
Latent Space Exploration and Trajectory Space Update in
Temporally-Correlated Episodic Reinforcement Learning

Ge Li1, Hongyi Zhou1, Dominik Roth1, Serge Thilges1, Fabian Otto2, Rudolf Lioutikov1, Gerhard Neumann1

Abstract— Current advancements in reinforcement learning
(RL) have predominantly focused on learning step-based poli-
cies that generate actions for each perceived state. While these
methods efficiently leverage step information from environ-
mental interaction, they often ignore the temporal correla-
tion between actions, resulting in inefficient exploration and
unsmooth trajectories that are challenging to implement on
real hardware. Episodic RL (ERL) seeks to overcome these
challenges by exploring in parameters space that capture the
correlation of actions. However, these approaches typically
compromise data efficiency, as they treat trajectories as opaque
black boxes. In this work, we introduce a novel ERL algorithm,
Temporally-Correlated Episodic RL (TCE), which effectively
utilizes step information in episodic policy updates, opening
the ’black box’ in existing ERL methods while retaining the
smooth and consistent exploration in parameter space. TCE
synergistically combines the advantages of step-based and
episodic RL, achieving comparable performance to recent ERL
methods while maintaining data efficiency akin to state-of-the-
art (SoTA) step-based RL.

I. INTRODUCTION

By considering how policies interact with the environment,
reinforcement learning (RL) methodologies can be classi-
fied into two distinct categories: step-based RL (SRL) and
episodic RL (ERL). SRL predicts actions for each perceived
state, while ERL selects an entire behavioral sequence at the
start of an episode. Most predominant deep RL methods,
such as PPO [1] and SAC [2], fall into the category of SRL.
In these methods, the step information — comprising state,
action, reward, subsequent state, and done signal received
by the RL agent at each discrete time step — is pivotal
for policy updates. This granular data aids in estimating the
policy gradient [3, 4], approximating state or state-action
value functions [2], and assessing advantages [5]. Although
SRL methods have achieved great success in various do-
mains, they often face significant exploration challenges.
Exploration in SRL, often based on a stochastic policy like
a factorized Gaussian, typically lacks temporal and cross-
DoF (degrees of freedom) correlations. This deficiency leads
to inconsistent and inefficient exploration across state and
action spaces [6, 7], as shown in Figure 1a. Furthermore,
the high variance in trajectories generated through such
exploration can cause suboptimal convergence and training
instability, a phenomenon highlighted by considerable per-
formance differences across various random seeds [8].

Episodic RL, in contrast to SRL, represents a distinct
branch of RL that emphasizes the maximization of re-
turns over entire episodes [9–11], rather than focusing on

1Karlsruhe Institute of Technology, Germany. ge.li@kit.edu
2Microsoft Research, UK.

the internal evolution of the environment interaction. This
approach shifts the solution search from per-step actions
to a parameterized trajectory space, employing techniques
like Movement Primitives (MPs) [12, 13]. Such exploration
strategy allows for broader exploration horizons and ensures
consistent trajectory smoothness across task episodes, as
illustrated in Figure 1b. Additionally, it is theoretically capa-
ble of capturing temporal correlations and interdependencies
among DoF. ERL typically treats entire trajectories as single
data points, often overlooking the internal changes in the
environment and state transitions. This approach leads to
training predominantly using black-box optimization meth-
ods [14–17]. The term black box in our title reflects this
reliance on black-box optimization, which tends to overlook
detailed step-based information acquired during environmen-
tal interactions. However, this often results in a lack of
attention to the individual contributions of each segment
of the trajectory to the overall task success. Consequently,
while ERL excels in expansive exploration and maintaining
trajectory smoothness, it typically requires a larger volume
of samples for effective policy training. In contrast, step-
based RL methods have demonstrated notable advancements
in learning efficiency by utilizing this detailed step-based
information.

Open the Black Box. In this paper, our goal is to integrate
step-based information into the policy update process of
ERL. Our proposed method, Temporally-Correlated Episodic
RL (TCE), moves beyond the traditional approach of treating
an entire trajectory as a single data point. Instead, we
transform trajectory-wide elements, such as reproducing like-
lihood and advantage, into their segment-wise counterparts.
This enables us to leverage the step-based information to
recognize and accentuate the unique contributions of each
trajectory segment to overall task success. Through this
innovative approach, we have opened the black box of ERL,
making it more effective while retaining its strength. As
a further step, we explore the benefits of fully-correlated
trajectory exploration in deep ERL. We demonstrate that
leveraging full covariance matrices for trajectory distribu-
tions significantly improves policy quality in existing black-
box ERL methods like [17].

Our contributions are summarized as: (a) We propose
TCE, a novel RL framework that integrates step-based in-
formation into the policy updates of ERL, while preserving
the broad exploration scope and trajectory smoothness char-
acteristic of ERL. (b) We provide an in-depth analysis of ex-
ploration strategies that effectively capture both temporal and
degrees of freedom (DoF) correlations, demonstrating their



0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

Mean
Mean + Noise

(a) Step-based RL

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

(b) Traj.-based, Episodic RL

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

Time [s]

A
ct

io
n

(c) TCE (ours)

Fig. 1: Illustration of exploration strategies: (a) SRL samples actions by adding noise to the predicted mean, resulting
in inconsistent exploration and jerky actions. However, their leverage of step-based information leads to efficient policy
updates. (b) ERL samples complete trajectories in a parameter space and generate consistent control signals. Yet, they often
treat trajectories as single data points and overlook the step-based information during the interaction, causing inefficient
policy update. (c) TCE combines the benefits of both, using per-step information for policy update while sampling complete
trajectories with broader exploration and high smoothness.

beneficial impact on policy quality and trajectory smooth-
ness. (c) We conduct a comprehensive evaluation of our
approach on multiple simulated robotic manipulation tasks,
comparing its performance against other baseline methods.

II. PRELIMINARIES

A. Episodic Reinforcement Learning

a) Markov Decision Process (MDP).: We consider
a MDP problem of a policy search defined by a tuple
(S,A, T ,R,P0, γ). We assume the state space S and action
space A are continuous and the transition probabilities T :
S × S × A → [0, 1] describe the state transition probability
to st+1, given the current state st ∈ S and action at ∈ A.
The initial state distribution is denoted as P0 : S → [0, 1].
The reward rt(st,at) returned by the environment is given
by a function R : S × A → R and γ ∈ [0, 1] describes the
discount factor. The goal of RL in general is to find a policy
π that maximizes the expected accumulated reward, namely
return, as R = ET ,P0,π[

∑∞
t=0 γ

trt].
Episodic RL [9] focuses on maximizing the return R =∑T
t=0[γ

trt] over a task episode of length T , irrespective
of the state transitions within the episode. This approach
typically employs a parameterized trajectory generator, like
MPs [12], to predict a trajectory parameter vector w. This
vector is then used to generate a complete reference trajec-
tory y(w) = [yt]t=0:T . The resulting trajectory is executed
using a trajectory tracking controller to accomplish the task.
In this context, yt ∈ RD denotes the trajectory value at
time t for a system with D DoF, differentiating it from
the per-step action a used in SRL. It is important to note
that, although ERL predicts an entire action trajectory, it still
maintains the Markov Property, where the state transition
probability depends only on the given current state and action
[18]. In this respect, the action selection process in ERL is
fundamentally similar to techniques like action repeat [19]
and temporally correlated action selection [6, 20]. In contrast
to SRL, ERL predicts the trajectory parameters as π(w|s),
which shifts the solution search from the per-step action

space A to the parameter space W . Therefore, a trajectory
parameterized by a vector w is typically treated as a single
data point in W . Consequently, ERL commonly employs
black-box optimization methods for problem-solving [14,
17]. The general learning objective of ERL is formally
expressed as

J =

∫
πθ(w|s)[R(s,w)− V π(s)]dw

= Ew∼πθ(w|s)[A(s,w)],

(1)

where πθ represents the policy, parameterized by θ, e. g.
using NNs. The initial state s ∈ S characterizes the starting
configuration of the environment and the task goal, serving as
the input to the policy. The πθ(w|s) indicates the likelihood
of selecting the trajectory parameter w. The term R(s,w) =∑T

t=0[γ
trt] represents the return obtained from executing

the trajectory, while V π(s) = Ew∼πθ(w|s)[R(s,w)] denotes
the expected return across all possible trajectories under
policy πθ. Their subtraction is defined as the advantage
function A(s,w), which quantifies the benefit of selecting a
specific trajectory. By using parameterized trajectory gener-
ators like MPs, ERL benefits from consistent exploration,
smooth trajectories, and robustness against local optima,
as noted by Otto et al. [17]. However, its policy update
strategy incurs a trade-off in terms of learning efficiency, as
valuable step-based information is overlooked during policy
updates. Furthermore, existing method like Otto et al. [17]
and Bahl et al. [21] commonly use factorized Gaussian
policies, which inherently limits their capacity to capture all
relevant movement correlations.

B. Using Movement Primitives for Trajectory Representation

The Movement Primitives (MP), as a parameterized tra-
jectory generator, play an important role in ERL and robot
learning. This section highlights key MP methodologies and
their mathematical foundations. Schaal [12] introduced the
Dynamic Movement Primitives (DMPs) method, incorpo-
rating a force signal into a dynamical system to produce



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8




Mean

DoF 1

DoF 2

t1

t2

t3

t4

t1

t2

t3

t4

σ1,1 σ1,2 σ1,3 σ1,4 σ1,5 σ1,6 σ1,7 σ1,8

σ2,1 σ2,2 σ2,3 σ2,4 σ2,5 σ2,6 σ2,7 σ2,8

σ3,1 σ3,2 σ3,3 σ3,4 σ3,5 σ3,6 σ3,7 σ3,8

σ4,1 σ4,2 σ4,3 σ4,4 σ4,5 σ4,6 σ4,7 σ4,8

σ5,1 σ5,2 σ5,3 σ5,4 σ5,5 σ5,6 σ5,7 σ5,8

σ6,1 σ6,2 σ6,3 σ6,4 σ6,5 σ6,6 σ6,7 σ6,8

σ7,1 σ7,2 σ7,3 σ7,4 σ7,5 σ7,6 σ7,7 σ7,8

σ8,1 σ8,2 σ8,3 σ8,4 σ8,5 σ8,6 σ8,7 σ8,8




Covariance Matrix (8× 8)

DoF 1 DoF 2
t1 t2 t3 t4 t1 t2 t3 t4

µ1

µ3

µ5

µ7





Sub-Mean

σ1,1 σ1,3 σ1,5 σ1,7

σ3,1 σ3,3 σ3,5 σ3,7

σ5,1 σ5,3 σ5,5 σ5,7

σ7,1 σ7,3 σ7,5 σ7,7





Sub-Covariance (4× 4)

Select
t1 and t3

Fig. 2: Reduce the trajectory distribution dimensions using two time steps [22], shown in an element-wise format. Here, the
trajectory has two DoF and four time steps, with D · T = 8. Left: The 8-dim mean vector and the 8 × 8-dim covariance
matrix of the original trajectory distribution, capture correlations across both DoF and time steps. Right: Randomly selecting
two time points, e. g. t1 and t3, yields a reduced distribution while still capturing the movement correlations.

smooth trajectories from given initial robot states. Following
this, Paraschos et al. [13] developed Probabilistic Movement
Primitives (ProMPs), which leverages a linear basis function
representation to map parameter vectors to trajectories and
their corresponding distributions. The probability of observ-
ing a trajectory [yt]t=0:T given a specific weight vector
distribution p(w) ∼ N (w|µw,Σw) is represented as a
linear basis function model:

[yt]t=0:T =Φ⊺
0:Tw + ϵy, (2)

p([yt]t=0:T ; µy,Σy) =

N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI).

(3)

Here, ϵy is zero-mean white noise with variance σ2
y . The

matrix Φ0:T houses the basis functions for each time step
t. Additionally, p([yt]t=0:T ; µy,Σy) defines the trajectory
distribution coupling the DoF and time steps, mapped from
p(w). For a D-DoF system with N parameters per DoF and
T time steps, the dimensions of the variables in Eq. (2) and
3 are as follows: w,µw : D · N ; Σw : D · N × D · N ;
Φ0:T : D ·N ×D · T ; y,µy : D · T ; Σy : D · T ×D · T .

Recently, Li et al. [22] introduced Probabilistic Dy-
namic Movement Primitives (ProDMPs), a hybrid approach
that blends the pros of both methods. Similar to ProMP,
ProDMPs defines a trajectory as y(t) = Φ(t)⊺w+c1y1(t)+
c2y2(t). The added terms c1y1(t) + c2y2(t) are included
to ensure accurate trajectory initialization. This formulation
combines the distributional modeling benefits of ProMP with
the precision in trajectory initiation offered by DMP.

C. Representation of Trajectory Distribution and Likelihood

Computing the trajectory distribution and reconstruction
likelihood is crucial for policy updates in ERL. Previous
methods like Otto et al. [17] and Bahl et al. [21] represented
the trajectory distribution using the parameter distribution

p(w) and the likelihood of a sampled trajectory y∗ with its
parameter vector as p(w∗|µw, σ2

w). However, this approach
treats an entire trajectory as a singular data point and
fails to efficiently utilize step-based information. In contrast,
research in imitation learning, including works by Paraschos
et al. [13] and Gomez-Gonzalez et al. [23], maps parameter
distributions to trajectory space and allows the exploitation
of trajectory-specific information. Yet, the likelihood com-
putation in this space is computationally intensive, primarily
due to the need to invert a high-dimensional covariance
matrix, a process with an O((D · T )3) time complexity.
Recent studies, like those by [24–26], advocates for directly
modeling the trajectory distribution using neural networks.
These methods typically employ a factorized Gaussian dis-
tribution N (y|µy, σ

2
y), instead of a full Gaussian distribution

N (y|µy,Σy) that accounts for both the DoF and time
steps. This choice mitigates the computational burden of
likelihood calculations, but comes at the cost of neglecting
key temporal correlations and interactions between different
DoF. To address these challenges, Li et al. [22] introduced a
novel approach for estimating the trajectory likelihood with
a set of paired time points (tk, t

′
k), k = 1, ...,K, as

log p([yt]t=0:T ) ≈
1

K

K∑
k=1

logN (y(tk,t′k)
|µ(tk,t′k)

,Σ(tk,t′k)
),

(4)

As shown in Fig. 2, this method scales down the dimensions
of a trajectory distribution from D ·T to a more manageable
D · 2. Through the use of batched, randomly selected time
pairs during training, the method is proved to efficiently
capture correlations while reducing computational cost.

D. Using Trust Regions for stable policy update

In ERL, the parameter space W typically exhibits higher
dimensionality compared to the action space A. This com-
plexity presents unique challenges in maintaining stable



Observation

Task RL Policy πθ for Trajectory Parameter Selection

Policy Nets

µw

Σw

Predict

w∗ ∼ N (µw,Σw)

Sample Traj. Parameter

Robot Initial State yb, ẏb

ProDMPs

Compute Traj.

[yt]t=0:T

[ẏt]t=0:T

Environment

Interaction

Segment states

and rewards

stk , st′k

[rt]t=tk:t
′
k

Segment Evaluation

V-func. Net

Segment return Rk =
∑t′k−1

t=tk
γt−tkrt

V (stk ), V (st′
k
)

Segment Values

ProDMPs
Compute Segment

Mean and Cov.

µ(tk,t
′
k
),Σ(tk,t

′
k
)

Traj. to Segments
tk

t′k

tk, t′k
ytk

,yt′
k

Policy Update

Likelihood, Eq. (8)
Compute Segment

p([yt]t=tk:t
′
k
)

Advantage, Eq. (9)
Compute Segment

A([yt]t=tk:t
′
k
)

Maximize Segment
Advantage-weighted

Likelihood J , Eq. (10).

Policy Gradient Update

θ ← θ + α∇θJ ,

Constraint to Trust Region
of µw and Σw

Fig. 3: The TCE framework. The entire learning framework can be divided into three main parts. The first part, shown in
green arrows, involves trajectory sampling, generation, and execution, detailing how the robot is controlled to complete a
given task. The second part, indicated in blue arrows, focuses on estimating the likelihood of selecting a particular segment
of the sampled trajectory. The third part, marked by red arrows, deals with segment evaluation and advantage computation,
assessing how much each segment contributes to the successful task completion.

policy updates. Trust regions methods [1, 27] has long been
recognized as an effective technique for ensuring the stability
and convergence of policy gradient methods. While popular
methods such as PPO approximate trust regions using surro-
gate cost functions, they lack the capacity for exact enforce-
ment. To tackle this issue, Otto et al. [28] introduced trust
region projection layer (TRPL), a mathematically rigorous
and scalable technique that precisely enforces trust regions in
deep RL algorithms. By incorporating differentiable convex
optimization layers [29], this method not only allows for trust
region enforcement for each input state, but also demon-
strates significant effectiveness and stability in high-dim
parameter space, as validated in method like BBRL [17]. The
TRPL takes standard outputs of a Gaussian policy—namely,
the mean vector µ and covariance matrix Σ —and applies a
state-specific projection operation to maintain trust regions.
The adjusted Gaussian policy, parameterized by µ̃ and Σ̃,
forms the basis for subsequent computations. Let dmean and
dcov be the dissimilarity measures, e. g. KL-divergence, for
mean and covariance, bounded by ϵµ and ϵΣ respectively.
The optimization for each state s is formulated as:

argmin
µ̃s

dmean (µ̃s,µ(s)) , s. t. dmean (µ̃s,µold(s)) ≤ ϵµ,

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s. t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ.

(5)

III. USE STEP-BASED INFORMATION FOR ERL POLICY
UPDATES

tk, t′k

k

ytk

yt′
k

Fig. 4: Divide a trajectory into
K segments

We introduce an inno-
vative framework of ERL
that builds on traditional
ERL foundations, aiming
to facilitate an efficient
policy update mechanism
while preserving the in-
trinsic benefits of ERL.
The key innovation lies
in redefining the role of
trajectories in the policy
update process. In contrast to previous methods which con-
sider an entire trajectory as a single data point, our approach
breaks down the trajectory into individual segments. Each
segment is evaluated and weighted based on its distinct
contribution to the task success. This method allows for a
more effective use of step-based information in ERL. The
comprehensive structure of this framework is depicted in
Figure 3.

Trajectory Prediction and Generation. As highlighted
by green arrows in Fig. 3, we adopt a structure similar to
previous ERL works, such as the one described by Otto
et al. [17]. However, this part distinguish itself by using the
most recent ProDMPs for trajectory generation and distri-



bution modeling, due to the improved support for trajectory
initialization. Additionally, we enhance the previous frame-
work by using a full covariance matrix policy π(w|s) =
N (w|µw,Σw) as opposed to a factorized Gaussian policy,
to capture a broader range of movement correlations.

Trajectory Likelihood Representation. In RL, the like-
lihood of previously sampled actions, along with their as-
sociated returns, is often used to adjust the chance of these
actions being selected in future policies. In previous ERL
methods, this process typically involves the probability of
choosing an entire trajectory. However, our framework adopts
a different strategy, as shown in blue arrows in Fig. 3. Using
the techniques in Sections II-B and II-C, our approach begins
by selecting K paired time steps. We then transform the
parameter likelihood into a trajectory likelihood, which is
calculated using these K pairwise likelihoods. This approach,
depicted in Figure 4, effectively divides the whole trajectory
into K distinct segments, with each segment defined by a
pair of time steps. In essence, this method allows us to break
down the overall trajectory likelihood into individual segment
likelihoods, offering a more detailed view of the trajectory’s
contribution to task success.

Trajectory to Segments:

p([yt]t=0:T |s) ≜ {p([yt]t=tk:t′k
|s)}k=1...K ,

(6)

(7)
Local Representation:

p([yt]t=tk:t′k
|s) ≜ p([ytk ,yt′k

]|µ(tk,t′k)
(s),Σ(tk,t′k)

(s)).

(8)

Definition of Segment Advantages. Similar to standard
SRL methods, we leverage the advantage function to evaluate
the benefits of executing individual segments within a sam-
pled trajectory. When being at state stk and following the
trajectory segment [yt]t=tk:t′k

, the segment-wise advantage
function A(stk , [yt]t=tk:t′k

) quantifies the difference between
the actual return obtained by executing this sampled tra-
jectory segment and the expected return from a randomly
chosen segment, as

A(stk , [yt]t=tk:t′k
) =

t=t′k−1∑
t=tk

γt−tkrt + γt′k−tkV πold(st′k)− V πold(stk),
(9)

where V πold(s⃗tk) denotes the value function of the current
policy. In our method, the estimation of V πold(s⃗tk) is con-
sistent with the approaches commonly used in SRL and
is independent of the design choice of segment selections.
We use NNs to estimate V π(s) ≈ V π

ϕ (s) which is fitted
on targets of true return or obtained by general advantage
estimation (GAE) [5].

Learning Objective. By replacing the trajectory likeli-
hood and advantage with their segment-based counterparts
in the original ERL learning objective as stated in Eq. (1),

we propose the learning objective of our method as follows

J(θ) =

Eπold

[
1

K

K∑
k=1

pπnew([yt]t=tk:t′k
|s)

pπold([yt]t=tk:t′k
|s)

Aπold(stk , [yt]t=tk:t′k
)

]
.

(10)

Here, s denotes the initial state of the episode, used for se-
lecting the parameter vector w⃗, and stk is the state of the sys-
tem at time tk. The learning objective takes the Importance
Sampling to update policies using data from previous policies
[1, 27, 28]. Our method retains the advantages of exploration
in parameter space and generating smooth trajectories. This
enables us to enhance the likelihood of segments with high
advantage and reduce the likelihood of less rewarding ones
during policy updates. To ensure a stable update for the
full covariance Gaussian policy πθ(w|s) = N (µw,Σw),
we deploy a differentiable Trust Region Projection step [28]
after each policy update iteration as previously discussed in
Section II-D.

IV. RELATED WORKS

Improve Exploration and Smoothness in Step-based
RL. SRL methods, such as PPO and SAC, interact with
the environment by performing a sampled action at each
time-step. This strategy often results in a control signal with
high-frequency noise, making it unsuitable for direct use
in robotic systems [6]. A prevalent solution is to reduce
the sampling frequency, a technique commonly known as
frame skip [19]. Here, the agent only samples actions every
k-th time step and replicates this action for the skipped
steps. Similar approaches decide whether to repeat the last
action or to sample a new action in every time step [30,
31]. This concept is also echoed in works such as general
State Dependent Exploration (gSDE) [6, 32, 33], where the
applied noise is sampled in a state-dependent fashion; leading
to smooth changes of the disturbance between consecutive
steps. However, while these methods improved the smooth-
ness in small segments, they struggled to model long-horizon
correlations. Another area of concern is the utilization of
white noise during sampling, which fails to consider the
temporal correlations between time steps and results in a
random walk with suboptimal exploration. To mitigate this,
previous research, such as [34] and [20], have integrated
colored noise into the RL policy, aiming to foster exploration
that is correlated across time steps. While these methods have
shown advantages over white noise approaches, they neither
improve the trajectory’s smoothness, nor adequately capture
the cross-DoF correlations.

Episodic RL. The early ERL approaches used black-box
optimization to evolve parameterized policies, e.g., small NN
[9, 10, 35]. However, these early works were limited to
tasks with low-dimensional action space, for instance, the
Cart Pole. Although recent works [14, 36] have shown that,
with more computing, these methods can achieve comparable
asymptotic performance with step-based algorithms in some
locomotion tasks, none of these methods can deal with



tasks with context variations (e.g., changing goals). Another
research line in ERL works with more compact policy rep-
resentation. [11, 37] first combined ERL with MPs, reducing
the dimension of searching space from NN parameter space
to MPs parameter space with the extra benefits of smooth
trajectories generation. [38] proposed a model-based method
to improve the sample efficiency. Notably, although those
methods can already handle some complex manipulation
tasks such as robot baseball [11], none of them can deal
with contextual tasks. To deal with that problem, [39] further
extends that utilizes linear policy conditioned on the context.
Another recent work from this research line [16] proposed
using a Mixture of Experts (MoE) to learn versatile skills
under the ERL framework.

BBRL. As the first method that utilizes non-linear adap-
tation to contextual ERL, Deep Black Box Reinforcement
Learning (BBRL) [17] is the most related work to our
method. BBRL applies trust-region-constrained policy op-
timization to learn a weight adaptation policy for MPs.
Despite demonstrating great success in learning tasks with
sparse and non-Markovian rewards, it requires significantly
more samples to converge compared to SoTA SRL methods.
This could be attributed to its black-box nature, where the
trajectory from the entire episode is treated as a single data
point, and the trajectory return is calculated by summing up
all step rewards within the episode.

V. EXPERIMENTS

We evaluate the effectiveness of our model through experi-
ments on a variety of simulated robot manipulation tasks. The
performance of TCE is compared against well-known deep
RL algorithms as well as methods specifically designed for
correlated actions and consistent trajectories. The evaluation
is designed to answer the following questions: (a) Can
our model effectively train the policy across diverse tasks,
incorporating various robot types, control paradigms (task
and joint space), and reward configurations? (b) Does the
incorporation of movement correlations lead to higher task
success rates? (c) Are there limitations or trade-offs when
adopting our proposed learning strategy?

For the comparative evaluation, we select the following
methods: PPO, SAC, TRPL, gSDE, PINK [20] and BBRL.
We use step-based methods (PPO, SAC, TRPL, gSDE, and
PINK) to predict the lower-level actions for each task. On the
other hand, for episodic methods like BBRL and TCE, we
predict position and velocity trajectories and then employ a
PD controller to compute the lower-level control commands.
Across all experiments, we measure task success in terms
of the number of environment interactions required. Each
algorithm is evaluated using 20 distinct random seeds. Re-
sults are quantified using the Interquartile Mean (IQM) and
are accompanied by a 95% stratified bootstrap confidence
interval [8].

A. Large Scale Robot Manipulation Benchmark

We begin our evaluation using the Metaworld benchmark
[40], a comprehensive testbed that includes 50 manipulation

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Success Rate

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Success Rate τ

R
un

s
w

ith
Su

cc
es

s
R

at
e
>

τ

(b) Performance Profile

Fig. 5: Metaworld Evaluation. (a) Overall Success Rate
across all 50 tasks, reported using Interquartile Mean (IQM)
[8]. (b) Performance profile, illustrating the fraction of runs
that exceed the threshold specified on the x-axis.

tasks of varying complexity. Control is executed in a 3-DOF
task space along with the finger closeness, and a dense re-
ward signal is employed. In contrast to the original evaluation
protocol, we introduce a more stringent framework. Specifi-
cally, each episode is initialized with a randomly generated
context, rather than a fixed one. Additionally, we tighten
the success criteria to only consider a task successfully
completed if the objective is maintained until the final time
step. This adjustment mitigates scenarios where transient
successes are followed by erratic agent behavior. While we
train separate policies for each task, the hyperparameters
remain constant across all 50 tasks. For each method, we
report the overall success rate as measured by the IQM across
the 50 sub-tasks in Fig. 5a. The performance profiles are
presented in Fig. 5b.

In both metrics, our method significantly outperforms
the baselines in achieving task success. BBRL exhibits the
second-best performance in terms of overall consistency
across tasks but lags in training speed compared to step-
based methods. We attribute this difference to the use of
per-step dense rewards, which enables faster policy updates
in step-based approaches. TCE leverages the advantages of
both paradigms, surpassing other algorithms after approxi-
mately 107 environment interactions. Notably, the off-policy
methods SAC and PINK were trained with fewer samples
than used for on-policy methods due to their limitations
in parallel environment utilization. PINK achieved superior
final performance but at the expense of sample efficiency
compared to SAC.

B. Joint Space Control with Multi Task Objectives

Next, we investigate the advantages of modeling com-
plete movement correlations and the utility of intermediate
feedback for policy optimization. To this end, we enhance
the BBRL algorithm by expanding its factorized Gaussian
policy to accommodate full covariance (BBRL Cov.), thereby
capturing movement correlations. Both the original and aug-
mented versions of BBRL are included in the subsequent
task evaluations. We evaluate the methods on a customized
Hopper Jump task, sourced from OpenAI Gym [41]. This 3-



TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.2 0.4 0.6 0.8 1

·107

1.5

1.6

1.7

1.8

1.9

Iteration

M
ax

Ju
m

p
H

ei
gh

t,
IQ

M
[m

]

(a) Hopper Jump, Max Height

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M
(b) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(c) Box Pushing, Sparse

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(d) Table Tennis

Fig. 6: Task Evaluation of (a) Hopper Jump Max Height. (b) Box Pushing success rate in dense reward, and (c) Box Pushing
success rate in sparse reward setting. (d) Table tennis with high reward sparsity.

DoF task primarily focuses on maximizing jump height while
also accounting for precise landing at a designated location.
Control is executed in joint space. We report the max jump
height as the main metric of success in Fig. 6a. Our method
exhibits quick learning and excels in maximizing jump
height. Both BBRL versions exhibit similar performance,
while BBRL Cov. demonstrates marginal improvements over
the original. However, they both fall behind TCE in training
speed, highlighting the efficiency gains we achieve through
intermediate state-based policy updates. Step-based methods
like PPO and TRPL tend to converge to sub-optimal policies.
The only exception is gSDE. As an augmented step-based
method, it enables smoother and more consistent exploration
but exhibits significant sensitivity to model initialization
(random seeds), evident from the wide confidence intervals.

C. Contact-rich Manipulation with Dense and Sparse Re-
ward Settings

We further turn to a 7-DoF robot box-pushing task
adapted from [17]. The task requires the robot’s end-effector,
equipped with a rod, to maneuver a box to a specified
target position and orientation. The difficulty lies in the
need for continuous, correlated movements to both position
and orient the box accurately. To amplify the complexity,
the initial pose of the box is randomized. We test two
reward settings: dense and sparse. The dense setting offers
intermediate rewards inversely proportional to the current
distance between the box and its target pose, while the sparse
setting only allocates rewards at the episode’s end based on
the final task state. Performance metrics for both settings
are shown in Fig. 6b and 6c. In either case, TCE and gSDE
exhibit superior performance but with TCE demonstrating
greater consistency across different random seeds. The aug-
mented BBRL version outperforms its original counterpart,
emphasizing the need for fully correlated movements in tasks
that demand consistent object manipulation. The other step-
based methods struggle to learn the task effectively, even
when dense rewards are provided. This further highlights the
advantages of modeling the movement trajectory as a unified
action, as opposed to a step-by-step approach.

D. Hitting Task with High Sparsity Reward Setting

In our last experiment, we assess the limitations of our
method using a 7-DoF robot table tennis task, originally from
[16]. The robot aims to return a randomly incoming ball to a
desired target on the opponent’s court. To enhance the task’s
realism, we randomize the robot’s initial state instead of
using a fixed starting pose. This task is distinct due to its one-
shot nature: the robot has only one chance to hit the ball and
loses control over the ball’s trajectory thereafter. The need
for diverse hitting strategies like forehand and backhand adds
complexity and increases the number of samples required
for training. Performance metrics are presented in Fig. 6d.
The BBRL Cov. emerges as the leader, achieving a 20%
higher success rate than other methods. It is followed by TCE
and the original BBRL, with TCE displaying intermediate
learning speeds between the two BBRL versions. Step-based
methods, led by TRPL at a mere 15% task success, struggle
notably in this setting. We attribute the underperformance of
TCE and step-based methods to the task’s reward sparsity,
which complicates the value function learning of SRL and
TCE. Despite these challenges, TCE maintains its edge over
other baselines, further attesting to its robustness, even under
stringent conditions.

VI. CONCLUSION

We introduced TCE that synergizes the exploration advan-
tages of ERL with the sample efficiency of SRL. Empirical
evaluation showcases that TCE matches the sample efficiency
of SRL and consistently delivers competitive asymptotic
performance across various tasks. Furthermore, we demon-
strated both the sample efficiency and policy performance
of episodic policies can be further improved by incorporat-
ing proper correlation modeling. Several opening questions
remain for future work. TCE yields moderate results for
tasks characterized by particularly sparse reward settings,
as observed in scenarios like table tennis. Additionally, the
current open-loop control setup lacks the adaptability needed
for complex control problems in dynamic environments
where immediate feedback and swift adaptation are crucial.
These issues will be at the forefront of our future work.



VII. ACKNOWLEDGEMENT AND STATEMENT

This paper is a workshop version of the original paper
[42], where more technical details can be found. The authors
acknowledge support by the state of Baden-Württemberg,
Germany, through bwHPC, and the HoreKa supercomputer.

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor”. In: International conference on machine learning.
PMLR. 2018, pp. 1861–1870.

[3] R. J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Mach. learning 8 (1992),
pp. 229–256.

[4] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. “Policy
gradient methods for reinforcement learning with function approx-
imation”. In: Adv. neural information processing systems 12
(1999).

[5] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel.
“High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[6] A. Raffin, J. Kober, and F. Stulp. “Smooth exploration for robotic
reinforcement learning”. In: Conference on Robot Learning. PMLR.
2022, pp. 1634–1644.

[7] P. Schumacher, D. F. Haeufle, D. Büchler, S. Schmitt, and G. Mar-
tius. “DEP-RL: Embodied Exploration for Reinforcement Learning
in Overactuated and Musculoskeletal Systems”. In: Proceedings of
the Eleventh International Conference on Learning Representations
(ICLR). May 2023.

[8] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare. “Deep Reinforcement Learning at the Edge of the
Statistical Precipice”. In: Adv. Neural Inf. Process. Syst. (2021).

[9] D. Whitley, S. Dominic, R. Das, and C. W. Anderson. “Genetic
reinforcement learning for neurocontrol problems”. In: Mach.
Learn. 13 (1993), pp. 259–284.

[10] C. Igel. “Neuroevolution for reinforcement learning using evolution
strategies”. In: The 2003 Congress on Evolutionary Computation,
2003. CEC’03. Vol. 4. IEEE. 2003, pp. 2588–2595.

[11] J. Peters and S. Schaal. “Reinforcement learning of motor skills with
policy gradients”. In: Neural networks 21.4 (2008), pp. 682–697.

[12] S. Schaal. “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics”. In: Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[13] A. Paraschos, C. Daniel, J. Peters, and G. Neumann. “Probabilistic
movement primitives”. In: Adv. neural information processing
systems 26 (2013).

[14] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. “Evolution
strategies as a scalable alternative to reinforcement learning”. In:
arXiv preprint arXiv:1703.03864 (2017).

[15] V. Tangkaratt, H. Van Hoof, S. Parisi, G. Neumann, J. Peters, and M.
Sugiyama. “Policy search with high-dimensional context variables”.
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 31. 1. 2017.

[16] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann. “Special-
izing versatile skill libraries using local mixture of experts”. In:
Conference on Robot Learning. PMLR. 2022, pp. 1423–1433.

[17] F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G.
Neumann. “Deep black-box reinforcement learning with movement
primitives”. In: Conference on Robot Learning. PMLR. 2022,
pp. 1244–1265.

[18] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[19] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikkulainen.
“Frame skip is a powerful parameter for learning to play atari”.
In: Workshops at the twenty-ninth AAAI conference on artificial
intelligence. 2015.

[20] O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. “Pink noise
is all you need: Colored noise exploration in deep reinforcement
learning”. In: The Eleventh International Conference on Learning
Representations. 2022.

[21] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. “Neural dynamic
policies for end-to-end sensorimotor learning”. In: Adv. Neural
Inf. Process. Syst. 33 (2020), pp. 5058–5069.

[22] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann.
“ProDMP: A Unified Perspective on Dynamic and Probabilistic
Movement Primitives”. In: IEEE Robotics Autom. Lett. 8.4
(2023), pp. 2325–2332.

[23] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters.
“Using probabilistic movement primitives for striking movements”.
In: 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids). IEEE. 2016, pp. 502–508.

[24] M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur. “Conditional Neural
Movement Primitives.” In: Robotics: Science and Systems. Vol. 10.
2019.

[25] M. Akbulut, E. Oztop, M. Y. Seker, X. Hh, A. Tekden, and
E. Ugur. “Acnmp: Skill transfer and task extrapolation through
learning from demonstration and reinforcement learning via rep-
resentation sharing”. In: Conference on Robot Learning. PMLR.
2021, pp. 1896–1907.

[26] M. Przystupa, F. Haghverd, M. Jagersand, and S. Tosatto. “Deep
Probabilistic Movement Primitives with a Bayesian Aggregator”.
In: arXiv preprint arXiv:2307.05141 (2023).

[27] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz.
“Trust region policy optimization”. In: International conference on
machine learning. PMLR. 2015, pp. 1889–1897.

[28] F. Otto, P. Becker, N. A. Vien, H. C. Ziesche, and G. Neumann.
“Differentiable trust region layers for deep reinforcement learning”.
In: Int. Conf. on Learn. Represent. (2021).

[29] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and
J. Z. Kolter. “Differentiable convex optimization layers”. In: Adv.
neural information processing systems 32 (2019).

[30] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. “TempoRL:
Learning when to act”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 914–924.

[31] H. Yu, W. Xu, and H. Zhang. “Taac: Temporally abstract actor-critic
for continuous control”. In: Adv. Neural Inf. Process. Syst. 34
(2021), pp. 29021–29033.

[32] T. Rückstieß, M. Felder, and J. Schmidhuber. “State-Dependent
Exploration for Policy Gradient Methods”. In: Machine Learning
and Knowledge Discovery in Databases. Ed. by W. Daelemans,
B. Goethals, and K. Morik. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 234–249.

[33] A. S. Chiappa, A. M. Vargas, A. Z. Huang, and A. Mathis. “Latent
exploration for reinforcement learning”. In: Adv. Neural Inf.
Process. Syst. (NeurIPS) (2023).

[34] T. P. Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[35] F. Gomez, J. Schmidhuber, R. Miikkulainen, and M. Mitchell.
“Accelerated Neural Evolution through Cooperatively Coevolved
Synapses.” In: J. Mach. Learn. Research 9.5 (2008).

[36] H. Mania, A. Guy, and B. Recht. “Simple random search of static
linear policies is competitive for reinforcement learning”. In: Adv.
Neural Inf. Process. Syst. 31 (2018).

[37] J. Kober and J. Peters. “Policy search for motor primitives in
robotics”. In: Adv. neural information processing systems 21
(2008).

[38] A. Abdolmaleki, R. Lioutikov, J. R. Peters, N. Lau, L. Pualo Reis,
and G. Neumann. “Model-based relative entropy stochastic search”.
In: Adv. Neural Inf. Process. Syst. 28 (2015).

[39] A. Abdolmaleki, B. Price, N. Lau, L. P. Reis, and G. Neumann.
“Contextual covariance matrix adaptation evolutionary strategies”.
In: International Joint Conferences on Artificial Intelligence Orga-
nization (IJCAI). 2017.

[40] T. Yu et al. “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning”. In: Conference on robot learning.
PMLR. 2020, pp. 1094–1100.

[41] G. Brockman et al. “Openai gym”. In: arXiv preprint
arXiv:1606.01540 (2016).

[42] G. Li et al. “Open the Black Box: Step-based Policy Updates
for Temporally-Correlated Episodic Reinforcement Learning”. In:
The Twelfth International Conference on Learning Representations.
2024.


	Introduction
	Preliminaries
	Episodic rl
	Using Movement Primitives for Trajectory Representation
	Representation of Trajectory Distribution and Likelihood
	Using Trust Regions for stable policy update

	Use Step-based Information for ERL Policy Updates
	Related Works
	Experiments
	Large Scale Robot Manipulation Benchmark
	Joint Space Control with Multi Task Objectives
	Contact-rich Manipulation with Dense and Sparse Reward Settings
	Hitting Task with High Sparsity Reward Setting

	Conclusion
	Acknowledgement and Statement

