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Abstract—Vision-Language-Action (VLA) models have
emerged as powerful generalist policies for robotic control,
yet their performance scaling across model architectures and
hardware platforms, as well as their associated power budgets,
remain poorly understood. This work presents an evaluation
of five representative VLA models—spanning state-of-the-art
baselines and two newly proposed architectures—targeting edge
and datacenter GPU platforms. Using the LIBERO benchmark,
we measure accuracy alongside system-level metrics, including
latency, throughput, and peak memory usage, under varying
edge power constraints and high-performance datacenter GPU
configurations. Our results identify distinct scaling trends: (1)
architectural choices, such as action tokenization and model
backbone size, strongly influence throughput and memory
footprint; (2) power-constrained edge devices exhibit non-linear
performance degradation, with some configurations matching
or exceeding older datacenter GPUs; and (3) high-throughput
variants can be achieved without significant accuracy loss.
These findings provide actionable insights when selecting and
optimizing VLAs across a range of deployment constraints. QOur
work challenges current assumptions about the superiority of
datacenter hardware for robotic inference.

Index Terms—VLAs, robotics, GPUs

I. INTRODUCTION

Vision-Language-Action (VLA) models have recently
emerged as a powerful paradigm for robotic control, enabling
systems to perceive the environment, reason over task instruc-
tions, and generate executable actions directly from vision and
language inputs [1]-[6]. By integrating vision and language
backbones with specialized action heads [3], VLAs have
demonstrated impressive generalization across diverse robotic
tasks, from tabletop manipulation to long-horizon planning [1],
[3]. These advances open the door to deployment of a single,
generalist policy across a variety of robots and environments,
reducing the need for custom-made task-specific models [1],
[2]. As robotic systems increasingly transition from controlled
laboratory settings to real-world applications, the ability to
run such models efficiently across a variety of hardware
platforms—from low-power edge devices to high-performance
datacenter GPUs—has become a critical requirement.

Despite rapid algorithmic progress, little is known about
how VLA performance scales across different model architec-
tures, hardware classes, and power budgets. Most prior studies
focused on improving model accuracy or adapting vision-
language architectures for action generation, but they typically

perform evaluation on a single hardware platform under fixed
resource settings [2], [4]. As a result, there is a limited under-
standing of the trade-offs between accuracy, latency, through-
put, and memory usage when deploying VLAs across the full
spectrum of computing platforms—from power-constrained
edge devices to high-performance datacenter GPUs. This gap
limits our ability to make informed deployment decisions, and
optimize models for specific environments.

Understanding these scaling trends is essential for designing
and deploying VLAs in real-world robotic systems, where
hardware resources, latency requirements, and energy budgets
vary widely. In embedded platforms such as service robots,
mobile manipulators and autonomous drones, computational
and power constraints necessitate striking a careful balance
in terms of model size, throughput, and accuracy to ensure
responsive and reliable operation [7]. In cloud-hosted or
datacenter settings, maximizing throughput, while containing
memory usage, can directly impact operational costs and
scalability. Without a systematic view of how VLA archi-
tectures behave across this edge—cloud spectrum, engineers
risk over-provisioning hardware and underutilizing available
resources, making suboptimal trade-offs between performance
and efficiency.

In this paper, we characterize the scaling trends in VLA
models across model architectures, hardware classes, and
power budgets. We evaluate five representative VLAs, includ-
ing three widely used baselines, VOTE [3] (in three distinct
configurations), and a newly developed QwenVLA model. We
profile their behavior on both state-of-the-art datacenter GPUs
and resource-constrained edge devices under multiple power
modes. Our study examines accuracy, memory footprint,
latency, and throughput, revealing how model architectural
choices (e.g., LLM backbone size, action head design, output
tokenization) interact with hardware capabilities and power
constraints. Beyond profiling, we distill actionable guidelines
for selecting and optimizing VLA models tailored to diverse
deployment scenarios, challenging common assumptions about
edge—datacenter performance trade-offs.

Paper organization: Section II reviews relevant background
and related work. Section III describes the hardware platforms,
the VLA models evaluated, and our experimental method-
ology. Section IV presents analysis of accuracy, memory
usage, latency, and throughput. Section V concludes with key
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TABLE I. Jetson AGX Orin: Hardware specifications

AGX Orin
NVIDIA Ampere Architecture,

Feature

GPU 2 GPCs, 8 TPCs, 16 SMs, 2048 CUDA cores (128/SM), 64 Tensor Cores,
192KB L1 Cache/SM, 4MB L2 Cache, 1.3 GHz MAX Frequency
12-core Arm Cortex-A78AE v8.2 (64-bit) in 3 clusters, 64KB L1i/L1d,

CPU 3MB L2 (256KB/core), 6MB L3 (2MB/cluster), 4MB system cache,
MAX Frequency 2.2GHz

Memory 32 GB 256-bit LPDDR5 @ 3200MHz, 204.8 GB/s

Storage 4TB NVMe M.2 SSD, Speeds Up to 7,450MB/s, and 32 GB eMMC 5.1

Power Budget up to 60 W (max configuration)

takeaways and outlines directions for future work.

II. PRELIMINARIES AND RELATED WORK

Vision-Language-Action (VLA) models integrate visual per-
ception and language understanding to directly generate con-
trol actions for robotic tasks [2], [4]-[6]. A representative
example is OpenVLA [2], a 7B-parameter open-source model
trained on 970K robot demonstrations from the Open X-
Embodiment (OXE) dataset [1], combining a Llama 2 lan-
guage backbone with DINOv2 and SigLIP visual encoders.
OpenVLA-OFT [4] improves both inference efficiency and
task success rate through parallel decoding, action chunking,
continuous action representations, and an L1 regression objec-
tive function, achieving a 97.1% success rate on the LIBERO
benchmark [8]. Spatial VLA [5] extends the architecture of
VLAs by introducing Ego3D position encoding and adaptive
action grids for improved spatial reasoning across robots. Our
prior work, VOTE [3], provides efficient and generalizable
robotic manipulation. VOTE optimizes VLA architectures to
generate fewer action tokens as compared to other action
chunking methods, resulting in reduced inference latency
and lower training costs. VOTE outperforms the state-of-the-
art VLA models, achieving higher success rates and faster
inference than OpenVLA, and proving effectiveness in real-
world deployment scenarios.

While VLA models excel at integrating visual perception
with language-driven action planning, little is known about
how their performance scales across different model archi-
tectures and hardware classes, especially for fixed power
budgets. Most prior work focuses on algorithmic advances or
single-platform evaluations [2], [4], [5], without systematically
analyzing how latency, throughput, and memory usage change
across the edge-to-cloud spectrum. This lack of scaling insight
limits our ability to make informed deployment decisions or
design architectures tailored to specific hardware constraints.

VLA deployment environments vary significantly in their
computational architecture. Edge platforms, such as the
NVIDIA Jetson AGX Orin, integrate CPUs, GPUs and mem-
ory in a system-on-chip (SoC) design, optimized for power
efficiency [9]. The Orin supports multiple power modes
(15W-50W), enabling trade-offs between performance and
energy consumption [9]. In contrast, cloud GPUs, such as
the NVIDIA HI100, are discrete accelerators with dedicated
high-bandwidth memory, larger thermal envelopes, and signifi-
cantly higher compute throughput [10]. These architectural and
power differences can lead to fundamentally different scaling
behaviors for the same VLA workloads.

TABLE II. CPU/GPU configuration and maximum frequen-
cies for different Jetson AGX Orin power modes. Lower power
budgets reduce available cores and clock frequencies.

Property MAX 50w 30W 15W
Power budget (W) n/a 50 30 15
Online CPU cores 12 12 8 4
CPU max freq. (MHz) 2201.6 1497.6 1728.0 1113.6
GPU TPC count 8 8 4 3
GPU max freq. (MHz) 1301.0 828.75 624.75 420.75
Memory max freq. (MHz) 3200 3200 3200 2133

TABLE III. Key specifications of the datacenter-class GPUs
used in our experiments, spanning multiple architecture gen-
erations and performance tiers.

Feature H100 A100 A6000 V100
Architecture Hopper Ampere Ampere Volta
CUDA Cores / SMs 14,592 / 114 6,912/ 108 10,752 / 84 5,120/ 80
Tensor Cores 456 432 336 640

L2 Cache 50 MB 40 MB 6 MB 6 MB
Memory 94 GB HBM3 40 GB HBM2e 48 GB GDDR6 32 GB HBM2
Memory Bandwidth 3.35 TB/s 1.6 TB/s 768 GB/s 900 GB/s
TDP 700 W 400 W 300 W 300 W

III. EXPERIMENTAL SETUP

We evaluate representative VLA models on both edge and
datacenter GPUs, measuring latency, throughput, and mem-
ory usage. The following subsections describe the hardware
platforms and VLA models used in our experiments.

A. Hardware Platforms

Edge Computing Platform. For evaluation on an edge de-
vice, we use the NVIDIA Jetson AGX Orin [9], a system-
on-chip (SoC) platform designed for power-efficient, real-
time AI workloads. The Orin integrates a CPU, a GPU and
memory in a compact architecture. Orin supports multiple
configurable power modes (15W, 30W, 50W, and MAX),
enabling us to explore trade-offs between performance and
energy consumption. Table I summarizes the key hardware
specifications of Orin. The detailed CPU/GPU frequency scal-
ing and core allocation for each power mode are shown in
Table II, illustrating how resource availability is progressively
reduced under tighter power budgets. These features make the
Orin representative of resource-constrained robotic platforms,
where VLA models must operate within strict latency and
power limits.

Datacenter GPU Platforms. For datacenter-class evaluation,
we use four discrete NVIDIA GPUs representing multiple
architecture generations and performance tiers: H100 (Hop-
per) [10], A100 (Ampere) [11], A6000 (Ampere) [12], and
V100 (Volta) [13]. Unlike the integrated SoC design of
AGX Orin, these GPUs feature dedicated high-bandwidth
memory, large L2 caches, and significantly higher thermal
design power (TDP), enabling substantially greater compute
throughput. Table III summarizes their key specifications,
including architecture, CUDA core count, memory type and
capacity, and peak bandwidth. This diverse selection allows
us to examine VLA performance scaling in high-power, high-
throughput environments and contrast it with the constraints
of edge deployments.



TABLE IV. Summary of evaluated VLA models

TABLE V. Success rates (SR) on the LIBERO benchmark
across four task suites: Spatial, Object, Goal, and Long.

Name LLM Vision Action Head Chunk Parameters

OpenVLA LLaMA 2~ DINOv2+SigLIP DAT 1 7B Method Spatial SR Object SR Goal SR Long SR  Average

Spatial VLA PaliGemma 2 SigLIP+Ego3D AAG 4 4B

OpenVLA-OFT LLaMA 2 DINOv2+SigLIP Cont-L1 8 7B OpenVLA 84.7 88.4 79.2 53.7 76.5

QwenVLA Qwen 2.5 DINOvV2+SigLIP Cont-L1 8 2.6B Spatial VLA 88.2 89.9 78.6 555 78.1

VOTE LLaMA 2 DINOv2+SigLIP ST 8, 16 7B OpenVLA-OFT 96.2 98.3 96.2 90.7 953
DAT: Discrete Action Tokens; AAG: Adaptive Action Grids; Cont-L1: continuous ~ QwenVLA 77.8 90.0 82.8 64.6 78.8
actions with L1 regression; ST: Special Token(s). VOTE-IT 98.0 99.5 96.0 94.0 96.9

VOTE-2T 96.0 98.5 94.0 91.0 94.9
B. Evaluated VLA Models VOTE-MLP4 93.5 98.5 92.0 92.0 94.0

We evaluate five Vision-Language-Action (VLA) models,
including three established baselines (see Sec. II): i) Open-
VLA [2], ii) SpatialVLA [5], and iii) OpenVLA-OFT [4].
We also evaluate two VLA architectures developed by us:
i) VOTE [3] and ii) QwenVLA. Table IV summarizes their
key components, including language backbone, vision encoder,
action head design, chunk size, and parameter count.

VOTE [3] employs a Llama 2-7B backbone with DINOv2 and
SigLIP encoders and a special token (ST)-based action head.
By reducing the number of action tokens, VOTE minimizes
latency without compromising accuracy. We evaluate three
configurations to examine how output granularity influences
scaling across hardware classes and power budgets.

We propose QwenVLA to explore the impact of a smaller
language backbone. It uses Qwen 2.5-1.5B [14] with the same
DINOv2 and SigLIP vision stack and Cont-L1 action head
as OpenVLA-OFT, maintaining a chunk size of 8. We adapt
the Prismatic VLM architecture [15], replacing its backbone
with Qwen 2.5 and training on the LLaVA v1.5 data mix-
ture [16] before applying Optimized Fine-Tuning (OFT) on
the LIBERO benchmark [8]. To accommodate Qwen’s unique
vocabulary and tokenization, we add special action tokens
to its tokenizer. QwenVLA was fine-tuned using Optimized
Fine-Tuning (OFT) [4], enabling it to achieve competitive
performance with other models despite its smaller backbone.

Both VOTE and QwenVLA are fine-tuned on the LIBERO
benchmark [8] using AdamW with a learning rate of le-4 and
le-3, respectively. Fine-tuning employs Low-Rank Adaptation
(LoRA) with rank » = 32 and « = 16, and a global batch size
of 40 for VOTE and 64 for QwenVLA.

C. Experimental Methodology

VLA Configurations. We use the standard implementations
of OpenVLA, Spatial VLA, and OpenVLA-OFT. For VOTE,
we evaluate three configurations: VOTE-1T, VOTE-2T, and
VOTE-MLP4. VOTE-IT and VOTE-2T output one and two
<ACT> tokens, respectively, with a chunk size of 8—yielding
8 actions for VOTE-1T and 16 actions for VOTE-2T—both
using a 2-layer MLP action head. VOTE-MLP4 is a single
<ACT> variant with a 4-layer MLP head, designed to improve
performance when operating with a chunk size of 16.

Benchmark. We evaluate VLA model accuracy using the
LIBERO benchmark [8], which comprises a diverse set
of robotic manipulation tasks in simulated environments.
LIBERO has four task suites, evaluating the model’s under-
standing of spatial relationships (Spatial), object types (Ob-

ject), task-oriented behaviors (Goal), and the model’s ability to
generalize to long-horizon tasks with diverse objects, layouts,
and goals (Long).

Performance Evaluation Methodology. We benchmark in-
ference efficiency by comparing our models against baselines
across all hardware platforms. The primary metrics are Latency
(i.e., the average time to generate an action chunk), and
Throughput (i.e., the number of actions generated per second).
Each inference test processes a single 224 x224 RGB image
and a fixed language prompt (“What action should the robot
take to pick the cup?’). To ensure stable measurements, we
perform several untimed warm-up runs before recording wall-
clock times for 100 consecutive inferences, from which the
average latency and throughput are computed.

IV. RESULTS AND ANALYSIS

We analyze scaling trends in VLA performance across
model architectures and hardware classes, while considering
power constraints. Our evaluation covers three key dimensions:
(1) task accuracy, measured on the LIBERO benchmark; (2)
resource usage, focusing on peak memory usage; and (3) infer-
ence efficiency, characterized by latency and throughput across
both edge and datacenter GPUs. We first compare model
accuracies, then analyze memory usage, and finally present
detailed latency and throughput results, highlighting the effects
of Orin’s power modes and the performance differences among
four datacenter GPUs.

VLA Model Accuracy Comparison. Each model is eval-
uated on the four LIBERO task suites, each containing 10
tasks with 20 repetitions, for a total of 200 trials per suite.
Table V shows that our VOTE variants achieve the highest
average success rates (SR) across all suites. VOTE-1T at-
tains the top overall performance at 96.9%, outperforming
the strongest baseline, OpenVLA-OFT (95.3%), and achieves
the highest SR in three out of four suites. VOTE-2T and
VOTE-MLP4 trade a small drop in accuracy (up to 2.9%)
for higher throughput, which is enabled by larger output
chunks, a trade-off explored further in Fig. 3. QwenVLA,
despite its much smaller 1.5B backbone, surpasses the larger
OpenVLA baseline in average SR (78.8% vs. 76.5%) and is
particularly effective for the LIBERO-Object and LIBERO-
Goal suites, demonstrating that competitive task performance
can be achieved with reduced model size.

Peak Memory Usage. Fig. | shows the peak VRAM usage for
each model during inference. Among the baselines, OpenVLA
and OpenVLA-OFT are the most memory-intensive, requiring
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Fig. 1. Peak VRAM usage for each evaluated VLA model
during inference on the NVIDIA Jetson AGX Orin.

1435GB and 19.20GB, respectively, while SpatialVLA is
significantly less demanding at 7.82 GB. QwenVLA has the
lowest usage overall (7.39 GB), reflecting its smaller 1.5B
backbone. All VOTE configurations have similar memory foot-
prints (14.40-14.45 GB), comparable to OpenVLA, despite
architectural differences. These results indicate that memory
usage is primarily driven by backbone size and vision encoder
choice, with action head variations (e.g., token count or MLP
depth) having negligible impact.

Latency Comparison (Orin MAX vs. H100). Fig. 2 com-
pares per-chunk latency on the highest-performance datacenter
GPU (H100) and the NVIDIA Jetson AGX Orin in MAX
power mode. As expected, the H100 achieves substantially
lower latencies across all models, with values ranging from
0.03ms (VOTE-1T, VOTE-MLP4) to 0.34 ms (Spatial VLA).
On Orin, latencies increase by roughly an order of magni-
tude, ranging from 0.29 ms (VOTE-MLP4) to 1.95ms (Spa-
tialVLA). Notably, VOTE configurations maintain competitive
latencies on both platforms, with VOTE-MLP4 achieving
the lowest latency overall on Orin. These results establish
the performance gap between edge and datacenter GPUs,
providing context for the throughput scaling trends analysis.

Throughput Scaling Across Datacenter GPUs. Fig. 3a
shows throughput across four datacenter GPUs. The H100 con-
sistently delivers the highest performance, with VOTE-MLP4
reaching 474.78 Hz—over 64x faster than OpenVLA on the
same hardware. The A100 follows a similar scaling pattern,
albeit with lower absolute values, with VOTE-MLP4 sustain-
ing 276.82 Hz. The A6000 maintains strong performance for
smaller models such as Spatial VLA (10.00 Hz) and QwenVLA
(84.39Hz), but these advantages diminish for larger, more
compute-intensive models. The V100, constrained by older
architecture and lower memory bandwidth, exhibits the lowest
throughput overall, with VOTE-MLP4 peaking at 32.28 Hz.
Across all datacenter GPUs, throughput improvements from
VOTE configurations scale with output chunk size and MLP
depth, while smaller-backbone models such as QwenVLA
offer competitive performance per parameter, but do not match
the absolute throughput of optimized VOTE variants.

Throughput Scaling Across Edge Power Budgets. Fig. 3b
illustrates how throughput scales strongly with power con-
straints on AGX Orin, highlighting the impact of power
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Fig. 2. Per-chunk latency for each VLA model evaluated
on the HI00 datacenter GPU and Jetson AGX Orin (MAX
power mode). The HI00 achieves latencies roughly an order
of magnitude smaller than the Orin across all models. VOTE
configurations are consistently competitive on both platforms,
with VOTE-MLP4 achieving the lowest latency on Orin.

budget on sustained inference rates. In MAX mode, VOTE-
MLP4 reaches 55.57Hz, more than 46x faster than Open-
VLA (1.20Hz) under the same conditions. Even at reduced
power levels, the relative ordering of models remains consis-
tent—VOTE configurations lead, followed by QwenVLA and
OpenVLA-OFT, with OpenVLA and Spatial VLA following.
Throughput reductions are non-linear with power scaling;
dropping from 50 W to 30 W, which results in sharper perfor-
mance losses, particularly for compute-heavy models, while
smaller models like QwenVLA retain a higher fraction of
their MAX-mode throughput. These results suggest that both
architecture choice and power allocation are critical levers for
balancing efficiency and responsiveness in edge deployments.

Throughput Scaling Across Edge and Datacenter. Com-
paring Orin in MAX mode to the fastest datacenter GPU
(H100) underscores the edge—cloud performance gap: VOTE-
MLP4 runs 8.5 faster on H100, and even smaller models like
QwenVLA are roughly 4.8 faster in the cloud. This disparity
widens for models with larger backbones or more complex
decoders, where datacenter GPUs benefit disproportionately
from higher memory bandwidth and greater parallelism. How-
ever, the relative scaling trends remain similar across hardware
classes—architectures optimized for chunked decoding (e.g.,
VOTE-2T, VOTE-MLP4) consistently lead, followed by effi-
cient smaller-backbone models like QwenVLA. Notably, Orin
in MAX mode with VOTE-MLP4 achieves 55.57 Hz, surpass-
ing the throughput of the V100 datacenter GPU (32.28 Hz).
This demonstrates that modern high-end edge devices can
outperform older datacenter hardware, challenging the as-
sumption that any datacenter GPU will necessarily exceed
edge performance.
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Fig. 3. Throughput (Hz) for each evaluated VLA model across (a) four datacenter GPUs and (b) Jetson AGX Orin under
different power modes. Results highlight scaling trends with hardware class, power budget, and model architecture.

V. CONCLUSION AND FUTURE WORK

In this work we characterized scaling trends in Vision-
Language-Action (VLA) models across model architectures,
hardware classes, and for limited power budgets. Through
a systematic evaluation spanning edge (Jetson AGX Orin in
multiple power modes) and datacenter GPUs (H100, A100,
A6000, V100), we analyzed accuracy, memory usage, latency,
and throughput for five representative VLA architectures,
including two of our own [3].

Our results reveal that architectures optimized for chunked
decoding, such as VOTE-2T and VOTE-MLP4, deliver the
highest throughput across hardware classes, with only minor
accuracy trade-offs relative to VOTE-1T. Model memory usage
is primarily dictated by backbone size and vision encoder
choice, with smaller-backbone designs such as QwenVLA
achieving the lowest footprint while maintaining competitive
accuracy. Latency and throughput scale predictably with avail-
able compute, but modern high-end edge devices, such as Orin
in MAX mode, can surpass older datacenter GPUs.

These findings provide actionable guidance for selecting and
configuring VLA models based on deployment constraints and
performance priorities. Future work will extend this analysis
to additional model architectures, quantization strategies, and
real-world robotic deployments to further optimize VLA in-
ference under practical constraints.
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