
Better Process Supervision with Bi-directional Rewarding Signals

Anonymous ACL submission

Abstract001

Process supervision, i.e., evaluating each step,002
is critical for complex large language model003
(LLM) reasoning and test-time searching with004
increased inference compute. Existing ap-005
proaches, represented by process reward mod-006
els (PRMs), primarily focus on rewarding sig-007
nals up to the current step, exhibiting a one-008
directional nature and lacking a mechanism to009
model the distance to the final target. To ad-010
dress this problem, we draw inspiration from011
the A* algorithm, which states that an effective012
supervisory signal should simultaneously con-013
sider the incurred cost and the estimated cost014
for reaching the target. Building on this key015
insight, we introduce BiRM, a novel process016
supervision model that not only evaluates the017
correctness of previous steps but also models018
the probability of future success. We conduct019
extensive experiments on mathematical reason-020
ing tasks and demonstrate that BiRM provides021
more precise evaluations of LLM reasoning022
steps, achieving an improvement of 3.1% on023
Gaokao2023 over PRM under the Best-of-N024
sampling method. Besides, in search-based025
strategies, BiRM provides more comprehen-026
sive guidance and outperforms ORM by 5.0%027
and PRM by 3.8% respectively on MATH-500.028

1 Introduction029

With the rapid development of LLMs, how to super-030

vise them has become a key research challenge, es-031

pecially for complex tasks like long-term reasoning032

(Zelikman et al., 2022; OpenAI, 2024b; Wan et al.,033

2024). Previous work has explored training process034

supervision models to provide dense supervision035

on each step (Uesato et al., 2022; Lightman et al.,036

2024; Wang et al., 2024b), which is intuitively and037

practically better than outcome supervision models038

(Cobbe et al., 2021) that only provide sparse sig-039

nals on the final answer. During test-time, process040

supervision models can further guide the search of041

LLMs or perform solution re-ranking by allocating042

Insufficient Evaluation
PRM struggles in later stages

VM is inaccurate in early stages

Comprehensive Evaluation
BiRM consistently provide 
precise supervision signals

Figure 1: Error-detection accuracy across different steps,
where step 1 and steps beyond 15 are truncated for better
visualization. We evaluate the process reward model
(PRM), value model (VM), and BiRM on PRMBench.

more inference compute (Snell et al., 2024; Brown 043

et al., 2024; Wu et al., 2024). 044

However, existing approaches, represented by 045

process reward models (PRMs) from OpenAI 046

(Lightman et al., 2024), typically focus on provid- 047

ing one-directional reward signals on the reason- 048

ing steps that have already been generated, with- 049

out consciously considering the probability of fu- 050

ture success (Yu et al., 2024a; Zhang et al., 2025). 051

Specifically, while they can accurately distinguish 052

between correct and incorrect steps at the current 053

state (i.e., backward supervision), their ability to 054

identify which partial solution is most likely to 055

reach the correct final answer (i.e., forward super- 056

vision) is not guaranteed, leading to sub-optimal 057

performance in guiding effective next-step reason- 058

ing (Stroebl et al., 2024; Wang et al., 2025). 059

To address this challenge, we draw inspira- 060

tion from the classic A* algorithm, and introduce 061

BiRM, a novel process supervision model that pro- 062

vides bidirectional rewarding signals. Classically, 063

the A* algorithm (Hart et al., 1968) states that an 064
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appropriate supervisory signal should take two as-065

pects into account: the cumulative cost up to the066

current step, and the estimated probability of reach-067

ing the target (Zhuang et al., 2024; Wang et al.,068

2024a). Motivated by this key insight, we redesign069

the process supervision signals, which should not070

only assess the correctness of steps taken so far, but071

also evaluate the future success probability of the072

partial solution. Specifically, BiRM introduces a073

value model (VM) head to help model the forward074

supervision signal (Yu et al., 2024a; Ankner et al.,075

2024), so that it can estimate both the correctness076

and success probability of a reasoning prefix/partial077

solution (Section 4).078

To validate our motivation, we conduct a prelim-079

inary analysis on PRMBENCH (Song et al., 2025),080

a benchmark designed to evaluate the capability081

of process supervision models. We include PRM082

and VM as baselines, where the former estimates083

the correctness of partial solutions, and the latter084

estimates the future success probability. As shown085

in Figure 1, PRM performs better at detecting error086

steps in the early stages of reasoning, while VM087

performs better in the later stages. This indicates088

that each baseline has limitations, which aligns089

with the intuition we derive from the A* algorithm.090

In contrast, BiRM outperforms both of them in all091

stages, demonstrating the comprehensiveness and092

effectiveness of our approach.093

We then perform extensive experiments on three094

mathematical reasoning tasks: GSM8K, MATH-095

500 and Gaokao2023 (Liao et al., 2024) to demon-096

strate the effectiveness of BiRM across different097

model series and search strategies. For example,098

BiRM trained on Qwen2.5-7B-Base achieves a099

3.1% improvement on Gaokao2023 over PRM us-100

ing Best-of-N sampling. Additionally, in beam101

search with a total sampling size of 100, BiRM fur-102

ther surpasses PRM by 3.8% and ORM by 5.0%.103

In summary, our contributions are as follows:104

• We draw inspiration from A* algorithm and pro-105

pose BiRM, a novel process supervision model106

that provides bidirectional rewarding signals.107

• We conduct extensive experiments on math rea-108

soning tasks to demonstrate its effectiveness in109

solution re-ranking and trajectory searching.110

• We present an in-depth analysis and demonstrate111

that BiRM is orthogonal to existing open-source112

supervision models, highlighting its robustness113

and generalization capabilities.114

2 Related Work 115

2.1 Enhancing Mathematical Reasoning 116

Capabilities of LLMs 117

Mathematical reasoning tasks remain a signifi- 118

cant challenge for LLMs (OpenAI, 2024a; Snell 119

et al., 2024). Researchers have conducted extensive 120

studies on both train-time and test-time improve- 121

ments. At train-time, supervised fine-tuning is a 122

well-established approach. Its core idea is to con- 123

struct large-scale, high-quality datasets to enhance 124

performance (Liao et al., 2024; Yu et al., 2024b; 125

Tong et al., 2024). On the other hand, experimen- 126

tal results from Openai-o1 (OpenAI, 2024b) and 127

DeepSeek-R1 (DeepSeek-AI et al., 2025) highlight 128

the promising potential of test-time scaling laws. 129

Vanilla sampling methods like Best-of-N sampling 130

(Liu et al., 2025) and search-based strategies such 131

as beam search, A*, and MCTS (Zhuang et al., 132

2024; Wan et al., 2024; Zhang et al., 2024a) have 133

all achieved remarkable performance by allocating 134

more computational resources at test-time. In this 135

work, we focus on improving LLM’s performance 136

during the test-time phase. 137

2.2 Process Supervision Models in LLM 138

Reasoning 139

LLMs can leverage an additional supervision 140

model to achieve accurate test-time reasoning. 141

Mainstream approaches can be divided into out- 142

come reward models (ORMs) and process reward 143

models (PRMs). ORMs are trained with rule-based 144

labeled data and assign one score to the entire solu- 145

tion path (Cobbe et al., 2021; Yu et al., 2024a). This 146

method achieves striking results in reasoning mod- 147

els like Deepseek-R1 but struggles with other tasks 148

where the answers are highly open-ended. On the 149

other hand, PRMs evaluate each intermediate steps 150

in the trajectory, providing more granular reward 151

signals (Lightman et al., 2024; Uesato et al., 2022; 152

Zhang et al., 2025). Depending on the practical im- 153

plementation, there are several variants of PRMs: 154

(1) Value Models (VMs, Wang et al., 2024b; Luo 155

et al., 2024) use Monte Carlo estimation to label 156

steps, reducing the burden of manual annotation. 157

The resulting labels represent the probability of 158

future success, essentially making PRMs a type 159

of value model. (2) Generative Reward Models 160

(Zhang et al., 2024c) leverage the text generation 161

capabilities of LLMs, providing natural language 162

feedback, rather than traditional numerical scores. 163
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3 Motivation164

3.1 Task Formulation165

Given a mathematical question q, a large language166

model π generates a sequence of reasoning steps to167

solve the problem. The complete reasoning trajec-168

tory, i.e., chain-of-thought (Wei et al., 2022), can169

be denoted as τ = {s1, s2, . . . , sm}, where si rep-170

resents the i-th step and m is the number of total171

reasoning steps.172

3.2 The Limitations of PRMs173

PRMs are typically trained to assign a numerical174

score to each intermediate reasoning step, eval-175

uating their correctness. For a partial trajectory176

τ [1:t] = {s1, s2, . . . , st}, PRM can provide an re-177

ward score for step si:178

r(si, q) = p(si is correct | q), (1)179

where r(·) represents the process-based reward180

function provided by PRM. Further, the correct-181

ness of the partial trajectory τ [1:t] can be expressed182

as the accumulative correctness reward of all inter-183

mediate steps, following Lightman et al. (2024):184

R(τ [1:t], q) = p([s1, s2, . . . , st] is correct | q)

=
t∏

i=1

p(si is correct | q) =
t∏

i=1

r(si, q).
185

This equation highlights the one-directional scor-186

ing nature of PRMs, which evaluate whether the187

sampled trajectory {s1, s2, . . . , st} is correct given188

the problem q. Instead, for the potential future189

paths {st+1, st+2, . . . , sm} starting from the cur-190

rent state st, PRMs lack the capability to provide191

effective guidance, as Figure 2 illustrates.192

3.3 Inspiration from the A* Search Algorithm193

To address this limitation, we draw inspiration from194

the A* algorithm. Originally, A* is a heuristic195

graph search algorithm designed to find the opti-196

mal path (Hart et al., 1968). The key insight from197

A* is that a good supervision signal should simul-198

taneously consider two aspects: the accumulative199

cost g(n) up to the current step and the future cost200

h(n) to the target. The final value of a step is given201

by f(n) = g(n) + h(n).202

In the context of LLM mathematical reasoning,203

we argue that a good supervision signal should not204

only consider the correctness of previous steps (i.e.,205

backward supervision) but also model the probabil-206

ity of future success (i.e., forward supervision). On207

the one hand, PRM can naturally function as g(·). 208

In other words, PRM can use its one-directional 209

scoring ability to provide rewards for the partial 210

solution up to the current step st: 211

g(st) = Agg(r(s1), r(s2), . . . , r(st)) = R(τ [1:t]), 212

where Agg ∈ {
∏
,min,max, avg} stands for an 213

aggregation function to summarize the accumula- 214

tive rewards of all steps from s1 to st. 215

On the other hand, to heuristically model the 216

probability of reaching the correct final answer, we 217

seek to utilize a value model (VM) to play the role 218

of h(·). For the partial solution τ [1:t], a forward- 219

looking VM can provide a reliable probability esti- 220

mation: 221

h(st) = V(τ [1:t], q)
= Eâ∼π(·|τ [1:t],q) [p(â is correct | q)] .

(2) 222

Here, â represents the final answer predicted by the 223

LLM π, and V(·) denotes the estimtation of VM 224

for whether the partial trajectory can reach the cor- 225

rect answer. In practical implementations, the VM 226

and PRM share the same model architecture, but 227

differ in the meaning of training labels, which fun- 228

damentally trains the VM as a reliable predictive 229

estimator. We will discuss more details in Section 230

4.2. Finally, the complete value function can be 231

expressed as: 232

f(st) = g(st) + β · h(st), (3) 233

where the coefficient β balances the importance 234

of the g(st) and h(st) terms. When a step si has 235

a higher f(si) value, it indicates that this step is 236

more promising among multiple candidates, thus 237

contributing to more effective next-step reasoning. 238

4 BiRM, a Bidirectional Process 239

Supervision Model 240

4.1 Training Methodology 241

For a query q from the training question set Q, 242

we first sample N solutions from the generator π. 243

Then, we annotate each intermediate step of these 244

solutions, i.e., annotating step-level labels. The re- 245

sulting dataset D for query q can be formalized as 246

Dq = {τi, {y1i , y2i , . . . , y
j
i , . . . }}Ni=1, where τi de- 247

notes the i-th sampled trajectory, and yji represents 248

the step label for the j-th step in the i-th solution. 249

We will introduce more annotation strategies in 250

Section 4.2. 251
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reward

: is correct ,     is correct – must be on the right path!

following steps

estimated value

:        is correct,        is also correct – but the latter seems a more promising path forward.

Value Estimation Integrated 

unseen

process reward

BiRM

PRM
value

Question: Let p(x) be 
a monic polynomial of 
degree 4. Three of the 
roots of p(x) are 1, 2, 
and 3. Find p(0)+p(4).

Figure 2: An example of our proposed BiRM compared with traitional Process Reward Models (PRMs). Given
a question q, PRMs only consider the accumulated rewards up to the current step. In contrast, BiRM takes into
account two aspects: the correctness rewards received so far and the probability of reaching correct final answers.

Following Yu et al. (2024a), we implement the252

vanilla PRM by adding a linear layer for reward253

prediction after the last hidden layer of the LLM.254

We also retain the original language modeling head.255

Formally, a vanilla PRM R(θ, ϕR) is parameter-256

ized by base model parameters θ and reward head257

parameters ϕR. The training objective of PRM is258

to minimize the mean squared error (MSE) loss259

between the predicted reward scores and the binary260

step-level reward labels. Thus, we have:261

LPRM(θ, ϕR)

=
1

|Q|
∑
q∈Q

[
Eτ∼π(·|q)

m∑
t=1

(
r̂θ,ϕR

(st, q)− rt
)2]

,
262

where r̂(st, q) represents the predicted reward263

score for the t-th step (Equation 1), and rt denotes264

the ground truth step label. m represents the total265

number of steps in solution τ .266

Furthermore, to alleviate the one-directional lim-267

itation of PRM, we introduce an additional value268

head to guide process supervision. Specifically,269

BiRM M(θ, ϕR, ϕV ) is parameterized by three270

components: θ represents the base model param-271

eters, ϕR represents the reward head, and ϕV cor-272

responds to the value head. The overall training273

objective of BiRM is to jointly minimize the dis-274

crepancy between the predicted reward score and275

the reward label, as well as between the value score276

and the value label. Similar to the vanilla PRM, we 277

employ MSE loss for the value head: 278

LVM(θ, ϕV ) =
1

|Q|
∑
q∈Q[

Eτ∼π(·|q)

m∑
t=1

(
M̂θ,ϕV

(τ [1:t], q)− vt
)2]

,

279

where M̂θ,ϕV
represents the estimated success 280

probability for the partial solution τ [1:t] (Equa- 281

tion 2), and vt denotes the value label for st. 282

In this way, the optimized BiRM considers not 283

only the actual accumulative rewards obtained so 284

far, but also the potential of reaching correct final 285

answers (Figure 2). The complete loss function for 286

BiRM can be defined as: 287

LBiRM(θ, ϕR, ϕV ) = LPRM(θ, ϕR)+c·LVM(θ, ϕV ).
(4) 288

We use a coefficient c to balance the importance of 289

the reward term LPRM and the value term LVM. 290

4.2 Step Label Annotation Strategies 291

In this section, we discuss our annotation strategies 292

for two kinds of BiRM training labels. 293

Reward Labels. Reward labels are defined as 294

the correctness of each current step, represented as 295

a binary label. We use the MetaMath dataset (Yu 296

et al., 2024b) as our training data. We first perform 297
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supervised fine-tuning on the base model to obtain298

the generators. Then, we sample 15 rollouts for299

each query and use Deepseek-V3 (DeepSeek-AI300

et al., 2024) to annotate the correctness of each301

step. Detailed annotation procedures and prompts302

are provided in Appendix B.2.303

Value Labels. A key challenge in implementing304

the value head is to accurately estimate value labels305

for the partial solution τ [1:t]. We employ multiple306

strategies to address this problem.307

MC-based estimation (Wang et al., 2024b) is a308

widely used method for automated labeling, which309

can be categorized into soft-label and hard-label310

annotations. Specifically, we sample N rollouts311

from an intermediate step in the trajectory. If M312

of them are correct, the soft-label for the current313

step can be defined as: label(st) = M
N . In contrast,314

the hard-label method suggests that if any of the315

rollouts reaches the target, then label(st) = 1.316

The essence of Monte Carlo estimation is to317

assess the potential of reaching correct final answer318

from the current step and assign this probability319

to the step label. Thus, for estimating a partial320

trajectory, we can formally express it as:321

V(τ [1:t], q) ≈ 1

N

N∑
i=1

I(âi is correct | τ [1:t], q).322

As the number of rollouts N increases, the esti-323

mated value label becomes more accurate. Follow-324

ing Wang et al. (2024b), we sample 8 solutions for325

each intermediate step and analyze the effective-326

ness of both soft-label and hard-label approaches.327

Outcome-supervised estimation (Yu et al.,328

2024a) states that using the oucome label alone329

is sufficient to provide probability estimatation for330

each reasoning steps. The underlying idea is that331

during the training phase, we can replicate the final332

answer’s correctness label across all intermediate333

steps. The resulting value model implicitly learns334

to foresee the future, predicting potential final out-335

come (i.e. value) for partial solutions. Compared to336

MC estimation, outcome-supervised estimation has337

higher data efficiency, but the shortcoming is that338

the automatically learned estimation in this way is339

less accurate.340

5 Experiments341

5.1 Experimental Setup342

Tasks. We conduct experiments using three343

widely used math reasoning datasets: GSM8K344

(Cobbe et al., 2021), MATH-500 (Lightman et al., 345

2024), and an out-of-domain (OOD) dataset 346

Gaokao2023 (Liao et al., 2024) to evaluate the 347

generalization ability of BiRM. Besides, we test 348

our method on three base models across different 349

model sizes and families: Qwen2.5-3B-Base (Yang 350

et al., 2024), Qwen2.5-7B-Base (Yang et al., 2024), 351

and Llama3.1-8B-Base (Dubey et al., 2024). 352

Baselines. To verify the effectiveness of BiRM, 353

we consider a wide range of baselines, including 354

the outcome reward model (ORM, Cobbe et al., 355

2021), process reward model (PRM, Lightman 356

et al., 2024) and two variants of PRM: Math- 357

Shepherd (Wang et al., 2024b) and ER-PRM 358

(Zhang et al., 2024b). Additionally, we include 359

the results of greedy decoding and rule-based ap- 360

proaches, i.e. Majority Voting. We present more 361

details in Appendix A.1. 362

Implementation Details. In the SFT phase, we 363

train our generators on the MATH subset of the 364

MetaMath dataset (Yu et al., 2024b) for two epochs, 365

with a learning rate set to 1 × 10−5. The global 366

batch size is set to 256. In the training phase, we 367

use 225, 000 sampled solutions to train BiRM for 368

one epoch based on the generator checkpoint with a 369

learning rate of 5×10−6. More details are provided 370

in Appendix A.2. 371

Evaluation Metrics. We conduct a comprehen- 372

sive evaluation of BiRM, considering both vanilla 373

sampling and search strategies. Best-of-N (BoN) 374

sampling is a commonly used evaluation metric 375

for PRMs. It requires the model to score N candi- 376

date solutions, with the highest-scoring solution se- 377

lected as the final outcome. We also conduct beam 378

search experiments to verify that BiRM can pro- 379

vide more promising guidance for LLM reasoning. 380

In practice, BiRM follows Equation 3, estimating 381

both rewards and values to calculate final scores. A 382

detailed description is provided in Appendix A.3. 383

5.2 Main Results 384

BiRM exhibits more comprehensive and su- 385

perior evaluations in BoN sampling. Table 1 386

presents a comparison of BoN accuracy across 387

different supervision models on GSM8K, MATH- 388

500, and the out-of-domain Gaokao2023 dataset. 389

Our observations are as follows: (1) BiRM consis- 390

tently outperforms vanilla ORM, PRM, and their 391

variants on both GSM8K and MATH-500. For in- 392

stance, BiRM trained on Llama3.1-8B outperforms 393
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Models Methods Avg. GSM8K MATH-500 Gaokao2023

@128 @256 @512 @128 @256 @512 @128 @256 @512

Qwen2.5-3B

Greedy 46.8 ——— 73.1 ——— ——— 40.2 ——— ——— 27.0 ———
Majority Vote 58.1 85.1 85.0 85.3 52.5 53.0 53.8 35.8 36.3 36.1
ORM 58.9 88.1 88.1 88.1 52.1 51.8 52.2 37.2 37.0 35.8
PRM 59.9 88.5 88.3 88.0 54.6 54.1 54.2 37.3 37.1 37.2
ER-PRM 58.8 88.0 88.0 87.7 52.6 52.3 52.0 36.2 36.3 35.8
Math-Shepherd 59.0 87.3 87.2 87.0 53.2 53.4 53.8 36.6 36.4 36.1
BiRM 61.0 88.4 88.6 88.9 55.9 56.1 57.4 36.9 37.8 38.7

Qwen2.5-7B

Greedy 52.3 ——— 78.5 ——— ——— 45.0 ——— ——— 33.5 ———
Majority Vote 63.6 88.1 88.0 87.8 57.3 57.5 57.6 45.5 45.4 45.2
ORM 64.7 92.0 91.6 91.3 59.6 59.9 59.4 43.6 43.5 41.3
PRM 66.3 92.7 92.8 92.9 60.3 60.1 58.4 45.8 46.2 47.3
ER-PRM 66.2 92.2 92.1 92.2 59.7 59.2 59.0 47.0 47.2 47.3
Math-Shepherd 66.3 92.1 92.2 91.7 60.3 60.2 60.4 46.4 47.0 46.5
BiRM 68.3 93.1 93.3 93.2 62.4 62.3 63.4 47.7 49.1 50.4

Llama3.1-8B

Greedy 34.7 ——— 55.7 ——— ——— 31.2 ——— ——— 17.1 ———
Majority Vote 46.4 72.1 72.0 72.3 39.2 40.2 41.1 26.5 27.2 27.1
ORM 50.3 84.1 84.5 85.0 41.5 40.9 40.8 25.4 25.2 24.9
PRM 51.5 84.1 84.8 85.2 42.5 42.2 41.8 28.2 27.7 27.3
ER-PRM 50.6 84.8 85.3 85.8 41.3 41.0 40.2 25.7 26.1 24.9
Math-Shepherd 51.3 84.4 84.9 85.3 42.7 42.9 43.6 25.8 25.8 26.2
BiRM 54.1 86.1 87.2 87.8 45.4 45.4 45.6 29.4 30.0 29.6

Table 1: Performance of Best-of-N sampling on GSM8K, MATH-500 and Gaokao2023 with three base models.
The accuracy of the BoN solution is utilized as the evaluation metric. The results are reported as the average
accuracy across five random seeds. @128, @256, and @512 denote the accuracy with Best-of-128, Best-of-256,
and Best-of-512 sampling, respectively. The results of greedy decoding are independent of N and are listed for
comparison purposes. The best results are marked in bold.

PRM on GSM8K by 2.6%, while BiRM based on394

Qwen2.5-7B achieves an additional 5.0% improve-395

ment on MATH-500. (2) BiRM exhibits better gen-396

eralization ability. Since supervision models are397

trained solely on the query sets from GSM8K and398

MATH, Gaokao2023 serves as an out-of-domain399

(OOD) test set. BiRM-Qwen2.5-7B surpasses the400

finely labeled Math-Shepherd by 3.9%. In contrast,401

other supervision methods show fluctuating per-402

formance across different base models. (3) As N403

increases, some supervision methods fail to provide404

consistent supervision. For example, ORM trained405

on Qwen2.5-3B shows a decrease on Gaokao2023406

from 37.2% to 35.8%. In contrast, BiRM main-407

tains a continuous increase in accuracy. We provide408

more detailed discussions in Section 6.1.409

BiRM demonstrates more meaningful and410

promising guidance in search-based strategies.411

To fully demonstrate the superiority of BiRM’s412

bidirectional supervision capability, we conduct413

further experiments under search-based strategies .414

We run step-level beam search and choose vanilla415

ORM and PRM as baselines. The detailed algo-416

rithm is provided in Appendix A.3. From Table 417

2, we can conclude that: (1) BiRM achieves the 418

highest accuracy in most cases. For example, on 419

GSM8K, Qwen2.5-7B-BiRM achieves an accuracy 420

of 89.4 at K = 8, which is a notable improvement 421

over PRM’s 88.1%. (2) As beam size increases, 422

BiRM’s performance continues to improve. On 423

the Llama3.1-8B base model, BiRM outperforms 424

ORM by 2.8% at K = 20 and achieves a notable 425

5.0% improvement at K = 100 in MATH-500 426

dataset. These results emphasize the valuable bidi- 427

rectional supervision signals provided by BiRM, 428

which significantly contributes to guiding the LLM 429

toward more successful and promising final an- 430

swers in solution searching. 431

6 Analysis and Discussions 432

6.1 Scaling Decline in BoN sampling 433

We conduct a further analysis of the scaling decline 434

phenomenon in our main results. The complete 435

BoN accuracy curve, shown in Figure 3, is plotted 436

for N ranging from 1 to 512. As N increases, we 437

observe that BiRM shows a consistent improve- 438
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Models # Total Size GSM8K MATH-500 Gaokao2023

ORM PRM BiRM ORM PRM BiRM ORM PRM BiRM

Qwen2.5-3B
K = 4 83.0 82.1 82.8 48.6 49.3 50.1 35.6 34.9 36.1
K = 8 84.6 83.9 85.1 50.1 50.9 52.5 36.1 37.9 37.9
K = 20 86.7 85.7 86.9 53.0 54.3 55.0 37.7 38.4 39.1
K = 100 87.5 85.9 87.6 53.0 53.9 55.1 38.1 37.9 39.0

Qwen2.5-7B
K = 4 86.2 86.5 87.0 55.7 55.8 57.1 42.8 44.0 44.5
K = 8 88.6 88.1 89.4 58.3 59.1 60.1 44.2 45.6 46.8
K = 20 90.4 89.2 90.6 59.1 61.5 62.3 45.5 48.1 48.4
K = 100 91.2 88.4 91.7 60.1 60.7 62.5 46.8 48.3 50.0

Llama3.1-8B
K = 4 72.8 71.7 72.9 38.5 39.9 40.7 23.9 25.1 25.4
K = 8 77.4 75.9 78.3 40.2 40.1 43.3 25.6 26.6 27.5
K = 20 81.4 79.2 81.7 41.5 42.1 44.3 27.0 28.6 29.2
K = 100 82.7 80.3 85.4 41.1 42.3 46.1 26.2 29.6 30.7

Table 2: Performance of beam search on GSM8K, MATH-500 and Gaokao2023 with three base models. “# Total
Size” stands for total sampling size K in beam search and we report the best performance among all beam sizes.
The results are reported as the average accuracy across three random seeds. The best results are marked in bold.
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Figure 3: Scaling decline phenomenon in Best-of-N
sampling. We present the BoN accuracy results across
five random seeds. For better visualization, we apply
the moving average with a window size of 10.

ment. In contrast, the post-verification accuracy of439

vanilla ORM and PRM plateaus and even declines,440

which contradicts our intuition learned from the441

test-time scaling laws (Snell et al., 2024).442

We attribute this decline to verifier failures. Im-443

perfect verifiers misrank candidates, erroneously444

classifying positive samples as negative. As the445

sample size increases, this misjudgment becomes446

more pronounced. Traditional PRMs exhibit a one-447

directional scoring nature, limiting their ability to448

evaluate candidates from a comprehensive perspec-449

tive. In contrast, BiRM estimates both rewards and450

values, providing more reliable supervision signals.451

Models Methods MATH-500 Gaokao2023

@128 @512 @128 @512

Qwen2.5-7B
+ Outcome 61.8 61.1 46.8 49.4
+ MS. (Hard) 62.1 62.8 47.3 49.7
+ MS. (Soft) 62.4 63.4 47.7 50.4

Llama3.1-8B
+ Outcome 44.9 44.2 29.0 29.6
+ MS. (Hard) 45.1 45.4 29.2 29.4
+ MS. (Soft) 45.4 45.6 29.4 29.6

Table 3: Different value label annotation strategies for
BiRM. “Outcome” stands for Outcome-supervised es-
timation. “MS. (Hard)” and “MS. (Soft)” represents
Math-Shepherd hard and soft estimation respectively.

6.2 Annotation Strategies for Value Labels 452

As discussed in Section 4.2, we explore various 453

strategies for annotating precise value labels. We 454

aim to demonstrate that our method has good or- 455

thogonality with existing annotation strategies. 456

Table 3 presents the accuracy of BiRM in BoN 457

sampling under different strategies. We can con- 458

clude that: (1) More accurate annotations lead to 459

greater improvements. The mash-shepherd soft 460

estimation, which uses the potential success proba- 461

bility of intermediate steps as explicit labels, offers 462

the finest granularity and achieves the best perfor- 463

mance. In contrast, outcome-supervised estimation, 464

which relies on outcome labels for implicit learning, 465

exhibits greater variability. (2) Even the weakest 466

method, outcome-supervised estimation, shows a 467

notable improvement over PRM. This highlights 468

the flexibility and applicability of BiRM. 469
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Figure 4: Performance comparison of ORM, PRM and
BiRM under BoN sampling. The base models are open-
source RLHFlow-8B-Deepseek-Data and RLHFlow-8B-
Mistral-Data (Xiong et al., 2024). We follow Equation 3
to calculate the BiRM score at test-time.

6.3 Orthogonality to Existing PRMs470

To further demonstrate the generalization ability471

of our method, we conduct experiments using sev-472

eral existing open-source reward models. We se-473

lect ORMs and PRMs trained by RLHFlow (Xiong474

et al., 2024; Dong et al., 2024) as baselines and475

reuse the N sampled solutions they provided for476

testing. Then we follow Equation 3 to calculate the477

BiRM scores for BoN sampling.478

Experiment results in Figure 4 clearly reveal that479

BiRM consistently outperforms both ORM and480

PRM across different values of N , maintaining a481

consistent upward trend. Furthermore, this trend ex-482

pands at larger sampling sizes, where BiRM main-483

tains its lead, reaching an accuracy of 57.8% at484

BoN@256, compared to PRM’s 56.6% and ORM’s485

51.4%, respectively. These findings indicate the re-486

liability and generalization of BiRM when using487

existing open-source reward models.488

6.4 Query Scaling or Response Scaling489

We also explore a key issue in training supervi-490

sion models: which matters more, query scaling or491

response scaling?492

We first fix the number of queries and use the493

original GSM8K and MATH datasets, which con-494

tain approximately 15, 000 queries. We then test495

BiRM’s performance with response sizes of 8,15,496

and 30. The results in Table 4 reveal that BiRM497

performs best when the response size is 15 on both498

datasets. The possible reason is that when the499

# Query # Resp. MATH-500 Gaokao2023

@128 @512 @128 @512

15, 000
×30 61.3 61.6 47.3 48.3
×15 62.0 63.0 46.8 49.4
×8 61.3 61.2 46.4 46.8

7, 500 ×15 59.0 58.8 45.4 44.7

3, 750 ×30 57.9 58.2 43.4 42.8

Table 4: Training data scaling for queries and responses.
The base model is Qwen2.5-7B and we use outcome-
supervised estimation for simplicity.

number of responses is too low, BiRM cannot learn 500

sufficient and diverse supervision signals. On the 501

other hand, the model struggles with overly sim- 502

ilar data patterns per query when # Resp. = 30, 503

leading to overfitting. 504

Furthermore, we control the total size of the 505

training dataset. Specifically, we conduct experi- 506

ments with three following settings: 15, 000 × 8, 507

7, 500 × 15, and 3, 750 × 30. The results demon- 508

strate that BiRM performs best with the 15, 000×8 509

configuration. Additionally, we observe that mod- 510

els with fewer queries go through more severe 511

degradation when facing OOD test sets. In the 512

MATH-500 experiments, the gap between the 513

7, 500 × 15 and 3, 750 × 30 settings ranges from 514

0.6% to 1.1%, but this gap significantly widens to 515

2.0% on the Gaokao2023 benchmark. To sum up, 516

we believe that maintaining an appropriate response 517

size while scaling the number of queries is critical 518

to training process supervision models. We hope 519

this provides valuable insights to the community. 520

7 Conclusion 521

In this work, we introduce BiRM, a novel pro- 522

cess supervision model for large language models 523

(LLMs), inspired by the A* algorithm. BiRM pro- 524

vides bidirectional supervision signals, evaluating 525

both the correctness of reasoning steps taken so far 526

and the probability of reaching correct answers in 527

the future. Our extensive experiments demonstrate 528

the effectiveness of BiRM across various mathe- 529

matical reasoning tasks, outperforming existing su- 530

pervision models like ORM and PRM. Through de- 531

tailed analysis, we highlight the strengths of BiRM 532

in guiding the search process and improving solu- 533

tion re-ranking. We hope that our approach con- 534

tributes valuable insights to the field of process 535

supervision and opens avenues for future research 536

in enhancing LLM-based reasoning. 537
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Limitations538

Our work has some limitations, which we leave539

for future work to address: (1) High computational540

cost in test-time searching. In order to improve541

the performance of LLMs at test-time, we employ542

vanilla sampling and search-based strategies for so-543

lution searching. However, this process requires a544

significant amount of computational resources. In545

our work, we use vLLM (Kwon et al., 2023) to alle-546

viate this limitation. Besides, we also observe that547

search-based strategies sometimes perform worse548

than repeated sampling due to verifier failures (Yu549

et al., 2025), even under the same computational550

budget. We will explore this problem in the future.551

(2) Generalization across different data patterns and552

base models. In our experiments, we train our gen-553

erators and supervision models based on the same554

base models, ensuring the same data patterns. How-555

ever, in practical scenarios, an optimal supervision556

model should be independent of the data pattern557

and capable of supervising different kinds of rea-558

soning paths. We hope our work provides insights559

to the community and contributes to the develop-560

ment of more robust and generalized supervision561

models.562
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A Experiment Details862

A.1 Baselines.863

Outcome Reward Model (ORM, Cobbe et al.,864

2021). The vanilla ORM assigns a score to the865

entire solution as the final reward. We train ORMs866

through outcome supervision. Following (Cobbe867

et al., 2021), we replicate the binary correctness la-868

bel rt ∈ {0, 1} across the entire solution sequence.869

The reward head is then trained to predict reward870

scores for each token, enhancing robustness.871

Process Reward Model (PRM, Lightman et al.,872

2024; Uesato et al., 2022). The vanilla PRM as-873

signs scores to each step along a solution path.874

For training stability , we place the reward la-875

bel rt at the last token of each step. In other876

words, for t-th step-level sequence, the label vector877

yt = [0, 0, . . . , 0, rt].878

Math-shepherd PRM (Wang et al., 2024b). Dif-879

ferent from the vanilla PRM, Math-Shepherd PRM880

uses Monte-Carlo Estimation to annotate step la-881

bels. This estimation is essentially considered as882

training a value model (Zhang et al., 2025). In our883

experiments, we first sample 15 solutions for each884

query. Then, for each intermediate step, we sample885

8 rollouts. We provide a detailed description of this886

method in Section 4.2.887

ER-PRM (Zhang et al., 2024b). Similar to888

Math-Shepherd PRM, ER-PRM integrates entropy-889

regularized step labels to train the supervision890

model. After Monte-Carlo sampling, ER-PRM891

calculates the label for the t -th step according to892

the following equation:893

label(st) =
1

η
lnEτ−[t]∼πe

ηy(τ)894

where τ represents the complete rollout starting895

from the step st, π represents the LLM genera-896

tor, and y(·) represents the final correctness of the897

solution τ .898

A.2 BiRM Training Details899

In the BiRM training phase, we collect problems900

from the original GSM8K and MATH dataset .901

Then we use LLM generators to sample 15 tra-902

jectories per query, resulting in a training set of903

approximately 225, 000 solutions for each base904

model. We annotate reward and value labels using905

the Deepseek-V3 (DeepSeek-AI et al., 2024) and906

Math-shepherd soft-label methods, respectively.907

We set training labels on the last token of each step, 908

following (Wang et al., 2024b). The coefficient c 909

in Equation 4 is set to 1.0. 910

A.3 Evaluation Metrics 911

At test-time, BiRM estimates both reward scores 912

and value scores for partial solutions at the same 913

time. We follow Equation 3 to calculate the final 914

score. The coefficient β for different base models 915

on GSM8K, MATH-500, and Gaokao2023 are set 916

to βQwen2.5−3B = {1.0, 2.5, 2.0}, βQwen2.5−7B = 917

{1.5, 3.0, 3.5}, βLlama3.1−8B = {2.5, 1.0, 3.5} re- 918

spectively. 919

Best-of-N Sampling. For a given question q, 920

we sample multiple rollouts from the LLM, re- 921

sulting in a candidate set of N reasoning paths 922

T = {τ1, τ2, . . . , τN}. Subsequently, an additional 923

supervision model R , such as PRM, is used to 924

score each candidate path, yielding R(τi), where 925

i ∈ {1, 2, . . . , N}. The candidate with the highest 926

score represents the most promising solution and 927

is selected as the final output: 928

τ∗ = arg max
τ∈{τ1,τ2,...,τN}

R(τ) 929

Beam Search. We present all search results from 930

the main experiment in Table 5, Table 6, and Table 931

7. The procedure of the step-level beam search 932

is as follows: We first set the total sampling size 933

K and beam size b ( K should be divisible by b) . 934

In each round, we only expand one step forward. 935

For a given query, we sample K rollouts in the 936

first round. Then, we use the supervision model 937

M to re-rank these candidates and select the top b 938

rollouts for the next step. Starting from the second 939

round, we expand K
b trajectories for each candidate, 940

getting K candidates in total. We repeat the re- 941

ranking process until a final answer is found or 942

the maximum step count is reached. A detailed 943

pseudocode is provided in 1. 944

B Step Label Annotation Details 945

B.1 Dataset preprocessing 946

Before the SFT phase, we first preprocess the train- 947

ing data and restructure the delimiters at different 948

levels of granularity. This is because we discover 949

that original solution paths contain numerous mean- 950

ingless text segments, which hinder the effective 951

learning of process supervision models. Similar 952

findings are reported by (Liao et al., 2024). To 953

address this, we utilize Deepseek-V3 to clean the 954
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MATH subset in the MetaMath dataset, reannotate955

the delimiters, and ensure that each step is logically956

complete and meaningful. The prompt template for957

data preprocessing is shown in Figure 5.958

B.2 Reward Label Annotaion959

We also use Deepseek-V3 to annotate the correct-960

ness of each step (i.e., reward label) in our experi-961

ments. The prompt template is provided in Figure 6.962

Algorithm 1 Step-Level Beam Search
1: Input: Question q, Total Sampling Size K, Beam size b,

Maximum step count T
2: Output: Best solution path for q
3: Model: Generator π and BiRMM
4: procedure STEPLEVELBEAMSEARCH(q,K, b)
5: Initialize partial solutions T← {}
6: Sample initial steps {τ1

1 , τ
1
2 , . . . , τ

1
K}

7: Estimate scores {s11, s12, · · · , s1K} for each step
8: Select top b scored steps and add to T
9: t← 1

10: while solutions in T are not complete and t < T do
11: New candidate solutions Tnew ← {}
12: Scores S ← {}
13: for each partial solution τ [1:t] in T do
14: for i = 1 to K/b do
15: τ

[1:t+1]
i ∼ π(τ [1:t], q)

16: s
[1:t+1]
i =M(τ

[1:t+1]
i , q)

17: Tnew ← Tnew + τ
[1:t+1]
i

18: S ← S + s
[1:t+1]
i

19: end for
20: end for
21: Tnew ← top b scored partial solutions in Tnew
22: T← Tnew
23: t← t+ 1
24: end while
25: return solution with the highest score in T
26: end procedure

963
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Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 81.50 ± 0.45 82.11 ± 0.28 81.96 ± 0.38 48.60 ± 0.16 48.13 ± 1.20 47.27 ± 0.96 33.85 ± 0.53 33.16 ± 0.74 33.07 ± 0.44
2 82.97 ± 0.14 81.53 ± 0.72 82.76 ± 0.28 48.27 ± 1.61 49.27 ± 0.81 50.07 ± 0.84 35.15 ± 1.80 34.55 ± 0.56 36.10 ± 0.76
1 80.82 ± 0.51 80.57 ± 0.77 81.93 ± 0.64 47.60 ± 0.59 47.80 ± 1.14 47.67 ± 0.57 35.58 ± 1.29 34.89 ± 1.56 32.47 ± 0.56

K = 8

8 83.70 ± 0.73 83.65 ± 0.25 84.41 ± 0.35 49.33 ± 0.38 50.13 ± 1.00 50.07 ± 0.66 35.93 ± 1.17 34.63 ± 0.49 35.06 ± 1.39
4 84.61 ± 0.56 83.93 ± 0.16 85.11 ± 0.40 48.87 ± 0.68 50.87 ± 0.41 52.53 ± 0.90 36.10 ± 1.10 37.92 ± 0.76 37.92 ± 0.21
2 84.10 ± 0.36 83.17 ± 0.25 84.00 ± 0.39 50.07 ± 1.06 50.33 ± 0.94 50.67 ± 1.64 35.32 ± 1.10 37.58 ± 1.09 36.97 ± 1.07
1 83.27 ± 0.40 82.66 ± 1.05 82.99 ± 0.23 48.47 ± 2.03 49.67 ± 0.25 49.93 ± 0.41 33.42 ± 1.59 35.24 ± 0.32 35.06 ± 1.12

K = 20

20 85.27 ± 0.04 85.65 ± 0.50 86.13 ± 0.11 52.13 ± 1.15 53.20 ± 0.59 53.33 ± 1.48 36.54 ± 0.44 35.67 ± 1.56 36.10 ± 1.85
10 86.73 ± 0.65 84.66 ± 0.34 86.91 ± 0.25 53.00 ± 0.16 54.27 ± 0.77 55.00 ± 0.65 37.66 ± 1.48 38.35 ± 1.24 37.23 ± 1.38
5 86.23 ± 0.28 84.86 ± 0.54 86.28 ± 0.33 52.20 ± 0.59 53.40 ± 0.85 54.27 ± 0.52 36.88 ± 1.06 37.49 ± 0.86 37.58 ± 0.24
4 86.20 ± 0.16 84.76 ± 0.22 85.04 ± 0.19 51.73 ± 0.66 51.80 ± 0.75 53.60 ± 0.75 37.49 ± 0.88 35.41 ± 1.00 39.05 ± 1.17
2 85.32 ± 0.25 84.74 ± 0.36 85.19 ± 0.19 49.00 ± 0.33 50.33 ± 1.00 51.80 ± 0.49 35.67 ± 0.44 35.84 ± 0.97 36.62 ± 0.85
1 83.60 ± 0.09 82.56 ± 0.74 84.23 ± 0.39 49.00 ± 0.91 50.67 ± 0.90 50.87 ± 0.84 34.29 ± 1.29 34.46 ± 1.41 37.06 ± 2.51

K = 100
50 87.29 ± 0.22 85.87 ± 0.64 87.34 ± 0.22 52.87 ± 0.82 53.87 ± 0.19 55.13 ± 0.34 37.06 ± 0.74 37.40 ± 0.97 38.96 ± 0.92
25 87.54 ± 0.26 85.52 ± 0.80 87.64 ± 0.65 53.00 ± 1.50 53.20 ± 0.33 54.73 ± 0.75 38.10 ± 1.17 37.75 ± 1.09 38.18 ± 0.21
10 85.90 ± 0.33 84.51 ± 0.77 86.71 ± 0.37 51.27 ± 1.32 49.80 ± 0.57 53.40 ± 1.23 38.01 ± 1.05 37.92 ± 1.10 37.40 ± 1.85

Table 5: Qwen2.5-3B performance of beam search on GSM8K, MATH-500 and Gaokao2023.

Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 86.10 ± 0.52 86.48 ± 0.43 87.04 ± 0.16 55.73 ± 1.52 53.73 ± 1.51 57.13 ± 1.15 40.09 ± 0.12 41.13 ± 1.24 43.90 ± 0.92
2 86.20 ± 0.53 86.00 ± 0.25 86.99 ± 0.13 55.53 ± 0.47 55.80 ± 1.72 55.87 ± 0.93 42.77 ± 0.24 42.68 ± 0.88 43.55 ± 0.61
1 85.65 ± 1.01 85.04 ± 0.50 86.76 ± 0.31 53.80 ± 1.77 54.93 ± 1.46 56.33 ± 1.04 41.47 ± 0.74 43.98 ± 0.12 44.50 ± 1.17

K = 8

8 86.73 ± 0.62 88.12 ± 0.36 88.93 ± 0.49 58.27 ± 0.50 58.20 ± 0.71 58.13 ± 0.90 44.19 ± 0.76 44.24 ± 0.68 45.11 ± 0.68
4 88.63 ± 0.19 87.89 ± 0.73 89.36 ± 0.22 57.60 ± 0.85 59.07 ± 1.32 59.53 ± 1.24 43.72 ± 0.86 45.63 ± 1.21 46.84 ± 0.65
2 88.55 ± 0.37 87.45 ± 0.19 88.30 ± 0.53 57.00 ± 0.43 57.20 ± 1.56 58.67 ± 1.27 43.98 ± 1.41 44.68 ± 0.56 45.45 ± 0.97
1 87.57 ± 0.38 86.45 ± 0.40 87.47 ± 0.19 54.67 ± 1.09 57.27 ± 1.23 57.73 ± 1.32 44.24 ± 1.09 44.94 ± 1.27 43.38 ± 0.52

K = 20

20 86.33 ± 0.38 88.65 ± 0.09 90.04 ± 0.58 59.07 ± 0.82 59.60 ± 0.59 60.33 ± 0.68 44.76 ± 1.38 45.89 ± 1.21 47.71 ± 0.44
10 90.40 ± 0.18 89.18 ± 0.42 90.40 ± 0.65 58.73 ± 1.16 61.53 ± 1.05 62.27 ± 1.09 45.19 ± 0.76 48.14 ± 0.74 48.23 ± 0.12
5 90.30 ± 0.12 88.98 ± 0.26 90.60 ± 0.28 57.53 ± 0.34 59.40 ± 0.49 60.73 ± 0.19 45.45 ± 0.64 47.36 ± 1.17 47.36 ± 1.22
4 89.56 ± 0.25 87.52 ± 0.62 89.94 ± 0.09 56.53 ± 0.90 58.40 ± 1.28 59.67 ± 0.34 45.02 ± 0.53 45.54 ± 0.88 48.31 ± 2.21
2 88.55 ± 0.06 88.05 ± 0.07 89.69 ± 0.34 56.93 ± 0.90 57.47 ± 1.11 58.87 ± 0.62 43.72 ± 1.07 44.59 ± 0.74 47.62 ± 0.96
1 87.79 ± 0.22 86.96 ± 0.47 88.07 ± 0.38 56.27 ± 0.34 57.73 ± 1.52 58.33 ± 0.77 42.68 ± 1.71 45.63 ± 0.74 45.80 ± 0.86

K = 100
50 91.00 ± 0.22 88.32 ± 0.57 91.28 ± 0.12 60.13 ± 0.47 60.73 ± 0.34 62.53 ± 0.77 46.84 ± 0.44 48.31 ± 0.85 49.96 ± 0.32
25 91.18 ± 0.53 88.40 ± 0.21 91.66 ± 0.33 58.40 ± 1.23 59.27 ± 0.34 62.00 ± 0.98 46.32 ± 0.53 47.97 ± 0.12 47.62 ± 0.68
10 89.97 ± 0.25 88.15 ± 0.16 91.00 ± 0.09 57.47 ± 1.32 59.20 ± 1.31 61.20 ± 0.43 43.64 ± 0.42 46.93 ± 0.49 49.00 ± 0.32

Table 6: Qwen2.5-7B performance of beam search on GSM8K, MATH-500 and Gaokao2023.

Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 71.44 ± 0.36 71.65 ± 0.33 71.37 ± 0.41 37.53 ± 0.66 38.67 ± 0.50 38.07 ± 0.68 23.81 ± 0.65 24.94 ± 0.21 23.29 ± 0.86
2 72.76 ± 0.41 71.11 ± 1.11 72.91 ± 0.80 38.53 ± 2.22 39.87 ± 0.68 40.73 ± 0.52 23.90 ± 1.10 25.11 ± 1.36 26.06 ± 0.68
1 70.74 ± 0.16 68.99 ± 0.67 71.57 ± 0.38 36.80 ± 0.75 39.60 ± 0.85 39.33 ± 0.98 23.20 ± 0.74 24.33 ± 0.74 24.59 ± 0.65

K = 8

8 76.52 ± 0.45 75.92 ± 0.20 76.90 ± 0.53 39.93 ± 1.48 39.00 ± 0.59 41.27 ± 0.09 25.63 ± 1.07 25.71 ± 0.56 26.75 ± 0.56
4 77.36 ± 0.47 75.84 ± 0.54 78.32 ± 0.55 40.20 ± 0.49 40.13 ± 1.64 43.27 ± 0.57 25.19 ± 1.29 26.49 ± 1.53 27.45 ± 1.56
2 75.51 ± 0.49 73.79 ± 1.02 76.17 ± 0.04 39.07 ± 0.50 39.80 ± 1.85 41.47 ± 1.23 25.02 ± 0.96 26.58 ± 2.04 26.23 ± 1.18
1 74.00 ± 0.66 72.40 ± 0.57 74.60 ± 0.62 37.27 ± 1.64 40.13 ± 1.57 41.47 ± 0.77 23.72 ± 0.74 25.28 ± 1.59 25.80 ± 1.17

K = 20

20 79.93 ± 0.22 79.23 ± 0.48 80.46 ± 0.29 41.53 ± 0.84 41.00 ± 0.75 44.13 ± 0.19 26.15 ± 0.74 25.71 ± 0.21 27.62 ± 0.44
10 81.40 ± 0.25 78.82 ± 0.22 81.73 ± 0.62 40.73 ± 0.68 41.60 ± 0.86 44.27 ± 0.34 25.97 ± 0.97 28.57 ± 1.18 29.18 ± 0.86
5 79.76 ± 0.37 76.90 ± 0.35 81.00 ± 0.20 40.80 ± 0.71 42.07 ± 1.09 43.93 ± 1.00 27.01 ± 0.37 28.14 ± 0.98 28.57 ± 0.73
4 79.56 ± 0.26 76.02 ± 0.36 80.16 ± 0.64 40.13 ± 1.55 42.00 ± 1.07 44.00 ± 0.43 24.33 ± 0.32 28.23 ± 0.12 26.93 ± 0.80
2 77.96 ± 0.60 75.39 ± 1.04 79.53 ± 1.08 39.07 ± 0.90 39.53 ± 0.50 42.40 ± 0.65 26.58 ± 1.41 26.75 ± 0.85 26.84 ± 0.12
1 76.27 ± 0.80 73.24 ± 1.02 78.17 ± 0.87 39.27 ± 0.82 40.00 ± 1.82 41.53 ± 1.36 25.54 ± 0.24 27.36 ± 1.44 27.27 ± 0.56

K = 100
50 82.71 ± 0.11 80.34 ± 0.84 85.39 ± 0.52 41.07 ± 0.50 42.33 ± 0.66 46.13 ± 0.98 26.23 ± 2.02 29.61 ± 0.37 30.65 ± 0.37
25 82.71 ± 0.61 78.44 ± 0.43 84.53 ± 0.60 40.93 ± 1.32 42.00 ± 0.71 44.07 ± 0.68 25.37 ± 0.61 28.14 ± 0.86 29.00 ± 0.61
10 81.10 ± 0.46 77.81 ± 0.93 83.35 ± 0.70 39.87 ± 0.77 40.27 ± 1.06 45.00 ± 0.16 25.80 ± 0.32 27.19 ± 0.86 29.70 ± 0.80

Table 7: Llama3.1-8B performance of beam search on GSM8K, MATH-500 and Gaokao2023.
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SFT Dataset Preprocessing

You are an expert math examiner, skilled at transforming complex mathematical solution steps 
into clear formats. Your task is to insert the symbol <step_end> to mark the end of each step in 
the following math problem's solution. A step should represent a complete statement, structure or 
calculation process. You must not omit any original content and only insert this symbol at the end 
of each step. Your output should only include the revised solution, without any additional text.

Figure 5: The prompt template for MetaMath dataset preprocessing.

Reward Label Annotation

You are an expert math examiner. Your task is to review the student's solution and evaluate each 
step. Mark a step as correct only if it is based on accurate premises and contributes to solving the 
problem. Mark it as unnecessary if it is logically valid but does not aid in solving the problem. 
Your judgments should include a very concise analysis of each step and the final judgement. 

You must provide your evaluations in JSON format like:
{"step_1": {"analysis": "<concise analysis of the step>", "judgement": 
"<correct/incorrect/unnecessary>"}, "step_2": {...}, ...}

Below is the question, reference answer, and student's solution that you need to evaluate. Note
that the student's solution does not need to match the reference solution exactly.

[Question]
{question}

[Reference Answer]
{answer}

[Solution]
{solution}

Now, provide your evaluations in JSON format.

Figure 6: The prompt template for reward label annotaion.
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