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ABSTRACT

We present GRAPPA, an effective pre-training approach for table semantic parsing
that learns a compositional inductive bias in the joint representations of textual
and tabular data. We construct synthetic question-SQL pairs over high-quality
tables via a synchronous context-free grammar (SCFG). We pre-train GRAPPA
on the synthetic data to inject important structural properties commonly found
in table semantic parsing into the pre-training language model. To maintain the
model’s ability to represent real-world data, we also include masked language
modeling (MLM) on several existing table-and-language datasets to regularize our
pre-training process. Our proposed pre-training strategy is much data-efficient.
When incorporated with strong base semantic parsers, GRAPPA achieves new
state-of-the-art results on four popular fully supervised and weakly supervised
table semantic parsing tasks. The pre-trained embeddings can be downloaded at
https://huggingface.co/Salesforce/grappa_large_jnt.

1 INTRODUCTION

Tabular data serve as important information source for human decision makers in many domains,
such as finance, health care, retail and so on. While tabular data can be efficiently accessed via the
structured query language (SQL), a natural language interface allows such data to be more accessible
for a wider range of non-technical users. As a result, table semantic parsing that maps natural
language queries over tabular data to formal programs has drawn significant attention in recent years.

Recent pre-trained language models (LMs) such as BERT (Devlin et al.,[2019) and RoBERTa (Liu
et al.l|2019)) achieve tremendous success on a spectrum of natural language processing tasks, including
semantic parsing (Zettlemoyer & Collins, [2005} [ Zhong et al.,2017;Yu et al.,[2018b). These advances
have shifted the focus from building domain-specific semantic parsers (Zettlemoyer & Collins}, |2005;
Artz1 & Zettlemoyer, 2013 Berant & Liang, [2014; Li & Jagadish} 2014) to cross-domain semantic
parsing (Zhong et al.l 2017} |Yu et al., 2018b; Herzig & Berant, 2018 Dong & Lapatal, [2018; Wang
et al., |2020; [Lin et al., [2020).

Despite such significant gains, the overall performance on complex benchmarks such SPIDER (Yu
et al., 2018b) and WIKITABLEQUESTIONS benchmarks are still limited, even when integrating
representations of current pre-trained language models. As such tasks requires generalization to
new databases/tables and more complex programs (e.g., SQL), we hypothesize that current pre-
trained language models are not sufficient for such tasks. First, language models pre-trained using
unstructured text data such as Wikipedia and Book Corpus are exposed to a significant domain
shift when directly applied to table semantic parsing, where jointly modeling the relation between
utterances and structural tables is crucial. Second, conventional pre-training objectives does not
consider the underlying compositionality of data (e.g., questions and SQLs) from table semantic
parsing. To close this gap, we seek to learn contextual representations jointly from structured tabular
data and unstructured natural language sentences, with objectives oriented towards table semantic
parsing.

* This work was mostly done during Tao and Bailin’s internship at Salesforce Research. Victoria is now at
Facebook Al
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Figure 1: An overview of GRAPPA pre-training approach. We first induce a SCFG given some
examples in SPIDER. We then sample from this grammar given a large amount of tables to generate
new synthetic examples. Finally, GRAPPA is pre-trained on the synthetic data using SQL semantic
loss and a small amount of table related utterances using MLM loss.

In this paper, we propose a novel grammar-augmented pre-training framework for table semantic
parsing (GRAPPA). Inspired by previous work on data synthesis for semantic parsing (Berant & Liang|
2014; |Wang et al.l 2015b; Jia & Liang| [2016; Herzig & Berant, [2018} [Andreas| 2020), we induce
a synchronous context-free grammar (SCFG) specific to mapping natural language to SQL queries
from existing text-to-SQL datasets, which covers most commonly used question-SQL patterns. As
shown in Figure[I] from a text-to-SQL example we can create a question-SQL template by abstracting
over mentions of schema components (tables and fields), values, and SQL operations. By executing
this template on randomly selected tables we can create a large number of synthetic question-SQL
pairs. We train GRAPPA on these synthetic question-SQL pairs and their corresponding tables using
a novel text-schema linking objective that predicts the syntactic role of a table column in the SQL
for each pair. This way we encourage the model to identify table schema components that can be
grounded to logical form constituents, which is critical for most table semantic parsing tasks.

To prevent overfitting to the synthetic data, we include the masked-language modelling (MLM)
loss on several large-scale, high-quality table-and-language datasets and carefully balance between
preserving the original natural language representations and injecting the compositional inductive bias
through our synthetic data. We pre-train GRAPPA using 475k synthetic examples and 391.5k examples
from existing table-and-language datasets. Our approach dramatically reduces the training time and
GPU cost. We evaluate on four popular semantic parsing benchmarks in both fully supervised and
weakly supervised settings. GRAPPA consistently achieves new state-of-the-art results on all of them,
significantly outperforming all previously reported results.

2 METHODOLOGY

2.1 MOTIVATION

Semantic parsing data is compositional because utterances are usually related to some formal
representations such as logic forms and SQL queries. Numerous prior works (Berant & Liang, [2014;
Wang et al., [2015a; Jia & Liangl 2016} |Iyer et al., 2017} |Andreas, |2020) have demonstrated the
benefits of augmenting data using context-free grammar. The augmented examples can be used to
teach the model to generalize beyond the given training examples.

However, data augmentation becomes more complex and less beneficial if we want to apply it to
generate data for a random domain. More and more work (Zhang et al.l 2019b; |[Herzig et al.l 2020b;
Campagna et al., 2020; Zhong et al., 2020) shows utilizing augmented data doesn’t always result in a
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significant performance gain in cross-domain semantic parsing end tasks. The most likely reason
for this is that models tend to overfit to the canonical input distribution especially the generated
utterances are very different compared with the original ones.

Moreover, instead of directly training semantic parsers on the augmented data, our paper is the first
to use the synthetic examples in pre-training in order to inject a compositional inductive bias to LMs
and show it actually works if the overfitting problem is carefully addressed. To address the overfitting
problem, in Section[2.3] we also include a small set of table related utterances in our pre-training
data. We add an MM loss on them as a regularization factor, which requires the model to balance
between real and synthetic examples during the pre-training. We note that this consistently improves
the performance on all downstream semantic parsing tasks (see Section[d). Finally, our pre-training
method is much more data-efficient and save much more computational power than other prior work
(Section[3).

2.2 DATA SYNTHESIS WITH SYNCHRONOUS CONTEXT-FREE GRAMMAR

We follow Jia & Liang|(2016])) to design our SCFG and apply it on a large amount of tables to populate
new examples. For example, as shown in Figure [1| by replacing substitutable column mentions
(“locations”), table mentions (“performance”), values (“two”’), and SQL logic phrases (“at least”) with
the other possible candidates in the same group, our grammar generates new synthetic text-to-SQL
examples with the same underlying SQL logic template. We then pre-train BERT on the augmented
examples to force it to discover substitutable fragments and learn the underlying logic template so that
it is able to generalize to other similar questions. Meanwhile, BERT also benefits from pre-training
on a large number of different columns, table names, and values in the generated data, which could
potentially improve schema linking in semantic parsing tasks.

Non-terminals Production rules

TABLE — t; 1. ROOT — (“For each COLUMNO , return how many times TABLEO
COLUMN — ¢; with COLUMN1 OPO VALUEO ?”,

VALUE — v; SELECT COLUMNO , COUNT ( % ) WHERE COLUMN1 OPO

AGG — ( MAX, MIN, COUNT, AVG, SUM) VALUEO GROUP BY COLUMNO )

OP — (=, <, #, ..., LIKE, BETWEEN )
SC — ( ASC, DESC )

MAX — (“maximum?”, “the largest”...)
< — (“no more than”, “no above”...)

2. ROOT — <“What are the COLUMNO and COLUMN 1 of the TABLEO
whose COLUMN?2 is OP0 AGGO COLUMN?2 ?”,

SELECT COLUMNO , COLUMN1 WHERE COLUMN2 OPO ( SELECT
AGGO ( COLUMNZ ) ) )

Table 1: Examples of non-terminals and production rules in our SCFG. Each production rule ROOT
— (a, () is built from some (z,y) € D by replacing all terminal phrases with non-terminals. t;, ¢;,
and v; stand for any table name, column name, entry value respectively.

Grammar induction To induce a cross-domain SCFG, we study examples in SPIDER since it is a
publicly available dataset that includes the largest number of examples with complex compositionali-
ties in different domains. To further show the generality of our approach, we do not develop different
SCFG for each downstream task. Given a set of (x,y) pairs in SPIDER, where x and y are the
utterance and SQL query respectively. We first define a set of non-terminal symbols for table names,
column names, cell values, operations, etc. For example, in Table[I] we group aggregation operations
such as MAX as a non-terminal AGG. We can also replace the entities/phrases with their non-terminal
types in SQL query to generate a SQL production rule 5. Then, we group (z,y) pairs by similar
SQL production rule 8. We automatically group and count Spider training examples by program
templates, and select about 90 most frequent program templates 3. For each program template in the
grammar, we randomly select roughly 4 corresponding natural language questions, manually replace
entities/phrases with their corresponding non-terminal types to create natural language templates
a, and finally align them to generate each production rule ROOT — («, 5). The manual alignment
approximately takes a few hours. About 500 SPIDER examples are studied to induce the SCFG.

Data augmentation With («, 5) pairs, we can simultaneously generate pseudo natural questions
and corresponding SQL queries given a new table or database. We first sample a production rule,
and replace its non-terminals with one of corresponding terminals. For example, we can map the
non-terminal AGG to MAX and “maximum” for the SQL query and the natural language sentence,
respectively. Also, table content is used in synthesizing our pre-training data. For example, if the
sampled production rule contains a value (e.g., VALUEQ), we sample a value for the selected column
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from the table content and add it to the SQL and question templates. This way during pre-training,
GRAPPA can access the table content and learn the linking between values and columns.

We use WIKITABLES (Bhagavatula et al.,[2015)), which contains 1.6 million high-quality relational
Wikipedia tables. We remove tables with exactly the same column names and get about 340k tables
and generate 413k question-SQL pairs given these tables. Also, we generate another 62k question-
SQL pairs using tables and databases in the training sets of SPIDER and WIKISQL. In total, our final
pre-training dataset includes 475k question-SQL examples.

We note that SCFG is usually crude (Andreas| |2020) especially when it is applied to augment data
for different domains. In this work we don’t focus on how to develop a better SCFG that generates
more natural utterances. We see this as a very interesting future work to explore. Despite the fact that
the SCFG is crude, our downstream task experiments show that it could be quite effective if some
pre-training strategies are applied.

2.3 TABLE RELATED UTTERANCES

As discussed in Section 2.1} GRAPPA is also pre-trained on human annotated questions over tables
with a MLM objective. We collected seven high quality datasets for textual-tabular data understanding
(Table|8|in the Appendix), all of them contain Wikipedia tables or databases and the corresponding
natural language utterances written by humans. We only use tables and contexts as a pre-training
resource and discard all the other human labels such as answers and SQL queries.

2.4 PRE-TRAINING GRAPPA

Unlike all the previous work where augmented data is used in the end task training, we apply the
framework to language model pre-training. Training semantic parsers is usually slow, and augmenting
a large amount of syntactic pairs directly to the end task training data can be prohibitively slow or
expensive. In our work, we formulate text-to-SQL as a multi-class classification task for each column,
which can be naturally combined with the MLM objective to pre-train BERT for semantic parsing.
Moreover, in this way, the learned knowledge can be easily and efficiently transferred to downstream
semantic parsing tasks in the exact same way as BERT (shown in Section [4).

GRAPPA is initialized by ROBERTa, srge (Liu et al.,[2019) and further pre-trained on the synthetic
data with SQL semantic loss and table-related data with MLM loss. As shown in Figure [T} we
follow Hwang et al.|(2019) to concatenate a user utterance and the column headers into a single flat
sequence separated by the </s> token. The user utterance can be either one of the original human
utterances collected from the aggregated datasets or the canonical sentences sampled from the SCFG.
We add the table name at the beginning of each column if there are some complex schema inputs
involving multiple tables. We employ two objective functions for language model pre-training: 1)
masked-language modelling (MLM), and 2) SQL semantic prediction (SSP).

MLM objective Intuitively, we would like to have a self-attention mechanism between natural
language and table headers. We conduct masking for both natural language sentence and table
headers. A small part of the input sequence is first replaced with the special token <mask>. The
MLM loss is then computed by the cross-entropy function on predicting the masked tokens. We
follow the default hyperparameters from Devlin et al.|(2019) with a 15% masking probability.

SSP objective With our synthetic natural language sentence and SQL query pairs, we can add an
auxiliary task to train our column representations. The proposed task is, given a natural language
sentence and table headers, to predict whether a column appears in the SQL query and what operation
is triggered. We then convert all SQL sequence labels into operation classification labels for each
column. For example in the Figure|l] the operation classification label of the column “locations”
is SELECT AND GROUP BY HAVING. In total, there are 254 potential classes for operations in our
experiments.

For a column or table indexed by ¢, we use the encoding of the special token </ s> right before it as its
representation, denoted as x; to predict its corresponding operations. On top of such representations,
we apply a two-layer feed-forward network followed by a GELU activation layer (Hendrycks &
Gimpel| [2016) and a normalization layer (Ba et al.,|2016)) to the output representations. Formally, we
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compute the final vector representation of each column y; by:

h = LayerNorm(GELU(W] - x;))
yi = LayerNorm(GELU(W5 - h))

Finally, y; is employed to compute the cross-entropy loss through a classification layer. We sum losses
from all columns in each training example for back-propagation. For samples from the aggregated
datasets, we only compute the MLM loss to update our model. For samples from the synthetic data
we generated, we compute only SSP loss to update our model. More specifically, we mix 391k natural
language utterances and 475k synthetic examples together as the final pre-training data. The examples
in these two groups are randomly sampled during the pre-training, and MLM loss is computed if the
selected example is a natural language question, otherwise SSP for a synthetic example.

3 EXPERIMENTS

We conduct experiments on four cross-domain table semantic parsing tasks, where generalizing to
unseen tables/databases at test time is required. We experiment with two different settings of table
semantic parsing, fully supervised and weakly supervised setting. The data statistics and examples
on each task are shown in Table 2]and Table[7]in the Appendix respectively.

Task & Dataset #Examples  Resource  Annotation Cross-domain
SPIDER [Yu et al.|[(2018b) 10,181 database SQL v
Fully-sup. WIKISQL Zhong et al.|(2017) 80,654 single table SQL v
WIKITABLEQUESTIONS [Pasupat & Liang|(2015}) 2,2033 single table answer v
Weakly-sup. WIKISQL [Zhong et al.|(2017) 80,654 single table answer v

Table 2: Overview of four table-based semantic parsing and question answering datasets in fully-
supervised (top) and weakly-supervised (bottom) setting used in this paper. More details in Section

3.1 SUPERVISED SEMANTIC PARSING

We first evaluate GRAPPA on two supervised semantic parsing tasks. In a supervised semantic parsing
scenario, given a question and a table or database schema, a model is expected to generate the
corresponding program.

SPIDER SPIDER |Yu et al.|[(2018b)) is a large text-to-SQL dataset. It consists of 10k complex
question-query pairs where many of the SQL queries contain multiple SQL keywords. It also includes
200 databases where multiple tables are joined via foreign keys. For the baseline model, we use
RAT-SQL + BERT [Wang et al.|(2020) which is the state-of-the-art model according to the official
leaderboard. We followed the official Spider evaluation to report set match accuracy.

Fully-sup. WIKISQL WIKISQL |Zhong et al.| (2017) is a collection of over 80k questions and
SQL query pairs over 30k Wikipedia tables. We use |Guo & Gao| (2019), a competitive model on
WIKISQL built on SQLova [Hwang et al.| (2019), as our base model. We adapt the same set of
hyperparameters including batch size and maximum input length as in|Guo & Gao|(2019). For a fair
comparison, we only consider single models without execution-guided decoding and report execution
accuracy.

3.2 WEAKLY-SUPERVISED SEMANTIC PARSING

We also consider weakly-supervised semantic parsing tasks, which are very different from SQL-
guided learning in pre-training. In this setting, a question and its corresponding answer are given, but
the underlying meaning representation (e.g., SQL queries) are unknown.

WIKITABLEQUESTIONS This dataset contains question-denotation pairs over single Wikipedia
tables [Pasupat & Liang|(2015). The questions involve a variety of operations such as comparisons,
superlatives, and aggregations, where some of them are hard to answered by SQL queries.
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Models Dev. Test Models Dev. Test
Global-GNN (Bogin et al.[[2019) 52.7 47.4 (ang & Lapata|[2018) 79.0 78.5
EditSQL (Zhang et al.|[2019b] 57.6 534 phictal 0.9 84.0 837
IRNet (Guo et al.|[ 2019} 61.9 54.7 SREI e I2AIE o2 se2
RYANSQ_L (Choi et al.. 2020) 70.6 60.6 (Cyu ot al.| 2000} 0.1 392
TranX (Yin et al.{|2020a) 64.5 - ~(Guo & Gao|2019] 90.3 892
RAT-SQL (Wang et al.[[2019) 62.7 572 w. RoBERTa-Targe 912 90.6
w. BERT-large 69.7 65.6 w. GRAPPA (MLM) 91.4 90.7
w. RoBERTa-large 69.6 - w. GRAPPA (SSP) 91.2 90.7
w. GRAPPA (MLM) 71.1(+1.4) - w. GRAPPA (MLM+SSP) 91.2 90.8
w. GRAPPA (SSP) 73.6(+3.9) 677(+21) w. RoBERTa-large (10k) 79.6 79.2

w. GRAPPA (MLM+SSP) (10k) 82.3(+2.7) 82.2(+3.0)

w. GRAPPA (MLM+SSP) 73.4(+3.7) 69.6(+4.0)

Table 3: Performance on SPIDER. We run each Table 4: Performance on fully-sup ’ WHQSQL'
4 All results are on execution accuracy without

model three times by varying random seeds, an . : ;
y varyng execution-guided decoding.

the average scores are shown.

We used the model proposed by [Wang et al.|(2019)) which is the state-of-the-art parser on this task.
This model is a two-stage approach that first predicts a partial “abstract program” and then refines that
program while modeling structured alignments with differential dynamic programming. The original
model uses GloVe Pennington et al.|(2014) as word embeddings. We modified their implementation
to encode question and column names in the same way as we do in our fine-tuning method that uses
RoBERTa and GRAPPA.

Weakly-sup. WIKISQL In the weakly-supervised setting of WIKISQL, only the answers (i.e.,
execution results of SQL queries) are available. We also employed the model proposed by Wang et al.
(2019) as our baseline for this task. We made the same changes and use the same experiment settings
as described in the previous section for WIKITABLEQUESTIONS.

3.3 IMPLEMENTATION OF GRAPPA

For fine-tuning RoOBERTa, we modify the code of RoOBERTa implemented by Wolf et al.|(2019) and
follow the hyperparameters for fine-tuning ROBERTa on RACE tasks and use batch size 24, learning
rate le-5, and the Adam optimizer Kingma & Ba (2014). We fine-tune GRAPPA for 300k steps on
eight 16GB Nvidia V100 GPUs. The pre-training procedure can be done in less than 10 hours. For all
downstream experiments using GRAPPA or ROBERTa, we always use a BERT specific optimizer to
fine-tune them with a learning rate of 1e-5, while using a model-specific optimizer with the respective
learning rate for the rest of the base models.

4 EXPERIMENTAL RESULTS

We conducted experiments to answer the following two questions: 1) Can GRAPPA provide better
representations for table semantic parsing tasks? 2) What is the benefit of two pre-training objectives,
namely MLM and SSP? Since GRAPPA is initialized by RoOBERTa, we answer the first question by
directly comparing the performance of base parser augmented with GRAPPA and RoBERTa on table
semantic parsing tasks. For the second question, we report the performance of GRAPPA trained with
MLM, SSP and also a variant with both of them (MLM+SSP).

Overall results We report results on the four aforementioned tasks in Tables [3] f] [5] and [6]
respectively. Overall, base models augmented with GRAPPA significantly outperforms the ones
with RoBERTa by 3.7% on SPIDER, 1.8% on WIKITABLEQUESTIONS, and 2.4% on weakly-
sup. WIKISQL, and achieve new state-of-the-art results across all four tasks. In most cases, the
combined objective of MLM+SSP helps GRAPPA achieve better performance when compared with
independently using MLM and SSP. Moreover, on the low-resource setting, GRAPPA outperforms
RoBERTa by 3.0% in fully-sup. WIKISQL and 3.9% in WIKITABLEQUESTIONS. Detailed results
for each task are discussed as follows.

SPIDER Results on SPIDER are shown in Table 3] When augmented with GRAPPA, the model
achieves significantly better performance compared with the baselines using BERT and RoBERTa.
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Models Dev. Test
(Liang et al.][ 2018} 03 31
(Dasigi et al., 2010} 421 439 _Models Dev. Test
7 (Liang et al./|2018) 72.2 72.1
(Agarwal et al.[[2019) 43.2 44.1 3
(Herzig ot al] 20200) R 488 (Agarwal et al.![2019) 74.9 74.8
: — (Min et al.[[2019) 84.4 83.9
(Yin et al.[[2020b) 52.2 51.8 - :
W Tal 120191 37 243 (Herzig et al.[|2020b) 85.1 83.6
angeta. = o) : : ~(Wang et al.] 2019} 794 793
w. RoBERTa-Targe 50.7(+7.0)  50.9(+6.4) BT 23029 823 (13.0
w. GRAPPA (MLM) 51.5(+7.8) 51.7(+7.2) w. ROBER fa-large 3(+29) 823 (+3.0)
w. GRATPA (SSP) 512075 511666 w. GRAPPA (MLM) 833 (+3.9) 835 (+4.2)
w. GRAPPA (MLM+SSP) 51.9(+82) 52.7(+82) O ) GSP) sae s sam it
w. RoBERTa-Targe x10% 373 381 w. GRAPPA (MLM+SSP) 859 (+6.5) 847 (+54)
w. GRAPPA (MLM+SSP) x10%  40.4(+3.1)  42.0(+3.9)

Table 6: Performance on weakly-sup. WIK-

Table 5: Performance on WIKITABLEQUESTIONS. ISQL. We use (Wang et al., 2019) as our base
Results trained on 10% of the data are shown at the model.
bottom.

Our best model, GRAPPA with MLM+SSP achieves the new state-of-the-art performance, surpassing
previous one (RAT-SQL+BERT-large) by a margin of 4%. Notably, most previous top systems use
pre-trained contextual representations (e.g., BERT, TaBERT), indicating the importance of such
representations for the cross-domain parsing task.

Fully sup. WIKISQL Results on WIKISQL are shown in Table[d] All GRAPPA models achieve
nearly the same performance as ROBERTa. We suspect it is the relatively large training size and easy
SQL pattern of WIKISQL make the improvement hard, comparing to SPIDER. Hence, we set up a
low-resource setting where we only use 10k examples from the training data. As shown in the bottom
two lines of Table ] GRAPPA improves the performance of the SQLova model by 3.0% compared to
RoBERT3:, indicating that GRAPPA can make the base parser more sample-efficient.

WIKITABLEQUESTIONS Results on WIKITABLEQUESTIONS are shown in Table[5] By using
RoBERTa and GRAPPA to encode question and column inputs, the performance of [Wang et al.
(2019) can be boosted significantly ( >6%). Compared with RoBERTa, our best model with
GRAPPA (MLM+SSP) can further improve the performance by 1.8%, leading to a new state-of-the-art
performance on this task. Similar to the low-resource experiments for WIKISQL, we also show the
performance of the model when trained with only 10% of the training data. As shown at the bottom
two lines Table[5] GRAPPA (MLM + SSP) obtains much better performance than RoOBERTa, again
showing its superiority of providing better representations.

Weakly sup. WIKISQL Results on weakly supervised WIKISQL are shown in Table[6] GRAPPA
with MLM+SSP again achieves the best performance when compared with other baselines, obtain
the new state-of-the-art results of 84.7% on this task. It is worth noting that our best model here is
also better than many models trained in the fully-supervised setting in Table[d This suggests that
inductive biases injected in pre-trained representation of GRAPPA can significantly help combat the
issue of spurious programs introduced by learning from denotations Pasupat & Liang| (2015); Wang
et al. (2019) when gold programs are not available.

5 ANALYSIS

Pre-training objectives GRAPPA trained with both MLM and SSP loss consistently outperforms
the one trained with one of them (MLM+SSP vs. MLM only or SSP only). GRAPPA (MLM)
usually improves the performance by around 1% such as 1.4% gain on SPIDER (dev), 0.8% on
WIKITABLEQUESTIONS, and 1.2% on weakly-sup. WIKISQL. By pre-training on the synthetic
text-to-SQL examples, GRAPPA (SSP), we can see a similar performance gain on these tasks too
except 3.9% improvement on SPIDER dev, which is what we expected (grammar is overfitted to
SPIDER). By pre-training with both MLM and SSP on the combined data, GRAPPA (MLM+SSP)
consistently and significantly outperforms the one pre-trained with MLM or SSP separately (e.g.,
about +2% on Spider, +1.5% on WikiTableQuestions, and +1.2% on weakly-sup WikiSQL.). This
contributes to our key argument in the paper: in order to effectively inject compositional inductive
bias to LM, pre-training on synthetic data should be regularized properly (using SSP+MLM together
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instead of SSP or MLM only) in order to balance between preserving the original BERT encoding
ability and injecting compositional inductive bias, otherwise, the improvements are not robust and
limited (using SSP or MLM only).

Generalization As mentioned in Section[2.2] we design our SCFG solely based on SPIDER, and
then sample from it to generate synthetic examples. Despite the fact that GRAPPA pre-trained on
such corpus is optimized to the SPIDER data distribution, which is very different from WIKISQL
and WIKITABLEQUESTIONS, GRAPPA is still able to improve performance on the two datasets. In
particular, for WIKITABLEQUESTIONS where the underlying distribution of programs (not necessarily
in the form of SQL) are latent, GRAPPA can still help a parser generalize better, indicating GRAPPA can
be beneficial for general table understanding even though it is pre-trained on SQL specific semantics.
We believe that incorporating rules from a broader range of datasets (e.g. WIKITABLEQUESTIONS)
would further improve the performance. However, in this paper, we study rules from only the SPIDER
dataset and test the effectiveness on other unseen datasets with different different underlying rules on
purpose in order to show the generality of our method.

Even though GRAPPA is pre-trained on synthetic text-to-SQL data, the proposed pre-training method
can also be applied to many other semantic parsing tasks with different formal programs (e.g., logic
forms); and we also demonstrated the effectness of GRAPPA on non text-to-SQL tasks (weakly-
supervised WIKISQL and WIKITABLEQUESTIONS where no programs are used, training is super-
vised by only answers/cell values) the underlying distribution of programs (not necessarily in the
form of SQL) are latent. Furthermore, to design the SCFG and synthesize data with the corresponding
programs labeled, we can use any formal programs such as the logic form or SParQL, and then
employ the data to pre-train GraPPa. In this paper we choose SQL as the formal program to represent
the formal representation of the questions simply because more semantic parsing datasets are labeled
in SQL.

Pre-training time and data Our experiments on the SPIDER and WIKITABLEQUESTIONS tasks
show that longer pre-training doesn’t improve and can even hurt the performance of the pre-trained
model. This also indicates that synthetic data should be carefully used in order to balance between
preserving the original BERT encoding ability and injecting compositional inductive bias. The best
result on SPIDER is achieved by using GRAPPA pre-trained for only 5 epochs on our relatively small
pre-training dataset. Compared to other recent pre-training methods for semantic parsing such as
TaBERT (Yin et al.|[2020al) and TAPAS (Herzig et al.,[2020a), GRAPPA achieves the state-of-the-art
performance (incorporated with strong base systems) on the four representative table semantic parsing
tasks in less 10 hours on only 8 16GB Nvidia V100 GPUs (6 days on more than 100 V100 GPUs
and 3 days on 32 TPUs for TABERT and TAPAS respectively) Moreover, we encourage future work
on studying how the size and quality of synthetic data would affect the end task performance. Also,
GRAPPA (MLM+SSP) consistently outperforms other settings, which indicates that using MLM on
the human annotated data is important.

Pre-training vs. training data augmentation Many recent work (Zhang et al., 2019b; Herzig
et al.,2020b}; |(Campagna et al., 2020; |Zhong et al.l|2020) in semantic parsing and dialog state tracking
show that training models on a combination of the extra synthetic data and original training data
does not improve or even hurt the performance. For example, (Zhong et al., 2020) synthesize data on
training databases in several semantic parsing tasks including SPIDER, and find that training with
this data augmentation leads to overfitting on the synthetic data and decreases the performance. In
contrast, our pre-training approach could effectively utilize a large amount of synthesized data and
improve downstream task performance. Also, the base parser with a GRAPPA encoder could usually
converge to a higher performance in shorter time (see Section[A.T).

6 RELATED WORK

Textual-tabular data understanding Real-world data exist in both structured and unstructured
forms. Recently the field has witnessed a surge of interest in joint textual-tabular data understanding
problems, such as table semantic parsing (Zhong et al.| 2017; Yu et al.l 2018b)), question answer-
ing (Pasupat & Liang, [2015}; (Chen et al.l 2020), retrieval (Zhang et al.,[2019a)), fact-checking (Chen
et al.L [2019) and summarization (Parikh et al., [2020; [Radev et al., 2020). While most work focus on
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single tables, often obtained from the Web, some have extended modeling to more complex structures
such as relational databases (Finegan-Dollak et al.,[2018; Yu et al.,[2018b; |Wang et al.| 2020). All
of these tasks can benefit from better representation of the input text and different components of
the table, and most importantly, an effective contextualization across the two modalities. Our work
aims at obtaining high-quality cross-modal representation via pre-training to potentially benefit all
downstream tasks.

Pre-training for NLP tasks GRAPPA is inspired by recent advances in pre-training for text such
as (Devlin et al., 2019} [Liu et al.,|2019; [Lewis et al., [2020bja; \Guu et al., [2020). Seminal work in
this area shows that textual representation trained using conditional language modeling objectives
significantly improves performance on various downstream NLP tasks. This triggered an exciting
line of research work under the themes of (1) cross-modal pre-training that involves text (Lu et al.|
2019; Peters et al.| 2019;[Yin et al., |2020a; Herzig et al.,[2020a) and (2) pre-training architectures
and objectives catering subsets of NLP tasks (Lewis et al., [2020bza; |Guu et al., 2020). GRAPPA
extends these two directions further. The closest work to ours are TaBERT (Yin et al.,[2020a) and
TAPAS (Herzig et al.,|2020a). Both are trained over millions of web tables and relevant but noisy
textual context. In comparison, GRAPPA is pre-trained with a novel training objective, over synthetic
data plus a much smaller but cleaner collection of text-table datasets.

Data augmentation for semantic parsing Our work was inspired by existing work on data aug-
mentation for semantic parsing (Berant & Liang, 2014; Wang et al.,[2015a; [Jia & Liang, [2016} [Iyer
et al.,|2017;Yu et al., 2018a). |Berant & Liang|(2014) employed a rule-based approach to generate
canonical natural language utterances given a logical form. A paraphrasing model was then used
to choose the canonical utterance that best paraphrases the input and to output the corresponding
logical form. In contrast, Jia & Liang| (2016)) used prior knowledge in structural regularities to induce
an SCFG and then directly use the grammar to generate more training data, which resulted in a
significant improvement on the tasks. Unlike these works which augment a relatively small number
of data and use them directly in end task training, we synthesize a large number of texts with SQL
logic grounding to each table cheaply and use them for pre-training.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel and effective pre-training approach for table semantic parsing. We
developed a context-free grammar to automatically generate a large amount of question-SQL pairs.
Then, we introduced GRAPPA, which is an LM that is pre-trained on the synthetic examples with
SQL semantic loss. We discovered that, in order to better leverage augmented data, it is important to
add MLM loss on a small amount of table related utterances. Results on four semantic parsing tasks
demonstrated that GRAPPA significantly outperforms RoBERTa.

While the pre-training method is surprisingly effective in its current form, we view these results
primarily as an invitation for more future work in this direction. For example, this work relies on a
hand-crafted grammar which often generates unnatural questions; Further improvements are likely to
be made by applying more sophisticated data augmentation techniques. Also, it would be interesting
to study the relative impact of the two objectives (MLM and SSP) by varying the respective number
of pre-training examples. Furthermore, pre-training might benefit from synthesizing data from a more
compositional grammar with a larger logical form coverage, and also from supervising by a more
compositional semantic signals.

REFERENCES

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and Mohammad Norouzi. Learning to generalize
from sparse and underspecified rewards. In ICML, 2019.

Jacob Andreas. Good-enough compositional data augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7556-7566, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.676.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association forComputational Linguistics, 2013.



Published as a conference paper at ICLR 2021

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1415-1425, Baltimore, Maryland, June 2014. Association for Computational Linguistics.

Chandra Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: Entity linking in web tables. In
International Semantic Web Conference, 2015.

Ben Bogin, Matt Gardner, and Jonathan Berant. Global reasoning over database structures for
text-to-sql parsing. ArXiv, abs/1908.11214, 2019.

Giovanni Campagna, Agata Foryciarz, Mehrad Moradshahi, and Monica S. Lam. Zero-shot transfer
learning with synthesized data for multi-domain dialogue state tracking. In Proceedings of 58th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2020.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164, 2019.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hy-
bridqa: A dataset of multi-hop question answering over tabular and textual data. arXiv preprint
arXiv:2004.07347, 2020.

Donghyun Choi, Myeong Cheol Shin, Eunggyun Kim, and Dong Ryeol Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. ArXiv,
abs/2004.03125, 2020.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke S. Zettlemoyer, and Eduard H. Hovy. Iterative
search for weakly supervised semantic parsing. In NAACL-HLT, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 731-742. Association for Computational Linguistics, 2018. URL http://aclweb,
org/anthology/P18-1068.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan Dhanalakshmi
Ramanathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. Improving text-to-sql evaluation
methodology. In ACL 2018. Association for Computational Linguistics, 2018.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-sql in cross-domain database with intermediate representation. In ACL,
2019.

Tong Guo and Huilin Gao. Content enhanced bert-based text-to-sql generation. Technical report,
2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. ArXiv, abs/2002.08909, 2020.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. X-sql: reinforce schema representa-
tion with context. ArXiv, abs/1908.08113, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. ArXiv, abs/1610.02136, 2016.

Jonathan Herzig and Jonathan Berant. Decoupling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 1619-1629. Association for Computational Linguistics, 2018.

10


http://aclweb.org/anthology/P18-1068
http://aclweb.org/anthology/P18-1068

Published as a conference paper at ICLR 2021

Jonathan Herzig, P. Nowak, Thomas Miiller, Francesco Piccinno, and Julian Martin Eisenschlos.
Tapas: Weakly supervised table parsing via pre-training. In ACL, 2020a.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Miiller, Francesco Piccinno, and Julian Mar-
tin Eisenschlos. Tapas: Weakly supervised table parsing via pre-training. arXiv preprint
arXiv:2004.02349, 2020b.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. A comprehensive exploration
on wikisql with table-aware word contextualization. ArXiv, abs/1902.01069, 2019.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. CoRR, abs/1704.08760, 2017.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke
Zettlemoyer. Pre-training via paraphrasing. arXiv preprint arXiv:2006.15020, 2020a.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871-7880, Online, July
2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://www.aclweb.org/anthology/2020.acl-main.703.

Fei Li and HV Jagadish. Constructing an interactive natural language interface for relational databases.
VLDB, 2014.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, and Ni Lao. Memory augmented
policy optimization for program synthesis and semantic parsing. In NeurIPS, 2018.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. In Findings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP Findings 2020, November 16th-20th, 2020, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke S. Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 13-23, 2019.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, and Zheng Chen.
Hybrid ranking network for text-to-sql. Technical Report MSR-TR-2020-7, Microsoft Dynamics
365 Al, March 2020.

Sewon Min, Danqgi Chen, Hannaneh Hajishirzi, and Luke Zettlemoyer. A discrete hard em approach
for weakly supervised question answering. In EMNLP, 2019.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi

Yang, and Dipanjan Das. Totto: A controlled table-to-text generation dataset. arXiv preprint
arXiv:2004.14373, 2020.

11


https://www.aclweb.org/anthology/2020.acl-main.703

Published as a conference paper at ICLR 2021

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long
Papers, pp. 1470-1480, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532-1543. ACL, 2014.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. Knowledge enhanced contextual word representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 43-54, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1005. URL
https://www.aclweb.org/anthology/D19-1005.

Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Nazneen Fatema
Rajani, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Murori Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu,
Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, and Richard Socher. Dart: Open-domain structured
data record to text generation. arXiv preprint arXiv:2007.02871, 2020.

Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti, Yi Mao, Oleksandr Polozov, and Weizhu Chen.
Incsql: Training incremental text-to-sql parsers with non-deterministic oracles. arXiv preprint
arXiv:1809.05054, 2018.

Bailin Wang, Ivan Titov, and Mirella Lapata. Learning semantic parsers from denotations with latent
structured alignments and abstract programs. In Proceedings of EMNLP, 2019.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-SQL:
Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 75677578, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.677. URL
https://www.aclweb.org/anthology/2020.acl-main.677.

Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1332-1342,
Beijing, China, July 2015a. Association for Computational Linguistics. doi: 10.3115/v1/P15-1129.
URL https://www.aclweb.org/anthology/P15-11209.

Yushi Wang, Jonathan Berant, Percy Liang, et al. Building a semantic parser overnight. In ACL (1),
pp. 1332-1342, 2015b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. TaBERT: Pretraining for
joint understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8413—-8426, Online, July 2020a. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.745.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020b.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir Radev.
Syntaxsqlnet: Syntax tree networks for complex and cross-domain text-to-sql task. In Proceedings
of EMNLP. Association for Computational Linguistics, 2018a.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
EMNLP, 2018b.

12


https://www.aclweb.org/anthology/D19-1005
https://www.aclweb.org/anthology/2020.acl-main.677
https://www.aclweb.org/anthology/P15-1129

Published as a conference paper at ICLR 2021

Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. UAI, 2005.

Li Zhang, Shuo Zhang, and Krisztian Balog. Table2vec: Neural word and entity embeddings for
table population and retrieval. In Proceedings of the 42Nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR’19, pp. 1029-1032, New York, NY,
USA, 2019a. ACM.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming
Xiong, Richard Socher, and Dragomir Radev. Editing-based sql query generation for cross-domain
context-dependent questions. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and 9th International Joint Conference on Natural Language
Processing. Association for Computational Linguistics, 2019b.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Victor Zhong, M. Lewis, Sida I. Wang, and Luke Zettlemoyer. Grounded adaptation for zero-shot
executable semantic parsing. The 2020 Conference on Empirical Methods in Natural Language
Processing, 2020.

A APPENDICES

Task

Question

Table/Database

Annotation

SPIDER

Find the first and last names of the stu-
dents who are living in the dorms that have
a TV Lounge as an amenity.

database with 5 tables
€.g.student,
dorm_amenity, ...

SELECT T1.FNAME, T1.LNAME FROM STUDENT AS T1 JOIN
LIVES_IN AS T2 ON T1.sTUID=T2.5TUID WHERE T2.DORMID
IN ( SELECT T3.DORMID FROM HAS_AMENITY AS T3 JOIN
DORM-AMENITY AS T4 ON T3.AMENID=T4.AMENID WHERE
T4.AMENITY-NAME="TV LOUNGE’)

Fully-sup. WIKISQL

How many CFL teams are from York Col-
lege?

a table with 5 columns

€.g. player, position, ...

SELECT COUNT CFL TEAM FROM CFLDRAFT WHERE
COLLEGE = "YORK’

WIKITABLEQUESTIONS

In what city did Piotr’s last 1st place finish
occur?

a table with 6 columns
€.g. year, event, ...

“Bangkok, Thailand”

Weakly-sup. WIKISQL

How many CFL teams are from York Col-
lege?

a table with 5 columns

€.g. player, position,...

2

Table 7: Examples of the inputs and annotations for four semantic parsing tasks. SPIDER and
Fully-sup. WIKISQL require full annotation of SQL programs, whereas WIKITABLEQUESTIONS
and Weakly-sup. WIKISQL only requires annotation of answers (or denotations) of questions.

Train Size  # Table Task
TabFact 92.2K 16K Table-based fact verification
LogicNLG 28.5K 7.3K Table-to-text generation
HybridQA 63.2K 13K Multi-hop question answering
WikiSQL 61.3K 24K Text-to-SQL generation
WikiTableQuestions 17.6K 2.1K Question answering
ToTTo 120K 83K Table-to-text generation
Spider 8. 7K 1K Text-to-SQL generation

Table 8: Aggregated datasets for table-and-language tasks.

A.1 ADDITIONAL ANALYSIS

Training coverage As shown in Figure[2] on the challenging end text-to-SQL SPIDER task, RAT-
SQL initialized with GRAPPA outperforms RAT-SQL using RoBERTa by about 14% in the early
training stage. This shows that GRAPPA already captures some semantic knowledge in pre-training.
Finally, GRAPPA is able to keep the competitive edge by 4%.

What if the task-specific training data is also used with the MLM or SSP objective in pre-
training? Although we did not do the same experiments, we would like to point to the RAT-SQL
paper (Wang et al.| 2020) for some suggestions. They add a similar alignment loss (similar to SSP)
on the SPIDER training data and found that it doesn’t make a statistically significant difference (in
Appendix B).

13



Published as a conference paper at ICLR 2021

75
70
65
60
55
50
45

40 —— RAT-SQL + RoBERTa
35 RAT-SQL + GRAPPA

5000 10000 15000 20000 25000 30000 35000 40000

Figure 2: The development exact set match score in SPIDER vs. the number of training steps.
RAT-SQL initialized with our pre-trained GRAPPA converges to higher scores in a shorter time than
RAT-SQL w. BERT.
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Figure 3: Attention visualization on the last self-attention layer.
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(b) GRAPPA
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Attention visualization on the last self-attention layer.
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