

# 000 SURVEILLANCEVQA-589K: A BENCHMARK FOR COM- 001 PREHENSIVE SURVEILLANCE VIDEO-LANGUAGE UN- 002 DERSTANDING WITH LARGE MODELS 003

004 **Anonymous authors**  
005  
006

007 Paper under double-blind review  
008

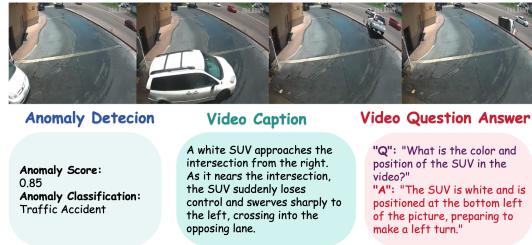
## 010 ABSTRACT 011

012 Understanding surveillance video content remains a critical yet underexplored chal-  
013 lenge in vision–language research, particularly due to its real-world complexity,  
014 irregular event dynamics, and safety-critical implications. In this work, we intro-  
015 duce SurveillanceVQA-589K, the largest open-ended video question answering  
016 (VQA) benchmark tailored to the surveillance domain. The dataset comprises  
017 589,380 QA pairs spanning 12 cognitively diverse question types, including tempo-  
018 ral reasoning, causal inference, spatial understanding, and anomaly interpretation,  
019 across both normal and abnormal video scenarios. To construct the benchmark at  
020 scale, we design a hybrid annotation pipeline that combines temporally aligned  
021 human-written captions with Large Vision-Language Model (LVLM) assisted QA  
022 generation using prompt-based techniques. We also propose a multi-dimensional  
023 evaluation protocol to assess contextual, temporal, and causal comprehension. We  
024 evaluate 12 LVLMs under this framework, revealing significant performance gaps,  
025 especially in causal and anomaly-related tasks, underscoring the limitations of  
026 current models in real-world surveillance contexts. Our benchmark provides a  
027 practical and comprehensive resource for advancing video-language understanding  
028 in safety-critical applications such as intelligent monitoring, incident analysis,  
029 and autonomous decision-making. The dataset is publicly available at: <https://anonymous.4open.science/r/SurveillanceVQA-589K>.  
030

## 032 1 INTRODUCTION 033

034 Surveillance videos have become pivotal data  
035 sources for smart cities (Kashef et al., 2021).  
036 In contrast to publicly available or social  
037 media videos, surveillance footage varies  
038 significantly in acquisition methods, con-  
039 tent attributes, and application purposes (Xu  
040 et al., 2016; Tsakanikas & Dagiuklas, 2018).  
041 They encompass diverse spatiotemporal con-  
042 ditions (Nawaratne et al., 2020; Sreenu & Du-  
043 rai, 2019), spanning day-night cycles, varied  
044 weather, and heterogeneous environments like  
045 streets (Liang et al., 2023; Ma et al., 2019), shop-  
046 ping centers (Arroyo et al., 2015), and trans-  
047 portation hubs (Ling et al., 2017), resulting in high data heterogeneity. Abnormal events captured are  
048 often sudden, low-frequency, and diverse, posing challenges for perception and modeling (Liu et al.,  
049 2024a; 2023b).

050 Current computer vision tasks for surveillance videos primarily focus on the detection and classifi-  
051 cation of abnormal events, often relying on predefined event types and handcrafted features (Pawar &  
052 Attar, 2019; Zhou et al., 2019; Doshi & Yilmaz, 2020; Al-Lahham et al., 2024; Zanella et al., 2024;  
053 Wu et al., 2024). While such goal-oriented approaches can be effective in specific scenarios, they  
typically lack deeper semantic modeling of event progression, behavioral motivations, and environ-



054 Figure 1: Anomalous event detection, video caption vs.  
055 our VQA for surveillance applications.

054 mental context (Yuan et al., 2024a). This limits the potential of surveillance videos in intelligent  
 055 urban governance, behavior prediction, and multimodal reasoning (Pathirannahalage et al., 2024).  
 056

057 To address these limitations, UCA (Yuan et al., 2024b;a), has proposed a multimodal understanding  
 058 framework for surveillance videos. It incorporates fine-grained language annotations and temporal  
 059 markers, covering tasks such as moment localization, caption generation, and dense captioning.  
 060 However, UCA primarily focuses on descriptive tasks and lacks interactive question answering (QA)  
 061 mechanisms, which makes it less aligned with recent trends in complex semantic understanding and  
 062 reasoning within multimodal systems (Kim et al., 2025).  
 063

064 To further enhance the semantic reasoning capabilities of models in the surveillance domain, we  
 065 introduce QA tasks to enable interactive and cognitively rich understanding, as shown in Figure 1.  
 066 Unlike descriptive tasks, QA tasks allow models to perform logical reasoning, causal inference, and  
 067 complex semantic analysis on video content. To achieve this, we construct SurveillanceVQA-589K,  
 068 a large-scale QA dataset specifically designed for surveillance videos. The dataset consists of four  
 069 surveillance video datasets as video sources and contains approximately 589,000 question-answer  
 070 pairs, including 12 QA types covering both normal and abnormal video content, such as factual  
 071 summarization, behavior/spatial-temporal analysis, causal reasoning, anomaly detection, etc. This  
 072 design aims to elevate video understanding to a higher cognitive level.  
 073

074 We benchmark 8 local-deployed Large Vision-Language Models (LVLMs) on SurveillanceVQA-  
 075 589K, including variants like VideoLLaMa3 (Zhang et al., 2025), LLaVA series (Zhang et al., 2024c;b;  
 076 Li et al., 2024a), Qwen2.5-VL series (Bai et al., 2025), and InternVL series (Chen et al., 2024c),  
 077 ranging from lightweight 0.5B to general-purpose 7B models. We also test the model performance of  
 078 4 API-called LVLMs (e.g., Gemini 2.5 Pro Google (2025), OpenAI’s GPT-4o OpenAI (2024), Baidu’s  
 079 ERNIE 4.5 Turbo VL Baidu (2025), and the newest model InternVL-3.5 Wang et al. (2025)) on our  
 080 abnormal videos. Despite their success in open-domain tasks, current LVLMs demonstrate clear  
 081 limitations in surveillance scenarios. Performance on complex tasks, such as causal inference and  
 082 abnormal event analysis, remains poor, with most models scoring below the midpoint. Furthermore,  
 083 although fine-tuning on local-deployed LVLMs enhances general understanding, it does not lead to  
 084 substantial improvements in complex reasoning tasks. Through a visualization of failure cases, we  
 085 analyze the underlying causes in detail and provide suggestions to guide future model development.  
 086 Our benchmark reveals systematic weaknesses in causal inference and anomaly understanding,  
 087 offering a practical testbed for real-world surveillance applications.  
 088

## 089 2 RELATED WORK

### 090 2.1 SURVEILLANCE VIDEO ANALYSIS BENCHMARK

091 In recent years, there has been a growing interest in the academic community toward understanding  
 092 the content of surveillance videos, which has led to the development of several benchmark datasets  
 093 to support research in this domain. Early datasets predominantly focused on anomaly detection in  
 094 surveillance scenarios, including UCSD Ped1 and Ped2 (Li et al., 2013), the Avenue dataset (Lu  
 095 et al., 2013), the Subway dataset (Adam et al., 2008), the ShanghaiTech Campus dataset (Luo et al.,  
 096 2017), UCF-Crime (Sultani et al., 2018), MEVA (Corona et al., 2021), NWPU Campus dataset (Cao  
 097 & Others, 2023), and MSAD (Zhu et al., 2024). While these datasets have laid a strong foundation for  
 098 surveillance video analysis, the majority of these datasets still lack accompanying textual annotations,  
 099 rendering them inadequate for comprehensive multimodal vision-language research. Notably, UCA  
 100 (Yuan et al., 2024b) distinguished itself from prior surveillance datasets through its rich linguistic  
 101 annotations. However, the current version of UCA includes only approximately 20,000 manually  
 102 labeled descriptions and lacks an interactive, question-answering (QA) based evaluation framework.  
 103 Such a framework is increasingly recognized as a critical tool for assessing high-level reasoning,  
 104 anomaly understanding, and semantic generalization in modern multimodal systems.  
 105

106 To address this gap, we propose the construction of a novel QA-driven benchmark for surveillance  
 107 video understanding. This benchmark is designed to enable interactive evaluation and foster deeper  
 108 semantic reasoning over real-world surveillance video content.

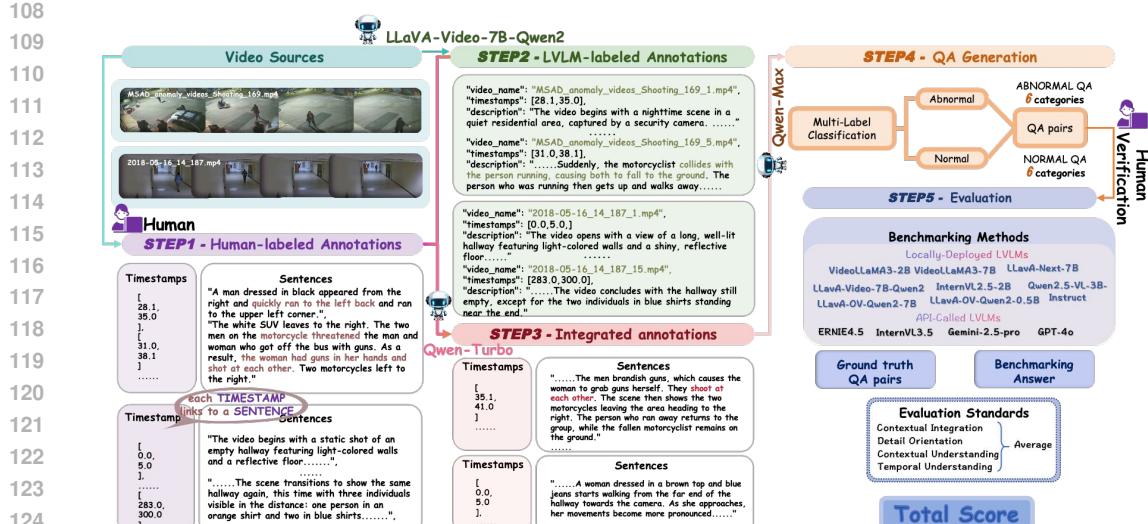


Figure 2: Our overall framework, including QA generation and evaluation.

## 2.2 VIDEO-LANGUAGE UNDERSTANDING BENCHMARK

With the emergence of LVLMs (Li & Lu, 2024; Cui et al., 2023; Liu et al., 2023a), traditional benchmarks have become increasingly inadequate in capturing the full range of model capabilities. Recent benchmarks aim to address this by incorporating diverse tasks (Wang et al., 2024b; Li et al., 2025), multi-level granularity (Wang et al., 2024a), and scalable evaluation protocols (Chen et al., 2024a). Benchmarks such as OwlEval, MME (Fu et al., 2023), SEED-Bench (Li et al., 2024b), MM-Vet (Yu et al., 2023), and MMBench (Liu et al., 2024b), MVbench (Li et al., 2024c), Vision-R1 (Huang et al., 2025), and EMMA (Hao et al., 2025) cover a wide spectrum of tasks, from image captioning and reasoning to fact verification. These works propose multi-dimensional metrics—including linguistic consistency, semantic alignment, and visual grounding—to characterize model behavior more comprehensively. In the video domain, models must handle temporal dynamics and evolving semantics (Weng et al., 2024; Chen et al., 2024b). Earlier benchmarks such as TVQA (Lei et al., 2018) and Next-QA (Xiao et al., 2021) used multiple-choice formats to assess temporal localization and event comprehension. More recent work, such as VideoChatGPT (Maaz et al., 2023), introduces multi-turn QA grounded in video input, emphasizing coherence and contextual consistency over extended interactions. FunQA (Xie et al., 2024) pushes reasoning further by evaluating a model’s ability to identify unexpected or humorous events, highlighting challenges in modeling incongruity and causal anomalies in temporal sequences. Svbench (Yang et al., 2025) proposes temporal multi-turn QA chains, which are specifically for streaming video understanding.

Our work extends these efforts by addressing the unique challenges of surveillance video analysis. Unlike open-domain or entertainment-based datasets, SurveillanceVQA-589K emphasizes real-world diverse abnormal events, spatiotemporal analysis, complex reasoning, etc.

## 3 SURVEILLANCEVQA-589K

The SurveillanceVQA-589K dataset includes 31,548 video clips with textual annotations, 27,962 clips labeled as normal and 3,586 as anomalous, resulting in a total of 589,380 QA pairs. The following contents show the procedure of QA pairs generation, illustrated in Figure 2.

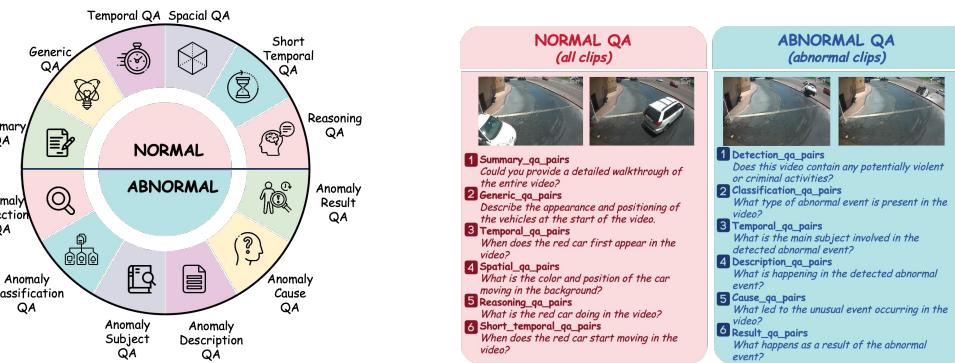
### 3.1 VIDEO ANNOTATION GENERATION

Following the annotation protocol established in UCA (Yuan et al., 2024b), we extended manual annotation efforts to the MSAD, MEVA, and NWPU surveillance datasets. This process involved generating event-level captions that included both precise timestamps and detailed event descriptions. The detailed annotation procedures are shown in Appendix A.

162 Subsequently, using the timestamp information obtained during the manual annotation phase, we  
 163 employed the video processing toolkit MoviePy to automatically segment the original videos and  
 164 extract the corresponding short clips. We then utilized the powerful multimodal model LLaVA-Video-  
 165 7B (Zhang et al., 2024c) to perform in-depth analysis on each segmented clip, generating detailed  
 166 descriptions. As a result, we obtained 31,548 segment-level annotations produced by the LVLM.

167 Then, we performed a deep integration of the  
 168 high-quality information obtained from manual  
 169 annotations with the rich segment-level descriptions  
 170 generated by the large multimodal model  
 171 LLaVA-Video. The objective of this integration  
 172 was to combine the precision of human annotations  
 173 with the diversity and depth of model-  
 174 generated descriptions. The guiding principle  
 175 for prompt design was to preserve the semantic  
 176 integrity of human annotations while enriching them with complementary information from the  
 177 model output. To facilitate this process, we introduced Qwen-Turbo (Yang et al., 2024), an advanced  
 178 language model, to leverage its natural language processing capabilities for comprehensive analysis,  
 179 redundancy elimination, and content optimization. Specifically, Qwen-Turbo was tasked with  
 180 identifying and resolving redundant or inconsistent expressions, while enhancing semantic richness  
 181 and logical coherence. This resulted in more fluent, structured, and contextually aligned event-level  
 182 descriptions for each video clip.

183 Through this integration, we obtained 31,548 refined textual annotations. The procedure for integrating  
 184 human and LVLM annotations, along with the generation prompt, is illustrated in Figure 3. The  
 185 examples of human-labeled, LVLM-labeled, integrated annotations are shown in Appendix A.



186 (a) The involved 12 QA categories.

187 (b) The example questions of each QA task.

188

189

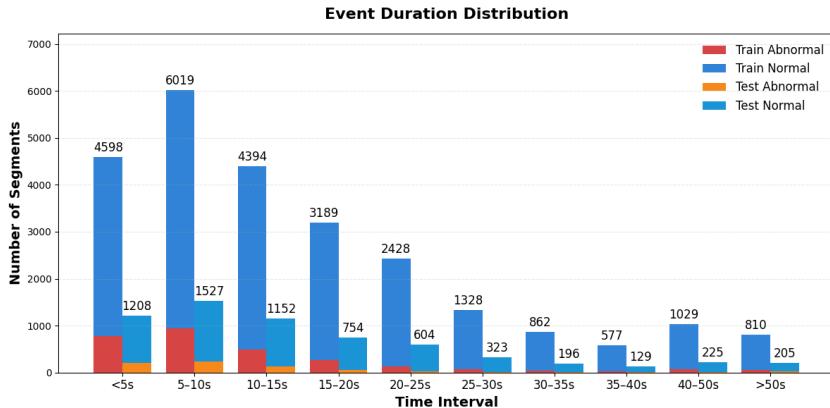
190

### 201 3.2 AUTOMATIC QA GENERATION

202 After obtaining the clip-level descriptions, we proceeded to generate QA pairs. Specifically, we  
 203 employed Qwen-Max (Yang et al., 2024) to analyze the annotation data and classify each video  
 204 segment as either normal or abnormal.

205 After obtaining two distinct sets of video clips (normal vs. abnormal) along with their corresponding  
 206 textual annotations, we designed category-specific prompts to guide the generation of QA pairs. For  
 207 normal clips, the prompts were crafted to elicit a comprehensive understanding of video content,  
 208 focusing on global scene descriptions, temporal sequencing, spatial detail extraction, and behavioral  
 209 inference. These prompts support general video comprehension and open-ended QA tasks. In contrast,  
 210 for abnormal clips, the prompts emphasized event detection, anomaly type classification, subject  
 211 identification, detailed incident descriptions, and causal reasoning. This design is tailored to the  
 212 specific requirements of surveillance anomaly detection and incident-level semantic analysis.

213 Based on the customized prompts, we employed Qwen-Max to generate QA pairs for each video  
 214 clip, following different generation strategies for normal and abnormal categories. For normal QA

216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229230 Figure 5: Distribution of event durations on the training/test sets  
231  
232

233 tasks, six QA types (Summary, Generic, Temporal, Short Temporal, Spatial, and Reasoning QA)  
234 were defined, with three QA pairs generated per type. For abnormal QA tasks, the other six QA types  
235 (Detection, Classification, Temporal, Description, Cause, and Result QA) were applied, but with  
236 one QA pair generated per type to emphasize critical semantic cues. Notably, all of the video clips  
237 (including normal and abnormal clips) are suitable for the normal QA tasks with their corresponding  
238 normal QA pairs, while only abnormal clips are suitable for the abnormal QA tasks with particularly  
239 defined abnormal QA pairs. The defined QA categories are illustrated in Figure 4a, and the example  
240 questions of each QA task are provided in Figure 4b. The detailed QA pairs generation examples and  
241 prompts are shown in Appendix B.

242 

### 3.3 DATA STATISTICS

244 

### 3.4 OVERALL DATA STATISTICS

246 Table 1 presents statistical information  
247 for the SurveillanceVQA-589K (containing  
248 MSAD, MEVA, NWPU, and UCA),  
249 including the number of videos, total duration,  
250 textual annotations, segmented clips  
251 (categorized as normal and abnormal), and  
252 the total number of QA pairs. More statistical  
253 details are presented in Appendix C.  
254 Other considerations, such as data quality  
255 analysis and limitations, are shown in Appendix G.

256 Table 1: Overall data statistics of SurveillanceVQA-  
257 589K.

| Dataset      | Number of Videos | Total Video Duration | Number of Text Annotations | Number of Segments |             | QA Pairs      |
|--------------|------------------|----------------------|----------------------------|--------------------|-------------|---------------|
|              |                  |                      |                            | Normal             | Abnormal    |               |
| MSAD         | 201              | 4.23h                | 1783                       | 1417               | 366         | 34290         |
| MEVA         | 720              | 16.76h               | 2057                       | 2044               | 13          | 37104         |
| NWPU         | 255              | 16.29h               | 4166                       | 4121               | 45          | 75258         |
| UCA          | 1854             | 121.9h               | 23542                      | 20380              | 3162        | 442728        |
| <b>Total</b> | <b>3030</b>      | <b>159.18h</b>       | <b>31548</b>               | <b>27962</b>       | <b>3586</b> | <b>589380</b> |

258 

#### 3.4.1 DISTRIBUTION OF EVENT DURATIONS

259 Figure 5 illustrates the distribution of event durations on the training/test sets in this dataset. The  
260 majority of events are concentrated between 5 and 20 seconds, with a particularly high concentration  
261 in the 5-10 seconds and 10-15 seconds intervals. Notably, normal events in the training set dominate  
262 the distribution, making up the largest proportion of the dataset.

262 

#### 3.4.2 COMPARISONS WITH EXISTING DATASETS

264 These comparisons, as shown in Table 2, reveal a consistent trend: early video QA datasets are  
265 limited in scale, typically containing 200 to 900 videos and 2,000 to 4,000 QA pairs, and primarily  
266 focus on normal events with fixed question formats. Moreover, most existing datasets rely exclusively  
267 on either human annotations or LLM-generated content, with few employing a hybrid approach  
268 that leverages both. UCVL (Chen et al., 2025) serves as an intermediate example by exploring  
269 abnormal event QA, yet it still falls short in terms of scale, diversity, and task coverage compared to  
our SurveillanceVQA-589K dataset.

Table 2: Overall comparisons with existing datasets.

| Aspect            | MVBench<br>(Li et al., 2024c) | Video-MME<br>(Fu et al., 2024) | MMB-Video<br>(Fang et al., 2024) | UCVL<br>(Chen et al., 2025) | SurveillanceVQA-589K |
|-------------------|-------------------------------|--------------------------------|----------------------------------|-----------------------------|----------------------|
| <b>Videos</b>     | 200                           | 900                            | 600                              | 1699                        | 3030                 |
| <b>QA Pairs</b>   | 4000                          | 2700                           | 2000                             | 16990                       | 589380               |
| <b>Content</b>    | Normal                        | Normal                         | Normal                           | Anomaly                     | Normal&Anomaly       |
| <b>QA Forms</b>   | MCQ                           | MCQ                            | Open-ended                       | MCQ&Open-ended              | Open-ended           |
| <b>Generation</b> | LLM                           | Human                          | Human                            | LLM                         | LLM&Human            |
| <b>Evaluation</b> | Matching                      | Matching                       | LLM                              | Matching&LLM                | LLM                  |

## 4 EXPERIMENTS ON SURVEILLANCE VQA-589K

We primarily benchmark eight locally deployed LVLMs and offer suggestions for enhancing their performance. The remaining four API-called LVLMs serve as reference baselines. In our evaluation, we adopt the four key dimensions proposed in the evaluation framework of VideoGPT+ (Maaz et al., 2024). These four key dimensions are Contextual Integration (CI), Detail Orientation (DO), Contextual Understanding (CU), and Temporal Understanding (TU). We provide the main experimental results and analysis in this section. More detailed experimental settings, results, and explanations have been given in the Appendix D and Appendix E.

## 4.1 RESULTS ON SURVEILLANCEVQA-589K

#### 4.1.1 OVERALL LVLMs PERFORMANCE

| Method                           | CI   | DO   | CU   | TU   | Avg         |
|----------------------------------|------|------|------|------|-------------|
| LLaVA-OV-Qwen2-0.5B              | 2.89 | 2.62 | 2.89 | 2.64 | 2.76        |
| InternVL2.5-2B                   | 1.77 | 1.72 | 1.97 | 1.72 | 1.79        |
| VideoLLaMA3-2B                   | 2.82 | 2.55 | 2.83 | 2.58 | 2.69        |
| Qwen2.5-VL-3B-Instruct           | 2.70 | 2.54 | 2.72 | 2.45 | 2.60        |
| LLaVA-NeXT-Video-7B              | 2.78 | 2.62 | 2.80 | 2.50 | 2.68        |
| LLaVA-OV-Qwen2-7B                | 3.15 | 2.85 | 3.12 | 2.89 | 3.00        |
| LLaVA-Video-7B                   | 3.17 | 2.85 | 3.15 | 2.92 | <b>3.02</b> |
| VideoLLaMA3-7B                   | 2.93 | 2.67 | 2.93 | 2.70 | 2.80        |
| Qwen2.5-VL-3B-Instruct $\dagger$ | 2.83 | 2.71 | 2.83 | 2.58 | 2.74        |
| LLaVA-Video-7B $\dagger$         | 3.27 | 3.01 | 3.24 | 3.03 | <b>3.14</b> |

#### 4.1.2 LVLMs PERFORMANCE ACROSS NORMAL QA TASKS

Table 4 presents the performance of several LVLMs on a range of QA tasks, including Summary, Generic, Temporal, Short Temporal, Spatial, and Reasoning QA. The evaluation is conducted on both normal clips (blue) and abnormal clips (green), with performance metrics reported for each task. Among the models, LLaVA-OV-Qwen2-7B demonstrates the highest overall performance, indicating robust capabilities in handling spatial and reasoning-based questions. In contrast, InternVL2.5-2B exhibits the lowest performance across most tasks, suggesting limitations in processing video-based QA tasks effectively.

A key trend is that models perform better on normal video clips than abnormal ones across most tasks. However, in the Spatial QA, abnormal videos sometimes score higher due to their specific, visually distinctive events (e.g., a person falling or a fight), making spatial grounding easier. Normal

Table 3: Model performance averaged on different QA tasks across five evaluation dimensions.  $\dagger$  represents our finetuned LVLMs.

| Method                              | CI   | DO   | CU   | TU   | Avg         |
|-------------------------------------|------|------|------|------|-------------|
| LLaVA-OV-Qwen2-0.5B                 | 2.89 | 2.62 | 2.89 | 2.64 | 2.76        |
| InternVL2.5-2B                      | 1.77 | 1.72 | 1.97 | 1.72 | 1.79        |
| VideoLLaMA3-2B                      | 2.82 | 2.55 | 2.83 | 2.58 | 2.69        |
| Qwen2.5-VL-3B-Instruct              | 2.70 | 2.54 | 2.72 | 2.45 | 2.60        |
| LLaVA-NeXT-Video-7B                 | 2.78 | 2.62 | 2.80 | 2.50 | 2.68        |
| LLaVA-OV-Qwen2-7B                   | 3.15 | 2.85 | 3.12 | 2.89 | 3.00        |
| LLaVA-Video-7B                      | 3.17 | 2.85 | 3.15 | 2.92 | <b>3.02</b> |
| VideoLLaMA3-7B                      | 2.93 | 2.67 | 2.93 | 2.70 | 2.80        |
| Qwen2.5-VL-3B-Instruct <sup>†</sup> | 2.83 | 2.71 | 2.83 | 2.58 | 2.74        |
| LLaVA-Video-7B <sup>†</sup>         | 3.27 | 3.01 | 3.24 | 3.03 | <b>3.14</b> |

324 events involve routine or ambiguous contexts, explaining the higher spatial performance on abnormal  
 325 videos.  
 326

327 Table 4: Performance of different vision-language models across QA tasks. **Blue**: normal QA tasks  
 328 on normal video clips, **Green**: normal QA tasks on abnormal video clips, **Brown**: abnormal QA  
 329 tasks on abnormal video clips.  $\dagger$  represents our finetuned LVLMs. Green-highlighted models are  
 330 API-called LVLMs, only tested on abnormal videos.

| Model                            | Summary   | Generic   | Temporal  | Short Temporal | Spatial   | Reasoning | Detection | Classification | Subject | Description | Cause | Result |
|----------------------------------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|----------------|---------|-------------|-------|--------|
| LLaVA-OV-Qwen2-0.5B              | 2.76/2.43 | 2.78/2.52 | 2.62/2.43 | 2.60/2.45      | 3.10/3.12 | 2.93/2.69 | 2.94      | 2.47           | 2.69    | 2.43        | 1.67  | 1.60   |
| InternVL2.5-2B                   | 0.56/0.37 | 2.20/1.93 | 1.89/1.68 | 2.08/1.95      | 1.92/1.89 | 2.41/2.26 | 1.88      | 1.12           | 1.46    | 0.55        | 0.64  | 0.74   |
| VideoLLaMA3-2B                   | 2.49/2.00 | 2.84/2.55 | 2.73/2.49 | 2.61/2.44      | 2.97/2.99 | 2.89/2.66 | 1.87      | 2.03           | 2.46    | 1.89        | 1.37  | 1.18   |
| Qwen2.5-VL-3B-Instruct           | 2.20/1.49 | 2.66/2.17 | 2.66/2.26 | 2.69/2.31      | 2.86/2.75 | 3.01/2.70 | 1.85      | 2.19           | 2.24    | 1.74        | 1.32  | 1.13   |
| LLaVA-NeXT-7B                    | 2.17/1.72 | 2.93/2.60 | 2.56/2.28 | 2.66/2.48      | 2.95/2.95 | 3.06/2.81 | 2.32      | 2.56           | 2.59    | 2.11        | 1.96  | 1.65   |
| LLaVA-OV-Qwen2-7B                | 3.10/2.79 | 3.08/2.86 | 2.95/2.81 | 2.79/2.66      | 3.31/3.34 | 3.08/2.89 | 2.53      | 2.60           | 2.68    | 2.54        | 1.46  | 1.55   |
| LLaVA-Video-7B                   | 3.05/2.85 | 2.99/2.80 | 2.85/2.77 | 2.78/2.71      | 3.47/3.51 | 3.25/3.05 | 1.92      | 2.59           | 2.76    | 2.76        | 1.52  | 1.81   |
| VideoLLaMA3-7B                   | 2.68/2.29 | 3.01/2.70 | 2.81/2.55 | 2.65/2.45      | 3.06/3.06 | 2.99/2.78 | 2.03      | 1.53           | 2.66    | 2.01        | 1.75  | 1.27   |
| Qwen2.5-VL-3B-Instruct $\dagger$ | 2.62/1.99 | 2.76/2.36 | 2.84/2.48 | 2.93/2.59      | 2.89/2.89 | 3.06/2.85 | 1.58      | 2.13           | 2.56    | 2.06        | 1.77  | 1.22   |
| LLaVA-Video-7B $\dagger$         | 3.01/2.63 | 3.16/2.94 | 3.05/2.85 | 3.07/2.86      | 3.41/3.48 | 3.32/3.15 | 4.46      | 3.26           | 3.27    | 2.70        | 1.79  | 1.93   |
| Baidu ERNIE 4.5 Turbo VL         | -         | -         | -         | -              | -         | -         | 3.23      | 2.79           | 2.47    | 2.21        | 1.64  | 1.26   |
| Gemini 2.5 Pro                   | -         | -         | -         | -              | -         | -         | 4.47      | 3.51           | 2.94    | 2.73        | 1.99  | 2.15   |
| GPT-4o                           | -         | -         | -         | -              | -         | -         | 3.58      | 3.53           | 2.52    | 2.88        | 2.20  | 2.38   |
| InternVL-3.5                     | -         | -         | -         | -              | -         | -         | 3.54      | 3.77           | 3.26    | 2.98        | 2.87  | 2.86   |

#### 349 4.1.3 LVLMs PERFORMANCE ACROSS ABNORMAL QA TASKS

350  
 351 Table 4 also presents the performance of local-deployed and API-called LVLMs on abnormal QA  
 352 tasks, evaluated exclusively on abnormal video clips with all values reported in Brown. In these  
 353 scenarios, local-deployed LVLMs show performance variations based on task type. LLaVA-OV-  
 354 Qwen2-0.5B models excel in Detection tasks, leading in CI and CU metrics. For Classification tasks,  
 355 both LLaVA-Video-7B and LLaVA-OV-Qwen2-7B perform well. LLaVA-Video-7B excels in Subject  
 356 and Description questions, while all models struggle with higher-order reasoning like Cause and  
 357 Result inference. LLaVA-NeXT-7B performs better in causal reasoning, and LLaVA-Video-7B shows  
 358 slight advantages in result inference. These trends highlight the challenges in understanding causal  
 359 relationships in abnormal video scenarios. Larger models (7B) generally outperform smaller ones,  
 360 though specific specializations vary by task. Abnormal QA scores are significantly lower than normal  
 361 QA scores, reflecting greater difficulty in reasoning with abnormal videos.  
 362

#### 363 4.1.4 API-CALLED LVLMs PERFORMANCE

364 To further investigate the capability of API-called LVLMs on anomalous video understanding, we  
 365 conducted an additional set of experiments on anomalous video QA, as reported in the green-  
 366 highlighted parts of Table 4. In particular, we test the performance of Gemini 2.5 Pro, GPT-4o,  
 367 ERNIE 4.5 Turbo VL, and InternVL-3.5. InternVL-3.5 outperforms other API-accessed LVLMs,  
 368 excelling in multimodal causal reasoning. Gemini 2.5 Pro ranks second, while GPT-4o shows weaker  
 369 performance, especially in the Result QA task. ERNIE-4.5 demonstrates consistent but moderate  
 370 performance. Locally deployed models, particularly fine-tuned LLaVA-Video variants, perform  
 371 strongly, showing the competitiveness of the open-source LLaVA series.  
 372

### 373 4.2 COMPREHENSIVE ANALYSIS

#### 374 4.2.1 ANALYSIS ACROSS DIFFERENT LVLMs AND USED TECHNIQUES.

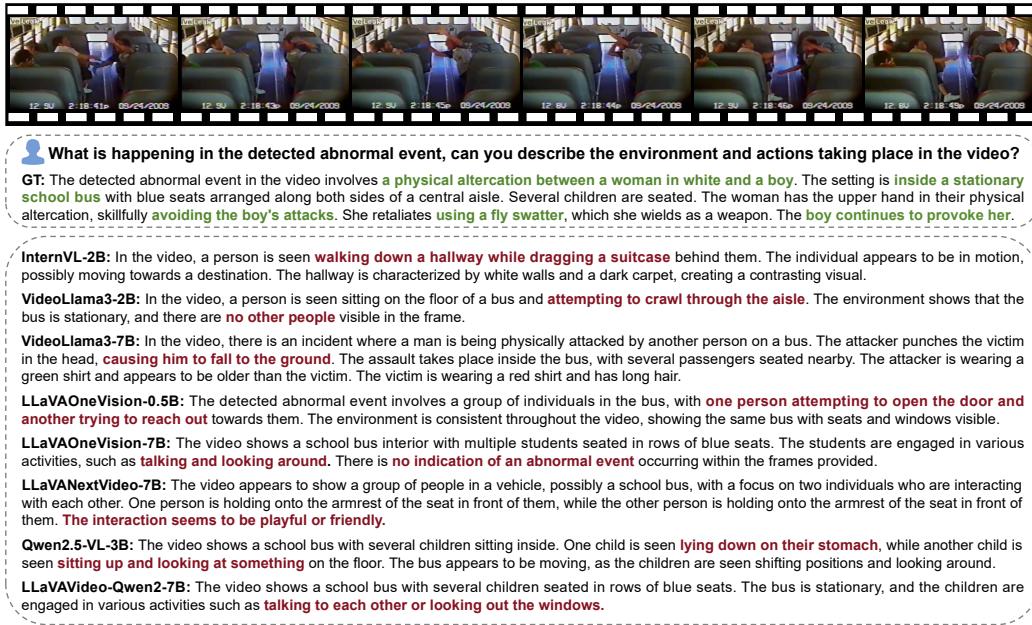
375 Here, we analyze the open-source LVLMs. Smaller models, such as LLaVA-OV-Qwen2-0.5B, excel  
 376 in CU and DO but struggle with more complex tasks like TU. These models perform well in simpler  
 377 scenarios but face limitations in long-duration tracking and anomaly detection. Medium models, like

378 Qwen2.5-VL-3B-Instruct, provide a good balance between performance and efficiency, particularly  
 379 in handling temporal sequences and contextual integration. Larger models, such as LLaVA-Video-  
 380 7B and Video-LLaMA3-7B, excel in temporal reasoning and anomaly detection, benefiting from  
 381 advanced architectures and video-specific fine-tuning.

382 The experimental results indicate that fine-tuning yields modest performance gains. Fine-tuning  
 383 models on specific monitoring video data significantly improves their performance in particular  
 384 environments, helping them better understand context and identify anomalous events. However,  
 385 fundamentally improving the model’s capability to align visual and textual information remains the  
 386 key to achieving substantial progress. The strengths of these models can largely be attributed to their  
 387 design choices. Techniques like Differential Frame Pruning and Progressive Scaling help the models  
 388 handle long video sequences more efficiently while retaining important temporal details. Techniques  
 389 like Any-Resolution Vision Tokenization, are capable of processing low-resolution video, suitable for  
 390 monitoring applications where video quality may vary.

#### 391 4.2.2 ANALYSIS ACROSS QA TYPES AND VIDEO CONTEXTS.

392 The performance of vision-language models varies significantly across different QA types and video  
 393 contexts. Normal video QA tasks, such as Summary, Generic, Spatial, and Reasoning QA, generally  
 394 achieve higher scores across all models. For instance, models like LLaVA-OV-Qwen2-7B and LLaVA-  
 395 Video-7B consistently score above 3.0 on Spatial and Generic QA, indicating strong capabilities  
 396 in visual description and object localization in well-structured scenes. In contrast, abnormal video  
 397 QA tasks, especially Cause and Result QA, remain highly challenging. Across all models, scores  
 398 for Cause QA fall below 2.0, with InternVL2.5-2B as low as 0.64, and the best-performing model  
 399 (LLaVA-NeXT-7B) only reaching 1.96. Even the SOTA API-called LVLMs still show low scores for  
 400 Cause and result QA. This suggests a widespread limitation in causal reasoning, especially under  
 401 chaotic or low-frequency events like violence or accidents. Moreover, models generally perform  
 402 better on normal video clips than on abnormal ones, even for the same QA types. This indicates that  
 403 scene stability significantly influences model comprehension.



426 Figure 6: Abnormal videos QA Examples. All of the local-deployed LVLMs provide wrong answers.  
 427

#### 428 4.2.3 ANALYSIS OF FINETUNED LVLMs

429 The experimental results demonstrate the impact of fine-tuning on LVLMs across various QA tasks.  
 430 After LoRA fine-tuning, Qwen2.5-VL-3B-Instruct<sup>†</sup> and LLaVA-Video-7B<sup>†</sup> achieved better average

432 scores. The fine-tuned 7B model outperforms all API-called models in the anomaly detection task,  
 433 and it also highlights the significance of our dataset research in improving model performance.  
 434

435 However, fine-tuning results in performance degradation in certain QA types. This indicates that  
 436 during fine-tuning, models may experience catastrophic forgetting of general knowledge acquired  
 437 during pre-training, leading to over-adaptation to the fine-tuning dataset. Furthermore, in visual cog-  
 438 nition tasks, while fine-tuning can enhance performance on target tasks, it does not necessarily yield  
 439 human-like robust generalization, particularly in complex QA categories such as causal reasoning or  
 440 anomaly classification. This highlights a limitation of current fine-tuning approaches.  
 441

#### 442 4.2.4 ANALYSIS OF FAILED CASES

443 In Figure 6, the model responses to the abnormal event detection in the video demonstrate several  
 444 errors and misinterpretations of the scene. Notably, multiple models provide descriptions of events  
 445 that deviate from the actual content of the video. These errors stem from misinterpreting both the  
 446 environment and the individuals involved in the scene. Most models struggle with distinguishing  
 447 the abnormal event from general bus activity, demonstrating the challenge of correctly identifying  
 448 nuanced interactions in complex video scenes. This highlights the research challenges of LVLMs  
 449 for understanding our proposed SurveillanceVQA-589K dataset. We have also noticed the poor  
 450 performance of LVLMs on causal reasoning QA tasks. Therefore, we present more relevant failed  
 451 cases and analysis in Appendix F.  
 452

#### 453 4.3 SUGGESTIONS FOR FUTURE RESEARCH

454 In addition to the findings presented in this work, we recognize that advancing causal reasoning and  
 455 domain-adaptive pretraining strategies constitutes an important direction for future research. On the  
 456 one hand, causal reasoning can be further enhanced through structured temporal event modeling  
 457 and step-by-step inference mechanisms, enabling models to explicitly capture event segmentation,  
 458 temporal dependencies, and causal transitions in surveillance video. Such approaches have the  
 459 potential to yield more coherent and focused causal explanations while mitigating redundant multi-  
 460 hypothesis outputs. On the other hand, domain-adaptive pretraining offers a promising pathway  
 461 to bridge the gap between generic video understanding and the unique challenges of surveillance  
 462 contexts. In particular, refining visual encoding networks to emphasize salient cues, improving video  
 463 and language interaction tailored to surveillance, and adopting coarse-to-fine pretraining pipelines  
 464 from captioning to question answering are expected to strengthen the adaptability and robustness  
 465 of future systems. These directions highlight promising avenues for building more reliable and  
 466 context-aware surveillance video understanding models.  
 467

## 468 5 CONCLUSION

469 In this study, we introduce SurveillanceVQA-589K, the largest open-ended video QA benchmark  
 470 tailored specifically to real-world surveillance scenarios. The dataset contains 589,380 QA pairs span-  
 471 ning 12 cognitively diverse task types across both normal and abnormal surveillance video contexts.  
 472 We propose a hybrid annotation pipeline that combines human-aligned captions with LVLM-assisted  
 473 QA generation, enabling high-quality, scalable annotation. We benchmark eight local-deployed  
 474 LVLMs (ranging from 0.5B to 7B parameters) and four API-called LVLMs. Our experiments reveal  
 475 that while these models demonstrate promising performance on general understanding tasks, they  
 476 struggle significantly with complex semantic reasoning, particularly in anomaly-specific tasks such  
 477 as causal inference and result prediction, indicating a clear performance bottleneck in high-level  
 478 temporal and logical reasoning. We also examine the impact of fine-tuning through LoRA on a  
 479 3B/7B model. While fine-tuning yields moderate gains on general tasks, it provides limited improve-  
 480 ment in structured anomaly detection and classification, highlighting that current parameter-efficient  
 481 tuning approaches are insufficient for enabling complex and specific-domain tasks. Overall, this  
 482 work provides a comprehensive testbed for evaluating multimodal models in realistic surveillance  
 483 settings. Our findings underscore the pressing need for LVLMs to develop stronger causal reasoning,  
 484 temporal modeling, and structured response generation capabilities. Advancing causal reasoning and  
 485 domain-adaptive pretraining strategies constitutes an important direction for future research.

486 ETHICAL STATEMENT  
487

488 In this study, we strictly adhere to the ethical guidelines published by the ICLR that address key  
489 ethical considerations throughout our data construction, model evaluation, and sharing processes. The  
490 video datasets used (such as MEVA, MSAD, NWPU, and UCF) are all publicly available and intended  
491 for research purposes, with no personally identifiable information involved, ensuring the legality and  
492 compliance of data sources. To mitigate potential biases, we incorporated diverse video scenarios and  
493 carefully crafted prompts during the QA generation and evaluation stages, aiming to reduce cultural or  
494 contextual bias inherent in language models or the original datasets. Moreover, we explicitly oppose  
495 any unauthorized use of our dataset or methods (e.g., for abusive surveillance or discriminatory  
496 profiling), and we deliberately avoided including high-risk content such as facial recognition. During  
497 data annotation, we employed a collaborative pipeline combining human annotators and large  
498 language models (e.g., Qwen-Max), with humans responsible for event segmentation and verification,  
499 and fair compensation provided in accordance with local wage standards. We plan to release our  
500 dataset and code under a research-friendly license with clear ethical usage guidelines, promoting  
501 responsible practices in multimodal research.

502 REPRODUCIBILITY STATEMENT  
503

504 We are committed to ensuring the reproducibility of our work by the broader research community.  
505 The video datasets used in this research, including MEVA, MSAD, NWPU, and UCF, are all publicly  
506 available and intended exclusively for research purposes. We have made our dataset available under a  
507 research-friendly license, which can be accessed at <https://anonymous.4open.science/r/SurveillanceVQA-589K>. Additionally, the large vision-language models (LVLMs) tested  
508 in our study are either open-sourced or accessible via APIs, allowing for transparency and easy  
509 replication of our experiments. By providing these resources and ensuring the availability of all  
510 necessary components, we aim to facilitate the independent validation and further exploration of our  
511 findings within the research community.

512 REFERENCES  
513

514 Amit Adam, Ehud Rivlin, Ilan Shimshoni, and Daviv Reinitz. Robust real-time unusual event  
515 detection using multiple fixed-location monitors. *IEEE Transactions on Pattern Analysis and  
516 Machine Intelligence*, 30(3):555–560, 2008.

517 Anas Al-Lahham, Muhammad Zaigham Zaheer, Nurbek Tastan, and Karthik Nandakumar. Collaborative learning of anomalies with privacy (clap) for unsupervised video anomaly detection:  
518 A new baseline. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
519 Recognition*, pp. 12416–12425, 2024.

520 Roberto Arroyo, J Javier Yebes, Luis M Bergasa, Iván G Daza, and Javier Almazán. Expert video-  
521 surveillance system for real-time detection of suspicious behaviors in shopping malls. *Expert  
522 systems with Applications*, 42(21):7991–8005, 2015.

523 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
524 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,  
525 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,  
526 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv  
527 preprint arXiv:2502.13923*, 2025.

528 Baidu. Ernie technical report. Technical report, Baidu, 2025. URL [https://yidian.baidu.com/blog/publication/ERNIE\\_Technical\\_Report.pdf](https://yidian.baidu.com/blog/publication/ERNIE_Technical_Report.pdf).

529 Yuxiang Cao and Others. A new benchmark dataset for semi-supervised video anomaly detection  
530 and anticipation in complex scenes. *Pattern Recognition*, 139:109433, 2023.

531 Haoran Chen, Dongyi Yi, Moyan Cao, Chensen Huang, Guibo Zhu, and Jinqiao Wang. A benchmark  
532 for crime surveillance video analysis with large models. *arXiv*, abs/2502.09325, 2025.

540 Liang Chen, Yichi Zhang, Shuhuai Ren, Haozhe Zhao, Zefan Cai, Yuchi Wang, Peiyi Wang, Xiangdi  
 541 Meng, Tianyu Liu, and Baobao Chang. Pca-bench: Evaluating multimodal large language models  
 542 in perception-cognition-action chain. *arXiv*, abs/2402.15527, 2024a.

543 Lin Chen, Xilin Wei, Jinsong Li, Xiao wen Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong  
 544 Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, and Jiaqi Wang.  
 545 Sharegpt4video: Improving video understanding and generation with better captions. *arXiv*,  
 546 abs/2406.04325, 2024b.

547 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong  
 548 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal  
 549 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024c.

550 Kellie Corona, Katie Osterdahl, Roderic Collins, and Anthony Hoogs. Meva: A large-scale multiview,  
 551 multimodal video dataset for activity detection. In *Proceedings of the IEEE/CVF Winter Conference  
 552 on Applications of Computer Vision (WACV)*, pp. 1060–1068, January 2021.

553 Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu  
 554 Lu, Zichong Yang, Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng Cao, Tongxi  
 555 Zhou, Ao Liu, Xinrui Yan, Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao Zheng. A survey on  
 556 multimodal large language models for autonomous driving. *2024 IEEE/CVF Winter Conference  
 557 on Applications of Computer Vision Workshops (WACVW)*, pp. 958–979, 2023.

558 Keval Doshi and Yasin Yilmaz. Any-shot sequential anomaly detection in surveillance videos. In  
 559 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*,  
 560 pp. 934–935, 2020.

561 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.  
 562 Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. *arXiv*,  
 563 abs/2406.14515, 2024.

564 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei  
 565 Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive  
 566 evaluation benchmark for multimodal large language models. *arXiv*, abs/2306.13394, 2023.

567 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu  
 568 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao,  
 569 Ke Li, Tong Xu, Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The  
 570 first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *arXiv*,  
 571 abs/2405.21075, 2024.

572 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu  
 573 Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,  
 574 Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,  
 575 Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,  
 576 Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,  
 577 Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu,  
 578 Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen  
 579 Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models  
 580 from glm-130b to glm-4 all tools, 2024.

581 Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long con-  
 582 text, and next generation agentic capabilities. Technical report, Google DeepMind, 2025.  
 583 URL [https://storage.googleapis.com/deepmind-media/gemini/gemini\\_v2\\_5\\_report.pdf](https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf).

584 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and  
 585 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning  
 586 benchmark. *arXiv*, abs/2501.05444, 2025.

587 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaoshen Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and  
 588 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.  
 589 *arXiv*, abs/2503.06749, 2025.

594 Mohamad Kashef, Anna Visvizi, and Orlando Troisi. Smart city as a smart service system: Human-  
 595 computer interaction and smart city surveillance systems. *Computers in Human Behavior*, 124:  
 596 106923, 2021.

597 Byeong Su Kim, Jieun Kim, Deokwoo Lee, and Beakcheol Jang. Visual question answering: A  
 598 survey of methods, datasets, evaluation, and challenges. *ACM Computing Surveys*, 57(10):1–35,  
 599 2025.

600 Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L. Berg. Tvqa: Localized, compositional video  
 601 question answering. In *Conference on Empirical Methods in Natural Language Processing*, 2018.

602 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan  
 603 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*  
 604 *arXiv:2408.03326*, 2024a.

605 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.  
 606 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF  
 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024b.

607 Jian Li and Weiheng Lu. A survey on benchmarks of multimodal large language models. *ArXiv*,  
 608 *abs/2408.08632*, 2024.

609 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,  
 610 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In  
 611 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 612 22195–22206, 2024c.

613 Weixin Li, Vijay Mahadevan, and Nuno Vasconcelos. Anomaly detection and localization in crowded  
 614 scenes. *IEEE transactions on pattern analysis and machine intelligence*, 36(1):18–32, 2013.

615 Zongxia Li, Xiyang Wu, Hongyang Du, Fuxiao Liu, Huy Nghiem, and Guangyao Shi. A survey of  
 616 state of the art large vision language models: Alignment, benchmark, evaluations and challenges.  
 617 2025.

618 Xiucheng Liang, Tianhong Zhao, and Filip Biljecki. Revealing spatio-temporal evolution of urban  
 619 visual environments with street view imagery. *Landscape and Urban Planning*, 237:104802, 2023.

620 Chih Wei Ling, Anwitaman Datta, and Jun Xu. A case for distributed multilevel storage infrastructure  
 621 for visual surveillance in intelligent transportation networks. *IEEE Internet Computing*, 22(1):  
 622 42–51, 2017.

623 Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A  
 624 benchmark for safety evaluation of multimodal large language models. In *European Conference  
 625 on Computer Vision*, 2023a.

626 Y. Liu, Dingkang Yang, Yan Wang, Jing Liu, and Liang Song. Generalized video anomaly event  
 627 detection: Systematic taxonomy and comparison of deep models. *ACM Computing Surveys*, 56:1 –  
 628 38, 2023b. URL <https://api.semanticscholar.org/CorpusID:256808510>.

629 Yang Liu, Dingkang Yang, Yan Wang, Jing Liu, Jun Liu, Azzedine Boukerche, Peng Sun, and Liang  
 630 Song. Generalized video anomaly event detection: Systematic taxonomy and comparison of deep  
 631 models. *ACM Computing Surveys*, 56(7):1–38, 2024a.

632 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi  
 633 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?  
 634 In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

635 Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detection at 150 fps in matlab. In *Proceedings  
 636 of the IEEE international conference on computer vision*, pp. 2720–2727, 2013.

637 Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of sparse coding based anomaly detection in  
 638 stacked rnn framework. In *Proceedings of the IEEE international conference on computer vision*,  
 639 pp. 341–349, 2017.

648 Meiyi Ma, Sarah M Preum, Mohsin Y Ahmed, William Tärneberg, Abdeltawab Hendawi, and John A  
 649 Stankovic. Data sets, modeling, and decision making in smart cities: A survey. *ACM Transactions*  
 650 *on Cyber-Physical Systems*, 4(2):1–28, 2019.

651 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:  
 652 Towards detailed video understanding via large vision and language models. *arXiv preprint*  
 653 *arXiv:2306.05424*, 2023.

654 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Videogpt+: Integrating image  
 655 and video encoders for enhanced video understanding. *arXiv preprint arXiv:2406.09418*, 2024.

656 Rashmika Nawaratne, Damminda Alahakoon, Daswin de Silva, and Xinghuo Yu. Spatiotemporal  
 657 anomaly detection using deep learning for real-time video surveillance. *IEEE Transactions on*  
 658 *Industrial Informatics*, 16:393–402, 2020.

659 OpenAI. Gpt-4o system card. Technical report, OpenAI, August 2024. URL [https://cdn.openai.com/gpt-4o-system-card.pdf?utm\\_source=chatgpt.com](https://cdn.openai.com/gpt-4o-system-card.pdf?utm_source=chatgpt.com).

660 Iroshan Pathirannahalage, Vidura Jayasooriya, Jagath Samarabandu, and Akila Subasinghe. A  
 661 comprehensive analysis of real-time video anomaly detection methods for human and vehicular  
 662 movement. *Multimedia Tools and Applications*, pp. 1–46, 2024.

663 Karishma Pawar and Vahida Attar. Deep learning approaches for video-based anomalous activity  
 664 detection. *World Wide Web*, 22(2):571–601, 2019.

665 G. Sreenu and M. A. Saleem Durai. Intelligent video surveillance: a review through deep learning  
 666 techniques for crowd analysis. *Journal of Big Data*, 6, 2019.

667 Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance videos.  
 668 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6479–6488,  
 669 2018.

670 Vassilios Tsakanikas and Tasos Dagiuklas. Video surveillance systems-current status and future  
 671 trends. *Computers & Electrical Engineering*, 70:736–753, 2018.

672 Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Uttama  
 673 Nambi, Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-  
 674 context capability of multimodal large language models. *arXiv*, abs/2406.11230, 2024a.

675 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,  
 676 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal  
 677 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

678 Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin, Haiteng Zhao, Yongfei Liu, Bohan Zhai, Jianbo  
 679 Yuan, Quanzeng You, and Hongxia Yang. Exploring the reasoning abilities of multimodal large  
 680 language models (mllms): A comprehensive survey on emerging trends in multimodal reasoning.  
 681 *arXiv*, abs/2401.06805, 2024b.

682 Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient  
 683 long video understanding via large language models. In *European Conference on Computer Vision*,  
 684 2024.

685 Peng Wu, Xuerong Zhou, Guansong Pang, Yujia Sun, Jing Liu, Peng Wang, and Yanning Zhang.  
 686 Open-vocabulary video anomaly detection. In *Proceedings of the IEEE/CVF Conference on*  
 687 *Computer Vision and Pattern Recognition*, pp. 18297–18307, 2024.

688 Junbin Xiao, Xindi Shang, Angela Yao, and Tat seng Chua. Next-qa: Next phase of question-  
 689 answering to explaining temporal actions. *2021 IEEE/CVF Conference on Computer Vision and*  
 690 *Pattern Recognition (CVPR)*, pp. 9772–9781, 2021.

691 Binzhu Xie, Sicheng Zhang, Zitang Zhou, Bo Li, Yuanhan Zhang, Jack Hessel, Jingkang Yang,  
 692 and Ziwei Liu. Funqa: Towards surprising video comprehension. In *European Conference on*  
 693 *Computer Vision*, pp. 39–57. Springer, 2024.

702 Zheng Xu, Chuanping Hu, and Lin Mei. Video structured description technology based intelligence  
 703 analysis of surveillance videos for public security applications. *Multimedia Tools and Applications*,  
 704 75:12155–12172, 2016.

705

706 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 707 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 708 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,  
 709 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,  
 710 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu  
 711 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,  
 712 2024.

713 Zhenyu Yang, Yuhang Hu, Zemin Du, Dizhan Xue, Shengsheng Qian, Jiahong Wu, Fan Yang,  
 714 Weiming Dong, and Changsheng Xu. Svbench: A benchmark with temporal multi-turn dialogues  
 715 for streaming video understanding. *arXiv*, abs/2502.10810, 2025.

716 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,  
 717 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*  
 718 preprint arXiv:2308.02490, 2023.

719 Tongtong Yuan, Xuange Zhang, Bo Liu, Kun Liu, Jian Jin, and Zhenzhen Jiao. Surveillance video-  
 720 and-language understanding: from small to large multimodal models. *IEEE Transactions on*  
 721 *Circuits and Systems for Video Technology*, 2024a.

722 Tongtong Yuan, Xuange Zhang, Kun Liu, Bo Liu, Chen Chen, Jian Jin, and Zhenzhen Jiao. Towards  
 723 surveillance video-and-language understanding: New dataset baselines and challenges. In *Proceed-  
 724 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22052–22061,  
 725 2024b.

726 Luca Zanella, Willi Menapace, Massimiliano Mancini, Yiming Wang, and Elisa Ricci. Harnessing  
 727 large language models for training-free video anomaly detection. In *Proceedings of the IEEE/CVF*  
 728 *Conference on Computer Vision and Pattern Recognition*, pp. 18527–18536, 2024.

729

730 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,  
 731 Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models  
 732 for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

733

734 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and  
 735 Chunyuan Li. Llava-next: A strong zero-shot video understanding model. April 2024a. URL  
 736 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

737

738 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and  
 739 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL  
 740 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

741

742 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-  
 743 tion tuning with synthetic data, 2024c. URL <https://arxiv.org/abs/2410.02713>.

744

745 Joey Tianyi Zhou, Jiawei Du, Hongyuan Zhu, Xi Peng, Yong Liu, and Rick Siew Mong Goh.  
 746 Anomalynet: An anomaly detection network for video surveillance. *IEEE Transactions on*  
 747 *Information Forensics and Security*, 14(10):2537–2550, 2019.

748

749 Liyun Zhu, Lei Wang, Arjun Raj, Tom Gedeon, and Chen Chen. Advancing video anomaly detection:  
 750 A concise review and a new dataset. In *The Thirty-eighth Conference on Neural Information*  
 751 *Processing Systems Datasets and Benchmarks Track*, 2024.

752

753

754

755

# 756 757 758 759 **Appendix**

## 760 761 762 **A VIDEO ANNOTATION GENERATION**

### 763 764 **A.1 HUMAN ANNOTATION GUIDELINES AND QUALITY ASSURANCE**

765 To ensure annotation accuracy and consistency, we provided annotators with clear guidelines and  
 766 comprehensive training, following the protocol established in UCA (Yuan et al., 2024b). The  
 767 annotation was carried out by a team of technically proficient annotators who were fairly compensated  
 768 according to local wage standards. The process was supervised by AI researchers who regularly  
 769 reviewed and validated the outputs to ensure both quality and ethical compliance. The entire  
 770 annotation phase spanned approximately one month and resulted in a high-quality corpus. We then  
 771 integrated this newly annotated data with existing annotations from UCA, completing the manual  
 772 annotation collection with a total of 31,548 sentence-level annotations accompanied by precise  
 773 timestamps.

774 The annotation guideline design includes:

- 775 • Fine-grained annotation principle
- 776 • Rich sentence descriptions
- 777 • Region of Interest (ROI) descriptions
- 778 • Handling intense visual changes
- 779 • Complex environment descriptions.

780 The quality assurance measures include:

- 781 • Periodic validation checks conducted by the review team every 100 instances
- 782 • Cross-annotator consistency monitoring and resolution of discrepancies

783 We believe that this rigorous approach to annotation, with the combination of clear guidelines,  
 784 comprehensive training, and robust quality assurance procedures, will help users better assess the  
 785 quality and reliability of the human-labeled portion of our dataset. By providing transparent insights  
 786 into our annotation process, we aim to foster greater trust and confidence in the dataset, facilitating  
 787 its use in various research and development applications.

### 788 789 **A.2 VARIOUS ANNOTATION DATA EXAMPLES**

790 The examples of video sources in our SurveillanceVQA-589K are shown in Figure 7, including  
 791 UCF-Crime (Sultani et al., 2018), MEVA (Corona et al., 2021), NWPU Campus dataset (Cao &  
 792 Others, 2023), and MSAD (Zhu et al., 2024). The annotation text data examples including manually  
 793 annotations, detailed description by LLaVA-Next, and intergrated annotations by Qwen-turbo, are  
 794 shown in the following lists.

795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809

810  
811  
812  
813  
814  
815  
816

| Dataset Source | Normal/Abnormal | Video Clip Example                                                                   |
|----------------|-----------------|--------------------------------------------------------------------------------------|
| MSAD           | Normal          |    |
| MSAD           | Abnormal        |    |
| MEVA           | Normal          |    |
| MEVA           | Abnormal        |   |
| NWPU           | Normal          |  |
| NWPU           | Abnormal        |  |
| UCF-Crime      | Normal          |  |
| UCF-Crime      | Abnormal        |  |

847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
Figure 7: Video clip examples from four video datasets.

```

864
865 1 Example of manually annotations:
866 2
867 3 "2018-03-15_10_131": {
868 4     "timestamps": [
869 5         [3.2, 7.7],
870 6         [50.0, 54.0],
871 7         [114.0, 118.0],
872 8         [148.0, 156.0],
873 9         [188.0, 194.0]
874 10    ],
875 11    "sentences": [
876 12        "A man in a hat goes down to the underground passage.",
877 13        "A cuckold man came up from the tunnel crossing.",
878 14        "A woman with long hair carried a bag down the underground
879 15        passage.",
880 16        "A blue dress white hair man net underground passage down",
881 17        "Two men came up from the underpass"
882 18    ]
883 }
884

885 1 Example of Detailed Description by LLaVA-Next:
886 2 {
887 3     "video_name": "2018-03-15_10_131_5.mp4",
888 4     "duration": 6.0,
889 5     "description": "The video opens with a view of a concrete
890 6         staircase leading down to a dark tunnel entrance, flanked by
891 7         metal railings on both sides. The ground surrounding the
892 8         stairs is covered in grass. Two individuals are present at the
893 9         top of the stairs; one is wearing a green jacket and a beanie
894 10        , while the other is dressed in black clothing and a white hat
895 11        . The person in the green jacket begins to descend the stairs
896 12        first, followed by the individual in black. As they move down,
897 13        the person in the green jacket pauses midway, looking back
898 14        towards the camera, while the person in black continues their
899 15        descent. The video concludes with both individuals still
900 16        descending the stairs, with the person in the green jacket
901 17        still pausing and looking back."
902 18 }
903

904 1 Example of the intergrated annotations by Qwen-turbo:
905 2 "2018-03-15_10_131": {
906 3     "timestamps": [
907 4         [
908 5             3.2,
909 6             7.7
910 7         ],
911 8         [
912 9             50.0,
913 10             54.0
914 11         ],
915 12         [
916 13             114.0,
917 14             118.0

```

```

918     15      ],
919     16      [
920     17      148.0,
921     18      156.0
922     19      ],
923     20      [
924     21      188.0,
925     22      194.0
926     23      ]
927     24      ],
928     25      "sentences": [
929     26      "A man wearing dark clothing and a beanie hat walks down
930      a set of concrete stairs enclosed by metal railings on
931      either side. The stairs feature red handrails, and
932      the man descends them steadily. As he moves downward
933      ....",
934     27      "The video begins with a view of a concrete staircase
935      descending into a dark tunnel. Metal railings line
936      both sides of the staircase, and the area at the top
937      of the stairs is overgrown with grass.....",
938     28      "The video begins with a view of a concrete staircase
939      leading down to a dark tunnel entrance.....",
940     29      "The video begins with a view of a concrete staircase
941      leading down to a dark tunnel entrance. Metal railings
942      flank both sides of the staircase.....",
943     30      ".....The video ends with both individuals still moving
944      down the stairs, with the person in the green jacket
945      continuing to pause and look back."
946     31      ]
947     32      }
948
949
950 B AUTOMATIC QA GENERATION
951
952
953
954 For all the videos(including normal/abnormal clips), the generated JSON file includes the following
955 normal QA categories:
956
957     • summary_qa_pairs: Cover the full narrative of the video, summarizing the entire sequence
958     of events.
959
960     • generic_qa_pairs: Focus on essential visual and behavioral information, including appear-
961     ance, actions, trajectories, and inferred intentions.
962
963     • temporal_qa_pairs: Address the order and timing of events, using general time references
964     (e.g., beginning, middle, end).
965
966     • spatial_qa_pairs: Explore spatial details such as clothing colors, physical positions, and
967     scene layout.
968
969     • reasoning_qa_pairs: Emphasize causal and inferential questions related to actions, locations,
970     and motivations ("what", "where", "why").
971
972     • short_temporal_qa_pairs: Provide concise questions about specific moments or transitions
973     within the video.
974
975 The corresponding JSON file for this abnormal case includes the following abnormal QA categories
976 and content:
977

```

972

973

974

975

976

977

978

979

980



| Type              | Task Description                                                                  | Key Instructions                                                                                            | Example Question                                                                                      | Example Answer                                                                                                                                                  | Source                           |
|-------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Summary QA        | Generate questions to extract a detailed description of the entire video content. | Generate three questions targeting the full sequence, with answers integrating all details.                 | Can you describe the entire video in detail from start to finish?                                     | The video begins with a long, well-lit hallway featuring light-colored walls and a shiny floor. A woman in black, enters the frame from the right side...       | MEVA_QA/2018-05-16_14_187_5.json |
| Generic QA        | Generate questions focusing on significant aspects like appearance and motion.    | Generate three questions on different aspects (appearance, motion, reasoning), with detailed answers.       | Describe the appearance and activities of all individuals in the video.                               | In the video, there are four individuals. On the lower side, a woman in black walks upward through the lower side...                                            | MEVA_QA/2018-05-16_14_187_5.json |
| Temporal QA       | Generate questions focusing on the sequence and timing of events.                 | Generate three questions using time references (beginning, middle, end), with answers based on the caption. | What actions occur after the initial setup, and how do they progress towards the climax of the video? | After the initial setup, where the man is seen walking away and the woman in black with the white bag passes him...                                             | MEVA_QA/2018-05-16_14_187_5.json |
| Short Temporal QA | Generate concise questions focusing on specific temporal events in the video.     | Generate three questions on temporal aspects using approximate time references (based on the caption).      | When does the man in dark clothing start walking back towards the camera?                             | The man walking back towards the camera, which happens when the woman in black, carrying a white bag, approaches him. This occurs in the middle of the video... | MEVA_QA/2018-05-16_14_187_5.json |
| Spatial QA        | Generate questions focusing on spatial details like colors and outfitts.          | Generate three questions on spatial aspects (colors, attire, location), with detailed answers.              | Describe the setting of the video and the objects in the scene.                                       | The video is set in a long, well-lit hallway with light-colored walls and a shiny floor.                                                                        | MEVA_QA/2018-05-16_14_187_5.json |
| Reasoning QA      | Generate questions focusing on actions, objects, and reasoning behind events.     | Generate three questions on actions, objects, and reasoning, with concise answers including context.        | What is the man in black doing at the end of the video?                                               | The man in black is walking further down the hallway and eventually moves out of sight.                                                                         | MEVA_QA/2018-05-16_14_187_5.json |

995

996

997

Figure 8: Six normal QA examples and designed prompts.

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025



| Type                   | Task Description                                                                       | Key Instructions                                                                       | Example Question                                                                                                             | Example Answer                                                                                                                                                           | Source                                                  |
|------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Anomaly Detection      | Determine if an event related to violence, crime, or danger occurs.                    | Answer with 'Yes' or 'No' based on the presence of violence, crime, or danger.         | Does this video contain any potentially violent or criminal activities?                                                      | Yes                                                                                                                                                                      | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |
| Anomaly Classification | Identify and classify any detected dangerous event using predefined categories.        | Classify the anomaly into categories like Abuse, Assault, etc., or return 'None'.      | What type of abnormal event is present in the video?                                                                         | Traffic Accident                                                                                                                                                         | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |
| Anomaly Subject        | Identify the primary subject involved in the abnormal event.                           | List key subjects involved in the anomaly, or return 'None' if no anomaly is detected. | What is the main subject involved in the detected abnormal event?                                                            | white SUV                                                                                                                                                                | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |
| Anomaly Description    | Provide a detailed description of the detected anomaly, including setting and actions. | Describe the event, environment, and actions in detail, or return 'None'.              | What is happening in the detected abnormal event and can you describe the environment and actions taking place in the video? | The detected anomaly involves a white SUV that loses control and rolls over. The setting is a sloped area, which appears to be a challenging terrain for the vehicle.... | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |
| Anomaly Cause          | Logically infer the root cause of the detected abnormal event.                         | Analyze environmental factors and interactions to explain the cause, or return 'None'. | What led to the unusual event occurring in the video?                                                                        | The fundamental cause of the detected abnormal event is the white SUV encountering a slope while turning left....                                                        | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |
| Anomaly Result         | Infer and describe the outcome of the detected abnormal event.                         | Describe the consequence, situation evolution, and impacts, or return 'None'.          | What happens as a result of the abnormal event?                                                                              | As a result of the abnormal event, the white SUV loses control and rolls over. The vehicle initially falls down the slope...                                             | MSAD_QA/MSAD_anomaly_videos_Traffic_accident_182_3.json |

Figure 9: Six abnormal QA examples and designed prompts.

- `get_anomaly_detection`: Determines whether the video contains violent, criminal, or dangerous events.
- `get_anomaly_classification_prompt`: Classifies the anomaly type—in this case, as a shooting.
- `get_anomaly_subject`: Identifies the key individuals involved in the anomaly—two men on a motorcycle (initiators with firearms) and a woman who returns fire.
- `get_anomaly_description`: Provides a detailed account of the shooting (focused between 35.1–41.0 seconds), describing the environment (street), appearances (black clothing), and actions (threatening, shooting, fleeing).
- `get_anomaly_cause`: Infers the likely cause of the anomaly—here, the armed threat initiated by the motorcyclists.
- `get_anomaly_result`: Analyzes the consequence or outcome of the anomalous event.

This streamlined QA structure for abnormal segments allows the dataset to efficiently highlight critical details necessary for real-time anomaly detection and situational understanding, contrasting with the more comprehensive QA setup used for normal videos.

Here are the QA generation examples:

In Figure 8, for normal/abnormal video clips, six normal QA categories are defined, with three QA pairs in each category to ensure a detailed and rich representation of key elements. Take the MEVA video "2018-05-16\_14\_187\_5.mp4" as an example. This video records the scene of a woman wearing black clothes and carrying a white backpack passing by in a corridor. During this process, some other pedestrians walked along the corridor.

In Figure 9, for abnormal video clips, six abnormal QA categories are defined, with one QA pair for each category to ensure a concise and focused representation of key abnormal elements. Take the MSAD video "MSAD\_anomaly\_videos\_Traffic\_accident\_182\_3.mp4" as an example. This video describes a traffic accident that occurred on the road, recording the process in which a vehicle (a white SUV) lost control and overturned.

## C MORE DATA STATISTICS

### C.1 CATEGORIZATION STATISTICS

In terms of dataset partitioning, we split the dataset at the clip level rather than by entire videos, using an 8/2 ratio for the training and testing sets. In terms of dataset partitioning, we perform splitting at the clip level with an 8/2 ratio for the training and testing sets. Importantly, to prevent data leakage, all clips originating from the same original video are strictly assigned to the same split, ensuring that no video contributes segments to both the training and test sets.

| Category         | MEVA | MSAD | NWPU | UCA   |
|------------------|------|------|------|-------|
| normal           | 2044 | 1417 | 4121 | 20384 |
| Abuse            | 0    | 1    | 0    | 138   |
| Arrest           | 0    | 2    | 0    | 143   |
| Assault          | 0    | 38   | 4    | 451   |
| Burglary         | 0    | 7    | 4    | 204   |
| Explosion        | 0    | 15   | 0    | 73    |
| Fighting         | 1    | 34   | 6    | 400   |
| Fire             | 0    | 52   | 0    | 217   |
| Object Falling   | 1    | 55   | 1    | 101   |
| People Falling   | 3    | 109  | 9    | 570   |
| Pursuit          | 0    | 1    | 1    | 19    |
| Robbery          | 1    | 63   | 7    | 575   |
| Shooting         | 0    | 15   | 0    | 56    |
| Shoplifting      | 0    | 0    | 0    | 26    |
| Stealing         | 2    | 5    | 13   | 250   |
| Traffic Accident | 4    | 52   | 2    | 441   |
| Threat           | 0    | 1    | 0    | 7     |
| Vandalism        | 2    | 25   | 2    | 255   |
| Water Incident   | 0    | 6    | 0    | 6     |

Table 5: Event Category statistics on video clips.

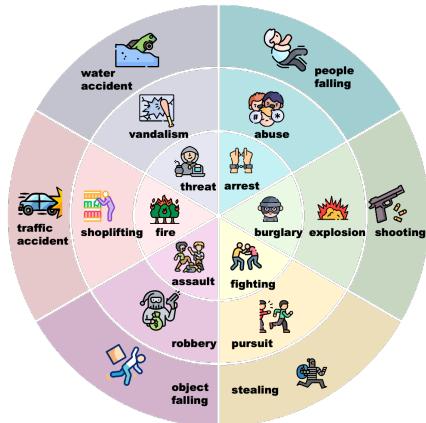


Figure 10: Different types of abnormal video clips.

1080  
 1081 Due to the difficulty of annotating every second of footage, the total duration of the training and  
 1082 testing sets is slightly shorter than that of the original raw video collection. Table 6 presents the  
 1083 distribution of QA pairs for normal and abnormal events across the training and testing sets. This table  
 1084 reports the number of QA pairs generated for both event types and illustrates how their distribution  
 1085 varies between subsets for each dataset. Here, the normal category refers to non-anomalous clips,  
 1086 while the abnormal category corresponds to anomalous clips, which span 18 distinct abnormal event  
 1087 classes as detailed in Figure 10.

1088 Regarding video event categorization, as shown in Table 5 in addition to the Normal category  
 1089 representing non-anomalous cases, we establish a classification system comprising 18 distinct  
 1090 abnormal categories for the Abnormal class. These include: Abuse, Arrest, Assault, Burglary,  
 1091 Explosion, Fighting, Fire, Object Falling, People Falling, Pursuit, Robbery, Shooting, Shoplifting,  
 1092 Stealing, Traffic Accident, Threat, Vandalism, and Water Incident—covering a wide range of incidents  
 1093 from violent behaviors (e.g., Assault, Fighting) to environmental hazards (e.g., Fire, Water Incident).

1094 Notably, we have observed that some abnormal categories generated by Qwen-Max exhibit redundancy  
 1095 or lack general applicability. To improve the accuracy of statistical analysis and standardize  
 1096 the taxonomy, we perform category consolidation and refinement. For instance, “Chasing” and  
 1097 “Chase” are unified under Pursuit due to semantic equivalence, while overly broad categories such as  
 1098 “Emergency Situation” and “Weapon Present” are excluded from statistical summaries due to their  
 1099 ambiguity in defining concrete abnormal behaviors. It is important to emphasize that this refinement  
 1100 is applied only during the statistical analysis phase, and the original Qwen-Max outputs remain  
 1101 unaltered.

1101 Table 6: Distribution of QA pairs for normal and abnormal events across the training and testing sets  
 1102

|       | MEVA     |        | MSAD     |        | NWPU     |        | UCA      |        |
|-------|----------|--------|----------|--------|----------|--------|----------|--------|
|       | Abnormal | Normal | Abnormal | Normal | Abnormal | Normal | Abnormal | Normal |
| Test  | 72       | 7362   | 1776     | 5112   | 240      | 14850  | 15192    | 73368  |
| Train | 240      | 29430  | 7008     | 20394  | 840      | 59328  | 60696    | 293472 |

## 1108 D DETAILED EXPERIMENT SETTINGS

### 1112 D.1 EVALUATION DESIGN

1114 In our evaluation, we adopt the four key dimensions proposed in the evaluation framework of  
 1115 VideoGPT+ (Maaz et al., 2024). These four key dimensions are listed as follows. Contextual  
 1116 Integration (CI) measures whether the answer accurately reflects the factual content of the video,  
 1117 avoiding errors or misinterpretations. Detail Orientation (DO) assesses the inclusion of specific  
 1118 and complete key elements. Contextual Understanding (CU) evaluates the alignment of the answer  
 1119 with the overall narrative and emotional tone of the video. Temporal Understanding (TU) focuses  
 1120 on the correctness of event sequences and time-related logic. Unlike the original framework, we  
 1121 do not include the consistency evaluation dimension, since our task focuses on generating diverse  
 1122 and representative question–answer pairs rather than measuring consistency across highly similar or  
 1123 repetitive QA pairs. Each dimension is rated on a 0–5 integer scale, with 5 indicating full accuracy  
 1124 and relevance, and 0 indicating a completely incorrect response. To calculate Average Score (Avg),  
 1125 individual scores are normalized by multiplying each by 0.25 and summing the results. This scoring  
 1126 scheme enables fine-grained, quantitative evaluation of model performance across multiple facets of  
 1127 video understanding. During the evaluation phase, we further employ an LLM-based strategy using  
 1128 the GLM-4-Flash API (GLM et al., 2024), which allows us to capture both semantic consistency and  
 1129 the interpretive and reasoning capabilities of advanced language models.

### 1130 D.2 BASELINES AND SETTINGS

1132 We evaluate 8 open-source video-language models by locally deploying them on our devices, includ-  
 1133 ing the VideoLLaMA3 (Zhang et al., 2025), InternVL2.5 (Chen et al., 2024c), LLaVA-OV-Qwen2 (Li  
 et al., 2024a)), LLaVA-Video-Qwen2 (Zhang et al., 2024c), LLaVA-NeXT-Video (Zhang et al.,

1134 2024a), and Qwen2.5-VL-Instruct series (Bai et al., 2025), with parameter sizes ranging from 0.5B to  
 1135 7B. Each model performs inference on one question at a time to prevent information leakage between  
 1136 questions. More detailed settings are shown in Appendix D. In addition, we further evaluated other  
 1137 API-accessed LVLMs on the abnormal video QA task, including Google DeepMind’s Gemini 2.5  
 1138 Pro Google (2025) , OpenAI’s GPT-4o OpenAI (2024) , Baidu’s ERNIE 4.5 Turbo VL Baidu (2025) ,  
 1139 and the newest model InternVL-3.5 Wang et al. (2025) from Shanghai AI Lab.

1140 In the evaluation experiment, we adopted the default hyperparameter configurations of each model to  
 1141 ensure a fair comparison. The only modification is the adjustment of the input video frame rate to  
 1142 adapt to the GPU memory limit. Specifically, LLaVA-OneVision-0.5B/7B, LLaVA-NeXT-Video-7B  
 1143 and LLaVA-Video-7B use 32 frames, while InternVL2.5-2B uses 24 frames. VideoLLaMA3-2B/7B  
 1144 samples up to 512 frames at 1 fps, while Qwen2.5-VL-3B-Instruct adopts its default dynamic frame  
 1145 sampling strategy. All benchmark tests were conducted on NVIDIA RTX 4090 GPUs.

1146 In terms of fine-tuning, we first selected Qwen2.5-VL-Instruct-3B as the benchmark model and  
 1147 conducted LoRA fine-tuning on a single NVIDIA RTX 4090 GPU. During the training process,  
 1148 we only fine-tune the language model components and the vision-language fusion module, while  
 1149 keeping the visual encoder frozen to reduce training costs and stabilize performance. The training  
 1150 uses `bfloat16` precision to enhance the efficiency of the video memory and imposes resolution  
 1151 constraints on the multimodal image input (maximum number of pixels 50,176, minimum number of  
 1152 pixels 784) to avoid GPU memory overload caused by high-resolution input. The model was trained  
 1153 for one epoch, with the hyperparameters set as:

$$1154 \text{batch\_size} = 1, \text{gradient\_accumulation\_steps} = 8, \text{learning\_rate} = 2 \times 10^{-7}.$$

1155 Furthermore, we fine-tuned the LLaVA-Video-7B model for LoRA on a single NVIDIA RTX 5090  
 1156 GPU, training only the linear layer, and the training lasted for a total of 3 epochs. Its hyperparameters  
 1157 are set as follows:

$$1159 \text{batch\_size} = 4, \text{gradient\_accumulation\_steps} = 1, \text{learning\_rate} = 1 \times 10^{-5}.$$

### 1161 D.3 DESCRIPTIONS OF LOCAL-DEPLOYED LVLMs

1163 Table 7 shows the characteristics of these evaluated local-deployed LVLMs.

1164 1165 Table 7: Overview of Evaluated Open-Source Video Models

| 1166 Model Name                                 | 1167 Key Features                                                                                                                                                     |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1168 Video-LLaMA3-2B/7B (Zhang et al., 2025)    | 1169 Uses any-resolution vision tokenization and differential frame pruner to reduce<br>information loss and computation cost. Trained on high-quality video data.    |
| 1170 InternVL2.5-2B (Chen et al., 2024c)        | 1171 Based on the ViT-MLP-LLM framework. Incorporates dynamic high-resolution<br>representations, Progressive scaling Strategy, and Chain-of-Thought (CoT) reasoning. |
| 1171 LLaVA-OV-Qwen2-0.5B/7B (Li et al., 2024a)) | 1172 Multimodal model capable of understanding single images, multiple images,<br>and videos. Supports cross-modal transfer learning.                                 |
| 1172 LLaVA-Video-7B (Zhang et al., 2024c)       | 1173 Trained only on text-image data with AnyRes technology. Fine-tuned<br>on LLaVA-Video-178K for enhanced video instruction understanding.                          |
| 1174 Qwen2.5-VL-3B-Instruct (Bai et al., 2025)  | 1175 Strong instruction-following capabilities across text, image,<br>and video. Improved cross-modal alignment and QA generation.                                    |
| 1176 LLaVA-NeXT-Video-7B (Zhang et al., 2024a)  | 1177 A strong zero-shot video understanding Model                                                                                                                     |

## 1178 E MORE EXPERIMENT RESULTS

### 1183 E.1 LVLMs PERFORMANCE RANKING

1184 Figure 11 shows an overall performance ranking of Local-deployed LVLMs across different QA  
 1185 tasks.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

| Rank | Model                    | Avg         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>3.10</b> |
| 2    | LLaVA-Video-7B-Qwen2     | 3.05        |
| 3    | LLaVA-OV-Qwen2-0.5B      | 2.76        |
| 4    | VideoLLaMA3-7B           | 2.68        |
| 5    | VideoLLaMA3-2B           | 2.49        |
| 6    | Qwen2.5-VL-3B            | 2.20        |
| 7    | LLaVA-Next-7B            | 2.17        |
| 8    | InternVL2.5-2B           | 0.56        |

Table 1: Summary QA

| Rank | Model                    | Avg         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>3.08</b> |
| 2    | VideoLLaMA3-7B           | 3.01        |
| 3    | LLaVA-Video-7B-Qwen2     | 2.99        |
| 4    | LLaVA-Next-7B            | 2.93        |
| 5    | VideoLLaMA3-2B           | 2.84        |
| 6    | LLaVA-OV-Qwen2-0.5B      | 2.78        |
| 7    | Qwen2.5-VL-3B            | 2.66        |
| 8    | InternVL2.5-2B           | 2.20        |

Table 2: Generic QA

| Rank | Model                    | Avg         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>2.95</b> |
| 2    | LLaVA-Video-7B-Qwen2     | 2.85        |
| 3    | VideoLLaMA3-7B           | 2.81        |
| 4    | VideoLLaMA3-2B           | 2.73        |
| 5    | Qwen2.5-VL-3B            | 2.66        |
| 6    | LLaVA-OV-Qwen2-0.5B      | 2.62        |
| 7    | LLaVA-Next-7B            | 2.56        |
| 8    | InternVL2.5-2B           | 1.89        |

Table 3: Temporal QA

| Rank | Model                    | Acc         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>2.79</b> |
| 2    | LLaVA-Video-7B-Qwen2     | 2.78        |
| 3    | Qwen2.5-VL-3B            | 2.69        |
| 4    | LLaVA-Next-7B            | 2.66        |
| 5    | VideoLLaMA3-7B           | 2.65        |
| 6    | VideoLLaMA3-2B           | 2.61        |
| 7    | LLaVA-OV-Qwen2-0.5B      | 2.60        |
| 8    | InternVL2.5-2B           | 2.08        |

Table 4: Short Temporal

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>3.47</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 3.31        |
| 3    | LLaVA-OV-Qwen2-0.5B         | 3.10        |
| 4    | VideoLLaMA3-7B              | 3.06        |
| 5    | VideoLLaMA3-2B              | 2.97        |
| 6    | LLaVA-Next-7B               | 2.95        |
| 7    | Qwen2.5-VL-3B               | 2.86        |
| 8    | InternVL2.5-2B              | 1.92        |

Table 5: Spatial QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>3.25</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 3.08        |
| 3    | LLaVA-Next-7B               | 3.06        |
| 4    | Qwen2.5-VL-3B               | 3.01        |
| 5    | VideoLLaMA3-7B              | 2.99        |
| 6    | LLaVA-OV-Qwen2-0.5B         | 2.93        |
| 7    | VideoLLaMA3-2B              | 2.89        |
| 8    | InternVL2.5-2B              | 2.41        |

Table 6: Reasoning QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>2.85</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 2.79        |
| 3    | LLaVA-OV-Qwen2-0.5B         | 2.43        |
| 4    | VideoLLaMA3-7B              | 2.29        |
| 5    | VideoLLaMA3-2B              | 2.00        |
| 6    | LLaVA-Next-7B               | 1.72        |
| 7    | Qwen2.5-VL-3B               | 1.49        |
| 8    | InternVL2.5-2B              | 0.37        |

Table 7: Summary QA

| Rank | Model                    | Acc         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>2.86</b> |
| 2    | LLaVA-Video-7B-Qwen2     | 2.80        |
| 3    | VideoLLaMA3-7B           | 2.70        |
| 4    | LLaVA-Next-7B            | 2.60        |
| 5    | VideoLLaMA3-2B           | 2.55        |
| 6    | LLaVA-OV-Qwen2-0.5B      | 2.52        |
| 7    | Qwen2.5-VL-3B            | 2.17        |
| 8    | InternVL2.5-2B           | 1.93        |

Table 8: Generic QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>3.51</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 3.34        |
| 3    | LLaVA-OV-Qwen2-0.5B         | 3.12        |
| 4    | VideoLLaMA3-7B              | 3.06        |
| 5    | VideoLLaMA3-2B              | 2.99        |
| 6    | LLaVA-Next-7B               | 2.95        |
| 7    | Qwen2.5-VL-3B               | 2.75        |
| 8    | InternVL2.5-2B              | 1.89        |

Table 9: Temporal QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>2.71</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 2.66        |
| 3    | LLaVA-Next-7B               | 2.48        |
| 4    | VideoLLaMA3-7B              | 2.45        |
| 5    | VideoLLaMA3-2B              | 2.45        |
| 6    | VideoLLaMA3-2B              | 2.44        |
| 7    | Qwen2.5-VL-3B               | 2.31        |
| 8    | InternVL2.5-2B              | 1.95        |

Table 10: Short Temporal

| Rank | Model                    | Acc         |
|------|--------------------------|-------------|
| 1    | <b>LLaVA-OV-Qwen2-7B</b> | <b>2.56</b> |
| 2    | LLaVA-Video-7B-Qwen2     | 2.59        |
| 3    | LLaVA-Next-7B            | 2.56        |
| 4    | LLaVA-OV-Qwen2-0.5B      | 2.47        |
| 5    | Qwen2.5-VL-3B            | 2.19        |
| 6    | VideoLLaMA3-2B           | 2.03        |
| 7    | VideoLLaMA3-7B           | 1.53        |
| 8    | InternVL2.5-2B           | 1.12        |

Table 11: Spatial QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>2.76</b> |
| 2    | LLaVA-OV-Qwen2-7B           | 2.69        |
| 3    | LLaVA-Next-7B               | 2.68        |
| 4    | VideoLLaMA3-7B              | 2.66        |
| 5    | LLaVA-Next-7B               | 2.59        |
| 6    | VideoLLaMA3-2B              | 2.46        |
| 7    | Qwen2.5-VL-3B               | 2.24        |
| 8    | InternVL2.5-2B              | 1.46        |

Table 12: Reasoning QA

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>1.96</b> |
| 2    | VideoLLaMA3-7B              | 1.75        |
| 3    | LLaVA-OV-Qwen2-0.5B         | 1.67        |
| 4    | LLaVA-Next-7B               | 1.21        |
| 5    | VideoLLaMA3-2B              | 1.04        |
| 6    | VideoLLaMA3-2B              | 1.04        |
| 7    | Qwen2.5-VL-3B               | 1.04        |
| 8    | InternVL2.5-2B              | 0.64        |

Table 13: Anomaly Description

| Rank | Model                | Acc         |
|------|----------------------|-------------|
| 1    | <b>LLaVA-Next-7B</b> | <b>1.96</b> |
| 2    | VideoLLaMA3-7B       | 1.75        |
| 3    | LLaVA-OV-Qwen2-0.5B  | 1.67        |
| 4    | LLaVA-Video-7B-Qwen2 | 1.52        |
| 5    | LLaVA-OV-Qwen2-7B    | 1.46        |
| 6    | VideoLLaMA3-2B       | 1.37        |
| 7    | Qwen2.5-VL-3B        | 1.32        |
| 8    | InternVL2.5-2B       | 0.64        |

Table 14: Anomaly Cause

| Rank | Model                       | Acc         |
|------|-----------------------------|-------------|
| 1    | <b>LLaVA-Video-7B-Qwen2</b> | <b>1.81</b> |
| 2    | LLaVA-Next-7B               | 1.65        |
| 3    | LLaVA-OV-Qwen2-0.5B         | 1.60        |
| 4    | LLaVA-OV-Qwen2-7B           | 1.55        |
| 5    | VideoLLaMA3-7B              | 1.27        |
| 6    | VideoLLaMA3-2B              | 1.18        |
| 7    | Qwen2.5-VL-3B               | 1.13        |
| 8    | InternVL2.5-2B              | 0.74        |

Table 15: Anomaly Result

Figure 11: Performance rankings of LVLMs across different QA tasks. No.1-6 lists denote normal video clips vs. normal QA tasks. No.7-12 lists denote abnormal video clips vs. normal QA tasks. No.13-18 lists denote abnormal video clips vs. abnormal QA tasks.

1242 E.2 MORE RESULTS WITH FIVE METRICS WITH NORMAL QA TASKS  
1243

1244 More results with five metrics including CI, DO, CU, TU, AVG, across normal QA tasks on normal  
1245 video clips have been shown in Table 8. From the experimental results, it can be seen that large models  
1246 have significant advantages in most tasks, especially the fine-tuned versions can further enhance  
1247 performance. Specifically, in tasks such as SummaryQA, Generic QA and Temporal QA, LLaVA-  
1248 OV-Qwen2-7B-ov and LLaVA-Video-7B achieved optimal or near-optimal results, demonstrating  
1249 strong cross-modal understanding and reasoning capabilities. In the Spatial QA and Reasoning QA  
1250 tasks, large models (such as LLaVA-Video-7B and LLaVA-Video-7B<sup>†</sup>) also performed outstandingly,  
1251 indicating that they have stronger generalization ability in complex spatial relationships and reasoning  
1252 scenarios. In contrast, small-scale models (such as LLaVA-OV-Qwen2-0.5B and InternVL-2.5-  
1253 2B) performed poorly in all tasks, especially lagging significantly in SummaryQA and Temporal  
1254 QA. Overall, the results verify the significant improvement effect of model scale and targeted fine-  
1255 tuning on the performance of video question answering tasks, and also highlight the differentiated  
1256 requirements for model capabilities in different tasks during evaluation.

1257 Table 8: Performance of different vision-language models across normal QA tasks on normal video  
1258 clips. All values are shown in blue, with the highest value in each row bolded. <sup>†</sup> represents our  
1259 finetuned LVLMs.

| Task           | Metric | LLaVA-OV-<br>Qwen2-0.5B | InternVL-<br>2.5-2B | VideoLLa-<br>MA3-2B | Qwen2.5-VL-<br>3B-Instruct | LLaVA-<br>Next-7B | LLaVA-OV-<br>Qwen2-7B-ov | LLaVA-<br>Video-7B | VideoLLa-<br>MA3-7B | Qwen2.5-VL-<br>3B-Instruct <sup>†</sup> | LLaVA-<br>Video-7B <sup>†</sup> |
|----------------|--------|-------------------------|---------------------|---------------------|----------------------------|-------------------|--------------------------|--------------------|---------------------|-----------------------------------------|---------------------------------|
| SummaryQA      | CI     | 2.95                    | 0.45                | 2.65                | 2.29                       | 2.32              | <b>3.34</b>              | 3.30               | 2.82                | <b>2.77</b>                             | 3.20                            |
|                | DO     | 2.63                    | 0.48                | 2.35                | 2.12                       | 2.08              | <b>2.92</b>              | 2.78               | 2.62                | <b>2.53</b>                             | 2.90                            |
|                | CU     | 2.88                    | 0.75                | 2.64                | 2.36                       | 2.34              | 3.21                     | <b>3.22</b>        | 2.79                | 2.73                                    | 3.09                            |
|                | TU     | 2.61                    | 0.55                | 2.33                | 2.03                       | 1.93              | <b>2.91</b>              | <b>2.91</b>        | 2.51                | 2.45                                    | 2.84                            |
|                | Avg.   | 2.76                    | 0.56                | 2.49                | 2.20                       | 2.17              | <b>3.10</b>              | 3.05               | 2.68                | 2.62                                    | 3.01                            |
| Generic QA     | CI     | 2.97                    | 2.27                | 3.02                | 2.83                       | 3.11              | 3.27                     | 3.19               | 3.20                | 2.92                                    | <b>3.34</b>                     |
|                | DO     | 2.60                    | 2.13                | 2.70                | 2.56                       | 2.86              | 2.91                     | 2.79               | 2.87                | 2.67                                    | <b>3.02</b>                     |
|                | CU     | 2.90                    | 2.32                | 2.94                | 2.77                       | 3.03              | 3.17                     | 3.10               | 3.11                | 2.85                                    | <b>3.25</b>                     |
|                | TU     | 2.65                    | 2.06                | 2.70                | 2.50                       | 2.73              | 2.94                     | 2.88               | 2.87                | 2.58                                    | <b>3.03</b>                     |
|                | Avg.   | 2.78                    | 2.20                | 2.84                | 2.66                       | 2.93              | 3.08                     | 2.99               | 3.01                | 2.76                                    | <b>3.16</b>                     |
| Temporal QA    | CI     | 2.73                    | 1.83                | 2.84                | 2.77                       | 2.68              | 3.08                     | 2.98               | 2.91                | 2.97                                    | <b>3.18</b>                     |
|                | DO     | 2.52                    | 1.90                | 2.66                | 2.61                       | 2.50              | 2.85                     | 2.75               | 2.70                | 2.80                                    | <b>2.95</b>                     |
|                | CU     | 2.73                    | 2.03                | 2.83                | 2.75                       | 2.67              | 3.03                     | 2.95               | 2.89                | 2.92                                    | <b>3.12</b>                     |
|                | TU     | 2.48                    | 1.80                | 2.61                | 2.51                       | 2.38              | 2.84                     | 2.74               | 2.72                | 2.68                                    | <b>2.95</b>                     |
|                | Avg.   | 2.62                    | 1.89                | 2.73                | 2.66                       | 2.56              | 2.95                     | 2.85               | 2.81                | 2.84                                    | <b>3.05</b>                     |
| Short Temporal | CI     | 2.71                    | 2.04                | 2.73                | 2.79                       | 2.70              | 2.92                     | 2.90               | 2.76                | 3.04                                    | <b>3.17</b>                     |
|                | DO     | 2.48                    | 2.00                | 2.45                | 2.66                       | 2.67              | 2.63                     | 2.65               | 2.46                | 2.93                                    | <b>2.94</b>                     |
|                | CU     | 2.76                    | 2.27                | 2.74                | 2.80                       | 2.78              | 2.92                     | 2.94               | 2.79                | 3.00                                    | <b>3.18</b>                     |
|                | TU     | 2.46                    | 2.00                | 2.51                | 2.52                       | 2.50              | 2.68                     | 2.65               | 2.56                | 2.75                                    | <b>2.98</b>                     |
|                | Avg.   | 2.60                    | 2.08                | 2.61                | 2.69                       | 2.66              | 2.79                     | 2.78               | 2.65                | 2.93                                    | <b>3.07</b>                     |
| Spatial QA     | CI     | 3.22                    | 1.90                | 3.07                | 2.94                       | 3.03              | 3.41                     | <b>3.60</b>        | 3.16                | 2.97                                    | 3.52                            |
|                | DO     | 2.96                    | 1.83                | 2.80                | 2.78                       | 2.88              | 3.17                     | <b>3.30</b>        | 2.91                | 2.85                                    | 3.28                            |
|                | CU     | 3.23                    | 2.10                | 3.10                | 2.97                       | 3.06              | 3.41                     | <b>3.57</b>        | 3.18                | 2.98                                    | 3.51                            |
|                | TU     | 3.02                    | 1.85                | 2.89                | 2.74                       | 2.83              | 3.23                     | <b>3.40</b>        | 2.98                | 2.76                                    | 3.34                            |
|                | Avg.   | 3.10                    | 1.92                | 2.97                | 2.86                       | 2.95              | 3.31                     | <b>3.47</b>        | 3.06                | 2.89                                    | 3.41                            |
| Reasoning QA   | CI     | 3.05                    | 2.45                | 3.02                | 3.11                       | 3.19              | 3.22                     | 3.39               | 3.13                | 3.14                                    | <b>3.45</b>                     |
|                | DO     | 2.75                    | 2.29                | 2.69                | 2.94                       | 2.97              | 2.87                     | 3.05               | 2.80                | 3.06                                    | <b>3.15</b>                     |
|                | CU     | 3.07                    | 2.57                | 3.05                | 3.13                       | 3.19              | 3.23                     | 3.38               | 3.15                | 3.14                                    | <b>3.44</b>                     |
|                | TU     | 2.84                    | 2.32                | 2.81                | 2.85                       | 2.90              | 3.00                     | 3.18               | 2.91                | 2.90                                    | <b>3.25</b>                     |
|                | Avg.   | 2.93                    | 2.41                | 2.89                | 3.01                       | 3.06              | 3.08                     | 3.25               | 2.99                | 3.06                                    | <b>3.32</b>                     |

1284  
1285 More results with five metrics including CI, DO, CU, TU, AVG, across normal QA tasks on abnormal  
1286 video clips have been shown in Table 9. Overall, large-scale and specially fine-tuned models maintain  
1287 the lead in most tasks, but abnormal scenarios significantly lower the overall performance, especially  
1288 for Summary QA problems. In Spatial QA, LLaVA-Video-7B and its fine-tuned version achieved the  
1289 highest average scores, respectively, in the entire table, demonstrating a robust ability to understand  
1290 spatial relationships. In the Reasoning QA and Short Temporal tasks, the fine-tuned LLaVA-Video-  
1291 7B-fine-tuning ranked first, respectively, indicating that fine-tuning has significant gains in complex  
1292 reasoning and short-sequence understanding. In Temporal QA and Generic QA, this model also  
1293 achieved the highest or tied highest scores, forming the first echelon with the unfine-tuned large  
1294 models. In contrast, Summary QA was most affected by anomalies. Small-scale models are at the  
1295 bottom of all sub-tasks and metrics, while Qwen2.5-VL-3B-Instruct<sup>†</sup> shows stable improvement in  
1296 multiple tasks compared to the unfine-tuned version. But it is still difficult to catch up with 7B-level  
1297 models. In summary, the results under abnormal video conditions highlight the importance of model

1296 Table 9: Performance of different vision-language models across normal QA tasks on abnormal video  
 1297 clips. All values are shown in green, with the highest value in each row bolded.  $\dagger$  represents our  
 1298 finetuned LVLMs.

| 1300 Task           | Metric | LLaVA-OV-<br>Qwen2-0.5B | InternVL-<br>2.5-2B | VideoLLa-<br>MA3-2B | Qwen2.5-VL-<br>3B-Instruct | LLaVA-<br>Next-7B | LLaVA-OV-<br>Qwen2-7B-ov | LLaVA-<br>Video-7B | VideoLLa-<br>MA3-7B | Qwen2.5-VL-<br>3B-Instruct $\dagger$ | LLaVA-<br>Video-7B $\dagger$ |
|---------------------|--------|-------------------------|---------------------|---------------------|----------------------------|-------------------|--------------------------|--------------------|---------------------|--------------------------------------|------------------------------|
| 1301 Summary QA     | CI     | 2.56                    | 0.22                | 2.06                | 1.46                       | 1.78              | 2.97                     | <b>3.03</b>        | 2.35                | 2.05                                 | 2.76                         |
|                     | DO     | 2.35                    | 0.26                | 1.92                | 1.46                       | 1.68              | <b>2.69</b>              | 2.63               | 2.28                | 1.96                                 | 2.58                         |
|                     | CU     | 2.56                    | 0.60                | 2.17                | 1.68                       | 1.90              | 2.90                     | <b>3.02</b>        | 2.43                | 2.14                                 | 2.73                         |
|                     | TU     | 2.24                    | 0.40                | 1.84                | 1.38                       | 1.52              | 2.61                     | <b>2.72</b>        | 2.11                | 1.82                                 | 2.45                         |
|                     | Avg.   | 2.43                    | 0.37                | 2.00                | 1.49                       | 1.72              | 2.79                     | <b>2.85</b>        | 2.29                | 1.99                                 | 2.63                         |
| 1305 Generic QA     | CI     | 2.66                    | 1.95                | 2.68                | 2.23                       | 2.72              | 3.01                     | 2.96               | 2.83                | 2.43                                 | <b>3.07</b>                  |
|                     | DO     | 2.41                    | 1.90                | 2.48                | 2.15                       | 2.58              | <b>2.74</b>              | 2.63               | 2.63                | 2.35                                 | <b>2.86</b>                  |
|                     | CU     | 2.65                    | 2.08                | 2.67                | 2.29                       | 2.71              | 2.97                     | 2.94               | 2.81                | 2.47                                 | <b>3.03</b>                  |
|                     | TU     | 2.37                    | 1.80                | 2.39                | 2.01                       | 2.39              | 2.71                     | 2.68               | 2.53                | 2.18                                 | <b>2.79</b>                  |
|                     | Avg.   | 2.52                    | 1.93                | 2.55                | 2.17                       | 2.60              | 2.86                     | 2.80               | 2.70                | 2.36                                 | <b>2.94</b>                  |
| 1309 Temporal QA    | CI     | 2.50                    | 1.57                | 2.53                | 2.26                       | 2.31              | 2.89                     | 2.86               | 2.61                | 2.51                                 | <b>2.93</b>                  |
|                     | DO     | 2.38                    | 1.69                | 2.47                | 2.27                       | 2.29              | 2.74                     | 2.68               | 2.50                | 2.52                                 | <b>2.78</b>                  |
|                     | CU     | 2.57                    | 1.84                | 2.59                | 2.37                       | 2.40              | 2.90                     | 2.88               | 2.65                | 2.57                                 | <b>2.93</b>                  |
|                     | TU     | 2.29                    | 1.60                | 2.34                | 2.12                       | 2.10              | 2.69                     | 2.65               | 2.44                | 2.33                                 | <b>2.73</b>                  |
|                     | Avg.   | 2.43                    | 1.68                | 2.49                | 2.26                       | 2.28              | 2.81                     | 2.77               | 2.55                | 2.48                                 | <b>2.85</b>                  |
| 1313 Short Temporal | CI     | 2.51                    | 1.89                | 2.52                | 2.33                       | 2.48              | <b>2.75</b>              | 2.77               | 2.53                | 2.61                                 | <b>2.92</b>                  |
|                     | DO     | 2.36                    | 1.89                | 2.30                | 2.32                       | 2.51              | <b>2.52</b>              | 2.60               | 2.30                | 2.65                                 | <b>2.78</b>                  |
|                     | CU     | 2.61                    | 2.15                | 2.60                | 2.44                       | 2.63              | 2.82                     | 2.87               | 2.61                | 2.70                                 | <b>2.99</b>                  |
|                     | TU     | 2.31                    | 1.88                | 2.35                | 2.15                       | 2.30              | 2.53                     | 2.60               | 2.37                | 2.40                                 | <b>2.77</b>                  |
|                     | Avg.   | 2.45                    | 1.95                | 2.44                | 2.31                       | 2.48              | 2.66                     | 2.71               | 2.45                | 2.59                                 | <b>2.86</b>                  |
| 1317 Spatial QA     | CI     | 3.23                    | 1.85                | 3.09                | 2.83                       | 3.03              | <b>3.45</b>              | <b>3.65</b>        | 3.17                | 3.00                                 | 3.60                         |
|                     | DO     | 2.98                    | 1.79                | 2.83                | 2.68                       | 2.89              | 3.20                     | <b>3.33</b>        | 2.91                | 2.87                                 | <b>3.33</b>                  |
|                     | CU     | 3.23                    | 2.09                | 3.11                | 2.86                       | 3.06              | 3.43                     | <b>3.62</b>        | 3.19                | 2.97                                 | 3.58                         |
|                     | TU     | 3.04                    | 1.82                | 2.92                | 2.64                       | 2.83              | 3.27                     | <b>3.45</b>        | 2.99                | 2.76                                 | 3.40                         |
|                     | Avg.   | 3.12                    | 1.89                | 2.99                | 2.75                       | 2.95              | 3.34                     | <b>3.51</b>        | 3.06                | 2.89                                 | 3.48                         |
| 1320 Reasoning QA   | CI     | 2.79                    | 2.26                | 2.74                | 2.75                       | 2.92              | 3.00                     | 3.15               | 2.86                | 2.87                                 | <b>3.23</b>                  |
|                     | DO     | 2.53                    | 2.16                | 2.48                | 2.65                       | 2.72              | <b>2.70</b>              | 2.87               | 2.60                | 2.86                                 | <b>2.99</b>                  |
|                     | CU     | 2.83                    | 2.43                | 2.84                | 2.84                       | 2.95              | 3.04                     | 3.21               | 2.95                | 3.00                                 | <b>3.29</b>                  |
|                     | TU     | 2.60                    | 2.17                | 2.57                | 2.57                       | 2.64              | 2.81                     | 2.98               | 2.70                | 2.72                                 | <b>3.08</b>                  |
|                     | Avg.   | 2.69                    | 2.26                | 2.66                | 2.70                       | 2.81              | 2.89                     | 3.05               | 2.78                | 2.85                                 | <b>3.15</b>                  |

1323  
 1324 scale as a strong performance baseline. This indicates that fine-tuning for the target domain can bring  
 1325 significant benefits in temporal and inference tasks, but the improvement in cross-shot integration  
 1326 and generalization capabilities is still limited. This provides a direction for strengthening long-term  
 1327 dependency modeling and robust semantic extraction in abnormal scenarios in the future.  
 1328

### 1329 E.3 MORE RESULTS WITH FIVE METRICS WITH ABNORMAL QA TASKS

1331 More results with five metrics including CI, DO, CU, TU, AVG, across abnormal QA tasks on  
 1332 abnormal video clips have been shown in Table 10. Overall, the 7b-level model and its fine-tuned  
 1333 version have an advantage. Among them, LLAVA-Video-7b-fine-tune achieves a significant lead in  
 1334 Detection QA. And it also ranked in the first echelon in both Classification QA and Subject QA; In  
 1335 contrast, the unfine-tuned LLAVA-Video-7B performed the best in Description QA and Result QA,  
 1336 while LLAVA-Next-7B gave the highest average score in Cause QA. It indicates that the ability of  
 1337 “causal explanation” does not always benefit the most from the specific fine-tuning of videos. The  
 1338 trends among the various metrics are basically consistent: Recognition and enumeration subtasks (De-  
 1339 tection/Classification/Subject) benefit fine-tuning more significantly, while cross-fragment integration  
 1340 and causal inference (Description/Cause/Result) impose higher requirements on the structured repre-  
 1341 sentation and temporal-logical connection of the model. The advantages of fine-tuning are relatively  
 1342 convergent. Small-scale models (such as 0.5B / 2B scale) are generally weak in all tasks and metrics,  
 1343 further confirming the crucial role of model scale and target domain fine-tuning in understanding  
 1344 abnormal scenarios. It also suggests that future work can enhance long-term dependency modeling  
 1345 and more refined event structure learning in causal and outcome reasoning to narrow the performance  
 1346 gap with recognition tasks.

### 1347 E.4 COMPARISONS OF MODEL PERFORMANCE ON VARIOUS VIDEO EVENT CATEGORIES

1348 In our dataset, certain abnormal event categories such as Threat and Water Incident contain relatively  
 1349 few samples (in single digits shown in Table 5). Rather than excluding these categories, we inten-

1350  
1351 Table 10: Performance of different vision-language models across abnormal QA tasks on abnormal  
1352 video clips. All values are shown in brown, with the highest value in each row bolded.  $\dagger$  represents  
1353 our finetuned LVLMs.

| Task              | Metric | LLaVA-OV-<br>Qwen2-0.5B | InternVL-<br>2.5-2B | VideoLLa-<br>MA3-2B | Qwen2.5-VL-<br>3B-Instruct | LLaVA-<br>Next-7B | LLaVA-OV-<br>Qwen2-7B-ov | LLaVA-<br>Video-7B | VideoLLa-<br>MA3-7B | Qwen2.5-VL-<br>3B-Instruct $\dagger$ | LLaVA-<br>Video-7B $\dagger$ |
|-------------------|--------|-------------------------|---------------------|---------------------|----------------------------|-------------------|--------------------------|--------------------|---------------------|--------------------------------------|------------------------------|
| Detection QA      | CI     | 3.10                    | 1.97                | 1.90                | 1.92                       | 2.39              | 2.54                     | 1.95               | 2.07                | 1.57                                 | <b>4.57</b>                  |
|                   | DO     | <b>2.69</b>             | <b>1.71</b>         | 1.81                | 1.93                       | 2.51              | <b>2.50</b>              | 1.85               | 1.97                | 1.75                                 | <b>4.29</b>                  |
|                   | CU     | <b>3.11</b>             | <b>2.00</b>         | 1.94                | 1.88                       | 2.29              | 2.54                     | 1.96               | 2.11                | 1.54                                 | <b>4.62</b>                  |
|                   | TU     | 2.86                    | 1.83                | 1.81                | 1.69                       | 2.09              | 2.52                     | 1.90               | 1.95                | 1.45                                 | <b>4.34</b>                  |
|                   | Avg.   | 2.94                    | 1.88                | 1.87                | 1.85                       | 2.32              | 2.53                     | 1.92               | 2.03                | 1.58                                 | <b>4.46</b>                  |
| Classification QA | CI     | 2.36                    | 0.86                | 1.88                | 2.00                       | 2.47              | 2.52                     | 2.47               | 1.37                | 1.90                                 | <b>3.26</b>                  |
|                   | DO     | <b>2.53</b>             | <b>1.22</b>         | 2.07                | 2.40                       | 2.74              | <b>2.61</b>              | 2.72               | 1.49                | 2.42                                 | <b>3.25</b>                  |
|                   | CU     | <b>2.55</b>             | <b>1.36</b>         | 2.22                | 2.30                       | 2.63              | <b>2.77</b>              | 2.71               | 1.84                | 2.18                                 | <b>3.41</b>                  |
|                   | TU     | <b>2.43</b>             | <b>1.05</b>         | 1.94                | 2.05                       | 2.41              | 2.48                     | 2.45               | 1.41                | 2.01                                 | <b>3.13</b>                  |
|                   | Avg.   | <b>2.47</b>             | 1.12                | 2.03                | 2.19                       | 2.56              | 2.60                     | 2.59               | 1.53                | 2.13                                 | <b>3.26</b>                  |
| Subject QA        | CI     | <b>2.76</b>             | 1.30                | 2.49                | 2.24                       | 2.69              | <b>2.75</b>              | 2.83               | 2.71                | 2.55                                 | <b>3.31</b>                  |
|                   | DO     | <b>2.52</b>             | <b>1.46</b>         | 2.32                | 2.23                       | 2.56              | <b>2.51</b>              | 2.59               | 2.53                | 2.69                                 | <b>3.21</b>                  |
|                   | CU     | <b>2.87</b>             | <b>1.74</b>         | 2.64                | 2.43                       | 2.75              | 2.86                     | 2.93               | 2.83                | 2.66                                 | <b>3.40</b>                  |
|                   | TU     | <b>2.62</b>             | 1.36                | 2.38                | 2.07                       | 2.36              | 2.62                     | 2.71               | 2.55                | 2.35                                 | <b>3.17</b>                  |
|                   | Avg.   | <b>2.69</b>             | 1.46                | 2.46                | 2.24                       | 2.59              | 2.68                     | 2.76               | 2.66                | 2.56                                 | <b>3.27</b>                  |
| Description QA    | CI     | <b>2.56</b>             | 0.35                | 1.98                | 1.76                       | 2.21              | <b>2.71</b>              | <b>2.92</b>        | 2.05                | 2.11                                 | 2.79                         |
|                   | DO     | 2.28                    | 0.46                | 1.73                | 1.68                       | 2.06              | 2.40                     | 2.58               | 1.90                | 2.03                                 | <b>2.66</b>                  |
|                   | CU     | <b>2.61</b>             | 0.81                | 2.10                | 1.88                       | 2.27              | <b>2.67</b>              | <b>2.92</b>        | 2.23                | 2.17                                 | 2.81                         |
|                   | TU     | <b>2.27</b>             | 0.55                | 1.76                | 1.64                       | 1.92              | 2.39                     | <b>2.62</b>        | 1.88                | 1.91                                 | 2.53                         |
|                   | Avg.   | <b>2.43</b>             | 0.55                | 1.89                | 1.74                       | 2.11              | 2.54                     | <b>2.76</b>        | 2.01                | 2.06                                 | 2.70                         |
| Cause QA          | CI     | 1.69                    | 0.46                | 1.31                | 1.29                       | <b>2.03</b>       | 1.51                     | 1.56               | 1.69                | 1.64                                 | 1.81                         |
|                   | DO     | 1.49                    | 0.55                | 1.23                | 1.28                       | <b>1.87</b>       | 1.16                     | 1.24               | 1.71                | 1.69                                 | 1.62                         |
|                   | CU     | <b>1.87</b>             | 0.87                | 1.55                | 1.40                       | <b>2.06</b>       | 1.66                     | 1.72               | 1.86                | 1.79                                 | 1.98                         |
|                   | TU     | <b>1.62</b>             | 0.69                | 1.38                | 1.29                       | <b>1.86</b>       | 1.51                     | 1.54               | 1.71                | 1.63                                 | 1.75                         |
|                   | Avg.   | <b>1.67</b>             | 0.64                | 1.37                | 1.32                       | <b>1.96</b>       | 1.46                     | 1.52               | 1.75                | 1.69                                 | 1.79                         |
| Result QA         | CI     | 1.62                    | 0.53                | 1.20                | 1.08                       | 1.73              | 1.63                     | 1.89               | 1.25                | 1.25                                 | <b>1.96</b>                  |
|                   | DO     | 1.39                    | 0.63                | 0.91                | 1.03                       | 1.49              | 1.22                     | 1.56               | 0.99                | 1.19                                 | <b>1.77</b>                  |
|                   | CU     | <b>1.84</b>             | 0.99                | 1.47                | 1.35                       | 1.87              | 1.85                     | 2.07               | 1.56                | 1.53                                 | <b>2.15</b>                  |
|                   | TU     | <b>1.54</b>             | 0.80                | 1.15                | 1.09                       | 1.51              | <b>1.51</b>              | 1.74               | 1.26                | 1.24                                 | <b>1.85</b>                  |
|                   | Avg.   | <b>1.60</b>             | 0.74                | 1.18                | 1.13                       | 1.65              | 1.55                     | 1.81               | 1.27                | 1.30                                 | <b>1.93</b>                  |

1379  
1380 tionally retained them to preserve the diversity of event types and to better reflect the generalization  
1381 capabilities of LVLMs across heterogeneous semantic scenarios. This design choice ensures that the  
1382 benchmark captures not only frequent but also rare, yet semantically important, abnormal events. It  
1383 is worth noting that the overall evaluation metrics reported in the main paper are aggregated without  
1384 assigning additional weights to these low-frequency categories. As a result, their contribution to the  
1385 final performance results remains limited.

1386 Furthermore, the comparison results across different categories demonstrate that the performance of  
1387 models on rare categories does not systematically deviate from their performance on more common  
1388 ones. This indicates that the inclusion of such categories enhances coverage without introducing  
1389 undue bias. The detailed results are shown in Table 11.

## 1390 E.5 RESULTS OF LOCALLY-DEPLOYED AND API-CALLED LVLMs ON ANOMALOUS VIDEOS

1391 Table 12 compares finetuned locally deployed LVLM models (e.g., Qwen2.5-VL-3B-Instruct, LLaVA-  
1392 Video-7B, and fine-tuned models) against API-called models (Baidu ERNIE 4.5 Turbo VL Baidu  
1393 (2025), Gemini 2.5 Pro Google (2025), GPT-4o OpenAI (2024), InternVL3.5 Wang et al. (2025)  
1394 ) on anomalous video tasks. Across most of the subtasks, API models show higher average scores  
1395 than local models, with GPT-4o OpenAI (2024) and InternVL3.5 Wang et al. (2025) often leading,  
1396 highlighting API models' superior performance in accuracy and detail. However, finetuned LLaVa-  
1397 series models also show competitive performance.

1398  
1399  
1400  
1401  
1402  
1403

Table 11: Model Performance on Various Environment Categories

| Category         | LLaVA-OV-<br>Qwen2-0.5B | InternVL-<br>2.5-2B | VideoLLaMA-<br>3-2B | Qwen2.5-VL-<br>3B-Instruct | LLaVA-<br>NeXT-7B | LLaVA-OV-<br>Qwen2-7B | LLaVA-<br>Video-7B | VideoLLaMA-<br>3-7B | Avg. |
|------------------|-------------------------|---------------------|---------------------|----------------------------|-------------------|-----------------------|--------------------|---------------------|------|
| normal           | 2.8                     | 1.84                | 2.76                | 2.69                       | 2.73              | 3.05                  | <b>3.07</b>        | 2.87                | 2.73 |
| Abuse            | 2.25                    | 1.42                | 1.92                | 1.68                       | 2.19              | 2.26                  | <b>2.37</b>        | 2.01                | 2.01 |
| Arrest           | 2.61                    | 1.62                | 2.15                | 1.98                       | 2.46              | 2.60                  | <b>2.62</b>        | 2.24                | 2.28 |
| Assault          | 2.41                    | 1.40                | 2.11                | 1.89                       | 2.24              | 2.55                  | <b>2.59</b>        | 2.20                | 2.17 |
| Burglary         | 2.44                    | 1.62                | 2.22                | 2.00                       | 2.34              | 2.60                  | <b>2.67</b>        | 2.21                | 2.27 |
| Pursuit          | <b>2.85</b>             | 1.70                | 1.97                | 2.09                       | 2.09              | 2.81                  | 2.40               | 2.05                | 2.24 |
| Explosion        | 2.74                    | 1.13                | 2.26                | 1.99                       | 2.47              | 2.87                  | <b>2.90</b>        | 2.38                | 2.34 |
| Fighting         | 2.62                    | 1.54                | 2.19                | 2.11                       | 2.59              | <b>2.73</b>           | 2.67               | 2.35                | 2.35 |
| Fire             | 2.65                    | 1.33                | 2.33                | 2.21                       | 2.63              | 2.63                  | <b>2.67</b>        | 2.47                | 2.36 |
| Object Falling   | 2.42                    | 1.47                | 2.08                | 1.90                       | 2.22              | 2.53                  | <b>2.69</b>        | 2.24                | 2.19 |
| People Falling   | 2.48                    | 1.45                | 2.20                | 2.00                       | 2.36              | 2.55                  | <b>2.58</b>        | 2.29                | 2.24 |
| Robbery          | 2.34                    | 1.27                | 2.11                | 2.07                       | 2.25              | 2.55                  | <b>2.60</b>        | 2.25                | 2.18 |
| Shooting         | 2.28                    | 1.51                | 2.32                | 2.01                       | 2.08              | 2.40                  | <b>2.54</b>        | 2.30                | 2.18 |
| Shoplifting      | 2.20                    | 1.29                | 1.96                | 1.85                       | 2.20              | 2.27                  | <b>2.39</b>        | 2.00                | 2.02 |
| Stealing         | 2.36                    | 1.26                | 2.03                | 1.91                       | 2.19              | 2.45                  | <b>2.46</b>        | 2.17                | 2.10 |
| Threatening      | <b>2.55</b>             | 1.68                | 1.97                | 2.06                       | 2.48              | 2.52                  | 2.15               | 2.16                | 2.20 |
| Traffic Accident | 2.47                    | 1.21                | 2.26                | 2.16                       | 2.39              | 2.56                  | <b>2.61</b>        | 2.32                | 2.25 |
| Vandalism        | 2.33                    | 1.34                | 2.05                | 1.93                       | 2.26              | 2.44                  | <b>2.49</b>        | 2.12                | 2.12 |
| Water Incident   | 3.13                    | 1.44                | 2.89                | <b>3.36</b>                | 3.23              | 2.81                  | 3.06               | 3.29                | 2.90 |

Table 12: Local-deployed LVLMs and API-called LVLMs(Baidu ERNIE Baidu (2025) , Gemini 2.5 Pro Google (2025) , GPT-4o OpenAI (2024) , InternVL3.5 Wang et al. (2025) ) on Anomalous Videos.  $\dagger$  represents our finetuned LVLMs.

| Task           | Metric            | Qwen2.5-VL-<br>3B-Instruct | Qwen2.5-VL-<br>Instruct $\dagger$ | LLaVA-Video-<br>7B-Qwen2 | LLaVA-Video-7B-<br>Qwen2 $\dagger$ | Baidu ERNIE<br>4.5 Turbo VL | Gemini 2.5 Pro | GPT-4o      | InternVL3.5 |
|----------------|-------------------|----------------------------|-----------------------------------|--------------------------|------------------------------------|-----------------------------|----------------|-------------|-------------|
| Detection QA   | CI                | 1.92                       | <b>1.57</b>                       | 1.95                     | <b>4.57</b>                        | 3.28                        | 4.55           | <b>3.77</b> | <b>3.74</b> |
|                | DO                | 1.93                       | 1.75                              | 1.85                     | <b>4.29</b>                        | 3.20                        | 4.42           | 3.59        | <b>3.67</b> |
|                | CU                | 1.88                       | 1.54                              | 1.96                     | <b>4.62</b>                        | 3.26                        | 4.50           | <b>3.62</b> | <b>3.58</b> |
|                | TU                | 1.69                       | 1.45                              | 1.90                     | <b>4.34</b>                        | 3.19                        | 4.39           | 3.35        | <b>3.17</b> |
|                | Avg.              | <b>1.85</b>                | 1.58                              | 1.92                     | <b>4.46</b>                        | 3.23                        | 4.47           | 3.58        | <b>3.54</b> |
|                | Classification QA | CI                         | 2.00                              | 1.90                     | 2.47                               | 3.26                        | 2.75           | 3.51        | <b>3.45</b> |
|                | DO                | 2.40                       | 2.42                              | <b>2.72</b>              | 3.25                               | 2.72                        | 3.55           | 3.70        | <b>3.95</b> |
|                | CU                | 2.30                       | 2.18                              | 2.71                     | 3.41                               | 3.00                        | 3.57           | 3.63        | <b>3.78</b> |
|                | TU                | 2.05                       | 2.01                              | 2.45                     | 3.13                               | 2.69                        | 3.43           | 3.34        | <b>3.55</b> |
|                | Avg.              | <b>2.19</b>                | 2.13                              | 2.59                     | <b>3.26</b>                        | <b>2.79</b>                 | 3.51           | 3.53        | <b>3.77</b> |
|                | Subject QA        | CI                         | 2.24                              | 2.55                     | 2.83                               | 3.31                        | 2.49           | 2.98        | 2.54        |
|                | DO                | 2.23                       | 2.69                              | 2.59                     | <b>3.21</b>                        | 2.39                        | 2.99           | 2.48        | <b>3.34</b> |
| Description QA | CU                | 2.43                       | 2.66                              | 2.93                     | <b>3.40</b>                        | 2.63                        | 3.00           | 2.71        | 3.32        |
|                | TU                | 2.07                       | 2.35                              | 2.71                     | <b>3.17</b>                        | 2.39                        | 2.79           | 2.35        | 3.03        |
|                | Avg.              | <b>2.24</b>                | 2.56                              | 2.76                     | <b>3.27</b>                        | 2.47                        | 2.94           | 2.52        | 3.26        |
|                | CI                | 1.76                       | 2.11                              | 2.92                     | 2.79                               | 2.28                        | 2.85           | 3.02        | <b>3.12</b> |
|                | DO                | 1.68                       | 2.03                              | 2.58                     | <b>2.66</b>                        | 2.14                        | 2.64           | 2.78        | <b>2.90</b> |
|                | CU                | 1.88                       | 2.17                              | 2.92                     | <b>2.81</b>                        | 2.35                        | 2.86           | 3.00        | <b>3.09</b> |
| Cause QA       | TU                | 1.64                       | 1.91                              | 2.62                     | 2.53                               | 2.07                        | 2.57           | 2.72        | <b>2.81</b> |
|                | Avg.              | <b>1.74</b>                | 2.06                              | 2.76                     | <b>2.70</b>                        | 2.21                        | 2.73           | 2.88        | <b>2.98</b> |
|                | CI                | 1.29                       | 1.64                              | 1.56                     | 1.81                               | 1.63                        | 2.05           | 2.24        | <b>3.03</b> |
|                | DO                | 1.28                       | 1.69                              | 1.24                     | <b>1.62</b>                        | 1.51                        | 2.00           | 2.13        | <b>2.81</b> |
|                | CU                | 1.40                       | 1.79                              | 1.72                     | 1.98                               | 1.80                        | 2.05           | 2.33        | <b>2.93</b> |
|                | TU                | 1.29                       | 1.63                              | 1.54                     | <b>1.75</b>                        | 1.61                        | 1.87           | 2.09        | <b>2.71</b> |
| Result QA      | Avg.              | 1.32                       | 1.69                              | 1.52                     | 1.79                               | 1.64                        | 1.99           | 2.20        | <b>2.87</b> |
|                | CI                | 1.08                       | 1.25                              | 1.89                     | 1.96                               | 1.25                        | 2.23           | 2.52        | <b>3.09</b> |
|                | DO                | 1.03                       | 1.19                              | 1.56                     | <b>1.77</b>                        | 1.01                        | 2.04           | 2.26        | <b>2.74</b> |
|                | CU                | 1.35                       | 1.53                              | 2.07                     | 2.15                               | 1.54                        | 2.28           | 2.53        | <b>2.98</b> |
|                | TU                | 1.09                       | 1.24                              | 1.74                     | 1.85                               | 1.25                        | 2.04           | 2.22        | <b>2.62</b> |
|                | Avg.              | 1.13                       | 1.30                              | 1.81                     | 1.93                               | 1.26                        | 2.15           | 2.38        | <b>2.86</b> |

## E.6 ANALYZE THE ENVIRONMENT OF THE SURVEILLANCE VIDEO

We have made additional statistical information analysis regarding the surveillance environments in our abnormal video dataset. Specifically, approximately 51% of the clips are from indoor scenes and 49% from outdoor scenes. Day and night scenarios are similarly balanced, each accounting for

roughly half of the data. As for occlusion, around 83% of the clips contain no significant occlusion, while the remaining 17% involve partial or full occlusion, resulting in a ratio of approximately 5:1.

To further address this point, we provide evaluation results of various LVLMs under different surveillance conditions in the following Table 13. The performance differences observed across these environmental settings are relatively small, indicating that the evaluated models demonstrate a stable level of cognitive understanding regardless of scene variation. This robustness can be attributed to two main factors: (1) the LVLMs have been pre-trained on diverse and complex visual inputs, enabling them to generalize effectively across a wide range of surveillance scenarios; and (2) the video clips in our dataset are sourced from publicly available, high-quality datasets such as MSAD, MEVA, NWPU, and UCF-Crime. These datasets generally feature clear and well-lit footage, including night, and contain relatively few examples of extreme occlusion.

Table 13: Results of different video experiment conditions.

| Condition  | Proportion | LLaVA-OV-<br>0.5B | InternVL2.5-<br>2B | VideoLLaMA3-<br>2B | Qwen2.5-<br>VL-3B | LLaVA-<br>NeXT-7B | LLaVA-<br>OV-7B | LLaVA-<br>Video-7B | VideoLLaMA3-<br>7B | Avg. | Std. |
|------------|------------|-------------------|--------------------|--------------------|-------------------|-------------------|-----------------|--------------------|--------------------|------|------|
| Indoor     | 51%        | 2.48              | 1.56               | 2.29               | 2.07              | 2.37              | 2.70            | <b>2.77</b>        | 2.40               | 2.33 | 0.36 |
| Outdoor    | 49%        | 2.58              | 1.49               | 2.39               | 2.23              | 2.44              | 2.75            | <b>2.77</b>        | 2.49               | 2.40 | 0.38 |
| Unoccluded | 83%        | 2.53              | 1.51               | 2.35               | 2.17              | 2.40              | 2.72            | <b>2.76</b>        | 2.45               | 2.37 | 0.37 |
| Occluded   | 17%        | 2.54              | 1.57               | 2.32               | 2.05              | 2.44              | 2.76            | <b>2.81</b>        | 2.43               | 2.36 | 0.37 |
| Day        | 57%        | 2.51              | 1.51               | 2.35               | 2.19              | 2.41              | 2.70            | <b>2.75</b>        | 2.46               | 2.36 | 0.36 |
| Night      | 43%        | 2.56              | 1.54               | 2.33               | 2.09              | 2.40              | 2.75            | <b>2.79</b>        | 2.43               | 2.36 | 0.38 |

## F VISUALIZATION FOR INFERENCE RESULTS OF LVLMs.

Figure 12, Figure 13, Figure 14, and Figure 15 show the failed cases in the causal reasoning QA inference. We have given the model’s answers and error analysis in these figures. The analysis of the cause and result QA pairs across the LVLMs reveals several recurring issues in the performance of vision-language models (LVLMs) when interpreting abnormal video events. These issues can be grouped into the following categories, as shown in Table 14.

These examples highlight common issues related to event identification, causal reasoning, generalization, and language generation. These models struggle to accurately interpret complex video events, often providing vague, incomplete, or incorrect responses. While some models are better at identifying abnormal events or constructing causal chains, the overall performance remains limited by these recurring errors. To improve the robustness and reliability of LVLMs, future research should focus on enhancing their ability to correctly identify and reason about abnormal video events, refining language generation, and incorporating error analysis to aid in debugging and model improvement.

Table 14: Summary of types of weakness of model responses in the cause and result QA pairs.

| Weakness Type                        | Description                                                                     |
|--------------------------------------|---------------------------------------------------------------------------------|
| Multiple Speculations, Lack of Focus | Lists several possible explanations without identifying the most likely cause   |
| Missing Visual Evidence              | Fails to reference visual details such as environment or human actions          |
| Inaccurate Abnormal Event Detection  | Cannot correctly identify which event is the core “abnormal” incident           |
| Incomplete Causal Chain              | Mentions only the cause or the consequence, without connecting the causal steps |
| Overgeneralized Language             | Uses vague or abstract expressions instead of specific reasoning                |

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525



| Models                               | cause_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | result_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveillance VQA-589K (Ground-truth) | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The fundamental cause of the detected abnormal event is likely the driver's misjudgment of the car's position relative to the blocking stone. The car was initially stationary, and as it began to move to the left, the driver may have failed to notice or misjudged the distance to the stone barrier. This could be due to a lack of visibility, distraction, or a momentary lapse in attention. The presence of other vehicles and buildings in an urban or suburban environment might have contributed to the complexity of the driving situation, leading to the collision."         } | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the collision, the white car sustains visible damage to its front left side, including a dented fender and a cracked headlight. The blocking stone is slightly displaced but remains intact. The driver of the car, likely startled by the impact, exits the vehicle to assess the damage. Other nearby pedestrians and drivers slow down or stop to observe the situation, causing a minor traffic disruption. The urban environment remains largely unaffected, but there is a potential for a temporary obstruction on the road if the car is not quickly moved ..."         } |
| InternVL2.5-2B                       | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "...caused by a person walking through the restaurant and accidentally knocking over a table."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the woman in the red shirt is seen running away from the table."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      | error analysis: I lack of visual support details and inaccurate identification of abnormal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | error analysis: I lack of visual support details and inaccurate identification of abnormal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LLaVA_OV-0.5B                        | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred when the white truck suddenly stopped and began to move, causing a slight disruption."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the white truck starts moving towards the right side of the frame."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | error analysis: Language generation tends to generalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | error analysis: Language generation tends to generalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LLaVA_OV-7B                          | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video was caused by a person who appeared to be in distress and ran into the house."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The car is damaged."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | error analysis: the construction of the causal chain is incomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LLaVA-NeXT-Video-7B                  | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "... The cause of the crash is not clear from the video alone, but it could be due to various reasons such as the driver losing control of the vehicle, a mechanical failure, or distraction. ..."         }                                                                                                                                                                                                                                                                                                                                                                                   | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The image shows a car that has veered off the road and is now resting against a house, which is an abnormal event. As a result of this, there are several potential outcomes:\n\n1. ...         }                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | error analysis: multiple speculations lack focus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | error analysis: language generation tends to generalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LLaVA-Video-7B-Qwen2                 | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred because the white car was attempting to park in a tight space ...."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The car's rear end is damaged, and debris is scattered on the ground."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | error analysis: the construction of the causal chain is incomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Qwen2.5-VL-3B-Instruct               | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "...The car is seen driving down a driveway and then veering off course, hitting the side of the house. This suggests that the driver may have lost control of the vehicle, possibly due to factors such as ..."         }                                                                                                                                                                                                                                                                                                                                                                     | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "... The car is initially positioned at an angle, but it appears to be struggling to move forward due to the limited space. As the car tries to drive forward, it gets stuck and begins to spin in place, causing the driver to lose control. ...."         }                                                                                                                                                                                                                                                                                                                                     |
|                                      | error analysis: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | error analysis: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VideoLLaMA3-2B                       | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video occurred because a person was attempting to open the trunk of their car, instead ..."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The car's rear end is completely crushed."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | error analysis: the construction of the causal chain is incomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VideoLLaMA3-7B                       | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "... car crashing into the side of a house, was likely caused by a driver losing control or being distracted..."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The car door swings open, causing a sudden and unexpected movement."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      | error analysis: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

1557

1558

1559

1560

1561

1562

1563

1564

1565

Figure 12: Failed examples on cause QA and result QA types

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576



| Models                               | cause_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | result_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveillance VQA-589K (Ground-truth) | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event, which includes the shattering of the house glass and the silver-gray car window, as well as the smashing of the car roof, was caused by a sudden and extremely strong gust of wind. The wind's intensity was so high that it caused the tree to sway violently, leading to debris being blown around and the silver SUV to move erratically. The force of the wind was sufficient to break the glass and damage the car, indicating that the wind speed and pressure were abnormally high for a typical sunny day."         } | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the sudden and intense gust of wind, the glass of the house and the window of the silver-gray SUV are shattered. The roof of the SUV is also visibly smashed. The tree continues to sway violently, and debris such as leaves and small branches are scattered around the area. Visibility decreases significantly due to the wind. The white van remains undamaged, but the overall scene is chaotic. The impact on the environment includes damage to the house, the SUV, a..."         } |
| InternVL2.5 -2B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video does not provide information on the cause of the unusual event. It only..."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                  | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the person in the red shirt is seen running out of the office."         }                                                                                                                                                                                                                                                                                                                                                                                               |
| LLaVA_OV-0.5B                        | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred when a silver car was involved in an accident, causing it to crash into the tree."         }                                                                                                                                                                                                                                                                                                                                                                                                                          | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, sand begins to fall onto the ground and the scene becomes more obscured by dust."         }                                                                                                                                                                                                                                                                                                                                                                             |
| LLaVA_OV-7B                          | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event was caused by a severe storm."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The silver car is damaged."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LLaVA-NeXT-7B-hf                     | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video shows a car driving down a street and crashing into a tree, causing significant damage to the vehicle. The reason for this event is not clear from the video alone, as it could be due to various factors such as speeding, distracted driving, a sudden turn, or other unforeseen circumstances. The exact cause of the crash is not evident from the video."         }                                                                                                                                                               | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The image shows a car driving on a road with a large puddle of water in the middle of the street, which is an abnormal event. As a result of this, the car's tires may lose traction and hydroplane, causing the vehicle to lose control and potentially skid or spin. This can lead to a loss of control over the vehicle, increasing the risk of accidents or collisions with other vehicles or obstacles. The driver..."         }                                                                      |
| LLaVA-Video-7B-Qwen2                 | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video was caused by a sudden and intense gust of wind that swept through the area..."         }                                                                                                                                                                                                                                                                                                                                                                                                                         | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The tree is uprooted and the white van is overturned."         }                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Qwen2.5-VL-3B-Instruct               | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video appears to be a severe flooding incident. The scene shows a car partially submerged in water, with water rushing towards it from the street. The water level is high enough to cover the car's tires and parts of its body. The surrounding area is also flooded, with water covering the ..."         }                                                                                                                                                                                                          | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The video shows a car driving through a flooded street, with water splashing up around it. The car is partially submerged in water, and the water level rises higher as the car moves forward. The car continues to drive through the flooded area, with the water level rising further. The car eventually stops, a..."         }                                                                                                                                                                         |
| VideoLLaM A3-2B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "...caused by a storm. The caption mentions that it is raining outside, which indicates that the storm had already started."         }                                                                                                                                                                                                                                                                                                                                                                                                            | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The car is completely destroyed."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VideoLLaM A3-7B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "... a strong gust of wind that blew through the parking lot. As the wind intensified, it picked up debris from the ground and propelled it towards the parked vehicles. ..."         }                                                                                                                                                                                                                                                                                                                                                           | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "Debris is scattered around the area."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Figure 13: Failed examples on cause QA and result QA types

1620

1621

1622

1623



1624

1625

1626

1627

1628

1629

| Models                               | cause_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | result_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveillance VQA-589K (Ground-truth) | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The fundamental cause of the detected abnormal event appears to be a heated argument that escalated into a physical altercation. The initial interaction between the man in the white shirt and the man in the black shirt, which became increasingly agitated, suggests a pre-existing conflict or a sudden disagreement. The shirtless man's attempt to intervene further complicated the situation, leading to a multi-person fight. Environmental factors, such as the crowded market area with limited space, may have contributed to the heightened tension. Additionally, the presence of a red stool, which was used as a makeshift weapon, indicates that the environment provided objects that could be used in the fight, further intensifying the confrontation."         } | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the physical altercation, the shirtless man is thrown to the ground by the man in the black shirt. The man in the white shirt, after attempting to hit the man in the black shirt with a red stool, is also thrown away. The situation evolves into a continued struggle between the man in the white shirt and the man in the black shirt, while the shirtless man remains on the ground, watching nearby. The environment of the outdoor market area becomes disrupted, with potential damage to the red stool and possible disruption to the market stalls and people around. The individuals involved are at risk of physical injuries, and the overall atmosphere of the market becomes tense and chaotic."         } |
| InternVL2.5 -2B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video shows a person lying on the ground, which suggests that something unusual may have happened. However, the video does not provide enough information to determine the cause of the event."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the person on the sidewalk falls to the ground."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LLaVA_OV-0.5B                        | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred when a person in a white shirt and blue jeans was involved in an altercation with another individual ...."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LLaVA_OV-7B                          | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video was caused by a person wearing a black shirt and gray pants who suddenly ...."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, one person is thrown onto the ground and another person is lifted off the ground."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LLaVA_NeXT-Video-7B-hf               | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video shows a group of people gathered in a parking lot, with some of them engaged in a physical altercation. The exact cause of the altercation is not clear from the video alone, but it appears to be a physical confrontation between two individuals. The presence of a car and a motorcycle in the background suggests that this might be a public or shared parking area, possibly near a business or event venue. The people in the video seem to be involved in a disagreement or conflict, which has escalated to the point where physical contact is taking place. The specific circumstances leading to this event are not provided in the video, but it is evident that the situation is tense and potentially dangerous."         }                                   | error analysis: language generation tends to generalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LLaVA-Video-7B-Qwen2                 | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred when the shirtless man suddenly removed his shirt, revealing his bare torso."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | error analysis: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Qwen2.5-VL-3B-Instruct               | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video depicts an unusual and potentially dangerous situation involving three individuals in what appears to be a commercial or public area. The scene unfolds as follows:\n1. **Initial Interaction**: Two men are engaged in a physical altercation, with one man being pushed or shoved by the other...\n2. **Result**: The man in the white shirt is seen holding onto the shirtless man's torso, while the man in the black shirt is pushed against a wall and the man in the white shirt is seen holding onto the shirtless man's torso."         }                                                                                                                                                                                                                            | error analysis: the construction of the causal chain is incomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VideoLLaM A3-2B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video was triggered by a man's attempt to steal food from another person ... "         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | error analysis: language generation tends to generalize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VideoLLaM A3-7B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "In the video, a man with no shirt on was dancing around in the middle of a street. This unusual behavior caught the attention of two...."         }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Figure 14: Failed examples on cause QA and result QA types

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

| Models                               | cause_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | result_qa_pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveillance VQA-589K (Ground-truth) | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The woman slipped on the wooden floor due to the wet and slippery conditions caused by the rain. The rain made the wooden deck surface slick, increasing the likelihood of a slip, especially when she was running forward, which reduced her stability and control."         }                                                                                                                                                                      | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "The woman slips on the wet wooden floor, which is an abnormal event. As a result, she quickly stands up and appears to be unharmed. The situation evolves with the woman likely being more cautious as she continues to move across the deck. The person with the umbrella continues their path and exits the scene. The environment remains unchanged, and there are no apparent long-term impacts on the people involved or the surroundings."         } |
| InternVL2.5 -2B                      | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The video does not provide any information about the cause of the unusual event. We can only observe the actions and movements of the people in the video."         }                                                                                                                                                                                                                                                                                | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the person in the blue uniform is seen walking away from the hospital."         }                                                                                                                                                                                                                                                                                                                                       |
| LLaVA_OV-0.5B                        | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LLaVA_OV-7B                          | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event occurred when the person in a red jacket and black pants, who was initially holding an umbrella, suddenly stepped out of the frame."         }                                                                                                                                                                                                                                                                                     | {           "Q": "What happens as a result of the abnormal event?",<br>"A": "As a result of the abnormal event, the person is seen walking away from the camera towards the right side of the frame."         }                                                                                                                                                                                                                                                                                                                         |
| LLaVA_NeXT-Video-7B-hf               | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LLaVA-Video-7B-Qwen2                 | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The person's actions led to the unusual event occurring in the video."         }                                                                                                                                                                                                                                                                                                                                                                     | error analysis: language generation tends to generalize, lack of visual support details                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Qwen2.5-VL-3B-Instruct               | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "In the video, a person is seen running across a wooden deck with an open umbrella, which is an unusual event because umbrellas are typically used to shield from rain or sun, not to be used as a prop for running. The person appears to be in a playful or energetic mood, possibly engaging in a game or a fun activity. The presence of a hot tub and outdoor furniture suggests that this might be a leisure area, and the person..."         } | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VideoLLaMA3-2B                       | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The person in the red jacket was startled by something off-camera, which led to the unusual event."         }                                                                                                                                                                                                                                                                                                                                        | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VideoLLaMA3-7B                       | {           "Q": "What led to the unusual event occurring in the video?",<br>"A": "The unusual event in the video appears to be a person running out of the house onto the deck while holding a red umbrella. The person seems to be trying to avoid getting wet, possibly due to rain or other weather conditions. ..."         }                                                                                                                                                                                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: the construction of the causal chain is incomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | error analysis: the identification of abnormal events is inaccurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | error analysis: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figure 15: Failed examples on cause QA and result QA types

1724

1725

1726

1727

1728 **G OTHER CONSIDERATIONS**  
17291730 **G.1 DATASET QUALITY ANALYSIS**  
17311732 Here, we analyze the dataset quality, showing that the measures we have taken can provide a guarantee  
1733 for it.1734 First, as detailed in Section 3.1, our QA generation pipeline incorporates both human-labeled video  
1735 descriptions and LLaVA-Video outputs, thereby combining human intuition and LLM generalization.  
1736 The human-labeled descriptions produced through a rigorous process, involving detailed guidelines,  
1737 multiple rounds of expert review, and cross-verification, serve as a strong anchor for grounding the  
1738 QA generation in real-world semantics and narrative complexity.1739 Second, using human-labeled video descriptions and LLaVA-Video outputs, we further constructed  
1740 QA pairs by prompting LLMs. We designed a diverse set of 12 QA types, each with carefully crafted  
1741 and repeatedly tested prompt templates. This was done to reduce prompt-induced bias and to ensure  
1742 coverage of a wide range of cognitive demands, including causal reasoning and temporal/spatial  
1743 understanding.1744 Third, we conducted a systematic human evaluation after generation. Specifically, 5% of the QA pairs  
1745 across all types were randomly sampled and assessed by a panel of three AI researchers. Each pair  
1746 was rated by two independent reviewers based on video verification, semantic accuracy, completeness,  
1747 and linguistic clarity. The results showed high inter-rater agreement, all the QA pairs were qualified,  
1748 and 90.3% of the QA pairs were deemed to be of high quality. This post-hoc human validation  
1749 provides an important counterbalance to the potential limitations of LLM-only generation.1750 Finally, we believe that our hybrid approach (human-labeled annotations, the iterative design and  
1751 testing of prompt templates, and rigorous human validation), anchoring generation in human-labeled  
1752 descriptions and including thorough validation, helps to provide a guarantee for the quality of the  
1753 dataset.1754 **G.2 LIMITATIONS**  
17551756 However, this study also has some limitations. Model evaluations are based on a limited dataset, and  
1757 performance may vary when applied to different surveillance environments or low-quality video data.  
1758 Although larger models perform well in terms of accuracy, they have high computational demands,  
1759 which may make them challenging to deploy in resource-constrained environments. Future research  
1760 should focus on optimizing the temporal reasoning capabilities of smaller models and further explore  
1761 domain-specific fine-tuning techniques to improve performance in various monitoring scenarios.1762 **H USAGE OF LLM**  
17631764 In the process of constructing the dataset, we have used multimodal large models and large language  
1765 models as automation tools, with detailed explanations provided in the relevant sections. Additionally,  
1766 large models were also employed for language modification and refinement to present the content in  
1767 a more readable manner.1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781