
,...,jr,1,...,jr,kℓr

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
(49)
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And so, we can consider the map fℓ1,...,ℓr given in coordinates by

[fℓ1,...,ℓr (aℓ1 , . . . , aℓr )]i1,...,ik′ := λℓ1,...,ℓr;i1,...,ik′ ;j1,1,...,j1,kℓ1
,...,jr,1,...,jr,kℓr

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
,

(50)
which, by construction, is the composition of the linear map given by

b 7→ λℓ1,...,ℓr;i1,...,ik′ ;j1,...,j∑r
q=1 kℓq

[b]j1,...,j∑r
q=1 kℓq

,

in coordinates, and (aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ · · · ⊗ aℓr . Hence the desired decomposition of fr has
been obtained.

C PROOF OF COROLLARY 1

In this section, we will prove Corollary 1 using Lemma 1, which we prove afterward.

Proof of Corollary 1. By Theorem 1 and Lemma 1, we can assume, without loss of generality, it
suffices to consider the special case where f consists of a single term

f(v1, . . . , vn) = ιr

(
vℓ1 ⊗ · · · ⊗ vℓr ⊗

(
δ⊗

r+k′
2

)σ)
, (51)

for some σ ∈ Sr+k′ and r + k′ even. To simplify notation, set t := r+k′

2 .

Now, note that
δ = ei ⊗ ei,

where {e1, . . . , ed} is the canonical basis of Rd. Hence we get

f(v1, . . . , vn) = ιr(vℓ1 ⊗ · · · ⊗ vℓr ⊗ (ei1 ⊗ ei1 ⊗ · · · ⊗ eit ⊗ eit)
σ
) (52)

Let’s write
(ei1 ⊗ ei1 ⊗ · · · ⊗ eit ⊗ eit)

σ
= ej1 ⊗ · · · ⊗ ej2t

where each (j1, . . . , j2t) is some permutation of (i1, i1, . . . , it, it) and so, by Einstein notation, we
are still adding over repeated indexes. Then we have that

f(v1, . . . , vn) = ⟨vℓ1 , ej1⟩ · · · ⟨vℓr , ejr ⟩ejr+1 ⊗ · · · ⊗ ej2t . (53)

Now, we can freely rearrange the ⟨vℓ, ej⟩ as they are scalars. There are three cases for each of the
original indices iq: (a) eiq appears in an inner product twice, (b) eiq appears in an inner product once,
or (c) eiq does not appear in an inner product.

In the case (a), we will get
⟨vℓ, ei⟩⟨vℓ′ , ei⟩ = ⟨vℓ, vℓ′⟩.

In the case (b), we will get
⟨vℓ, ei⟩ei = vℓ.

And, in the case (c), we will get
ei ⊗ ei = δ.

Now, assume that we have α of the case (a), β of the case (b) and γ of the case (c). By permuting
the iq, which does not change the result, we can write for some permutation σ̃ ∈ Sβ+γ and some
permutation J1, . . . , Jr some permutation of ℓ1, . . . , ℓr that

f(v1, . . . , vn) = ⟨vJ1 , ei1⟩⟨vJ2 , ei1⟩ · · · ⟨vJ2α−1 , eiα⟩⟨vJ2α , eiα⟩(
⟨vJ2α+1

, eiα+1
⟩eiα+1

⊗ · · · ⊗ ⟨vJ2α+β
, eiα+β

⟩eiα+β

⊗eiα+β+1
⊗ eiα+β+1

⊗ · · · ⊗ eiα+β+γ
⊗ eiα+β+γ

)σ̃
= ⟨vJ1 , vJ2⟩ · · · ⟨vJ2α−1 , vJ2α⟩

(
vJ2α+1 ⊗ · · · ⊗ v2α+β ⊗ δ⊗γ

)σ̃
.

Hence, the desired claim follows, and we finish the proof.
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Proof of Lemma 1. We will prove each case separately. However, note that no matter the value of p, an
O(d)-isotropic tensor is always an SO(d)-isotropic tensor since det(M(g)) = 1 for all g ∈ SO(d).
Now, by (Jeffreys, 1973, Theorem §2) (cf. (Appleby et al., 1987, Eq. (4.10))), any SO(d)-isotropic
tensor z can be written as a linear combination of the form

z =
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
+ βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
, (54)

where δ is the Kronecker delta (Definition 8), and ϵ is the Levi-Civita symbol (Definition 9), with
the convention that the coefficients ασ and βσ are zero when the expressions δ⊗

k
2 and δ⊗

k−d
2 do not

make sense. More precisely, the ασ = 0 if k is odd, and the βσ = 0 if k − d is odd.

Note that under the SO(d)-action, we don’t need to worry about the parity, and so both δ and ϵ are
SO(d)-invariant. However, for the O(d)-action, the parity matters. Suppose γ ∈ O(d) is a hyperplane
reflection, and let T be an O(d)-isotropic k(−)-tensor. If T̂ is a k(+)-tensor whose components equal
T , then

γ · T̂ = −T̂ .

Likewise, if T is an O(d)-isotropic k(+)-tensor and T̂ is a k(−)-tensor whose components equal T ,
then

γ · T̂ = −T̂ .

Note that being isotropic depends on the parity because it affects the considered action.

Case p = −1: Let z ∈ Tk
(
Rd,+

)
be O(d)-isotropic. In particular, z is also SO(d)-isotropic, and so

we can write it using (54).

Recall that O(d) is generated by all the (hyperplane) reflections. Hence, to show that z is an O(d)-
isotropic, we need only to show that for every (hyperplane) reflection γ ∈ O(d),

γ · z = z.

Now, by our observation above, inside Tk
(
Rd,+

)
, we have that

γ · δ⊗
k−d
2 ⊗ ϵ = −δ⊗

k−d
2 ⊗ ϵ, (55)

since δ⊗
k−d
2 ⊗ ϵ is an O(d)-isotropic k(−)-tensor. Hence

γ · z = γ ·
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
+ βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
=
∑
σ∈Sk

ασ

(
(γ · δ)⊗

k
2

)σ
+ βσ

(
(γ · δ)⊗

k−d
2 ⊗ γ · ϵ

)σ
=
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
− βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
= z − 2

∑
σ∈Sk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
.

Now, by assumption, z is O(d)-isotropic, so we can conclude
∑

σ∈Sk
βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
= 0, and so

z has the desired form.

Case p = −1: We argue as above, but using that for a (hyperplane) reflection γ ∈ O(d), we have,
inside Tk

(
Rd,−

)
,

γ · δ⊗ k
2 = −δ⊗

k
2 , (56)

since δ⊗
k
2 is an O(d)-isotropic k(+)-tensor. Hence, arguing similarly as in the previous case, we

conclude that
∑

σ∈Sk
ασ

(
δ⊗

k
2

)σ
= 0, and so that z has the desired form.
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D SMALLER PARAMETERIZATION OF O(d)-ISOTROPIC TENSORS

In Lemma 1, the sum does not have to be over all permutations. The reason for this is that the tensors

δ⊗
k
2 and δ⊗

k−d
2 ⊗ ϵ

do not have a trivial stabilizer under the action of Sk. One can easily see the following proposition.
Recall that the stabilizer of a k-tensor ±T in Sk is the following subgroup:

StabSk
(±T ) := {σ ∈ Sk | Tσ = ±T}, (57)

where Tσ = ±T means that either Tσ = T or Tσ = −T . Note that the laxity in the signs comes
from the fact that positive summands and their negative counterparts can be combined.

Proposition 4. (a) If k is even, StabSk

(
±δ⊗

k
2

)
is generated by the transpositions

(1, 2), (3, 4), . . . , (k − 1, k)

and all permutations of the form
(i, j)(i+ 1, j + 1)

with i, j < k odd. In particular, #StabSk

(
±δ⊗

k
2

)
= (k/2)! 2k/2.

(b) If k − d is even, StabSk

(
±δ⊗

k−d
2 ⊗ ϵ

)
is generated by the transpositions

(1, 2), (3, 4), . . . , (k − d− 1, k − d),

all permutations of the form
(i, j)(i+ 1, j + 1)

with i, j < k − d odd, and all transpositions of the form

(i, j)

with k − d < i, j. In particular, #StabSk

(
±δ⊗

k−d
2 ⊗ ϵ

)
= ((k − d)/2)! 2(k−d)/2d!.

Proof. This follows from (Roe Goodman, 2009, Theorem 5.3.4).

Using these proposition, we can write any O(d)-isotropic k(+)-tensor as∑
σ∈Gk

ασ

(
δ⊗

k
2

)σ
with the ασ real and

Gk =
{
σ ∈ Sk : σ(1) < σ(3) < · · · < σ(k − 1) and for all i ≤ k

2
, σ(2i− 1) < σ(2i)

}
of size k!

(k/2)!2k/2 ; and any O(d)-isotropic k(−)-tensor as∑
σ∈Hk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(58)

with the βσ real and

Hk =
{
σ ∈ Sk : σ(1) < σ(3) < · · · < σ(k − d− 1), for all i ≤ k − d

2
, σ(2i− 1) < σ(2i)

and for all j > k − d, σ(j) < σ(j + 1)
}
.

of size k!

( k−d
2 )!2

k−d
2 d!

.
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E EXAMPLE OF THEOREM 1

In this section, we give a second example of Theorem 1.
Example 2. Let f : T1

(
Rd,+

)
× T2

(
Rd,+

)
→ T2

(
Rd,+

)
be O(d)-equivariant polynomial of

degree at most 2. By Theorem 1 we can write f in the form

f(a1, a2) =

2∑
r=0

∑
1≤ℓ1≤···≤ℓr≤2

ιkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) , (59)

where cℓ1,...,ℓr is an O(d)-isotropic (kℓ1,...,ℓr + 2)(+)-tensor. By Lemma 1, cℓ1,...,ℓr is nontrivial
only when kℓ1,...,ℓr + 2 is even. Recall that kℓ1,...,ℓr =

∑r
q=1 kℓq . The inputs are a 1(+)-tensor and

2(+)-tensor. The even combinations of 1 and 2 with at most 2 terms are ∅, 2, 1 + 1, 2 + 2 so we have
f(a1, a2) = β0δ + ι2(a2 ⊗ c2) + ι2(a1 ⊗ a1 ⊗ c′2) + ι4(a2 ⊗ a2 ⊗ c3) , (60)

where c2, c
′
2 are O(d)-isotropic 4(+)-tensors and c3 is an O(d)-isotropic 6(+)-tensor. By similar

reasoning to Example 1, we can write
ι2(a2 ⊗ c2) = β1 tr(a2)δ + β2a2 + β3a

⊤
2 (61)

for constants β1, β2, β3 and
ι2(a1 ⊗ a1 ⊗ c′2) = β4⟨a1, a1⟩δ + β5a1 ⊗ a1 , (62)

for constants β4, β5 (there are only two terms due to the symmetry of a1 ⊗ a1). It remains to consider
ι4(a2 ⊗ a2 ⊗ c3). By Lemma 1, we can write

c3 =
∑
σ∈G6

βσ(δ
⊗3)σ , (63)

where |G6| = 6!/(3!23) = 15. In particular, we have
G6 =

{
(1, 2, 3, 4, 5, 6), (1, 2, 3, 5, 4, 6), (1, 2, 3, 5, 6, 4), (1, 3, 2, 4, 5, 6), (1, 3, 2, 5, 4, 6),

(1, 3, 2, 5, 6, 4), (1, 3, 4, 2, 5, 6), (1, 3, 4, 5, 2, 6), (1, 3, 4, 5, 6, 2), (1, 3, 5, 2, 4, 6),

(1, 3, 5, 2, 6, 4), (1, 3, 5, 4, 2, 6), (1, 3, 5, 4, 6, 2), (1, 3, 5, 6, 2, 4), (1, 3, 5, 6, 4, 2)
}
.

However, due to the symmetry of a2 ⊗ a2, when we compute ι4
(
a2 ⊗ a2(δ

⊗3)σ
)

for σ ∈ G6, there
are only 7 distinct terms

ι4(a2 ⊗ a2 ⊗ c3) =

β6 tr(a2)
2
δ + β7 tr(a2)a2 + β8 tr(a2)a

⊤
2 + β9a

⊤
2 a2 + β10a2a

⊤
2 + β11a2a2 + β12a

⊤
2 a

⊤
2 . (64)

In summary,

f(a1, a2) = β0δ + β1 tr(a2)δ + β2a2 + β3a
⊤
2 + β3⟨a1, a1⟩δ + β4a1 ⊗ a1 + β5 tr(a2)

2
δ

+ β6 tr(a2)a2 + β7 tr(a2)a
⊤
2 + β8a

⊤
2 a2 + β9a2a

⊤
2 + β10a2a2 + β11a

⊤
2 a

⊤
2 ,

for some coefficients β0, β1, . . . , β11.

F GENERALIZATION TO OTHER LINEAR ALGEBRAIC GROUPS

In this section, we will show how Theorem 1 and Corollary 1 can be extended to the indefinite
orthogonal and the symplectic group as Theorem 2 and Corollary 2.

The main idea to extend Theorem 1 to other groups is to use some form of averaging. On O(d), the
compactness guarantees the existence of a Haar probability measure. However, to apply the same
trick over non-compact groups such as O(s, d− s) and Sp(d), we need to use technical machinery to
imitate the averaging strategy.

First, we introduce some definitions and examples regarding complex and real linear algebraic groups.
The main point will be to establish how to get a compact subgroup over which to average. Basically
the results will generalize to real linear algebraic groups such that their complexifications have a
Zariski-dense compact subgroup. For instance reductive connected complex algebraic groups satisfy
this assumption. Second, we prove a generalization of Theorem 1 for complex linear algebraic groups
with a Zariski-dense compact subgroup acting on complex tensors. Third, we prove a generalization
of Theorem 1 for real linear algebraic groups that are compact or such that their complexification has
a Zariski-dense compact subgroup. Finally, we prove Corollary 2.
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F.1 REDUCTIVE COMPLEX AND REAL LINEAR ALGEBRAIC GROUPS

Recall that a complex linear algebraic group is a subgroup G of GL(V ), where V is a finite-
dimensional complex vector space, such that G is the zero set of some set of complex polynomial
functions over End(V ), the set of (complex) linear maps V → V . Recall also that a rational
G-module of G is a vector space U together with a linear action of G on U such that the map
G× U ∋ (g, x) 7→ g · x ∈ U is polynomial2, and that a G-submodule U0 of U is a vector subspace
U0 ⊆ U such that for all g ∈ G, g · U0 ⊆ U0.
Definition 10. (Roe Goodman, 2009, Def. 3.3.1) A reductive complex linear algebraic group is a
complex linear algebraic group G ⊂ GL(V ) such that every rational G-module U is completely
reducible, i.e., for every G-submodule U0 of U , there is a G-submodule U1 such that U = U0 + U1

and U0 ∩ U1 = 0.
Example 3. Given any finite-dimensional vector space, the classical complex groups GL(V ) and
SL(V ) are reductive complex linear algebraic groups.
Example 4. Given any finite-dimensional vector space V together with a symmetric non-degenerate
bilinear form3 ⟨ · , · ⟩ : V × V → C, the (complex) orthogonal group

O(V, ⟨ · , · ⟩) := {g ∈ GL(V ) | for all v, w ∈ V, ⟨g · v, g · w⟩ = ⟨v, w⟩} (65)

is a reductive complex linear algebraic group. We will pay special attention to the following family of
complex orthogonal groups:

OC(s, d− s) := {g ∈ GL(Cd) | g⊤Is,d−sg = Is,d−s} = O(Cd, ⟨ · , · ⟩s) (66)

where ⟨u, v⟩s := u⊤Is,d−sv. Note that all these groups are isomorphic, satisfying that

OC(s, d− s) =

(
Is

iId−s

)
OC(d, 0)

(
Is

iId−s

)−1

.

Moreover, this is true in general: any two complex orthogonal groups are isomorphic if they are
of the same order—this follows from the fact that all symmetric non-degenerate bilinear forms are
equivalent over the complex numbers.
Example 5. Given any finite-dimensional vector space V together with an anti-symmetric non-
degenerate bilinear form ⟨ · , · ⟩ : V × V → C, the (complex) symplectic group

Sym(V, ⟨ · , · ⟩) := {g ∈ GL(V ) | for all v, w ∈ V, ⟨g · v, g · w⟩ = ⟨v, w⟩} (67)

is a reductive complex linear algebraic group. We will pay special attention to the following special
case:

SpC(d) := {g ∈ GL(Cd) | g⊤Jdg = Jd} = Sp(Cd, ⟨ · , · ⟩symp) (68)

where ⟨u, v⟩symp := u⊤Jdv. Note that any symplectic group of order d is isomorphic to SpC(d)
because any two antisymmetric non-degenerate bilinear forms are equivalent over the complex
numbers.
Example 6. The complex linear algebraic group

H =

{(
1 t

1

)
| t ∈ C

}
is not reductive, since C2 is an H-module that is not completely reducible. Note that C × 0 is the
only H-submodule of C2, so we cannot find a complementary H-submodule.

Recall that a subset X of a set X̃ is Zariski-dense in X̃ if every polynomial function that vanishes
in X vanishes in X̃ , i.e. if every polynomial function that does not vanish on X̃ does not vanish in
X . The following theorem allows us to use the power of averaging for reductive connected complex
linear algebraic groups.

2To be precise, we mean that the map G× U → U is a morphism of algebraic varieties. Choose basis for U
and V , so that we can identify V with Cd and U with Cn. Then, being a morphism between algebraic varieties,
just means that the map G × Cn → Cn is the restriction of a map Cd×d × Cn → Cn that can be written
componentwise as (pl((gi,j)i,j , (uk)k)/(det g)

al)l where each pl is a polynomial in the gi,j and uk and each
al an integer.

3Recall that this means that for all u, v, w ∈ V and t, s ∈ C: (a) ⟨u, v⟩ = ⟨v, u⟩, (b) for all x ∈ V ,
⟨u, x⟩ = 0 if and only if u = 0, and (c) ⟨tu+ sv, w⟩ = t⟨u,w⟩+ s⟨v, w⟩.
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Theorem 3. (Roe Goodman, 2009, Theorem 11.5.1) Let G be a reductive connected complex
algebraic group. Then there exists a Zariski-dense compact subgroup K. More precisely, there is
a subgroup U(G) of G that is Zariski-dense in G and that, with respect to the usual topology4, is
compact.
Remark 5. Note that using this compact subgroup K, we can consider expressions of the form

E
u∈U(G)

u · T

by taking the expectation with respect to the unique Haar probability measure of K. Now, since U(G)
is Zariski-dense in G, we have that the fact that for all u ∈ U(G), u·

(
Eu∈U(G) u · T

)
= Eu∈U(G) u·T

implies that for all g ∈ G,

g ·
(

E
u∈U(G)

u · T
)

= E
u∈U(G)

u · T.

Note that U(G) is not necessarily unique.
Example 7. In GL(Cd), the Zariski-dense compact subgroup is the group of unitary matrices:

U(Cd) := {g ∈ GL(Cd) | g∗g = Id}

where ∗ denotes the conjugate transpose. In SL(Cd), it is the group of special unitary transformations:

SU(Cd) := {g ∈ U(Cd) | det g = 1}.

Example 8. In OC(s, d− s), the Zariski-dense compact subgroup is(
Is

iId−s

)
O(d)

(
Is

iId−s

)−1

.

Note that when s = 0 or s = d, this is the orthogonal group over the reals. Moreover, this does not
follow from Theorem 3 as OC(s, d− s) is not connected.
Example 9. In SpC(d), the Zariski-dense compact subgroup is the so-called compact symplectic
group:

USp(d) := SpC(d) ∩ U(Cd).

Recall that a real linear algebraic group is a subgroup G of GL(V ), where V is a finite-dimensional
real vector space, such that G is the zero set of some set of real polynomial functions over Rd×d.
Similarly, as we did with complex linear algebraic groups, we can talk about rational modules and
about reductive real linear algebraic groups.

However, given a reductive real linear algebraic group we cannot necessarily guarantee the existence
of a Zariski-dense compact subgroup. This means that we cannot apply the averaging trick directly,
but we can do so by passing to the Zariski-dense compact subgroup of the complexification of the
real linear algebraic group.
Definition 11. Let G ⊂ GL(V ) be a real linear algebraic group. The complexification GC of G is
the complex linear algebraic group given by

GC := {g ∈ GL(V C) | for every polynomial f such that f(G) = 0, f(g) = 0} (69)

where V C := V ⊗R C is the complexification of V , i.e., the complex vector space obtained from V
by extending scalars.
Remark 6. In essence, we complexify the underlying real algebraic variety. Group multiplication
preserves its structure as a complex variety as it is given by polynomial functions of the matrix entries.
Definition 12. A real linear algebraic group G is complexly averageable if it’s Zariski-dense in its
complexification and its complexification admits a Zariski-dense compact subgroup closed under
complex conjugation.
Remark 7. Recall that the complexification of Rd is naturally isomorphic to Cd.
Example 10. The complexification of GL(Rd) is GL(Cd), and the complexification of SL(Rd) is
SL(Rd).

4The topology inherited from the Euclidean topology of GL(Cd).
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Example 11. We have that
O(s, d− s)C = OC(s, d− s)

and that
Sp(d)C = SpC(d).

Hence, both the indefinite orthogonal group and symplectic group are complexly averageable. The
symplectic group is connected but the indefinite orthogonal group is not connected. However, it does
have a Zariski-dense compact subgroup (see Example 8).

The following proposition shows that complexly averageable real linear algebraic groups are common.
Proposition 5. Let G ⊂ GL(V ) be a real linear algebraic group. (1) G is Zariski-dense in GC. (2) If
the complexification GC of G is connected and reductive, then G is complexly averageable.

Proof. (1) Let f be a complex polynomial vanishing on G. Then, we can write this polynomial as
f = fr + ifi for some polynomials fr and fi with real coefficients. Now, since f vanishes on G,
then fr and fi vanish also on G—as otherwise there would be g ∈ G such that either fr(g) ̸= 0
or fi(g) ̸= 0, contradicting f(g) = 0. But then, by definition of GC, fr and fi vanish on G and so
f = fr + ifi vanishes on GC. Hence we have just proven that a complex polynomial vanishes on G
if and only if vanishes on GC, i.e., we have proven that G is Zariski-dense in GC.

(2) This follows from Theorem 3.

Example 12. Observe that the Zariski-dense compact subgroups of OC(s, d− s) and SpC(d) that
have been given satisfy that they are closed under the complex conjugation.

F.2 COMPLEX EQUIVARIANT TENSOR MAPS

We will consider vector spaces on which a non-degenerate bilinear form has been chosen.
Definition 13. A self-paired vector space (V, ⟨ · , · ⟩) is a finite-dimensional vector space V together
with a non-degenerate bilinear form ⟨ · , · ⟩ : V × V → C.

Recall the universal property of tensor products of vector spaces, by which multilinear maps V1 ×
· · · × Vk → W can be lifted to linear maps V1 ⊗ · · · ⊗ Vk → W . Using the universal property, we
can see that from a self-paired vector space (V, ⟨ · , · ⟩), we get the family

(V ⊗k, ⟨ · , · ⟩)
of self-paired spaces of tensors, by extending by linearity the expression

⟨v1 ⊗ · · · ⊗ vk, ṽ1 ⊗ · · · ⊗ ṽk⟩ = ⟨v1, ṽ1⟩ · · · ⟨vk, ṽk⟩. (70)

And again, by the universal property, we get a k-contraction

ιk : V ⊗(2k+k′) ∼= V ⊗k ⊗ V ⊗k ⊗ V k′
→ V k′

(71)

by extending by linearity, the expression

a⊗ b⊗ c 7→ ⟨a, b⟩c. (72)

Now, in the above setting, let G be a group acting in a structure-preserving way on (V, ⟨ · , · ⟩),
meaning that the action is linear and preserves ⟨ · , · ⟩, i.e., for all g ∈ G, v, ṽ ∈ V , ⟨v, ṽ⟩ = ⟨g ·v, g ·ṽ⟩.
Then, by the universal property, we get that G acts also on (V ⊗k, ⟨ · , · ⟩) by extending linearly the
expression

g(v1 ⊗ · · · ⊗ vk) = χ(g)(gv1)⊗ · · · ⊗ (gvk). (73)
Moreover, by considering all (rational)5 unidimensional representations χ : G → C∗ of G, we get
the following family of self-paired (rational) G-modules:

Tk(V, χ) := (V ⊗k, ⟨ · , · ⟩) (74)

where the action by G is given by

g · T := χ(g)M(g) · T (75)

5Recall that rational means that the homomorphism is given by polynomials.
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in a structure-preserving way. For the sake of distinction, we will denote the k-contraction as

ιGk : T2k+k′(V, χ) → Tk′(V, χ) (76)

in this setting to emphasize the dependence on the group G, as we will be choosing the original ⟨ · , · ⟩
in terms of the group. Using the universal property, we can easily see the following:

Proposition 6. The following statements hold:

(a) The outer product map

Tk(V, χ)× Tk′(V, χ′) → Tk+k′(V, χχ′)

is a G-equivariant bilinear map.

(b) The k-contraction ιGk : T2k+k′(V, χ) → Tk′(V, χ) is a G-equivariant linear map.

(c) For any σ ∈ Sk, the tensor index permutation by σ, Tk(V, χ) → Tk(V, χ) given by
v1 ⊗ · · · ⊗ vk 7→ vσ−1(1) ⊗ · · · ⊗ vσ−1(k), is a G-equivariant linear map.

Finally, recall that a G-isotropic tensor of Tℓ(V, χ) is a G-invariant tensor in Tℓ(V, χ). Further, recall
that an entire function is an analytic function whose Taylor series at any point has an infinite radius
of convergence. We can now state the theorem.

Theorem 4. Let G ⊂ GL(V ) be a reductive connected complex linear algebraic group (or more
generally, a complex linear algebraic group with a Zariski-dense compact subgroup) acting ra-
tionally on an structure-preserving way on a self-paired complex vector space (V, ⟨ · , · ⟩) and
f :
∏n

i=1 Tki(V, χi) → Tk′(V, χ′) a G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (77)

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

To prove this, we proceed as in the orthogonal case: we reduce to the multihomogeneous case and
then prove the result using averaging over the Zariski-dense compact subgroup.

Lemma 4. Let G ∈ GL(V ) be any subgroup acting linearly on a self-paired complex vector space
(V, ⟨, · , · ⟩) and f :

∏n
i=1 Tki(V, χi) → Tk′(V, χ′) an entire function. Then, we can write f as

fr(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (78)

where fℓ1,...,ℓr :
∏r

i=1 Tkℓi
(V, χi) → Tk′(V, χ′) is the composition of the map

r∏
i=1

Tkℓi
(V, χℓi) → T∑r

i=1 kℓi

(
V,

r∏
i=1

χℓi

)
(aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ . . .⊗ aℓr

with a linear map T∑r
i=1 kℓi

(V,
∏r

i=1 χℓi) → Tk′
(
Rd, χ′).

Moreover, for the above decomposition, if f is G-equivariant, then so are the fℓ1,...,ℓr .

Remark 8. Note that we don’t need to assume anything about G in the above lemma.

Proof of Theorem 4. By Lemma 4, we can assume without loss of generality that f is of the form

f(a1, . . . , an) = λ(aℓ1 ⊗ · · · ⊗ aℓr )

for some non-negative integer r, 1 ≤ ℓ1 ≤ · ≤ ℓr ≤ r and λ : T∑r
i=1 kℓi

(V,
∏r

i=1 χℓi) → Tk′(V, χ′)
is linear.
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The above map can be written as a linear combination of maps of the form

(a1, . . . , an) 7→

(
r∏

i=1

λi(aℓi)

)
vj1 ⊗ · · · ⊗ vjk′

where the λi,j are linear and vj ∈ V , due to the universal property—the factor (
∏r

i=1 λi,j(aℓi)) just
corresponds to a linear map T∑r

i=1 kℓi
(V,
∏r

i=1 χℓi) → C. Moreover,(
r∏

i=1

λi(aℓi)

)
vj1 ⊗· · ·⊗vjk′ = ιG∑r

i=1 kℓi
+k′

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗ c1 ⊗ · · · ⊗ cr ⊗ vj1 ⊗ · · · ⊗ vjk′

)
where the ci ∈ Tki(V, χi) are the unique tensors so that for all aℓi ∈ Tki(V, χi),

λi(aℓi) = ⟨aℓi , ci⟩.

These ci exist, because ⟨ · , · ⟩ is non-degenerate. Hence for some c ∈ T∑r
i=1 kℓi

+k′(V,
∏r

i=1 χiχ
′),

we have
f(a1, . . . , an) = ιG∑r

i=1 kℓi
+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c). (79)

Since f and ιkℓ+k′(·) are G-equivariant, we have that for all g ∈ G and a ∈
∏n

i=1 Tki
(V, χi),

ιkℓ+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ cℓ) = f(a1, . . . , an)

= f(g · (g−1 · a1), . . . , g · (g−1 · an))
= g · f((g−1 · a1), . . . , (g−1 · an))
= g · ιkℓ+k′

((
g−1 · aℓ1

)
⊗ · · · ⊗ (g−1 · aℓr )⊗ cℓ

)
= ιkℓ+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · cℓ)) .

Finally, G has a Zariski-dense compact subgroup U(G). Hence, averaging over U(G), we can
substitute c by the U(G)-isotropic tensor

E
u∈U(G)

u · c

where the expectation is taken with respect the unique Haar probability measure of U(G). But, since
U(G) is Zariski-dense in G and the action rational, Eu∈U(G) u · c is also G-isotropic, as we wanted
to show.

Proof of Lemma 4. Recall that, since f in entire, we have, by Taylor’s theorem, that

f(a) =

∞∑
r=0

1

r!
Dr

0f(a, . . . , a) (80)

where a = (a1, . . . , an) ∈
∏n

i=1 Tki(V, χi) and Dk
0f : (

∏n
i=1 Tki(V, χi))

k → Tk′(V, χ′) is the
k-multilinear map given by kth order partial derivatives of f at 0. Now, write a = a1 + · · ·+ an as
an abuse of notation for

a = (a1, 0, . . . , 0) + · · ·+ (0, . . . , 0, an).

We will further use this abuse of notation to write ai instead of (0, . . . , 0, ai, 0, . . . , 0). Now, since
Dk

0f is k-multilinear and symmetric, we have that

1

r!
Dr

0f(a, . . . , a) =
∑

1≤ℓ1≤···≤ℓr≤n

1

αℓ1,...,ℓr !
Dr

0f(aℓ1 , . . . , aℓr ) (81)

where αℓ1,...,ℓr ∈ Nr is the vector given by (αℓ1,...,ℓr )i := #{j | ℓj = i} and α! := α1! · · ·αr!.
Note that this terms appears when we reorder (aℓ1 , . . . , aℓr ) so that the subindices are in order.

Summing up, we can write f as (78), with

fℓ1,...,ℓr (a1, . . . , an) =
1

αℓ1,...,ℓr !
Dr

0f(aℓ1 , . . . , aℓr ), (82)
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where this has the desired form by the universal property of tensor products. Now, observe that for
t1, . . . , tn ∈ C and (a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
fℓ1,...,ℓr (t1a1, . . . , tnan) = tαℓ1,...,ℓr fℓ1,...,ℓr (a1, . . . , an) (83)

where tαℓ1,...,ℓr := tα1
1 · · · tαn

n . Hence, arguing as in Lemma 3, we have that for any g ∈ G and all
(a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

tαℓ1,...,ℓr g · fℓ1,...,ℓr (a1, . . . , an)

=

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

tαℓ1,...,ℓr fℓ1,...,ℓr (g · a1, . . . , g · an). (84)

Hence, by the uniqueness of coefficients for entire functions functions that are equal6, we conclude
that for any g ∈ G and all (a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
g · fℓ1,...,ℓr (a1, . . . , an) = fℓ1,...,ℓr (g · a1, . . . , g · an), (85)

and so that the fℓ1,...,ℓr are G-equivariant.

F.3 REAL EQUIVARIANT TENSOR MAPS (AND PROOF OF THEOREM 2)

All the definitions in the previous subsection can be specialized to the real case. Hence we will have a
self-paired real vector space (V, ⟨ · , · ⟩) on which a group G acts (rationally) in a structure-preserving
way. Then we get the family of (rational) G-modules:

Tk(V, χ) := (V ⊗k, ⟨ · , · ⟩)
where χ : G → R∗ is a one-dimensional (rational) group-homomorphism of G. Together with this
family, we have the k-contractions given by

ιGk : T2k+k′(V, χ) → Tk′(V, χ), (86)
which are G-equivariant linear maps. Then we get a very similar theorem to Theorem 4 from which
Theorem 2 follows.
Theorem 5. Let G ⊂ GL(V ) be either a compact or a complexly averagable real linear algebraic
group acting rationally in a structure-preserving way on a self-paired vector space (V, ⟨ · , · ⟩) and
f :
∏n

i=1 Tki
(V, χi) → Tk′(V, χ′) a G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (87)

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

Proof of Theorem 2. This is just a particular case of Theorem 5 as both O(s, d−s) and Sp(d) are both
real linear algebraic groups and their complexifications have a Zariski-dense compact subgroup.

Proof of Theorem 5. When G is compact, we can just repeat the proof for the orthogonal group.
When G is a linear algebraic group such that its complexification has a Zariski-dense compact
subgroup, we can extend, using the same analytic expression evaluated in the complex tensors,
the G-equivariant map f :

∏n
i=1 Tki(V, χi) → Tk′(V, χ′) to a complex GC-equivariant map fC :∏n

i=1 Tki
(V C, χi) → Tk′(V C, χ′). The map becomes GC-equivariant, because G is Zariski-dense

inside GC by Proposition 5.

But for a ∈
∏n

i=1 Tki(V, χi), we have that

f(a) =
1

2
fC(a) +

1

2
fC(a), (88)

by reality of the input and output. Hence, by linearity, we can change the non-necessarily real
cℓ1,...,ℓr by the still G-isotropic and real 1

2cℓ1,...,ℓr +
1
2cℓ1,...,ℓr . The latter is G-isotropic, finishing

the proof.
6The statement is qualitatively different from (Cox et al., 2015, Chapter 1 §1 Proposition 5), but its proof

is similar. We only need to use that a univariate entire function which vanishes in an infinite set with an
accumulation point has to vanish everywhere.
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F.4 PROOF OF COROLLARY 2

The following proposition is needed to prove the above corollary.
Proposition 7. (Roe Goodman, 2009, Theorem 5.3.3) Let G be either O(s, k − s) or Sp(d) and
⟨ · , · ⟩ be the corresponding non-degenerate bilinear form fixed by the usual action of G on Rd, i.e.,
⟨ · , · ⟩s for O(s, k− s) and ⟨ · , · ⟩symp for Sp(d). The subspace of G-isotropic tensors in Tk(Rd, χ0),
where χ0 the constant map to 1, consist only of the zero tensor if k is odd, and it is of the form∑

σ∈Sk

ασ

(
θ
⊗k/2
G

)σ
(89)

with the ασ ∈ R and θG ∈ (Rd)⊗2 the only tensor such that for all v ∈ Rd, ιG1 (v ⊗ θG) = v, if k is
even.
Remark 9. Recall that θG = [Is,d−s]i,j if G = O(s, d− s) and θG = [Jd]i,j if G = Sp(d).

Remark 10. Note that the above sum can be written with less summands using the methods of
Appendix D.

Proof of Corollary 2. By Theorem 2, Proposition 7 and linearity, we can assume, without loss of
generality, that

f(v1, . . . , vn) = ιr+k

(
vℓ1 ⊗ · · · ⊗ vℓr ⊗ θ

r+k′
2

G

)
with 1 ≤ ℓ1 ≤ · · · ≤ ℓr ≤ n and r + k′ even.

Now, the proof is very similar to that of Corollary 1. However, note that now, we write

θ = ei ⊗ ẽi,

where {ei | i ∈ [d]} and {ẽi | i ∈ [d]} are dual basis to each other, i.e., for all i, j, ⟨ei, ẽj⟩ = δi,j .
The reason we have to pick a couple of bases is that the bilinear form is not necessarily an inner
product.

Now, the proof becomes the same as that of Corollary 1, but we have to be careful regarding the ei
and the ẽi. However, after making the pairings for contraction, we get four cases:

1. ⟨v, ej⟩⟨w, ẽj⟩ = ±⟨v, w⟩, where the sign depends on whether ⟨ · , · ⟩ is symmetric or
antisymmetric.

2. ⟨v, ẽj⟩ej = v.

3. ⟨v, ej⟩ẽj = ±v, where the sign depends on whether ⟨ · , · ⟩ is symmetric or antisymmetric.

4. ej ⊗ ẽj = ±θ, where the sign depends on whether ⟨ · , · ⟩ is symmetric or antisymmetric, or∑
j ẽj ⊗ ej = θG.

Now, putting these back together as we did in the proof of Corollary 1 gives the desired statement.

G EQUIVARIANCE IN SPARSE VECTOR RECOVERY

In this section, we show a sufficient condition for the O(d)-invariance of sparse vector estimation.
We start with a lemma on the equivariance of finding an eigenvector.
Lemma 5. Let b be a 2(+)-tensor and let g ∈ O(d). If u is an eigenvector for eigenvalue λ of
M(g) bM(g)⊤, then M(g)⊤ u is an eigenvector for eigenvalue λ of b.

Proof. Let b be a 2(+)-tensor, let g ∈ O(d), and let λ, u be an eigenvalue, eigenvector pair of
M(g) bM(g)⊤.

(M(g) bM(g)⊤)u = λu ⇒ b(M(g)⊤ u) = λ(M(g)⊤ u) .

Thus M(g)⊤ u is an eigenvector for eigenvalue λ of b.
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Proposition 8. Let S ∈ Rn×d with rows a⊤i ∈ Rd so that ai are column vectors. We define
the action of O(d) on S for all g ∈ O(d) as SM(g), and therefore M(g)⊤ ai for the rows. Let
f : Rn×d → Rn, h :

(
Rd
)n → Rd×d symmetric such that f(S) = S λvec(h(a1, . . . , an)) where

λvec(·) returns a normalized eigenvector for the top eigenvalue of the input symmetric matrix. If h is
O(d)-equivariant, then f is O(d)-invariant.

Proof. Let S, h, and f be defined as above. Suppose that h is O(d)-equivariant. Suppose
λvec

(
M(g)⊤ h(a1, . . . , an)M(g)

)
= u, then by lemma 5, up to a sign flip, we have:

λvec
(
M(g)⊤ h(a1, . . . , an)M(g)

)
= u = M(g)⊤ M(g)u = M(g)⊤ λvec(h(a1, . . . , an)) (90)

Thus,

f(g · S) = (g · S)λvec
(
h
(
g−1 · a1, . . . , g−1 · an

))
= (g · S)λvec

(
g−1 · h(a1, . . . , an)

)
= SM(g)λvec

(
M(g)⊤ h(a1, . . . , an)M(g)

)
= SM(g)M(g)⊤ λvec(h(a1, . . . , an))

= S λvec(h(a1, . . . , an))

= f(S) .

This completes the proof.

H DERIVATION OF SPARSEVECTORHUNTER (28)

In the following, we derive the general form of an O(d)-equivariant function h : (Rd)n → Sd stated
in (28) from Corollary 1.

First, we use Corollary 1 to write the arbitrary form of an O(d)-equivariant function g : (Rd)n →
Rd×d that takes values in the space of d× d matrices that are not necessarily symmetric. Given the
general form of g, it follows that

h =
1

2
(g + g⊤) (91)

is the general form of an O(d)-equivariant function h : (Rd)n → Sd.

In the notation of Corollary 1, we seek an O(d)-equivariant function g :
(
T1(Rd,+)

)n → T2(Rd,+).
From Corollary 1 with k′ = 2, it follows that g can be written in the form

g(v1, . . . , vn) =

1∑
t=0

∑
σ∈S2

∑
1≤J1≤···≤J2−2t≤n

qt,σ,J
(
(⟨vi, vj⟩)ni,j=1

) (
vJ1 ⊗ · · · ⊗ vJ2−2t ⊗ δ⊗t

)σ
.

(92)
Expanding the sum of the t = 0 and t = 1 terms, we have

g(v1, . . . , vn) =

∑
σ∈S2

∑
1≤J1≤J2≤n

q0,σ,J
(
(⟨vi, vj⟩)ni,j=1

)
(vJ1

⊗ vJ2
)
σ


+
∑
σ∈S2

q1,σ
(
(⟨vi, vj⟩)ni,j=1

)
δσ. (93)

The set of permutation S2 consists of (1, 2) and (2, 1). Using the fact that (u ⊗ v)(1,2) = u ⊗ v,
(u⊗ v)(2,1) = v ⊗ u, and δσ = δ for all σ ∈ S2, we can write the above expression as

g(v1, . . . , vn) =

n∑
J1=1

n∑
J2=1

q0,J
(
(⟨vi, vj⟩)ni,j=1

)
(vJ1

⊗ vJ2
) + q1

(
(⟨vi, vj⟩)ni,j=1

)
δ , (94)
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where the double sum over J1 and J2 accounts for both the sum over J1 ≤ J2 and the sum over the
permutations in S2. Next, we swap to standard matrix and vector notation as well as more simple
indices to make the equations clearer for readers who are primarily interested in the application. Thus
u⊗ v ⇒ uv⊤, δ ⇒ Id and J1, J2, i, j become i, j, ℓ,m, and we have

g(v1, . . . , vn) =

n∑
i=1

n∑
j=1

qi,j
(
(⟨aℓ, am⟩)nℓ,m=1

)
aia

⊤
j + qI

(
(⟨aℓ, am⟩)nℓ,m=1

)
Id . (95)

Finally, setting h = 1
2 (g + g⊤) gives the desired form of h stated in (28).

I EXPERIMENTAL DETAILS

I.1 SYNTHETIC DATA SPARSE VECTOR SAMPLINGS

We consider the following sampling procedures for v0. All these procedures use the same sparsity
parameter ε ≤ 1/3.

Accept/Reject (A/R). A random vector v0 ∼ N (0n, In) is sampled and normalized to unit ℓ2
length. We accept it if ∥v0∥44 ≥ 1

εn and otherwise reject it. Note that the sparsity of v0 is not explicitly
imposed, but the 4-norm condition suggests that v0 is approximately sparse. The 4-norm condition of
sparsity is used in Hopkins et al. (2016).

Bernoulli-Gaussian (BG) This sampling procedure, considered in Mao & Wein (2022), defines v0
as {

[v0]i = 0 with probability 1− ε

[v0]i ∼ N
(
0, 1

εn

)
with probability ε.

(96)

Note that under this sampling procedure E∥v0∥44 = 3
εn .

Corrected Bernoulli-Gaussian (CBG) We consider a modified version of the Bernoulli-Gaussian
that replaces the values set to exactly 0 in the Bernoulli-Gaussian distribution with values sampled
from a Gaussian with small variance. Under this distribution we have E∥v0∥2 = 1 and E∥v0∥44 = 1

εn .
[v0]i ∼ N

(
0,

1−ε−
√

1
3 (1−ε)(1−3ε)

(1−ε)n

)
with probability 1− ε

[v0]i ∼ N
(
0,

ε+
√

1
3 (1−ε)(1−3ε)

εn

)
with probability ε.

, (97)

Bernoulli-Rademacher (BR) This sampling procedure, studied in Mao & Wein (2022), defines v0
as

[v0]i =


0 with probability 1− ε
1√
εn

with probability ε
2

−1√
εn

with probability ε
2 .

(98)

Under this distribution we have E∥v0∥2 = 1 and E ∥v0∥44 ≥ 1
εn .

Since the BG, CBG, and BR distributions have E ∥v0∥2 = 1, we also normalize these vectors to unit
ℓ2 length after generating them.

Proposition 9. Let v0 be a Bernoulli-Gaussian vector. Then E
[
∥v0∥22

]
= 1 and E

[
∥v0∥44

]
= 3

εn .

Proof. Let ε ∈ (0, 1] and let v0 be a Bernoulli-Gaussian sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]
=

n∑
i=1

E
[
[v0]

2
i

]
. (99)

Thus, we need to find the 2nd moment of an entry of [v0]i, which we will do by first calculating its
moment generating function. If Z is a Bernoulli-Gaussian random variable, then Z = XY where X
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and Y are random variables with X ∼ Bern(ε) and Y ∼ N
(
0, 1

εn

)
. Then

E[exp{tXY }] = E[E[exp{tXY }|X]]

= E[exp{tXY }|X = 0]P (X = 0) + E[exp{tXY }|X = 1]P (X = 1)

= E[exp{0}] (1− ε) + εE[exp{tY }]
= (1− ε) + εE[exp{tY }] .

Since E[exp{tY }] is the moment generating function of Y , a Gaussian random variable, we can see
that the 2nd moment of Z is the 2nd moment of Y multiplied by ε. Then

n∑
i=1

E
[
[v0]

2
i

]
=

n∑
i=1

ε

(
1

εn

)
=

n∑
i=1

1

n
= 1 . (100)

Now, for the sparsity condition, we have

E
[
∥v0∥44

]
=

n∑
i=1

E
[
[v0]

4
i

]
=

n∑
i=1

ε

(
3

(
1

εn

)2
)

=

n∑
i=1

3

εn2
=

3

εn
. (101)

This follows because our previous analysis shows that the 4th moment of an entry of [v0]i is
3σ4 = 3

(
1
εn

)2
. This completes the proof.

Proposition 10. Let v0 be a Corrected Bernoulli-Gaussian vector. Then E
[
∥v0∥22

]
= 1 and

E
[
∥v0∥44

]
= 1

εn .

Proof. Let ε ∈
(
0, 1

3

]
and let v0 ∈ Rn be a Corrected Bernoulli-Gaussian sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]
=

n∑
i=1

E
[
[v0]

2
i

]
. (102)

Thus, we need to find the 2nd moment of an entry of [v0]i, which we will do by first calculating
its moment-generating function. If Z is a Corrected Bernoulli-Gaussian random variable, then
Z = XY +(1−X)W where X,Y, and W are random variables with X ∼ Bern(ε), Y ∼ N

(
0, ε+q

εn

)
,

and W ∼ N
(
0, 1−ε−q

n(1−ε)

)
where q =

√
1
3 (1− ε)(1− 3ε). Then

E[exp{t(XY + (1−X)W )}] = E[E[exp{t(XY + (1−X)W )}|X]]

= E[exp{tW}|X = 0]P (X = 0) + E[exp{tY }|X = 1]P (X = 1)

= (1− ε)E[exp{tW}] + εE[exp{tY }]

Since E[exp{tW}] is the moment generating function of W and E[exp{tY }] is the moment generat-
ing function of Y , we can immediately get the moments of Z. Then

n∑
i=1

E
[
[v0]

2
i

]
=

n∑
i=1

ε

(
ε+ q

nε

)
+ (1− ε)

(
1− ε− q

n(1− ε)

)

=

n∑
i=1

ε+ q + 1− ε− q

n

= 1 .
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For the sparsity condition, we use the same result above but now for the 4th moment

E
[
∥v0∥44

]
=

n∑
i=1

E
[
[v0]

4
i

]
=

n∑
i=1

ε

(
3

(
ε+ q

nε

)2
)

+ (1− ε)

(
3

(
1− ε− q

n(1− ε)

)2
)

=

n∑
i=1

3ε

(
ε2 + 2εq + q2

n2ε2

)
+ 3(1− ε)

(
(1− ε)2 − 2(1− ε)q + q2

n2(1− ε)2

)

=

n∑
i=1

(
3ε2(1− ε) + 6ε(1− ε)q + 3(1− ε)q2 + 3ε(1− ε)2 − 6ε(1− ε)q + 3εq2

n2ε(1− ε)

)

=

n∑
i=1

(
3ε(1− ε) + 3q2

n2ε(1− ε)

)

=

n∑
i=1

(
3ε(1− ε) + 3

(
1
3 (1− ε)(1− 3ε)

)
n2ε(1− ε)

)

=

n∑
i=1

(
3ε+ (1− 3ε)

n2ε

)
=

1

nε
.

This completes the proof.

Proposition 11. Let v0 be a Bernoulli-Rademacher vector. Then E
[
∥v0∥22

]
= 1 and E

[
∥v0∥44

]
= 1

εn .

Proof. Let ϵ ∈ (0, 1] and let v0 be a Bernoulli-Rademacher sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]

=

n∑
i=1

E
[
[v0]

2
i

]
=

n∑
i=1

(1− ϵ)(0)2 +
ϵ

2

(
1√
ϵn

)2

+
ϵ

2

(
−1√
ϵn

)2

=

n∑
i=1

ϵ

ϵn

= 1 .

We also have

E
[
∥v0∥44

]
= E

[
n∑

i=1

[v0]
4
i

]

=

n∑
i=1

E
[
[v0]

4
i

]
=

n∑
i=1

(1− ϵ)(0)4 +
ϵ

2

(
1√
ϵn

)4

+
ϵ

2

(
−1√
ϵn

)4

=

n∑
i=1

ϵ

ϵ2n2

=
1

ϵn
.
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This completes the proof.

I.2 SYNTHETIC DATA NOISE VECTOR COVARIANCE

All noise vectors for a single experiment trial are sampled from N (0,Σ) with the same n × n
covariance matrix Σ. Suppose we want Σ that is diagonal but not necessarily the identity matrix. We
generate Σ by sampling the diagonal entries [Σ]i,j ∼ Unif

(
1
2 ,

3
2

)
and setting the off-diagonal entries

to 0. Instead, suppose we want Σ to be a random covariance matrix. First, we sample an n× n matrix
M with entries [M ]i,j ∼ N (0, 1). Then we set Σ = M M⊤ + 0.00001 In which ensures that Σ is
symmetric and positive definite. In all cases, we don’t worry about the scaling because the sampled
vectors v1, . . . , vd−1 will be normalized to unit length.

I.3 MNIST NOISE SCHEMES

Given a sparse vector v MNIST digit, we construct v0, . . . , vd−1 using one of the following 4 methods.

Random Subspace (RND) Let v0 = v, and sample v1, . . . , vd−1 ∼ N (0n, In), so this method is
identical to the synthetic data experiments.

Gaussian Noise (GAU) Let vi = v
∥v∥ + wi, where wi ∼ N (0n,

1
20 In).

Bernoulli Noise (BER) Each pixel in each vi has a 70% chance of taking the value as v and a 30%
chance being selected from Uniform(0, 255), the range of pixel values in the original image.

Block Noise (BLK) We select the location of the 12 × 12 block uniformly at random and then
select the color uniformly from [0, 255]. Note that the location of the block is uniformly chosen, so it
is more likely that pixels in the middle, where many blocks overlap, will be chosen. The middle of
the image is also where the digit pixels are primarily located. One further factor that makes this noise
interesting is that the noise itself is sparse in a sense, unlike the other noise schemes.

I.4 GENERATING A RANDOM ORTHONORMAL BASIS

Now suppose we have a set of vectors v0, . . . , vd−1 ∈ Rn, and we would like to get a random
orthonormal basis of span{v0, . . . , vd−1}. To do this, we form the matrix B whose columns are
the vectors v0, . . . , vd−1. If we right multiply B by a random orthogonal matrix and take the Q-R
factorization, then Q is a random orthonormal basis of v0, . . . , vd−1 as we show below. We will add
an assumption that the v0, . . . , vd−1 are linearly independent, which is reasonable given that d ≪ n
and we are generating these vectors randomly.
Proposition 12. Let n ≥ d, and let B be the n× d matrix with v0, . . . , vd−1 as the columns. Assume
that v0, . . . , vd−1 are linearly independent, so rank B = d. Let O be a d× d orthogonal matrix and
QR = BO be a Q-R factorization of BO. Then the columns of Q form an orthonormal basis of
span{v0, . . . , vd−1}.

Proof. The Q-R factorization gives us that the columns of Q are orthonormal. Thus we just have to
show that span{v0, . . . , vd−1} = span{Q0, . . . , Qd−1}
Let a ∈ span{v0, . . . , vd−1}, so for some α0, . . . , αd−1 we have a = α0v0 + . . .+ αd−1vd−1. Let
α ∈ Rd be the vector of these coefficients, and then we have,

a = B α = BOO⊤α = QRO⊤α = Qα̂ . (103)

Thus α̂ ∈ Rd is a vector of coefficients, so a ∈ span{Q0, . . . , Qd−1}. Therefore,
span{v0, . . . , vd−1} ⊆ span{Q0, . . . , Qd−1}.

Now let b ∈ span{Q0, . . . , Qd−1}, so for some β0, . . . , βd−1 we have b = β0Q0 + . . .+ βd−1Qd−1.
Let β ∈ Rd be a vector of the coefficients β0, . . . , βd−1. Now, since rank B = d, rank BO = d, so
in the Q-R factorization, the upper triangular R has positive diagonal entries, so it is invertible [Horn
& Johnson (1990), Theorem 2.1.14]. Then we have,

b = Qβ = QRR−1 β = BOR−1 β = Bβ̂ . (104)
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Thus β̂ ∈ Rd is a vector of coefficients, so b ∈ span{v0, . . . , vd−1}. Therefore,
span{Q0, . . . , Qd−1} ⊆ span{v0, . . . , vd−1} which completes the proof.

I.5 TRAINING DETAILS

For synthetic data experiments, the train dataset had 5 000 vectors and the validation and test datasets
had 500 vectors. For MNIST, we used a train dataset of 900 images and validation and test datasets
of 100 images each, all from random classes of digits.

For training our models, we used 1 − ⟨v̂, v0⟩2 as the loss function. We used the Adam optimizer
Kingma & Ba (2017) with exponential decay of 0.999 per epoch. For the synthetic data experiments,
we used a batch size of 100 and trained until the validation error had not improved for 20 epochs.
For the MNIST experiments, we used a batch size of 10 and trained for 30 epochs. See Table 3 for
the learning rate and number of parameters for each model. We did a small exploration to find these
hyper-parameters. These hyper-parameters seemed to work well, but it is always possible that better
ones could be found with more exploration.

experiment model parameter count learning rate

Baseline 99 087 1e-3
synthetic SVH-Diag 58 981 5e-4

SVH 1 331 131 3e-4

Baseline 2 067 282 1e-3
MNIST SVH-Diag 234 769 5e-4

SVH 79 117 321 3e-4

Table 3: Parameter count and learning rate for each model. Since all models have the same number of
hidden layers of the same width, the difference in the number of parameters is driven by the different
inputs and outputs of each model.

The experiments were run on a single RTX 6000 Ada GPU and took 18 hours.

I.6 FURTHER RESULTS

sampling Σ SOS-I SOS-II BL SVH-Diag SVH
Random 0.610 ± 0.011 0.610 ± 0.011 0.647 ± 0.177 0.768 ± 0.045 0.966 ± 0.001

A/R Diagonal 0.444 ± 0.012 0.444 ± 0.012 0.561 ± 0.262 0.698 ± 0.034 0.755 ± 0.057
Identity 0.611 ± 0.002 0.611 ± 0.002 0.494 ± 0.285 0.622 ± 0.201 0.647 ± 0.289
Random 0.963 ± 0.001 0.963 ± 0.001 0.783 ± 0.090 0.970 ± 0.003 0.965 ± 0.002

BG Diagonal 0.949 ± 0.002 0.949 ± 0.002 0.672 ± 0.260 0.974 ± 0.004 0.775 ± 0.078
Identity 0.963 ± 0.000 0.963 ± 0.000 0.681 ± 0.241 0.966 ± 0.004 0.999 ± 0.001
Random 0.409 ± 0.005 0.409 ± 0.005 0.836 ± 0.149 0.490 ± 0.089 0.965 ± 0.002

CBG Diagonal 0.292 ± 0.005 0.292 ± 0.005 0.835 ± 0.150 0.597 ± 0.027 0.722 ± 0.013
Identity 0.418 ± 0.006 0.418 ± 0.006 0.558 ± 0.216 0.368 ± 0.119 0.750 ± 0.288
Random 0.523 ± 0.006 0.523 ± 0.006 0.975 ± 0.005 0.669 ± 0.150 0.970 ± 0.002

BR Diagonal 0.340 ± 0.010 0.340 ± 0.010 0.943 ± 0.008 0.701 ± 0.041 0.913 ± 0.002
Identity 0.526 ± 0.005 0.526 ± 0.005 0.949 ± 0.006 0.570 ± 0.199 0.898 ± 0.001

Table 4: Synthetic data train error comparison of different methods under different sampling schemes
for v0 and different covariances for v1, . . . , vd−1. The metric is ⟨v0, v̂⟩2, which ranges from 0 to 1
with values closer to 1, meaning that the vectors are closer. For each row, the best value is bolded.
For these experiments, n = 100, d = 5, ϵ = 0.25, and the results were averaged over 5 trials with the
standard deviation given by ±0.xxx.
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