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ABSTRACT

Contrastive Language—Audio Pretraining (CLAP) has shown strong performance
in modeling general audio—text, but remains limited in capturing complex and di-
verse speech styles. We propose SPEECH-CLAP, a contrastive model that learns
joint representations of speech audio and style descriptions, capturing both intrin-
sic speaker characteristics (e.g., age, gender, timbre) and dynamic expressive fea-
tures (e.g., emotion, speaking rate, intonation). The model is trained on a 10,000-
hour speech—style corpus with detailed textual descriptions of speech styles, and
we further introduce the Speech-Style Similarity Benchmark (S®Bench), the first
cross-lingual benchmark for speech-style similarity, which includes both Chinese
and English speech-style pairs with human preference annotations. Experimental
results show that SPEECH-CLAP aligns closely with human judgments. This
work not only provides a solid foundation for style-aware speech representa-
tion but also establishes an important evaluation standard for future research on
speech-style modeling. We will release both the SPEECH-CLAP model and the
S3Bench to the community to facilitate future research on speech-style modeling.

1 INTRODUCTION

Contrastive learning has recently emerged as a dominant paradigm for multimodal representa-
tion learning, achieving remarkable success in computer vision and audio processing. Inspired
by the breakthrough of Contrastive Language—Image Pretraining (CLIP) (Radford et al., |2021) in
vision—language modeling, a series of Contrastive Language—Audio Pretraining (CLAP) (Elizalde
et al.| [2023) approaches have been proposed, aligning audio signals with natural language descrip-
tions to enable general-purpose audio retrieval and classification. While these models excel in repre-
senting general audio events (e.g., dog barking, door slamming, piano playing), they remain limited
when applied to human speech, where not only the content (what is said) but also the manner of
speaking (how it is said) carries crucial information.

Speech style is inherently nuanced, including both intrinsic speaker characteristics (e.g., age, gender,
timbre) and dynamic expressive features (e.g., emotion, speaking rate, intonation). Recent advances
in controllable TTS (Guo et al.| [2022; |Shimizu et al., 2024; [Yang et al., |2024)) and style caption-
ing (Vyas et al., 2023} J1 et al.| 2024; Jin et al.| [2024) highlight the promise of using natural-language
prompts to describe speech style. However, many approaches are still limited by their reliance on
pre-defined categories and labels—they compose style descriptions by combining discrete tags from
a fixed set (e.g., emotion, speaking rate, pitch/timbre), as demonstrated in Table [I] Some recent
studies attempt to move beyond such categorical tags by directly learning embeddings of specific
expressive dimensions. For instance, emotion2vec (Ma et al., 2023) introduces a universal emotion
representation via self-supervised learning, while RA-CLAP (Sun et al.||2025) augments CLAP for
emotional speaking style retrieval. Other efforts such as CLAPSpeech (Ye et al.l 2023)) focus on
mapping text to prosody embeddings. Yet these models remain confined to individual aspects such
as emotion or prosody, and thus fall short of providing a general-purpose, multidimensional, and
natural-language—aligned representation of speech style.

To bridge this gap, we propose SPEECH-CLAP, a contrastive learning model trained on a 10,000-
hour corpus of speech—style pairs with fine-grained stylistic descriptions. Unlike prior CLAP vari-
ants (Wu et al. |2023) that primarily target sound events, SPEECH-CLAP is designed to capture
the nuanced stylistic dimensions of human speech in a cross-lingual setting. Our SPEECH-CLAP
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Table 1: Examples of style descriptions from representative datasets compared with our SPEECH-
CLAP corpus.

Dataset Examples

PromptTTS “The rapid, loud and high-keyed voice belongs to the lady.”
“One man said loudly.”

TextrolSpeech “The male speaker’s energetic discourse is accompanied by a normal pitch and
speed.”

“Speaking with normal energy, she conversed swiftly.”

SpeechCraft “With a natural emotion, a normal-pitched and normal-volume female youth
speaks at a normal pace and shares a thought.”

“HEPFEUTEN SR Kaga, DEEREIgEti. »
Speech-CLAP (Ours) ‘A slow, gravelly wllisper conveyillg a sophisticated and sinister threat.”
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corpus encourages free-form, fine-grained descriptions beyond discrete labels, advancing the field
from label assembly toward open-text, high-resolution style representations as shown in Table [T}
As a foundation representation model, SPEECH-CLAP can serve as the basis for multiple down-
stream tasks beyond similarity evaluation. Although this work primarily focuses on style similarity,
prior studies have demonstrated the potential of style-aware representations in tasks such as control-
lable text-to-speech (Guo et al., [2022)) and as front-end encoders for large audio—language models
(LALMSs) (Ghosh et al., 2025)).

At the same time, rigorous evaluation of style representations remains challenging due to the lack of
nuanced evaluation frameworks: existing datasets predominantly use tag-based descriptions (Guo
et al., 2022; J1 et al., |2024; Jin et al.l 2024) that fail to capture the richness of human-perceived
speaking style. Moreover, there is no established way to measure whether learned representations
truly capture the stylistic nuances that humans perceive in speech. To fill this gap, we introduce
the Speech-Style Similarity Benchmark (S®Bench), the first cross-lingual benchmark that evaluates
how well speech—style style representations align with human perception via human-annotated 0-5
ratings. S®Bench comprises 1,000 Chinese and English speech—style pairs, each annotated by five
raters (5,000 ratings total). Our experiments show that SPEECH-CLAP achieves strong correlations
with human judgments (Pearson = 0.69, Spearman = 0.69, p < 1le-140). This demonstrates that our
model successfully learns fine-grained speech style representations aligned with human perception.

In summary, our contributions are threefold:

» We introduce S®Bench, the first cross-lingual human preference benchmark for evaluating
fine-grained speech style similarity.

* We present SPEECH-CLAP, the first contrastive learning model explicitly designed to rep-
resent fine-grained speech styles defined by natural language across Chinese and English.

* Extensive experiments demonstrate that SPEECH-CLAP achieves high consistency with
human judgments on cross-lingual style similarity assessment.

2 SPEECH-STYLE SIMILARITY BENCHMARK

2.1 MOTIVATION

Evaluating fine-grained speech style representations poses unique challenges. First, the distribution
of speaking styles is inherently imbalanced, making it difficult to ensure balanced coverage across
different styles. Second, natural and fine-grained style descriptions often lead to low inter-annotator
agreement, as human raters may emphasize different stylistic dimensions when assessing similarity.
These issues complicate the evaluation of whether a model truly captures subtle stylistic cues that
humans perceive. To address these challenges, we design a stratified sampling strategy to maximize
stylistic diversity across unknown speech style distributions, establish detailed annotation guidelines
to ensure consistency, and verify the reliability of human ratings. The pipeline is shown in Fig.
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Figure 1: Construction pipeline of the Speech-Style Similarity Benchmark (S®Bench). Here, Clap*
is an intermediate model trained from training data used for retrieving audio for the benchmark.

2.2 BENCHMARK CONSTRUCTION

Building upon the preprocessing pipeline described in later Section we introduce additional
steps to construct a reliable benchmark. To construct S3Bench, we leveraged an intermediate check-
point of SPEECH-CLAP (denoted as Clap*), obtained before the benchmark was finalized. This
preliminary model was used only to provide a rough similarity signal, ensuring coverage across the
similarity spectrum—from clear mismatches to close stylistic matches.(see Section 3] for details).

Style seeds and coverage. To ensure comprehensive coverage across stylistic dimensions and
linguistic diversity, we first compute embeddings using Clap* and perform K-means clustering to
group stylistically similar samples. After experiments, we set the number of clusters to 100, strik-
ing a balance between granularity and coverage without creating overly fragmented groups. The
cluster centers were then manually inspected, and underrepresented categories were supplemented.
Through this combination of automatic clustering and manual refinement, we ultimately obtain 200
style seeds for each of the Chinese and English subsets.

Self-instruct expansion. We adopt a self-instruct expansion strategy(Wang et al., 2022b), where
the initial style seeds are used as prompts to iteratively synthesize diverse style descriptions. In each
iteration, style descriptions are sampled at a 7:3 ratio from the seed pool and the generated pool,
employing GPT-5 to produce new candidates and thus ensure scalability and diversity. The prompt
is shown in Appendix[B.1] To preserve diversity, for each new candidate, we use Qwen-Embedding-
8B to compute its cosine similarity against every description already in the generation pool and the
seed data, and admit the candidate only if all pairwise similarities were below 0.9. After several
iterations, this process yield approximately 1,000 style descriptions.

CLAP-guided stratified sampling. We use Clap* model to retrieve candidate audio—text pairs
from the corpus and the description pool, and then randomly shuffle the pairings. For each shuffled
pair, we compute a Clap* similarity score sg. We divide all candidate pairs into 10 bins based on the
quantiles of sy and sample an equal number of pairs from each bin. This procedure yield a spectrum
of pairs ranging from completely mismatched to highly matched. It is important to note that CLAP
is only used in the sampling stage to balance the difficulty distribution and avoid extreme skewness.
The final benchmark labels are based solely on human ratings.

2.3 HUMAN SIMILARITY ANNOTATION

To obtain reliable human judgments, we recruited 20 annotators, all undergraduate or graduate stu-
dents from Chinese universities with strong English proficiency. Annotators were paid 1 RMB per
pair, corresponding to an hourly rate of about 7-8 USD, which is above the local minimum wage.
Before annotation, each annotator completed a qualification test of 10 items and is required to main-
tain an outlier rate below 30% to proceed. During the main task, each annotator rate 250 pairs, with
every pair independently rated by five annotators. The rating scale ranges from 0 (completely mis-
matched) to 5 (highly matched), reflecting the perceived degree of stylistic alignment between the
speech sample and the text description. This process results in 5,000 ratings in total, and the average



Under review as a conference paper at ICLR 2026

Distribution of Rounded Average Human Annotation Scores

(a) All Samples (b) Chinese Samples (c) English Samples
120
250 — 140
100
200 120
80 100
£ 150 = € 80
& §® &
100 60
40
40
50
20 20 ,j
0 0 1 2 3 4 5 0 0 1 2 3 4 5 0 0 1 2 3 4 5
Rounded Average Score Rounded Average Score Rounded Average Score

Figure 2: Average rating distribution of S®Bench. Each sample is annotated with a mean score over
five judgments, spanning the full 0-5 range, which reflects the benchmark’s coverage of different
levels of stylistic match.

rating of each pair was taken as its reference score. We ensure that annotators are only exposed to
the audio and text pairs without any metadata to prevent bias. The full annotation guidelines are
detailed in Appendix [A]

2.4 DATASET ANALYSIS AND STATISTICS

We conduct a detailed analysis of the S®Bench to verify its reliability and highlight its challenges.
The analysis covers score distribution, inter-annotator agreement, and language-specific subsets.

Score distribution. The rating distribution of S®Bench spans the full range from 0 (completely
mismatched) to 5 (highly matched), which is consistent with our design objective of covering pairs
of varying difficulty. As shown in Figure [2] the dataset naturally provides a balanced spectrum
from clear matches to clear mismatches, demonstrating that our CLAP-guided stratified sampling
effectively produces a diverse benchmark across different levels of stylistic similarity.

Inter-annotator agreement. We report Krippendorff’s(Krippendorft, 2018) a (both interval- and
ordinal-distance variants) for the full dataset as well as the Chinese and English subsets. Krippen-
dorff’s « quantifies inter-annotator reliability by comparing the observed disagreement D, with the
disagreement expected by chance D.:

a=1-22 (1)

where

D. = Zc Zk Ock 62(65 k) D — Ec Zk €cCL (52(6, k’)
’ Zc Ek Ock ’ c ZC Zk €cCk
Here o.;; denotes the observed co-occurrence of categories ¢ and k within units, e, is the marginal
frequency of category ¢, and 0(c, k) is a distance function between labels (we use squared ordinal
distance for 0-5 ratings).

As shown in Table using all five ratings per item (raw) yields an overall & = 0.50 (Chinese: 0.59;
English: 0.41), reflecting moderate agreement and certain language-specific variation. To examine
sensitivity to extreme judgments, we further perform symmetric trimming: discarding the highest
and lowest rating for each item before aggregation. The trimmed results substantially increase over-
all o to 0.75 (Chinese: 0.80; English: 0.68), indicating strong consensus among the majority of
annotators once extremes are down-weighted. More importantly, Pearson and Spearman correla-
tions between model scores and human labels remain nearly identical when using trimmed versus
raw means, demonstrating that extreme ratings have limited effect on the benchmark conclusions
and that the benchmark is robust.

Robust statistics show that trimmed (or Winsorized) means improve estimation reliability under
outliers or heavy-tailed noise(Lugosi & Mendelson| [2020), we therefore report both (i) the raw «
using all ratings (our primary result) and (ii) the trimmed « as a robustness check, jointly supporting
that the benchmark labels remain reliable and stable across aggregation choices.
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Table 2: Inter-annotator agreement on S>Bench. We report Krippendorff’s o (interval/ordinal) (cat-
egorical 0-5). Both raw (all five ratings) and trimmed (discarding highest and lowest per item)
results are shown.

Dataset o (raw) o (trimmed)
S?Bench (Al 0.50 0.75
S%Bench (ZH) 0.59 0.80
S$3Bench (EN) 0.41 0.68

In summary, S®Bench provides balanced coverage across the similarity spectrum. Although the
task itself is more complex, the majority of annotators still achieved a reasonably reliable level of
agreement (o > 0.667) (Krippendorft} 2018). These properties make it a trustworthy and valuable
benchmark for style-aware speech representation.

3 SPEECH-CLAP

3.1 OVERVIEW

We propose SPEECH-CLAP, a strong model that extends the CLAP framework to fine-grained
speech style representation. Unlike previous CLAP variants that mainly focus on general audio
events, SPEECH-CLAP is designed to align natural language descriptions with human speech, em-
phasizing paralinguistic and stylistic attributes.

3.2 TRAINING CORPUS AND PREPROCESSING

Speech-CLAP is trained on a large-scale corpus of approximately 10,000 hours of speech—style
pairs. To ensure quality and stylistic diversity, we designed a systematic data preprocessing pipeline:

Data source selection. We draw data from multiple sources, including podcasts, dubbing corpora,
movie dialogues, and public speeches. These sources provide stylistically diverse material: podcasts
often reflect casual conversation, while movie scripts and dubbing include highly emotional and
expressive speech. Such diversity broadens the stylistic coverage of the corpus.

Segmentation and Quality Filtering We first applied voice activity detection (VAD) to obtain
short, speech-only segments from long recordings, and we limited each segment to <30 s to avoid
mixing multiple styles within a single sample and to preserve stylistic consistency. Then, we eval-
uated audio quality with DNSMOS, adjusting the threshold to remove low-quality samples while
retaining as many human- voice recordings as possible. This step reduces noise and low-fidelity
artifacts while enriching the stylistic diversity of the dataset.

Speaker Distribution To prevent bias toward a small number of voices, we maintained a balanced
proportion of single-speaker and multi-speaker samples with speaker tags generated by WhisperD
covering a wide range of genders, ages, and accents, and including a subset of conversational speech.
This design allows the model to capture both the unique characteristics of individual speakers and
the stylistic patterns emerging in multi-speaker interactions.

Caption Generation and Rewriting On the text side, following Huang et al.|(2025), we used
Gemini-2.5-pro to generate multi-dimensional stylistic descriptions, covering attributes such as tim-
bre, rthythm, emotion, and accent. To improve robustness, we further applied Qwen-8B to rewrite
the captions, generating multiple variants for each speech sample. This augmentation mitigates the
risk of overfitting to fixed templates and introduces stylistic paraphrase diversity into training. The
prompt used in rewriting is shown in Appendix

Together, these steps constitute a preprocessing and captioning pipeline designed to ensure both high
quality and stylistic diversity of the training data.

"https://huggingface.co/jordand/whisper-d-vla
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Figure 3: Illustration of the SPEECH-CLAP data pipeline. Raw speech—style pairs are captioned
with multi-dimensional stylistic attributes, augmented by Qwen, and then used to train the SPEECH-
CLAP dual-encoder model.

3.3 MODEL ARCHITECTURE

Speech-CLAP follows the dual-encoder design of CLAP. For audio encoding, we adopt HTS-AT
Large(Chen et al.,|2022), a spectrogram Transformer that has demonstrated strong performance on
general audio understanding benchmarks and has been validated in prior CLAP frameworks. HTS-
AT employs a hierarchical Transformer architecture that operates on spectrogram representations.
By modeling time—frequency structures in a multi-scale manner, it provides strong performance on
audio tasks. Although not specifically designed for speech prosody, its ability to capture both local
and global spectro-temporal patterns makes it a suitable backbone for speech-related applications.

Considering our goal of building a multilingual and style-sensitive model, we adopt mT5Xue et al.
(2020) as a strong and widely used baseline for the text encoder. In our experiments, we compared
mT5 with Qwen3-Embedding-0.6B and ultimately selected the latter, as it offers balanced repre-
sentation capability in both Chinese and English while maintaining a lightweight design that avoids
overshadowing the audio modality.

Both audio and text embeddings are projected into a shared space, where cosine similarity is com-
puted for contrastive alignment. The architecture remains simple and reproducible, consistent with
our design philosophy.

3.4 TRAINING OBJECTIVE

Following LAION-CLAP, we adopt a symmetric InfoNCE contrastive loss to align audio and text
embeddings. Given a batch of N paired samples {(a;,#;)} ,, we compute the similarity matrix as

8ij = bl 2

where 7 is a learnable temperature parameter.

The contrastive loss is defined in both audio-to-text and text-to-audio directions. For the audio-
to-text direction, each audio embedding a; is treated as a query and all text embeddings {t;} as
candidates. Similarly, for the text-to-audio direction, each text embedding t; is matched against all
audio embeddings {a;}. The final objective is the average of the two directions:

N
1 i i
e LN o) el

(3)
2N o YL exp(si;) Soim exp(syi)
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This formulation is exactly consistent with the implementation in C1ipLoss, where the similarity
matrix is computed via dot products between audio and text embeddings, and the cross-entropy loss
is applied symmetrically in both directions.

4 EXPERIMENTS

4.1 SETUP

We evaluate all models on S®Bench. The evaluation protocol follows the semantic similarity
paradigm of the STS-Benchmark, where model-predicted similarity scores are compared with hu-
man preference scores. We evaluate models using three widely adopted correlation-based metrics:
Pearson correlation, Spearman correlation, and Kendall’s 7. Among them, Pearson and Spearman
correlations serve as our primary indicators, since they directly reflect the consistency between
model-predicted similarity and human ratings in both linear and rank-based perspectives. Kendall’s
7 is additionally reported as a complementary reference metric, offering a more conservative esti-
mate of ordinal association. All models are evaluated on S®Bench without additional fine-tuning.

4.2 BASELINES

We compare SPEECH-CLAP against several representative baselines:

Random Two random strategies are considered: (i) shuffle, where human-annotated ratings are
randomly redistributed across speech pairs, and (ii) uniform, where similarity scores are randomly
sampled from a uniform distribution over [0, 5].

Text-only (Qwen3-Embedding-8B) To examine whether speech signals contribute beyond tex-
tual information, we adopt the strongest open-source text embedding model, Qwen3-Embedding-
8B (Yang et al.| [2025), to compute similarity between transcripts of speech and style descriptions.

CLAP We adopt the state-of-the-art CLAP variant introduced by Elizalde(Elizalde et al.| |2024),
which employs the HTSAT-22 audio encoder and a GPT2-based text encoder trained on millions
of audio—text pairs, representing the most advanced CLAP model tailored for general-purpose au-
dio—text alignment.

LAION-CLAP LAION-CLAP In our experiments, we compared publicly available checkpoints
of LAION-CLAP, including larger clap general, larger clap music and speech, and clap-htsat-fused
variants. These checkpoints differ in training data makeup and architecture. Since our benchmark
emphasizes fine-grained speech style similarity, we selected larger clap music and speech as the
primary baseline, as it provides stable and reliable performance on speech-related evaluation.

AF-CLAP AF-CLAP represents an improved CLAP variant with stronger data augmentation and
alignment strategies. It serves as a stronger general-purpose baseline for comparison.

4.3 RESULTS

We report Pearson correlation, Spearman correlation, and Kendall’s 7 of the models introduced in
Section[4.2] Results are shown in Table[3] from which we notice that:

Random setting yield near-zero correlation with human judgments, establishing the lower bound of
performance. The text-only baseline (Qwen) performs poorly across all languages (Pearson < 0.18),
confirming that speech style information can’t be adequately captured through textual descriptions
alone. Other CLAP models (CLAP, LAION-CLAP, AF-CLAP) show moderate performance only
on English data, with correlations ranging from 0.23 to 0.45, and cannot handle Chinese speech at
all.

Our proposed SPEECH-CL AP model significantly outperforms all baseline methods across all eval-
uation metrics. On the combined dataset, SPEECH-CLAP achieves a Pearson correlation of 0.70,
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Table 3: Performance comparison on S3Bench. We report Pearson correlation (all/zh/en), Spearman
correlation (all/zh/en), and Kendall 7 (all/zh/en). Best results are highlighted in bold. Models
marked with * do not support Chinese, and thus their zh results are close to random, indicating that
they fail to capture meaningful cross-lingual representations.

Model Pearson Spearman Kendall 7

all zh en all zh en all zh en
Random 0.05 006 0.04 0.03 006 0.06 002 0.04 0.04
Text-only (Qwen) 0.15 0.18 0.11 0.15 0.17 0.12 0.10 0.12 0.08
CLAP* 0.16 -0.07 045 0.13 -0.09 042 0.09 -0.07 029
LAION-CLAP* 021 004 038 0.19 0.03 036 0.13 0.02 025
AF-CLAP* 0.18 001 026 0.16 000 023 0.11 0.00 0.16

Speech-CLAP (Ours) 0.70 074 0.64 069 073 0.64 051 053 0.46

substantially higher than the best existing baseline (CLAP at 0.45 on English-only data). SPEECH-
CLAP also maintains consistently strong performance across both Chinese and English subsets,
with Pearson correlations of 0.74 and 0.64 respectively.

In conclusion, our SPEECH-CLAP demonstrates strong consistency with human evaluation, being
the first model able to handle Chinese speech style modeling while achieving superior performance
across both languages.

4.4 ABLATION STUDY

To better understand the contribution of different design choices, we conduct an ablation study
focusing on the effect of caption rewriting. As shown in Table 4] starting from an mT5-based text
encoder, replacing it with Qwen improves cross-lingual style representation. Further incorporating
Qwen-8B rewrites consistently enhances correlation with human ratings, suggesting that diverse
stylistic paraphrases strengthen model robustness and generalization.

Case Study To further illustrate the diversity and reliability of S®Bench, we highlight several
representative cases where style captions involve fine-grained and multi-dimensional descriptions.
Despite their complexity, human annotators consistently reached high agreement, and SPEECH-
CLAP also assigned high similarity scores.

It is worth noting that SPEECH-CL AP similarity scores in our setting generally fall between 0 and
0.6, consistent with distributions observed in clipscore(0-0.4) (Hessel et al.l [2022). Within this
range, a score above 0.5 indicates a strong stylistic match, which aligns well with the unanimous or
near-unanimous human annotations in these representative cases.

These cases show that S3Bench supports highly detailed and diverse style descriptions with reliable
human consensus, and that SPEECH-CLAP effectively captures such fine-grained stylistic cues.

Table 4: Ablation study on the effect of text encoder choice and caption rewriting. Results are
reported on S®Bench.* Trimmed results (removing max/min ratings before averaging); see Table
for details.

Pearson Spearman Kendall 7
Text encoder
all zh en all zh en all zh en
mT5 042 044 039 041 043 038 029 030 0.27

Qwen(Gemini) 066 069 062 065 068 061 046 048 044
Qwen(Rewrite) 070 0.74 0.64 0.69 0.73 0.64 051 053 046
Qwen(trimmed)” 0.69 0.73 065 070 0.73 0.65 052 0.54 048
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Table 5: Representative case studies with complex style descriptions. Human annotations show high
agreement, and SPEECH-CLAP achieves consistent similarity scores.

Style Caption Human Annotations Speech-CLAP Similarity
FERTUK, REIRENOCRFILS [4.5.5.5.5] 0.52

BERR, B RIE RIEROGE S KT

An animated children’s storyteller bounces be- [5,5,4,4,5] 0.53

tween characters with bright, playful inflection
and a buoyant sing-song rhythm.

5 RELATED WORK

5.1 SPEECH STYLE MODELING AND CONTROLLABLE TTS

Modeling speech style is a long-standing challenge. Traditional approaches rely on categorical emo-
tion recognition (Feng & Narayanan, [2023) or speaker identification (Wang et al.| [2022a), but these
categorical labels cannot capture the full richness of human speaking style. To address this, recent
work has explored free-form natural language descriptions. PromptTTS (Guo et al., 2022) intro-
duces natural language prompts to control text-to-speech generation, while PromptTTS++ (Shimizu
et al) [2024) extends this approach by combining style and speaker descriptions. StyleCap (Ya-
mauchi et al., |2022) and SpeechCraft (Jin et al., 2024) generates multi-dimensional speech style
captions, and ParaSpeechCaps (Diwan et al., 2025) provides large-scale labeled data with 59 stylistic
attributes. However, these works mostly generate style descriptions based on pre-defined categories,
limiting their abilities to capture the fine-grained and nuanced characteristics of natural speech.

5.2 CONTRASTIVE LANGUAGE—AUDIO PRETRAINING

Inspired by CLIP (Radford et al.,|2021]), contrastive language—audio pretraining (CLAP) has recently
gained attention in audio understanding. CLAP models (Elizalde et al., 2023} |Wu et al. [2023)
align audio recordings with natural language descriptions in a shared embedding space. Extensions
such as AF-CLAP (Ghosh et al., 2025) and M2D-CLAP (Niizumi et al.| 2024) further improve
audio—text alignment via enhanced data augmentation or modality fusion. However, these models
primarily target general audio events (e.g., environmental sounds), and only limited attempts have
been made to capture human speech style. A notable step forward is RA-CLAP (Sun et al.| 2025)),
which introduces relation-augmented training for emotional speaking style retrieval, but it remains
constrained by open-source datasets with coarse labels.

5.3 HUMAN PERCEPTION AND SIMILARITY BENCHMARKS

Evaluating model alignment with human perception has been studied. In natural language process-
ing, the STS-Benchmark (Cer et al., |2017) measures semantic similarity via human ratings on sen-
tence pairs. In vision—language research, CLIPScore (Hessel et al., [2022) provides a reference-free
metric correlated with human judgment for image captioning. Recently, Human-CLAP (Shinohara
et al.| |2024)) highlighted that original CLAP scores correlate poorly with human evaluations, and
proposed human-annotated fine-tuning to bridge the gap. These studies demonstrate that human
preference alignment is essential for evaluating multimodal representation models.

6 CONCLUSION

In this paper, we introduced SPEECH-CLAP, the first CLAP-style model explicitly designed for
fine-grained speech style representation, and proposed the Speech-Style Similarity Benchmark
(S®Bench), the first human preference benchmark for evaluating speech—style alignment. Our ex-
periments show that our S®Bench achieves high inter-annotator agreement, validating S®Bench as
a reliable evaluation protocol. SPEECH-CLAP achieves strong correlation with human judgments,
validating the feasibility of modeling speech style via contrastive learning.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets used, including our S3Bench, were sourced in compliance
with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any
biases or discriminatory outcomes in our research process. No personally identifiable information
was used, and no experiments were conducted that could raise privacy or security concerns. We are
committed to maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. The proposed benchmark
consisting of 5,000 human-annotated samples will be made publicly available, and the baseline
model together with its training and evaluation code will also be released upon acceptance. Detailed
descriptions of data collection, preprocessing steps, and evaluation protocols are provided in the
main paper. We believe these resources and explanations will enable the community to faithfully
reproduce our results and further build upon them.
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A ANNOTATION GUIDELINES

1. Please ignore factors unrelated to style, such as audio quality or truncation. Focus only on
the degree to which the audio description matches the actual audio content.

2. If some English expressions are uncommon, you may use Google Translate for reference
(plugin address: https://chromewebstore.google. comn).

3. Ignore additional metaphorical scene descriptions that are hard to judge, such as “as if
narrating a long-tested story.”

4. For role-playing descriptions such as “retail clerk” or “comedian,” ignore the textual role
and judge only by listening.
* Roles like “retail clerk” or “researcher” that do not imply a specific voice style can be
ignored.
* Roles like “comedian” or “singer” that explicitly imply stylistic vocal features should
be considered.

5. Score the degree of match between the audio and the description from O to 5 according to
the following standards:

(a) Regular procedure: identify several key features from the text, then check if they
match the speech. Give reasons based on proportion, and then assign a score accord-
ingly.

i. Reference dimensions:

A. Gender, age, pitch, speech rate, volume, emotion, tone, accent, texture (e.g.,
hoarse), clarity, fluency

(b) Proportional considerations:
i. Each feature has equal weight in principle, but adjustments can be made based on
listening judgment.
ii. The degree to which the feature matches.
iii. The duration for which the feature matches.
6. Assign a confidence level to your own score:

(a) High: Confident that the annotation is reliable.

(b) Medium: Some important dimensions cannot be judged; the score is less certain (for
abstract or vague descriptions, less attention is needed).

(c) Low: The description and audio are difficult to judge; the score is highly uncertain.
The detailed criteria and examples are shown in the table below. Each example was originally paired

with a reference audio clip; since audio cannot be presented here, only the textual description and
the scoring rationale are provided.

Table 6: Scoring Table for Audio—Text Matching

Score | Caption Description Example Description Reason

A clear and straightforward male

Description fully matches narrator, emphasizing technical terms, All features

5 the audio across all orderly and restrained yet slightly match.

dimensions. excited.

e 100% of the content is A passionate commentator with explosive

accurate pitch variation and dense speech rhythm, | All features
full of exaggerated exclamations and match.

strong beat sense.

An elderly woman with a low, hoarse yet
gentle voice, slowing down her speech, All features
elongating sentence endings, expressing match.

weary but firm concern.

Continued on next page
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Table 6 — continued from previous page
Score | Caption Description Example Description Reason
Overall
Street-rap style fast speech, sharp impression fits
Most dimensions match, consonants, strong rhythm, stubborn rap style, though
4 with only 1-2 minor tone. text content is

deviations.

e Minor differences do not
affect overall impression

e Speech rate variations not

unrelated.

A mild and low voice tinged with
hoarseness, calm yet firm, as if narrating
a long-tested story.

”Low” but not
”slow.”

Core features match, but
3 clear descriptive
differences exist.

e Major traits (gender, age
group, overall style) are
correct

e About 40%—70%
accurate

in standard Mandarin, with authority and
fairness in tone.

obvious Storytellin
o About 70%-90% Storyteller-like rhythm, low-pitched with Y g
accurate laughter, ending with humorous twists correct, but no
’ ’ drumbeat rhythm.
A professional announcer reading news First half

matches, latter
half does not.

A woman’s voice showing dramatic
variation, from deep sadness rising to
passionate joy, as if performing an
emotional storm.

The “’rising from
sadness to joy”
part is inaccurate.

A nightclub female singer’s hoarse
humming, slight laughter, lazy elongated
endings.

“Female singer”
not accurate,
other traits

correct.
Solemn and slow speech, carefully Second half
Only a few features narrating a grand ceremony, with respect
2 h . . matches.
match. and seriousness in tone.
e Gender/rough age may Some “’soft” and
match

e Most detailed

descriptions do not match
e About 20%—-40%
accurate

A dessert shop clerk’s soft and sticky
recommendation, cheerful rising
intonation, every line wrapped in
sweetness.

’rising
intonation” fit,
but overall
impression is
sarcastic/ironic.

Only a minimal number
1 of features match.

o At most 1-2 traits align,
overall style is very
different

e About 10%-20%
accurate

A youthful bright voice, slightly
surprised and excited, ending with a light
jump.

Only slightly
surprised and
excited” applies.

A powerful and forceful tone,
thunder-like, full of determination in
every word.

Briefly
“powerful,”
otherwise
mismatch.

A husky female cabaret voice, airy and
lazy downward endings, ambiguous and

Only “female”
correct, others

relaxed. mismatch.
A soft and warm female voice, »
o R . Female
No match between whispering gently, soothing like spring whispering”
0 description and audio tsunjhllne, delivering encouragement incorrect.
across all dimensions. enderly. _ :
e 0% of the content is A frank and direct voice, slow but firm Entirely
accurate rhythm, full of undeniable confidence. incorrect.

14




756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

bl 0 ARG, o 0 AN | A, o

EI
* REE

00:00:00:000 00:00:08:640

[ SHFFER.

)

o EmER

[ REHTER, BSTR, SR, RRERUTFIE.

]

o ERE
RIS, B EREATEN, EUSHIFNERER

Add

AR, R

@ RS (0-55)

ol gl g g @ sl gl
M

tow?l medum® @ high®!

[ XEEFATE

5:

- MRS EREFMEHE LR B
- H100%MHANE ER
2

43
- REPRETR, RF1-2TEEFERNER
. %:Eiﬁﬁ?mgﬁmiﬁﬂ’élql%/kﬁ EANER

iE;
+ 4970%-90% AN E TR
3:

5

- BURELE, BERENEAER

- £940%-70%MHANE S EM—B

-ﬁi!ﬁﬁ (M8, IR, BERE) EALER
2

- RARMISELE

- AR, ABERE

« REBSY RISHIR S KRR
-gzowmwmﬁmsmz

e
- RARDBISER TR

- L2 MHERLE, BERIEERA
- £910%-20% RN I

- RS ESREAT AU E AR

- HO%MHANE LR

o e 8

Figure 4: Annotation interface used in our study.
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B PROMPTS

B.1 SELF-INSTRUCTING PROMPT

The following prompt is used for GPT-5 self-instructing:

You are a voice description data generation expert. Below are some voice
description examples, generate more different English voice
descriptions :

{examples}

Please continue generating voice descriptions with subsequent numbering.
Each description should:

— Be completely new and unique voice styles

— Avoid repetition or excessive similarity with the above examples
— Descriptions can vary in length and detail

— Avoid containing too many changes and details

— Use natural Chinese expressions

— Reduce generation of bland voice styles

— Reduce descriptions starting with A or An

Start generating directly:

B.2 REWRITING PROMPT

The following prompt is used for rewriting:

Please perform =xprogressive processing## on the following speech
description text with the following requirements:

1. =xCore constraint==: The original meaning must be fully preserved
without deviation.

2. xxTemporal constraint=x: The chronological order of all events must
strictly follow the original text and cannot be altered.

3. =xProgressive processing*x: Generate three versions of the text with
different levels of detail , derived step by step from the original.

4. %% Quality requirement=%: The processed texts should be natural in
language and logically clear.

Original text:
{summary_text}

Please provide three versions in #%*JSON format =::
‘¢‘json
{

“textl”: "Restated version: Retain the complete meaning and level of
detail of the original text, but rewrite it using different
vocabulary and expressions.”,

“text2”: ”Simplified version: More concise than the restated version,
focusing on the main descriptive content. Preserve the core
information while omitting minor details , especially those that
cannot be inferred solely from sound.”,

“text3”: ”Basic version: Even simpler than the simplified version,
using short and straightforward sentences to highlight the key
sound features.”

Please ensure:
— xxtextl *x: Same meaning as the original, same chronological order, same
level of detail, but with different wording.
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— #xxtext2+x: Extracts the main information from the original, removes
less important details.

— xxtext3 *x: Uses simple sentences to describe the main sound
characteristics .

C USE OfF LLMS

We use large language models to enhance clarity, refine style, and improve the overall quality of
writing.

LLMs was not involved in the ideation, research methodology, or experimental design. All research
concepts, ideas, and analyses were developed and conducted by the authors.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM.
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