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Abstract—Molecular dynamics (MD) simulations are a pow-
erful computational tool for elucidation of molecular behavior.
These simulations generate an abundance of high-dimensional
time series data and parsing these data into a human-
interpretable format is nontrivial. Clustering trajectory segments
obtained via change point detection has been shown to lower
memory complexity and yield improved partitioning resolution
of the time series compared to the state of the art. However,
accurate change point placement is often inhibited by the
presence of gradual changes between long-lived metastable states.
The trajectory regions corresponding to these gradual changes
are not well-modeled by a single distribution, and therefore are
frequently over-segmented. In this work, we model such regions
using weighted Wasserstein barycentric interpolations between
adjacent metastable states, allowing for gradual changes to be
resolved correctly. The improved detection performance of our
proposed method is demonstrated on a range of toy and real
MD simulation data, showing significant potential for faithfully
modeling and compressing complex MD simulations.

I. INTRODUCTION

Molecular dynamics (MD) simulations have long been a
useful tool for scientists to explain the behavior of molecular
systems that may not lend themselves well to experimental
study [1]. Recent strides in both hardware and software have
drastically increased the utility of MD as both an explanatory
tool and a predictive one [1]–[3]. MD trajectories of even large
biomolecular systems showcasing phenomena on millisecond
timescales are now available, providing unique insights into
fundamental problems such as protein folding [4]–[6], protein–
ligand binding [7], and solution structural ensembles of macro-
cycles [1], [8], [9]. Such extensive trajectories, however,
frequently consist of millions of data points across thousands
of dimensions (corresponding to the positions in R3 of the
constituent atoms or “intrinsic coordinates” thereof). To that
end, tools such as dimensionality reduction [10], [11], cluster
analysis [12]–[14], and Markov state modeling [15], [16] have
become essential tools in computational chemists’ arsenal. A
brief overview of MD is provided in the Supplement.

Change point detection (CPD) has previously been shown
to be an invaluable addition to this toolset [12], [17]. After
using CPD to split MD trajectories into segments, subsequent
cluster analysis performed using Wasserstein distances be-
tween segments benefits from improved clustering resolution,
accounts for degrees of freedom omitted from the dataset,
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and yields fuzzy state boundaries which permit state overlap
[12]. The preservation of temporal information by ensuring
that data points that are close in time are given the same state
assignments unless they are on opposite sides of a change
point also allows for highly accurate transition modeling using
Markov state modeling.

A key challenge is that, while MD simulations do yield
metastable states—conformational clusters that correspond to
relatively coherent fluctuations around a fixed shape—they
also exhibit transitions between such states. Accounting for
these transitions—which, like the metastable states themselves,
are stochastic—is important for efficiently modeling MD sim-
ulations. In this sense, a reduced-order statistical model for
MD simulations must capture not only metastable states, but
gradual transitions between these states as well. An intuitive
characterization of these gradual transitions is that of a “mov-
ing weighted average” between neighboring metastable states,
wherein early points of a transition region are drawn from a
distribution more similar to the initial state, and the later points
are drawn from a distribution more similar to the final state.

To operationalize this characterization, we propose to model
MD simulations as generated from metastable distributions
and Wasserstein barycentric interpolations between them. This
allows the metastable distributions to be interpolated in a
geometry-preserving manner and our approach lends itself
well to efficient implementations that can handle large MD
simulations. In the remainder of the paper, we propose, justify,
and analyze a specific choice of parametric model for the
metastable states and resulting labeling algorithm (Section II)
and validate our Barycentric Transition (BarT) approach on
several synthetic and real MD simulation datasets (Section III)
before concluding (Section IV).

II. METHODS

Background and Motivation: Let P2,ac(⌦) denote the set
of absolutely continuous probability measures on ⌦ ⇢ RD

with finite second moment. Under the instantaneous-transition
model, MD simulation trajectories {X(t)}Tt=1 ⇢ RD are
modeled as samples from a small collection of probability
distributions {⌫k}Kk=1 ⇢ P2,ac(RD), each corresponding to a
particular metastable state, intuitively a low-variance distribu-
tion around a canonical shape conformation. Equivalently, a
metastable state can be characterized as a free energy basin



whose depth governs the relative population of its corre-
sponding state, whose width is related to the variance of the
associated distribution, and with the height of the free energy
barriers to the remaining states accounting for the lifetime of
the state. The existence of a small number of metastable states
captures the intuition that the molecule has a small number
of canonical shapes, and data observed from the simulation
are small fluctuations around these shapes, with relatively
infrequent and instantaneous transitions between shapes.

Per this model, a simulation trajectory may be split into
segments such that each segment is drawn from a single
distribution corresponding to one of the metastable states. It
is possible to model these distributions nonparametrically, but
in practice it is common to set each ⌫k to be a Laplace
distribution. The wide tails of a Laplace distribution are rep-
resentative of the noise patterns observed in MD simulations,
[17] and the simple parametric form allows for relatively
efficient estimation. In modelling MD trajectories as mixtures
of Laplace distributions, the switch from one distribution to
another occurs at change points ⌧1 < · · · < ⌧M which are
unknown but which can be learned.

However, the instantaneous-transition model breaks down
in most real-life MD simulation trajectories, wherein tran-
sitions often occur on timescales slower than the sampling
rate necessary to observe chemically relevant phenomena.
Since these transition regions are not sampled from a single
metastable distribution (e.g., a fixed Laplace distribution), we
propose to model MD simulation trajectories as consisting of
metastable states and transitions between them. In our model,
metastable distributions are still modeled as distinct Laplace
distributions. The transition regions are modeled as samples
from the measures constituting the geodesic between the
bounding metastable distributions in Wasserstein-2 space [18].
More precisely, for two distributions µ0, µ1 2 P2,ac(RD), the
Wasserstein-2 geodesic between them is the path � : [0, 1]!
P2,ac(Rd) such that �(t) = (tTµ0!µ1 + (1 � t) Id)#µ0,

where Tµ0!µ1 = argmin
T#µ0=µ1

Z

RD

kx�T (x)k22dµ0 is the optimal

transport (Monge) map between µ0 and µ1 [19]. We note
that Wasserstein geodesics are special cases of Wasserstein
barycenters and Laplace distributions are preserved under
barycentric combinations [20]; see the Supplement for details.

In this context, we model our data {X(t)}Tt=1 as being
either (i) a sample from a metastable distribution (modeled as
a Laplace distribution) or (ii) a transition region (a barycentric
interpolation of previous and subsequent metastable distribu-
tions). Change points 1 < ⌧1 < · · · < ⌧M < T denote
switches from a metatable state to a transition region or
another metastable state. So, for time t 2 [⌧j , ⌧j+1], X(t) is
either sampled from a Laplace distribution with fixed parame-
ters or from the Wasserstein barycenter between previous and
subsequent Laplace distributions ⌫j�1 and ⌫j+1 with weights⇣

⌧j+1�t
⌧j+1�⌧j

, 1� ⌧j+1�t
⌧j+1�⌧j

⌘
for t 2 {⌧j , ⌧j + 1, . . . , ⌧j+1}.

Algorithm Overview: Change detection for this model is
the key computational problem, which we proceed to address

by recognizing that Wasserstein barycenters between Laplace
distributions in a single dimension have a simple closed form.
We learn change points via a penalized likelihood estimation
approach, which aims to maximize

L({⌧j}Mj=1) =
MX

j=1

L({X(t)}⌧j+1

t=⌧j )� �
MX

j=1

|Sj |↵. (1)

Here, L is the log-likelihood of the trajectory segments being
described by the proposed model, including all segments
in the trajectory, but with each dimension in a multivariate
time series being considered separately; Sj is the number of
change points detected across the D variables at time ⌧j ;
and ↵ 2 (0, 1],� > 0 are tunable parameters. We define
L({X(t)}⌧j+1

t=⌧j ) = max{Lms({X(t)}⌧j+1

t=⌧j ), Ltr({X(t)}⌧j+1

t=⌧j )}
where Lms and Ltr are log-likelihood functions corresponding
to metastable and transition regions, respectively. We model
the metastable states as Laplace distributions and the tran-
sition regions as Wasserstein barycenters between previous
and subsequent Laplace distributions, leading to explicit log-
likelihood functions as follows. If µj and �j are the mean
and standard deviation of segment {X(t)}⌧j+1

t=⌧j , respectively,

then Lms({X(t)}⌧j+1

t=⌧j ) = log
Q⌧j+1

t=⌧j
1

2�j
exp

⇣
� |X(t)�µj |

�j

⌘
,

Ltr({X(t)}⌧j+1

t=⌧j ) = log
Q⌧j+1

t=⌧j
1

2�j,t
exp

⇣
� |X(t)�µj,t|

�j,t

⌘
,

where µj,t = ⌧j+1�t
⌧j+1�⌧j

µj�1 + t�⌧j
⌧j+1�⌧j

µj+1,�j,t =
⌧j+1�t
⌧j+1�⌧j

�j�1 + t�⌧j
⌧j+1�⌧j

�j+1 denote the mean and standard
deviation of the Laplace distribution that is the barycen-
ter between the Lap(µj�1,�j�1) and Lap(µj+1,�j+1) with
weights

⇣
⌧j+1�t
⌧j+1�⌧j

, 1� ⌧j+1�t
⌧j+1�⌧j

⌘
; see Propositions 1 and 2 in

the Supplement for explicit derivations.
The second term in (1) is a penalty applied to each change

point to prevent overfitting. The tuning parameter � > 0
determines the sensitivity of the algorithm: a higher � value
will result in fewer changes being detected [17]. Furthermore,
applying chemical intuition which suggests that important con-
formational changes are typically characterized by concurrent
changes in multiple variables [21], the penalty may be adjusted
so that changes occurring in multiple variables at once are
less severely penalized: a lower value of ↵ will result in a
lower penalty for simultaneous change points [17]. See the
Supplement for details on optimizing (1) and pseudocode
below for implementation details.

III. EXPERIMENTS AND ANALYSIS

Data Set Description: To gauge performance with respect to
gradual transitions, we consider three data sets1.

(i) A family of toy-models which are two-state, 1-D, noisy
time series consisting of 20 “metastable” segments, alternating
between two Laplace distributions. The segment lengths were
generated randomly, with a minimum segment length of 100.
The standard deviation of the two metastable distributions
was kept constant within a time series, and was otherwise
varied between 0 and 20, in increments of 1. The metastable

1All of the data sets and code are publicly available [22].



Algorithm 1 BarT pseudocode.

for t = 1! T � 1 do
for j = 1! J do

rand[j, t] Unif(0.9, 1)
penalty[j, t] 

(�q({1, ..., J})� �q({1, ..., J}\{J})) · rand[j, t]
end for

end for
shift and merge False
loop

changes {}
for j = 1! J do

changes 1D[j] 
optimize 1D({Yj,1, ..., Yj,T }, penalty[j, :])

for t 2 changes 1D[j] do
append(changes[t], j)

end for
end for
if shift and merge then

(⌧1, ..., ⌧k) sorted keys of changes
for i = 1! K do

L � inf
for s = ⌧i�1 ! ⌧i+1 do

l updated penalized LL, greater of the
“metastable” and “transition” LLs

if l > L then
L l and label the segment as

metastable or transition based on which l was kept
⌧⇤i  s

end if
end for
⌧i  ⌧⇤i
shift or merge changes[⌧i] to changes[⌧⇤i ]

end for
end if
if changes == changes prev then

return changes
end if
if count(changes) == count prev then

shift and merge True
end if
for t = 1! T � 1 do

for j = 1! J do
if t 2 changes then

if j 2 changes[t] then
penalty[j, t] 

�q(changes[t])� �q(changes[t]\{j})
else

penalty[j, t] 
�q(changes[t]

S
{j})� �q(changes[t])

end if
else

penalty[j, t] �q({j}) · rand[j, t]/0.9
end if

end for
end for

end loop

segments were separated by transition segments, with length of
these segments kept constant within a time series, and varying
between 1 and 100, in 1-point increments, across the different
trajectories. These transition segments are generated from the
Laplace barycenters corresponding to the weights and starting
and ending Laplace distributions.

(ii) An MD-like synthetic trajectory with well-separated
states and changes readily identifiable by visual inspection.
We devised a Langevin dynamics example with a double-
well quadratic potential, with wells centered at –1 and 1,
respectively, and the potential barrier height set to 8. The
potential curve is shown in the Supplement. Two 100,000
point trajectories were simulated using the molecular dynamics
simulator OpenMM [23] with particle mass set to 1 amu,
temperature set to 500 K, and damping coefficients of 10 ps�1

and 100 ps�1, respectively.
(iii) Alanine dipeptide, a simple molecule consisting of a

single amino acid, capped on both ends. It is a frequently
used model system in theoretical chemistry [24]–[28]. We
performed a 200 ns conventional MD simulation of alanine
dipeptide using the GROMACS software suite [29] and the
RSFF2 force field [30] in explicit TIP3P water [31]. The
trajectory was sampled at a 1 ps sampling rate, yielding
200,000 data points. The trajectory was represented in terms
of two internal coordinates—-the backbone dihedral angles
� and  —which have been shown to describe the essential
motions of this molecule well [24], [25], [32] and can in fact be
learned [10]. Of particular interest were the areas outside the
canonical Ramachandran regions (see Supplement for a brief
overview of Ramachandran plots) sampled in the trajectory,
previously shown to be representative of gradual transitions
[33], [34].
Results: The proposed algorithm, BarT (Barycentric
Transitions), was compared to the original implementation
of SIMPLE [17] with parameters manually tuned to values
yielding optimal results. The SIMPLE algorithm applies
the same penalized likelihood estimation methodology as
BarT; however, SIMPLE does not allow for transition regions
to be captured in the likelihood estimation. Moreover, we
compared BarT to a parametric global method—PELT [35].
This approach minimizes the total residual error with respect
to a chosen test statistic. In order to give PELT the best
chance of capturing transition regions, which we have already
identified as “sloped”, we defined the total deviation as the
sum of squared differences between the data points and
the predictions of the least-squares linear fit through the
values. While PELT can also be configured using a sensitivity
parameter—in this case, a threshold specifying the minimum
decrease in residual error in order for a change point to
be placed—it may also be configured with a user-specified
number of change points to be detected. In order to give the
competing algorithm an advantage, we allowed the number
of change points to be equal to the ground truth, when
applicable. With respect to the toy model systems with known
ground truth, the algorithms were compared based on the
number of change points detected (unless user-set) and their



placement accuracy. The Langevin dynamics dataset was
compared by visual inspection, with change point placements
overlaid on top of the time series view, and regions flagged as
either metastable or transition, depending on which segment
characterization maximizes the log-likelihood. On the alanine
dipeptide dataset, the algorithms were compared both visually
as described above, and based on the percentage of points
belonging to noncanonical regions (as determined by cluster
analysis [12]) flagged as belonging to transition regions.

On trajectories with exaggerated transition segments,
barycentric modeling improves change detection accuracy and
parameter robustness: The results of applying BarT, SIMPLE,
and PELT to a representative synthetic trajectory are shown
in Figure 1, with additional trajectory and tuning parameter
combinations in the Supplement. Examining the results shows
that with equivalent parameter tuning, SIMPLE is both more
prone to over-segmentation and underestimates the width of
the transition intervals. Moreover, upon calculating the log-
likelihoods of the data being described by either a single
Laplace distribution or a weighted barycentric interpolation
between the Laplace distributions corresponding to adjacent
trajectory segments, and labeling the segments accordingly
based on which of the two log-likelihoods is greater, it is
readily apparent that BarT greatly outperforms SIMPLE in
terms of labeling. Results on additional trajectories, shown
in the Supplement, suggest that SIMPLE may only yield
somewhat comparable labels in very well-behaved, low-noise
time series, or time series with short transition lengths, and
that even in those cases, BarT displays improved change point
placement. This is due to the fact that SIMPLE continues to
underestimate the width of transition segments as it attempts to
“split the difference” and distribute parts of regions that do not
conform to its single-distribution assumption between adjacent
trajectory segments. PELT, on the other hand, performs com-
parably to BarT, with fewer misclassifications than SIMPLE.
Note, however, that neither PELT nor SIMPLE classify the
data points themselves; instead, the BarT classification is used
in all cases. This classification may fail on very short (1–2
data points) transition segments, wherein the log-likelihood
of a transition segment being described by the barycentric
transition model does not exceed that of it being described by
a single Laplace distribution even with correct change point
placement. Artifacts arising from this issue may be seen in
Figure 2, although on the whole, the results from all 2,100
trajectories, shown in this figure, confirm that BarT outper-
forms the other two algorithms with respect to classification.
Overall, BarT is capable of capturing gradual changes in time
series that fit the proposed model Laplace transition model.

BarT yields intuitive change point placement on synthetic
Langevin trajectories: Simulating the behavior of a particle
in a two-well potential landscape provides a convenient, one-
dimensional, two-state model of an MD trajectory, which can
be tuned in a way which enables CPD algorithm comparison
by visual inspection. The comparative performance of the
three tested algorithms on a 100,000-point trajectory is shown
in Figure 3. When tuned for low sensitivity, all algorithms

Fig. 1. Comparative performance of BarT, SIMPLE, and PELT on a noisy
synthetic trajectory (µ1 = 100, µ2 = 200, � = 20). Detected change points are
marked with vertical lines. Segments labeled as metastable are shown in red,
and segments labeled as transitions are shown in blue. Ground-truth change
points are shown in yellow.

Fig. 2. Comparative performance of BarT, SIMPLE, and PELT on the entire
set of noisy synthetic trajectories. Accuracy is defined as the fraction of
transition points correctly identified.

prioritize high-amplitude changes, and BarT and PELT yield
change point placements that result in the majority of transition
regions being labeled correctly, whereas SIMPLE does not.
The presence of noise in a trajectory contributes to imperfect
labeling accuracy; this challenge may be addressed by using
“soft” labeling instead, wherein the user may set the log-
likelihood difference threshold to be accepted as a transition.
When the algorithms are tuned for high sensitivity instead
(shown in Supplement), we can observe that all methods
treat both high-amplitude changes between the two states in
the trajectory and local fluctuations within a state as change
points. Again, only BarT and PELT are able to assign change
points in a manner which results in gradual transition between
states being correctly labeled as such. It is apparent that the
MD-like trajectory contains transition features that do not
always perfectly fit the model (e.g., incomplete or reversed
transitions, or transitions via a longer-lived intermediate state).
Regardless, BarT treats the vast majority of transition regions
correctly, suggesting it may provide a way to reliably indicate
the presence of gradual transitions in a trajectory.

BarT correctly localizes transition segments in alanine
dipeptide, but noise prevents high sensitivity: The results of
applying the three algorithms to the alanine dipeptide MD
trajectory are shown in Figure 4. In the case of SIMPLE
(Figure 4A, mid-left), once the relative log-likelihood labeling



Fig. 3. Comparative performance of BarT, SIMPLE, and PELT on a Langevin
dynamics trajectory under a two-well potential, in a low sensitivity regime (�
= 320 for SIMPLE and BART, 75 changes for PELT). Detected change points
are marked with vertical lines. Segments labeled as metastable are shown in
red, and segments labeled as transitions are shown in blue.

scheme is applied, 439 transition points are identified in �,
and 1,313 transition points are identified in  . Intuitively,
we would expect transitions in � to appear along horizontal
paths connecting the two high-density regions with high  
values: � and PPII (see Supplement for details). On the
other hand, transitions in  may be expected to appear
along vertical paths connecting the � and PPII regions to the
↵ region underneath. Whereas this expectation is generally
met, many putative transition points are identified in areas
which, by visual inspection, do not correspond to transition
regions, and which, by chemical intuition, are inside the
canonical Ramachandran regions. In addition, a high number
of points outside of the canonical regions remain unlabeled
as transitions. Meanwhile, PELT labels 4,450 points in the
� time series as transitions, along with 4,760 points in the
 time series, achieving a high rate of detection. Among
these points, points outside the canonical regions are over-
represented, in line with chemical intuition. BarT produces
significantly different results (Figure 4A, mid-right): the very
noisy � time series (shown in Supplement) is labeled as having
278 transition points, which appear to correspond to local
fluctuations, rather than large-scale gradual transitions. In the
 time series, 6,175 transition points are identified. These
points appear to fall into two main categories: those that do,
in fact, correspond to “sloped” regions in the time series,
and which are predominantly located outside the canonical
Ramachandran regions, along vertical paths connecting � and
PPII regions to the ↵ region, and those belonging to long,
flat segments split in a way which allows the central portion
to be interpreted as a barycentric interpolation between the
outside portions (Figure 4B). This error leads to a relatively
high number of false positives, which may be addressed
by tuning the � parameter value further to avoid excessive
splitting. Similarly to what we have observed in the case of
SIMPLE, a high number of points outside the canonical areas
remain unlabeled. This observation corroborates our findings
on the toy datasets, which suggest that noise may lower the
sensitivity of the algorithm. “Soft” labeling may be useful in

this case as well. Note, while alanine dipeptide is an extremely
common model system, due to its small size, it exhibits very
rapid conformational transitions – larger systems with slower
dynamics may benefit from the application of BarT more.
Lastly, the application of BarT’s classification in conjunction
with algorithms like PELT, whose test statistic appears more
robust to noise in this context, may be a worthwhile pursuit.

Fig. 4. Comparative performance of BarT, SIMPLE, and PELT on a 200 ns
conventional MD trajectory of alanine dipeptide. (A) Density plots of the full
trajectory and transition points in each variable, detected by each algorithm.
(B) BarT false positive: central segment of a split “flat” region is treated as
a barycentric interpolation between the outside segments.

IV. CONCLUSION

In this work, we presented a CPD algorithm which ap-
plied the penalized likelihood estimation principle to a model
consisting of Laplace-distributed segments and barycentric
interpolations thereof. Results on model systems show that
this way of treating gradual transitions is effective and allows
for more information to be obtained from MD and MD-like
trajectories than using the current state-of-the-art algorithms
which assume instantaneous transitions.

BarT is parametric, because it imposes Laplace distributions
on the metastable states. It is of interest to extend the proposed
framework and related ones based on Gaussian mixtures [36],
[37] to the nonparametric setting for richer analysis of MD
simulation data. Moreover, the proposed approach only allows
for barycenters between two probability distributions. It is
of interest to leverage recent work characterizing barycenters
between more than two probability measures [38] to allow
for efficient Wasserstein dictionary learning [39]–[41] in the
context of MD simulations.
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