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ABSTRACT

Recent breakthroughs in large language models (LLMs) have opened the door to
in-depth investigation of their potential in tabular data modeling. However, the
paradigm for effectively utilizing advanced LLMs in few-shot and even unseen
scenarios remains to be explored. We observed an unusual phenomenon: directly
using LLMs for data augmentation or rule generation by feeding a few exam-
ples significantly degrades the reasoning ability in tabular data understanding. We
identified two main obstacles behind this issue: overfitting to the examples and
knowledge disruption. Specifically, the provided examples may introduce noisy
patterns that interfere with the model’s prior knowledge, leading to unexpected
and less reliable results. To this end, we propose an example-free framework to
leverage the inherent knowledge of LLMs. Our key idea is to prompt the LLM
for feature value generation based solely on task and feature description. Without
such example pollution, each output feature value is treated as a standard guide-
line, and they together act as a prototype for each class. To transfer the LLM’s
knowledge to a given task, we further design an efficient fusion strategy to in-
tegrate the prototype with examples, showing impressive generalizability in the
few-shot setting. Importantly, our pipeline requires no learnable variables, result-
ing in a desired training-free property. Extensive comparisons and ablations on
multiple tabular datasets demonstrate the improvements of our simple framework.

1 INTRODUCTION

Large Language Models (LLMs) have shown impressive understanding abilities for solving unseen
tasks. Functional as both knowledge repositories and reasoning engines, they are often viewed as
the holy grail in recent machine learning fields (Achiam et al., 2023; Badaro et al., 2023; Dubey
et al., 2024). This sparks a research trend that focuses on applying LLMs to tabular data analysis.
Tabular data, which consists of structured rows and columns (or samples and features), is a critical
format in industries such as finance (Arun et al., 2016; Clements et al., 2020), healthcare (Ulmer
et al., 2020; Zhou et al., 2020), and more (Buczak & Guven, 2015; Guo et al., 2017). Unlike textual
sequences, the features in tabular data are often heterogeneous, and their interrelationships are not
inherently sequential. This complexity poses significant challenges for tabular data learning, partic-
ularly in real-world few-shot constraints, where algorithms are expected to exploit prior knowledge
to learn effectively from limited labeled samples. In contrast, traditional algorithms often struggle
to optimize in such constrained settings (Ucar et al., 2021; Han et al., 2024).

To tackle such knowledge deficit issues, recent research has focused on integrating tabular learning
into language generation pipelines, leveraging LLMs to enhance few-shot performance. Pre-trained
in extensive datasets with vast parameters, LLMs embody a rich repository of prior knowledge and
demonstrate a near-human level of comprehension (Brown et al., 2020; Bommasani et al., 2021;
Chen et al., 2023; Touvron et al., 2023; Kong et al., 2024). Notably, they can quickly adapt to
new tasks through task-oriented prompts. This prompt-based approach is not only user-friendly but
also significantly enhances the model’s ability to transfer pre-trained knowledge to novel and un-
seen scenarios efficiently. In alignment with these principles, recent attempts have designed prompt
templates such as “<Meta-Info>-<Example>-<Query>”, where <Meta-Info>, <Example> and
<Query> denote the task and feature descriptions, few-shot examples, and user queries, respec-
tively, outperforming conventional tabular learning baselines in few-shot regimes. For instance,
TabLLM (Hegselmann et al., 2023) evaluates several ways of serializing tabular examples into nat-
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safety …… …… class

med …… …… unacceptable

med …… …… acceptable

high …… …… good

low …… …… very good

<Query>

<Example>

<Meta-Info>

Infer potential values for each class of every feature 

based on their relationship to the task.

Task: How would you rate the decision to buy this car? 

Features:

- safety: estimated safety of the car (with 

categorical values in [low, med, high])

- ……

Example-based output of LLMs Example-free output of LLMs

Inferred Values for Each Class

• for class ‘unacceptable’:
- safety is in [low, med]

- …… 

• for class ‘acceptable’:
- safety is in [med] 

- ……

• for class ‘good’:
- safety is in [high] 

- ……

• for class ‘very good’:
- safety is in [low] 

- ……

Inferred Values for Each Class

• for class ‘unacceptable’:
- safety is in [low] 

- ……

• for class  ‘acceptable’:
- safety is in [low, med]

- ……

• for class  ‘good’:
- safety is in [med, high]

- ……

• for class  ‘very good’:
- safety is in [high]

- ……

Figure 1: Example-based and example-free outputs of LLMs for feature inference. Example-based LLMs
exhibit overfitting tendencies, while example-free LLMs provide more generalized outputs.

ural language strings, facilitating the efficient interpretation of structured inputs by LLMs. Besides,
FeatLLM (Han et al., 2024) demonstrates that LLMs can be viewed as rule generators and prompts
LLMs to directly output decision rules for each class by feeding the few-shot examples, showing a
more efficient strategy to utilize prior knowledge.

While these example-based LLMs have achieved impressive results, we observe an unusual phe-
nomenon: poor-quality examples could degrade the reasoning ability of LLMs. In few-shot learning,
the provided examples typically serve as an empirical approximation of the true data distribution;
unfortunately, they often fail to capture the full complexity and variability of underlying patterns,
particularly in the context of heterogeneous tabular features (Harari & Katz, 2022; Jin et al., 2023;
Li et al., 2024b). Moreover, due to the limited number of examples, these samples may contain spu-
rious correlations or causality, introducing irrelevant features or misleading guidance. As shown in
Figure. 1, example-based LLMs attempt to learn from the given examples, they may overfit to biased
patterns, which could conflict with their pretrained knowledge, leading to inaccurate predictions and
undermined the ability to generalize effectively to new, unseen data. Similar challenges have also
been observed in recent studies in the fields of computer vision and natural language processing (Li
et al., 2024a; Liu et al., 2024).

To address above overfitting and knowledge pollution issues, in this paper, we propose ProtoLLM,
which is an example-free framework to employ LLMs as prototype builders for zero and few-shot
tabular data classification. Intuitively, as collecting high-quality examples is often nontrivial in
practice, we ask whether one can draw out the task-specific knowledge of LLMs with example-free
inputs. We are inspired by recent success in zero-shot learning literature, which queries LLMs only
with task descriptions and demonstrates that LLMs are decent zero-shot reasoners (Kojima et al.,
2022; Wang et al., 2023). Specifically, we remove the <Example> term from the prompt template
and encourage LLMs to generate feature values according to their inherent knowledge about the
given tasks. This simple strategy avoids the introduction of poor-quality examples, allowing LLMs
as human experts to think using task-specific common sense, and thus predict the reasonable value
“high” in the case of Figure 1. We highlight the following advantages of the proposed ProtoLLM:

• Training and Example-Free. Applying ProtoLLM to tabular data classification requires
no learnable variable. More importantly, querying ProtoLLM is zero-shot. LLMs take the
prompt “<Meta-Info>-<Query>” as input and output the discriminative feature values
for each class, resulting in a novel example-free framework for tabular data learning. We
further propose to build the class-level prototype by combining the few-shot examples and
generated feature values from LLMs in the observed space. Therefore, we can classify the
test sample directly by comparing its Euclidean distance with the prototype of each class,
making ours a training-free method.

• Feature Value Generation by LLM. Unlike traditional data augmentations that employ
LLMs to generate all features of a tabular sample simultaneously, we focus on querying
LLMs feature by feature. This feature-level generation relieves LLMs from the complex
inter-feature relationships, resulting in a meaningful feature discovery. Furthermore, this
trick can also act as a novel data augmentation tool after a simple concatenation along the
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Given the task and feature description, infer the 

corresponding likely values of the feature for each 

target variable.

Task:<Description>

Feature: <Description>

Analyze and answer in given format

Task: Does this client subscribe to a 

term deposit? Yes or no?

LLM

education age job

primary 20, 

25,

30,

blue-collar, 

unemployed, 

……

education age job

tertiary 40,

45,

50,

Management, 

Admin,

……

Feature education: education level 

(categorical variable with categories: 

["primary", " secondary", "tertiary", 

"unknown"])

for feature job: 

{

"no": ["primary"],

"yes": ["tertiary"],

}

Feature values for class " yes"

Feature education: education level 

(categorical variable with categories: 

["primary", " secondary", "tertiary", 

"unknown"])

Feature: education: education level 

(categorical variable with categories: 

["primary", " secondary", "tertiary", 

"unknown"])

for feature age: 

{

"no": ["primary"],

"yes": ["tertiary"],

}

for feature education: 

{

"no": ["primary"],

"yes": ["tertiary"],

}

Feature Value Generation by LLM

Feature values for class " no"

LLM-generated 

features values

Few-shot samples

Prototype Construction and Classification

Zero-shot Few-shot +

Figure 2: Overview of our proposed ProtoLLM. The upper part shows our example-free feature value gen-
eration by LLMs, which predicts the potential values of the feature for each class by feeding our customized
prompt into LLMs. Here the prompt depends on the description about task and feature from the dataset. The
lower part shows our prototype construction and classification, which builds the class-level prototype with the
generated feature value by LLM and introduces a training-free classification framework.

feature dimension. We find the generated features can improve previous baselines signifi-
cantly (Fig. 7).

• Prior Knowledge and Target Examples Disentanglement. Thanks to the above advan-
tages, if we have a few examples, we can shift the prior feature values derived from LLMs
to the target domain through a fusing strategy. The resulting feature values are viewed as
combined prototypes, and they benefit from both of the LLMs’ knowledge and few-shot
domain guidance. As the prior feature values are obtained via an example-free manner,
such disentanglement can mitigate the misalignment between LLMs and examples. This
helps to utilize the examples more efficiently, showing promising results in few-shot set-
tings (Fig. 5).

We compare ProtoLLM with advanced baselines on multiple tabular datasets in zero and few-shot
settings and provide detailed ablations from various perspectives, showing its robust and supe-
rior performance. By generating discriminative values for each feature, ProtoLLM outperforms
FeatLLM by a clear margin, providing a solid option for future studies on tabular data analysis.

2 RELATED WORK

Few-shot Tabular Data Learning. The development of effective algorithms for few-shot tabular
learning has long been a popular research topic, due to their wide variety of applications (Borisov
et al., 2022; Kadra et al., 2021; Sattarov et al., 2023). Inspired by the great success across various
modalities (Schick & Schütze, 2020; Wang et al., 2024), previous works have proposed a num-
ber of few-shot learning frameworks using different techniques, including Bayesian inference, data
augmentation, self-supervised learning and others. For example, TabPFN (Hollmann et al., 2023)
design a prior to model complex uncertainty of tabular data and show promising performance in
small tabular classification tasks. STUNT (Nam et al., 2023) uses unlabeled data to generate diverse
few-shot tasks, demonstrating that meta-learning is an effective solution for tabular data, while some
works show that contrastive learning is another option to learn general features (Verma et al., 2021;
Shenkar & Wolf, 2022). As a follow-up, a series of self-supervised learning methods are proposed
for tabular data, they often adopt data augmentation trick and reconstruction loss to extract useful
patterns (Majmundar et al., 2022; Ucar et al., 2021; Bahri et al., 2022).

Understanding Tabular Data with LLMs. The impressive performance of LLMs has highlighted
their broad knowledge and potential in instruction following and low-shot understanding (Ouyang
et al., 2022; Brown et al., 2020). This motivated recent attempts to integrate LLMs with tabular data
learning (Manikandan et al., 2023; Hollmann et al., 2024; Dinh et al., 2022; Wen et al., 2024). For
instance, Curated LLM (Seedat et al., 2023) leverages the in-context capabilities of LLMs for data
augmentation and shows that LLMs are high-quality tabular data generators. TabLLM (Hegselmann
et al., 2023) takes tabular examples as input and fine-tunes LLMs on few-shot tabular datasets,
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showing competitive results with traditional tree-based models. P2T (Nam et al., 2024) propose a
transfer learning framework based on LLM that facilitates classification with a limited amount of
labeled data. To avoid end-to-end prediction and fine-tuning in utilizing LLMs, FeatLLM (Han et al.,
2024) employs LLMs to extract rules for better prediction while achieving relatively low inference
time. Our ProtoLLM is most relevant to these LLM-based models but differs from them in terms of
feature generation and label prediction.

3 METHODS

This work introduces ProtoLLM, a novel training-free and example-free framework for integrating
LLMs into tabular few-shot classification. The overview of ProtoLLM is shown in Fig. 2. The core
idea behind ProtoLLM is to generate discriminative feature values by querying LLMs with example-
free prompts, as described in Sec. 3.1. This avoids knowledge pollution in previous example-based
models and ensures the output features come solely from LLMs. Given the generated values of each
feature, we design a training-free method to build prototype and classify new samples, as described
in Sec. 3.2. Ours provides a promising solution to use LLMs and examples more efficiently.

Problem Formulation. We consider a dataset with N samples, denoted as S = {(xn, yn)}Nn=1,
where N is usually small in low-shot tasks and N = 0 means the zero-shot setting. Each sample xn

consists of D features in total. xd
n denotes the d-th feature of xn, which can be either a numerical

feature or a categorical feature. Specifically, if xd
n is a numerical feature, then xd

n ∈ R and rep-
resents a scalar value. If xd

n is a categorical feature, it is represented as a one-hot encoded vector
with 1 denoting the corresponding category. The label yn ∈ {1, . . . , C} indicates the class of the
sample, with C being the total number of classes. Denote F = {ftask, f

1:D
feat } as the set of descriptive

information for the dataset, which are usually available in tabular dataset. Specifically, ftask is the
information related to the task and fd

feat is the descriptions corresponding to the d-th feature. Taking
the Adult dataset as the example, “education” is the d-th feature, fd

feat now includes the explanation
about the “education” itself, e.g. education level, and its feature values, e.g. primary, secondary,
tertiary, unknown. Learning from S, ProtoLLM aims to predict the label of new data.

3.1 FEATURE VALUE GENERATION BY LLM

To draw out the prior knowledge of LLMs and enable them to analyze our problem like a human
expert, as illustrated in Fig.3, we carefully design an example-free prompt by proposing a novel way.
Specifically, for d-th feature, we denote the prompt as P (ftask, f

d
feat) = [<Meta-Info>-<Query>],

where we shorten it to Pd for convenience. The prompt is started with “you are an expert in ...”, a
classic and shared sentence in prompt engineering. Then, we design “<Meta-Info>” by introducing
the information about task and the d-th feature. It is used to provide basic information into LLMs.
Besides, “<Query>” is constructed with a reasoning instruction followed by a requirement of output
formation. For the d-th feature, we query LLMs with the prompt template Pd and expect that LLMs
output correct feature values for each class. We describe this process in more detail below.

Task and Feature Information in <Meta-Info>. For LLMs, it’s crucial to provide a clear task
description and detailed feature information. The task description explains the objective, scope, and
expected outcomes. As shown in Fig.3, we summarize the <Meta-Info> in red words. For the
Adult dataset, the task is “Does this person earn more than 50000 dollars per year? Yes or no?”.
Each feature description outlines the input variables used in prediction, clarifying their roles. For
instance, “relationship” refers to the individual’s family role, such as spouse or child, which can
impact income potential. The description is “What this individual is relative to others”. Designed
in this way, the meta-information (task and feature descriptions) allows LLMs to understand the
current task and leverage their prior knowledge for generating representative feature values.

Reasoning Instruction & Response Format in <Query>. The objective of the prompt is to guide
the LLM in generating possible values for each target class based on a given feature. Motivated
by the recent chain-of-thought (CoT) tricks (Wei et al., 2022b; Lyu et al., 2023), we construct the
reasoning instruction with two steps, i.e., green words in Fig.3. First, we ask LLMs to analyze the
potential causality of the task and feature based on the provided information in “<Meta-Info>”.
This allows LLMs to mobilize their pre-trained knowledge about the question. Then, given the
output analysis, LLMs are encouraged to infer the possible feature values for each class, where we
devise the response format with blue words in Fig.3.
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You are an expert in analyzing relationships between features and target variables. 

Given a feature description and a task, your goal is to analyze how the feature relates to the 

target and then generate a dictionary with specific details.

Task: Does this person earn more than 50000 dollars per year? Yes or no?

Feature: relationship, what this individual is relative to others(categorical variable with 

categories: ['Own-child', 'Husband', 'Not-in-family', 'Unmarried', 'Wife', 'Other-relative’])

First, thoroughly analyze the relationship between the feature and task using your prior 

knowledge.

Then based on this analysis, create a dictionary with the following format:

The output should be a markdown code snippet formatted in the following schema, including 

the leading and trailing "```json" and "```":

```json

{

"no": [list of strings]  // possible values of feature relationship for target class no

"yes": [list of strings]  // possible values of feature relationship for target class yes

}

```

The relationship values should be presented as strings in lists. And make sure the list of each 

target class is not empty.

Figure 3: An example prompt of our ProtoLLM to generate feature values for the “relationship” attribute in
the Adult dataset. Here, black words mean the classic sentence in prompt, red words denote the descriptions
about task and feature, i.e., <Meta-Info>. Besides, green words denote the reasoning instruction and blue
words denote the response format that we expect LLMs to output, which construct the <Query>.

Based on prior knowledge, the relationship feature describes what an individual is relative to 

others. It is a categorical variable with the following categories: ['Own-child', 'Husband', 'Not-

in-family', 'Unmarried', 'Wife', 'Other-relative'].

To analyze the relationship between this feature and the task of earning more than $50,000 per 

year, we can examine the potential relationship categories that are more likely to have a 

positive or negative impact on the target variable.

According to common knowledge, individuals who are married or have a spouse (categories: 

'Husband', 'Wife') are more likely to have higher household incomes. On the other hand, 

individuals who are children (category: 'Own-child') or have no family attachments (categories: 

'Not-in-family', 'Unmarried', 'Other-relative') might have lower household incomes.

Based on this analysis, we can create the following dictionary with the specific details:

```json

{

  "no": ["Own-child", "Not-in-family", "Unmarried", "Other-relative"],

  "yes": ["Husband", "Wife"]

}

```

Please note that this analysis is based on general knowledge and should be further validated 

with the dataset at hand.

Figure 4: Response for the “relationship” attribute in the Adult dataset, generated by GPT-3.5, where “no” and
“yes” in blue color denote the target class in Adult dataset (whether this person earn more than 50000 dollars
per year?). Besides, the red words mean the corresponding discriminative feature values generated by LLMs.
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3.2 BUILD PROTOTYPE AND CLASSIFY

Given the representative values for each feature, how to utilize them for tabular zero-shot and few-
shot classification tasks is a key problem. Different from most of existing methods that use the
augmented samples by LLM to train a classifier, we introduce a training-free method by building
prototype for each class directly. Let zc,d denote the generated value for d-th feature in class c:{

zc,d = LLM(Pd)[c] if d-th feature is a numerical feature,
zc,d = One-hot(LLM(Pd)[c]) if d-th feature is a categorical feature,

(1)

where Pd denotes the prompt input for d-th feature, and LLM(·)[c] denotes the output values of
LLMs for c-th class. We directly use the output values of LLMs for numerical features and post-
process the categorical features with the One-shot(·) function to convert the output class index to a
one-hot vector1. Considering the robustness, we can query LLMs K times for each feature inde-
pendently, resulting in a set of feature values: Zc,d = {zkc,d}Kk=1. To complete the prototype Θc for
class c, we adopt an average strategy on Z as follows:

Θc = [θc,1, ...,θc,d, ...,θc,D], θc,d =
1

K

K∑
k=1

zkc,d, (2)

where we concatenate all averaged features to build the final prototype Θc. Note that this prototype
is inferred solely from LLMs via our example-free prompt, and it thus implicitly encodes common
knowledge of LLMs for the target task. From the Bayesian perspective, the prototype acts as a
domain expert and provides meaningful priors for prototype learning.

Importantly, the prototype in Eq. 2 is built in the zero-shot setting, and it can be simply shifted to
the target domain if the few-shot samples are given (we still use θc,d for simply):

θc,d =
1

K + |Sc|

(
K∑

k=1

zkc,d +
∑

xn∈Sc

xd
n

)
, (3)

where Sc is the subset of S containing samples with label c. The first prior term focuses on general
knowledge from LLMs, which presents the common sense of the given task. The second term
can be explained as the data likelihood. It contains the domain information encoded in the input
samples. Eq. 3 receives information from two different domains and combines them via an average
operation. This simple yet efficient fusing strategy helps the pre-trained knowledge transfer to the
target distribution, improving the prototype learning in the few-shot setting.

Prediction. Once the prototype is calculated, one can predict the label y for a new sample x:

p(y = c|x) = exp(−Dist(Θc,x)/τ)∑C
c′=1 exp(−Dist(Θc′ ,x)/τ)

, (4)

where τ is a hyper-parameter and Dist(·, ·) denotes the distance between prototype and sample,
which is specified as the Euclidean distance by default. Notably, Eqs. 2- 4 are calculated without
any learnable variables, resulting in a training-free framework for tabular data classification. We
summarize the workflow of ProtoLLM at Algorithm 1 of Appendix.

3.3 FURTHER ANALYSIS

Feature-level Prior Generation. Here, we analyze the proposed example-free strategy in more
depth. Firstly, ProtoLLM generates features in a zero-shot manner. This not only satisfies the
practical need for tabular data but also avoids knowledge pollution, providing an efficient solution to
utilize the prior knowledge of LLMs. Secondly, ProtoLLM focuses on a single feature at each query
time. Unlike previous works that generate all features (or important features) directly, our feature-
level strategy transforms the complex reasoning problem into D tractable sub-problems, allowing
LLMs to highlight the correlations between the target label and current feature, showing promising
presentation learning compared to sample-level methods (Tab. 1). Lastly, the generated features
can also be used as augmented samples. As discussed above, these LLM-generated feature values

1For the case where LLMs output m feature values, z is obtained as:z = 1
m

∑
m zm.
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capture common properties for each class, and we empirically find that they together can be used as
high-quality samples to improve various baselines (Fig. 7).

Bayesian-aware Prototype Construction. Generally, Eq. 3 calculates prototypes by explicitly
combining the prior knowledge and domain information, which is quite different from previous
example-based LLMs. Specifically, those methods feed examples into prompts and expect LLMs
to act as Eq. 3 to directly generate the prototype. This implicit strategy, unfortunately, fails to in-
fer the correct prototype when the given poor-quality examples conflict with LLMs’ knowledge.
In contrast, our ProtoLLM ensures the prior is reasonable in most cases, which could mitigate the
knowledge pollution issue and result in better prototypes.

4 EXPERIMENTS

In this section, we first introduce the setups of the low-shot tabular data classification and imple-
mentation details. Then we evaluate the proposed model with recent advances, including traditional
machine learning methods, few-shot algorithms, and LLM-based frameworks. We also conduct
extensive ablations to test the effectiveness of the proposed modules.

4.1 EXPERIMENTAL SETUPS

Datasets. Following the previous FeatLLM, we here focus on few-shot tabular data classifica-
tion across 10 datasets, including binary or multi-class classification tasks. Specifically, we use
Adult (Kohavi et al., 1996), Bank (Moro et al., 2014), Blood (Yeh et al., 2009), Car (Kadra et al.,
2021), Credit-g (Kadra et al., 2021), Diabetes (Smith et al., 1988), Heart (Detrano et al., 1989),
Myocardial (Golovenkin et al., 2020), and two other datasets including Cultivars (de Oliveira et al.,
2023) and NHANES, which were released recently and not included in the LLMs pre-training stage.
These datasets cover fields such as financial, medical, and recommendation, varying in size and
complexity. Each dataset contains the corresponding name and description for each attribute, which
serves as meta-information in our example-free prompt. We summarize all datasets in Appendix A.2.

Baselines. We compare ProtoLLM against three types of baselines: (1) Traditional machine learn-
ing methods. This category includes Logistic Regression (LogReg), K-Nearest Neighbors (KNN),
and XGBoost, representing a range of commonly used algorithms and showing robust results in tab-
ular data analysis. (2) Deep learning methods. We here examine methods specifically designed for
tabular few-shot learning, including STUNT (Nam et al., 2023), TabPFN (Hollmann et al., 2023),
and a 2-layer MLP for comparison. (3) LLM-based framework. This includes methods such as In-
context Learning (Wei et al., 2022a), TABLET (Slack & Singh, 2023), TabLLM (Hegselmann et al.,
2023), and FeatLLM (Han et al., 2024). Specifically, we serialize tabular data in a manner similar
to TabLLM, but we query GPT-3.5 to ensure a fair comparison with our method in a zero-shot sce-
nario. All of which utilize LLMs’ prior knowledge to enhance performance in few-shot tabular data
prediction. These LLM-based models are most closely related to our ProtoLLM. Generally, they
focus on leveraging LLMs by feeding examples, we aim to explore an example-free framework to
draw out priors, avoiding the mentioned knowledge pollution and overfitting issues.

Implementation Details. Following FeatLLM, we select gpt-3.5-turbo-0613 as our base LLM
by default. The number of query times K is set to 10 for each feature across all datasets and the
temperature τ in Eq. 4 is fixed at 1. For the baseline models, the results for STUNT, In-context
Learning, TABLET, TabLLM, and FeatLLM are derived from Han et al. (2024). We set the number
of samples per class as the same as query number K in k-Nearest Neighbors (KNN), and use a hidden
dimension of 1024 for Multi-Layer Perceptron (MLP). Implementation details for other baselines
can be found in the Appendix A.4.

4.2 RESULTS

4.2.1 ZERO AND FEW-SHOT CLASSIFICATION

To evaluate the capability of our ProtoLLM in processing tabular data, we compare it with baselines
on the zero and few-shot classification tasks. Specifically, we run ProtoLLM 15 times, only with
different seeds, and report the average area under the receiver operating characteristic curve (AUC)
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at Fig. 5. We compare the performance of 11 models under various shot settings (4, 8, 16, 32, and
64), with AUC curves displayed in the subfigures for each dataset. Besides, we also report zero-shot
results of our ProtoLLM and TabLLM to test the performance of applying LLMs on unseen tabular
data classification without example instructions. Due to limitations in some baseline models, we
were unable to evaluate them on certain datasets and shot settings. These limitations are explained
in Appendix A.5. The overall average rank across 10 datasets is shown in the top-left subfigure, with
all numerical results provided in Table 9 of appendix.
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Figure 5: Comparison of AUC scores with different methods across 10 datasets. (a) denotes the average
performance on all datasets. (b)-(k) denotes the performance on each dataset, respectively.

From Fig. 5, we have the following remarkable findings. Firstly, our ProtoLLM outperforms existing
approaches for most datasets and achieves the No.1 average rank over all zero and few-shot settings.
This significantly demonstrates the robustness and adaptability of the proposed ProtoLLM across
different settings. Secondly, we find that LLM-based models beat traditional machine learning and
deep learning methods with a large gap, especially in the very few-shot settings. There is no doubt
that LLMs provide rich domain knowledge and help models recognize the core patterns among het-
erogeneous features. Furthermore, our ProtoLLM achieves the highest AUC scores on 5/10 datasets
compared to the LLM-based models, while in contrast, TabLLM and FeatLLM obtained the high-
est AUC scores on 2/10 datasets, respectively. We attribute this superiority to the effectiveness of
our example-free prototype generation framework. For one thing, the example-free prompt tends to
draw out the clean prior knowledge of LLMs, providing more correct features for downstream tasks.
For another thing, our simple feature fusing strategy efficiently combines the LLMs prior and data
likelihood, resulting in better prototype learning. Lastly, our approach outperforms TabLLM at most
zero-shot settings, setting a solid baseline for applying LLM for unseen tabular data classification.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 FURTHER DISCUSSION

Given the strong performance on both zero and few-shot settings, we next aim to dig out which
components of ProtoLLM play a central role in prompting LLM in tabular data learning. To get
the final prototypes, ProtoLLM designs two novel strategies: example-free prompts and feature-
level generation. The former ensures a clean output of LLMs solely based on their common sense,
and the latter helps LLMs ignore complex correlations between tabular features and focus on the
true causality of a given feature and the target label. Consequently, we introduce three variants
of ProtoLLM and conduct extensive ablations. Specifically, For the first factor, we modify our
example-free prompt by inserting few-shot tabular examples. For the feature-level factor, we ask
LLMs to generate all D feature values simultaneously. We report the ablation results in Tab. 1.

We find consistent improvements for ProtoLLM when using feature-level generation without exam-
ples in most cases. More interesting, compared to sample-level generation, our approach demon-
strates superior performance by fusing the intrinsic characteristics of individual features, which
facilitates the construction of more generalized and robust prototypes. Another key observation is
that adding examples to both feature-level and sample-level generation led to a noticeable decrease
in performance, indicating the presence of example pollution.

Table 1: AUC scores under varying shot settings, compared with different generation methods.

Data example generation Shot

0 4 8 16

Adult
✓

sample-level - 83.99±3.13 83.73±2.31 85.24±1.97
featurel-level - 79.44±4.98 83.47±1.52 84.26±2.95

sample-level 83.59±2.15 84.46±1.76 84.88±1.54 85.19±1.73
featurel-level 85.93±0.64 86.01±0.78 86.12±0.92 86.28±0.77

Bank
✓ sample-level - 64.53±12.01 72.49±7.45 74.45±7.90

featurel-level - 70.28±6.72 71.01±5.62 76.85±3.82

sample-level 68.80±5.67 71.47±5.50 72.40±5.19 75.75±3.92
featurel-level 80.20±2.22 80.85±2.58 81.41±2.58 83.26±1.40

Blood
✓

sample-level - 62.84±12.01 68.25±9.42 66.89±11.10
featurel-level - 62.93±12.96 64.39±10.31 68.46±10.02

sample-level 71.60±5.49 71.48±5.32 71.65±5.02 71.33±4.50
featurel-level 75.63±4.15 75.98±4.99 76.35±4.61 75.46±4.12

Cultivars
✓ sample-level - 46.47±7.92 49.29±9.74 48.84±8.76

featurel-level - 47.71±9.54 49.62±9.96 50.07±9.20

sample-level 52.31±9.47 48.94±8.68 50.73±8.19 50.37±6.31
featurel-level 58.93±8.13 59.37±7.98 60.51±8.00 60.45±7.13

Table 2: Mean AUC across all datasets for differ-
ent distance metrics.

Shot Euclidean Manhattan Cosine

0 72.07 72 72.1
4 73.48 73.45 73.52
8 74.63 74.28 74.57

16 76 75.65 76.35
32 78 77.06 78.36
64 79.8 78.46 79.9

Impacts of Distance Metrics. In previous experi-
ments, we used the Euclidean distance to calculate
the semantic difference between the prototype and
the test data. Here, we selected different distance
metrics (Euclidean, Manhattan, and Cosine) to eval-
uate their impact on performance. We report the av-
erage AUC score for 10 datasets in Tab.2. From the
table, we can observe that the differences in AUC
between the various distance methods are relatively
small. This insensitivity to the distance function sug-
gests that our generated prototypes capture distinctive features unique to each class and are robust
to different semantic metrics. For a more detailed comparison, please refer to Appendix A.9.

Impacts of Base LLMs. Note that our ProtoLLM is LLM-agnostic, which means we can apply
various LLMs to improve the tabular data analysis. In this experiment, we compare the performance
of the GPT-3.5 and GPT-4o models in zero-shot scenarios to this end. The results are summarized in
Tab.3. We find that GPT-4o demonstrates slightly better performance than GPT-3.5 overall, indicat-
ing its improved capability in zero-shot understanding tasks. However, in some datasets, GPT-3.5
still maintained competitive performance. We also perform experiments with open-source LLMs to
further validate our approach. For details, please refer to Appendix A.10.

Analysis of Query Times per Feature. We query LLMs K times for better feature value generation
in the previous experiments. We here test the impact of the number of query times and report the
average results on 10 datasets in Fig. 6. Generally, K balances the weights of prior knowledge and
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data likelihood. As K increases, LLMs become more significant in the final prototype construction.
One can obtain higher results after selecting the optimal K on the validation datasets.

Table 3: Comparison of AUC results
between GPT-3.5 and GPT-4o in zero-
shot scenarios.

Data GPT-3.5 GPT-4o

Adult 85.93±0.64 85.74±0.51
Bank 80.20±2.22 82.25±0.91
Blood 75.63±4.15 77.83±4.53

Car 78.29±1.72 77.86±1.56
Credit-g 61.29±3.03 58.66±4.62
Cultivars 58.93±8.13 61.16±5.58
Diabetes 75.65±3.05 73.17±3.57

Heart 58.28±4.30 74.37±4.09
NHANES 83.96±3.21 86.38±2.25

Table 4: AUC results of ProtoLLM and its
feature-weighting variant on four datasets.

Data Shot ProtoLLM ProtoLLM+weight

Bank
0 80.20 81.08
4 80.85 81.06
8 81.41 81.05

Credit-g
0 61.29 64.09
4 62.25 65.71
8 63.26 66.63

Diabetes
0 75.65 81.55
4 75.68 81.63
8 75.76 81.61

NHANES
0 83.96 97.52
4 86.60 98.18
8 88.30 98.44

ProtoLLM as Data Augmentation. Previous results suggest that our training and example-free
framework have great potential for high-quality generation. Let x̂k

c =
[
zkc,1, z

k
c,2, . . . , z

k
c,D

]
denote

k-th augmented sample for class c. To evaluate such data augmentation abilities of ProtoLLM, we
first use these K × C samples to augment D and then apply traditional machine learning meth-
ods. The results in Fig.7 show that our augmented samples significantly improve the classification
accuracy on Logits Regression, K-Nereast Neighbors, and MLP, verifying the superior quality of
the data generated by our approach. However, despite these gains, the results still do not surpass
the performance of our method, further demonstrating the advantage of the feature-level prototype
generation in our approach.
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Figure 6: Averaged AUC results of ProtoLLM
with various query times.
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Figure 7: Average AUC results of baselines
with various data augmentations.

Weighted Feature Generation. Feature importance is a technique that identifies which features in
a tabular dataset significantly influence a model’s predictions. Intuitively, considering the feature
weights at the prototype construction stage should enhance prediction accuracy. Motivated by this,
instead of only generating the feature values, we in this section ask LLMs to simultaneously output
feature weights. Tab. 4 illustrates the comparisons of ProtoLLM and its feature-weighting variant.
We find ProtoLLM+weight outperforms ProtoLLM significantly in most cases. Detail information
is provided in appendix A.12.

5 CONCLUSION

We propose ProtoLLM, a training and example-free framework for zero and few-shot tabular data
classification. This provides a novel strategy to combine prior knowledge of LLMs and data likeli-
hood for prototype construction. We show that it is possible to efficiently draw out clean common
sense of LLMs and generate feature values by designing example-free prompts, and that doing so
effectively avoids knowledge pollution and overfitting issues in previous example-based LLMs. Fi-
nally, we also showcase our ProtoLLM can be used as data augmentation and boosts traditional
algorithms. A number of comparisons and ablations on 10 datasets demonstrate the superior perfor-
mance of our approach. Our ProtoLLM is LLM-agnostic and can be benefit from stronger LLM. We
hope that our approach provide valuable insights into the utility of LLMs for tabular data analysis.
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A APPENDIX

A.1 PROTOLLM WORKFLOW

Algorithm

Algorithm 1 Workflow of our proposed ProtoLLM.

1: Require: Dataset S = {(xn, yn)}Nn=1 for few-shot and S = ∅ for zero-shot, descriptive infor-
mation F = {ftask, f

1:D
feat } about dataset S, test sample x, LLM;

2: Output: Predicted probability vector p for test sample;
3: Step 1: Generate Z by LLM with our designed example-free prompt and initial Z = ∅ as:
4: for d = 1 to D do
5: Design prompt as P (ftask, f

d
feat) = [<Meta-Info>-<Query>], abbreviated as Pd;

6: for k = 1 to K do
7: Prompt LLM with Pd and output zkc,d with Eq. 1; set Z = [Z, zkc,d];
8: end for
9: end for

10: Step 2: Build prototypes Θ1:C with Z and S in Eq. 2 for zero-shot or Eq. 3 for few-shot;
11: Step 3: Compute the predicted probability vector p for test sample x with Eq. 4;
12: return p ▷ Return predicted probabilities

A.2 DATASETS AND BASELINES

Datasets In this section, we present an overview of the datasets utilized in the experiments. Each
dataset is specifically designed for a distinct classification task, with various features employed to
predict categorical outcomes. A summary of the key characteristics and classification objectives of
each dataset is provided below:

• The Adult2 dataset is used to determine whether an individual earns more than $50,000
annually, based on demographic and employment features.

• The Bank3 dataset predicts whether a customer will subscribe to a term deposit, utilizing
personal and socio-economic factors.

• The Blood4 dataset is designed to forecast whether a person will donate blood, given past
donation records.

• The Car5 dataset classifies the acceptability of a car based on attributes like buying price,
maintenance cost, and safety features.

• The Credit-g6 dataset addresses the classification of individuals as good or bad credit risks,
using personal and financial attributes.

• The Cultivars7 dataset assesses the growth and yield of forty soybean cultivars under vary-
ing conditions, with features such as plant height, number of stems, and grain yield.

• The Diabetes8 dataset focuses on predicting the likelihood of diabetes in a person, relying
on medical metrics such as glucose levels and BMI.

• The Heart9 dataset identifies whether a patient is at risk of heart disease, considering fac-
tors like age, cholesterol levels, and blood pressure.

2archive.ics.uci.edu/dataset/2
3archive.ics.uci.edu/dataset/222
4archive.ics.uci.edu/dataset/176
5archive.ics.uci.edu/dataset/19
6archive.ics.uci.edu/dataset/144
7archive.ics.uci.edu/dataset/913
8kaggle.com/datasets/uciml/pima-indians-diabetes-database
9kaggle.com/datasets/fedesoriano/heart-failure-prediction
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• The Myocardial10 dataset is used to predict the outcomes of patients following a myocar-
dial infarction, based on clinical data such as heart rate and blood pressure.

• The NHANES11 dataset is derived from the National Health and Nutrition Examination
Survey, focusing on predicting respondents’ age using features such as physiological mea-
surements, lifestyle factors, and biochemical markers.

Table 5: Properties about all of the datasets.

Adult Bank Blood Car Credit-g Cultivars Diabetes Heart Myocardial NHANES

Objects 48842 45211 748 1728 1000 320 768 918 1700 6287
Numerical 7 8 4 1 8 7 8 7 17 7
Categorical 7 8 0 5 12 3 0 4 94 1

Class 2 2 2 4 2 2 2 2 2 2

A.3 EXAMPLE OF PROMPT AND ANSWER

For numerical features, the prompts differ slightly. We require LLMs to infer their ranges. Addi-
tionally, we limit the length of the list due to the variations across different queries. The following
example demonstrates a prompt used to generate feature values for the ‘age’ attribute in the Adult
dataset:

You are an expert in analyzing relationships between feature and target variables.
Given a feature description and a task, your goal is to analyze how the feature relates to the
target and then generate a dictionary with specific details.

Task: Does this person earn more than 50000 dollars per year? Yes or no?

Feature: age, the age of an individual(age>16)(numeric variable, you should use your prior
knowledge to determine the appropriate ranges of values)

First conduct a thorough analysis of the relationship between the feature and task using your
prior knowledge.
Then based on this analysis, create a dictionary with the following format:

The output should be a markdown code snippet formatted in the following schema, including
the leading and trailing "‘‘‘json" and "‘‘‘":

‘‘‘json
{
"no": [list of integers] // possible values of feature age for target class no
"yes": [list of integers] // possible values of feature age for target class yes
}
‘‘‘
The age values should be presented as integers in lists. Make sure to include 5 typical age val-
ues for each target class in ["no", "yes"].

Figure 8: Prompt for querying values of feature ‘age’ in Adult dataset.

10archive.ics.uci.edu/dataset/579
11archive.ics.uci.edu/dataset/887

16

https://archive.ics.uci.edu/dataset/579/myocardial+infarction+complications
https://archive.ics.uci.edu/dataset/887/national+health+and+nutrition+health+survey+2013-2014+(nhanes)+age+prediction+subset


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The Answer values for feature ‘age’ is detailed below, where LLMs analyze the relationship and
provide responses for various values of the ‘age’ feature corresponding to each class in the Adult
dataset.

Based on prior knowledge, we can analyze the relationship between age and the task of deter-
mining if a person earns more than 50000 dollars per year.

Typically, as an individual progresses in their career, their income tends to increase with age
until they reach their peak earning potential. Therefore, it is reasonable to expect that people in
older age groups are more likely to earn more than 50000 dollars per year compared to younger
age groups.

However, it is important to note that this is a general trend and there will always be exceptions.
Other factors such as education level, occupation, and work experience can also impact an indi-

vidual’s income.
Based on this analysis, let’s create a dictionary with the specified format:

‘‘‘json
{
"no": [17, 18, 19, 20, 21],
"yes": [35, 40, 45, 50, 55]
}
‘‘‘

This dictionary includes 5 typical age values for each target class, where ”no” represents indi-
viduals earning less than or equal to 50000 dollars per year, and ”yes” represents individuals
earning more than 50000 dollars per year. The age values provided are just examples and can
be adjusted based on the specific dataset and its distribution.

Figure 9: Answer for querying values of feature ‘age’ in Adult dataset.
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A.4 BASELINE DETAILS

In this section, we provide a detailed configuration of the experiments conducted.

For each random seed, 20% of the datasets are designated as the test set. We then perform balanced
sampling of K instances from the remaining data, following Hegselmann et al. (2023) and Han et al.
(2024).

The baseline models of KNN, LogReg, and MLP are implemented using the scikit-learn library,
while XGBoost is implemented using its corresponding package. we utilize the number of samples
in a class to determine the parameter n neighbors for KNN while utilizing Euclidean distance
(with p=2) for distance computation. For LogReg, MLP, and XGboost, we employ a four-fold cross-
validation approach along with grid search to identify the optimal hyperparameters, if the sample
size is sufficient. The hyperparameter space for LogReg is presented in Table 6. For the MLP, we
configure early stopping to True, set n iter no change to 5, use ’adam’ as the solver,
specify hidden layer size as 1024, and limit max iter to 200. The other hyperparameter
space for MLP is detailed in Table 7. For XGBoost, hyperparameter space of XGBoost is shown in
Table 8. Considering TabPFN, we use the official GitHub repository with the default parameters.

Table 6: Hyperparameter search space for LogReg.

Parameter Search space

penalty {l1, l2}
C 100, {10, 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5}

Table 7: Hyperparameter search space for MLP.

Parameter Search space

alpha {1e-3,5e-3,1e-2}
learning rate init {1e-4,5e-4,1e-3,5e-3,1e-2}

Table 8: Hyperparameter search space for XGBoost.

Parameter Search space

max depth {2, 4, 6, 8, 10, 12}
alpha {1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1}

lambda {1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1}
eta {0.01, 0.03, 0.1, 0.3}
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A.5 MAIN RESULTS

Detailed main results in the few-shot scenario. We present the complete results from Figure 5 in
Table 9, including the AUC values and their corresponding standard deviations. The “N/A” entries
in the table are due to limitations in certain LLM-based frameworks, including In-context, TABLET,
and TabLLM, which are restricted by the maximum number of input tokens they can process. This
constraint makes it challenging, or even infeasible, to evaluate these baselines in scenarios with
a higher number of shots or more complex features. Additionally, TabPFN cannot be applied to
datasets with a large number of features, which also contributes to the “N/A” entries. In contrast,
our framework effectively handles scenarios with more shots or complex features, as our example-
free prompt is designed to efficiently query the LLM for each feature individually

Table 9: AUC across 10 datasets in few-shot scenarios. Bold highlights the highest score, while
underline marks the second highest.

Data Shot LogReg XGBoost KNN MLP TabPFN STUNT In-context TABLET TabLLM FeatLLM ProtoLLM

Adult

4 65.52±12.63 50.00±0.00 61.39±8.23 55.16±13.97 64.88±9.82 67.43±29.61 77.51±5.24 75.29±12.24 83.57±2.69 86.68±0.86 86.01±0.78
8 71.90±9.16 57.68±6.80 72.43±4.79 71.24±8.13 73.39±5.23 82.16±6.93 79.30±2.89 77.56±7.56 83.52±4.30 87.89±0.06 86.12±0.92

16 78.27±7.46 72.96±4.79 78.25±3.01 78.01±9.19 76.35±4.39 80.57±10.93 79.50±4.57 79.74±5.64 83.23±2.45 87.54±0.50 86.28±0.77
32 81.82±5.23 76.02±3.39 81.59±2.28 80.91±6.56 77.67±3.00 78.08±15.15 81.89±4.04 78.08±6.70 82.60±4.14 87.09±0.58 86.26±0.71
64 84.54±2.97 80.24±2.77 84.14±1.32 85.39±1.90 81.07±1.90 86.01±0.16 N/A N/A 84.88±0.97 87.77±0.31 86.32±0.85

Bank

4 59.29±9.86 50.00±0.00 57.96±4.82 56.87±8.76 63.68±6.92 56.34±12.82 61.38±1.30 58.11±6.29 62.51±8.95 70.45±3.69 80.85±2.58
8 66.46±12.23 56.05±9.29 63.13±5.90 61.86±10.23 69.07±7.09 63.01±8.78 69.57±13.35 69.08±6.00 63.19±5.79 75.85±6.66 81.41±2.58

16 74.15±6.95 69.86±7.85 69.38±4.44 66.80±10.31 74.43±5.15 69.85±0.95 69.76±8.55 69.40±11.28 63.73±6.43 78.41±1.08 83.26±1.40
32 78.25±4.29 73.99±3.94 73.43±4.80 71.99±7.52 77.68±3.82 71.64±1.65 66.93±5.67 73.61±9.28 66.51±3.92 78.37±4.50 84.88±1.71
64 81.61±3.19 79.53±3.23 77.80±3.34 79.35±4.30 82.84±2.52 72.26±1.62 N/A N/A 70.83±3.43 81.18±6.17 85.84±1.28

Blood

4 58.02±13.35 50.00±0.00 53.33±7.87 54.90±16.37 55.33±15.09 48.57±6.04 56.30±12.43 56.45±15.45 55.87±13.49 68.34±7.48 75.98±4.99
8 57.20±11.28 52.79±8.66 57.73±6.13 63.40±9.44 60.93±8.75 60.00±4.84 58.99±10.12 56.37±11.56 66.01±9.25 70.37±3.23 76.35±4.61

16 65.41±11.70 60.55±9.23 64.68±10.04 65.92±11.80 64.49±8.31 54.76±4.53 56.59±5.21 60.62±4.13 65.14±7.55 70.07±5.19 75.46±4.12
32 72.30±9.21 65.54±8.31 68.55±7.22 62.82±15.64 70.06±8.30 59.87±3.72 58.69±1.53 57.94±4.16 69.95±3.39 71.13±4.38 75.84±4.39
64 74.86±6.68 68.67±5.44 72.46±5.33 72.72±7.34 75.39±4.40 61.75±2.19 65.79±2.05 63.47±7.36 70.88±1.58 71.04±4.36 76.08±4.51

Car

4 65.14±5.53 50.00±0.00 60.14±4.74 52.85±5.47 59.51±6.06 61.32±3.83 62.47±2.47 60.21±4.81 85.82±3.65 72.69±1.52 79.41±1.92
8 65.05±7.13 60.48±4.56 65.02±2.93 62.90±8.01 65.66±5.29 67.86±0.49 67.57±3.44 65.53±8.00 87.43±2.56 73.26±1.46 80.40±2.04

16 76.33±2.45 70.07±5.35 72.23±2.12 75.34±5.22 73.47±4.13 75.56±2.88 76.94±3.04 74.02±1.01 88.65±2.63 79.43±1.24 82.22±2.05
32 84.95±2.61 80.06±3.53 77.50±2.94 83.56±3.11 77.35±3.15 82.29±2.34 81.64±2.52 76.44±4.02 89.02±1.50 85.01±1.36 84.78±1.81
64 91.69±2.49 89.50±2.82 81.32±2.25 87.86±3.73 85.84±2.83 84.45±1.69 77.65±3.74 76.13±1.17 92.18±0.47 86.78±0.90 87.45±2.01

Credit-g

4 54.01±5.42 50.00±0.00 53.33±3.87 51.27±6.47 54.47±4.80 48.80±6.76 52.99±4.08 54.33±6.54 51.90±9.40 55.94±1.10 62.25±2.86
8 58.15±7.63 55.71±4.87 54.26±4.91 53.60±7.88 57.64±4.79 54.50±8.25 52.43±4.36 52.90±5.79 56.42±12.89 57.42±3.10 63.26±2.87

16 58.62±7.92 59.28±5.04 56.89±5.62 55.39±7.83 59.02±5.60 57.63±7.58 55.29±4.80 51.65±4.02 60.38±14.03 56.60±2.22 64.52±3.28
32 64.16±5.27 65.26±4.49 61.06±3.53 60.50±7.59 63.90±4.23 63.24±5.47 N/A N/A 68.64±3.86 61.79±10.25 68.32±3.05
64 68.51±5.27 68.12±3.51 66.06±3.70 65.96±8.45 68.33±2.90 70.97±4.95 N/A N/A 70.80±4.09 66.43±2.90 71.75±3.31

Cultivars

4 44.98±7.89 50.00±0.00 45.84±7.29 43.95±7.55 45.09±6.53 57.10±8.66 51.38±2.48 54.28±3.73 54.39±5.61 55.63±5.24 59.37±7.98
8 50.20±8.63 50.86±8.09 47.47±8.93 47.64±10.07 49.23±7.58 57.26±9.52 51.68±4.43 51.48±3.85 52.86±6.13 56.97±5.08 60.51±8.00

16 48.48±7.76 48.48±9.09 47.62±9.58 48.86±10.01 50.58±8.21 60.09±7.64 54.31±6.12 57.44±3.53 56.97±2.22 57.19±5.30 60.45±7.13
32 53.15±8.63 52.96±7.40 50.54±10.05 57.20±10.26 53.76±9.93 60.48±6.51 N/A N/A 58.50±2.65 59.62±7.43 60.63±6.95
64 63.70±9.65 57.41±8.20 51.01±10.37 67.51±6.43 56.29±7.26 61.07±6.77 N/A N/A 60.32±2.60 59.14±4.79 61.67±7.62

Diabetes

4 58.74±13.20 50.00±0.00 59.48±6.89 58.53±14.21 64.76±10.85 64.22±6.78 71.71±5.31 63.96±3.32 70.42±3.69 80.28±0.75 75.68±3.61
8 70.79±5.87 59.30±12.01 63.70±8.14 63.73±8.25 70.68±7.87 67.39±12.92 72.21±2.07 65.47±3.95 64.30±5.88 79.38±1.66 75.76±3.78

16 66.34±8.61 66.88±8.42 68.30±5.73 66.61±7.82 72.98±5.05 73.79±6.48 71.64±5.05 66.71±0.76 67.34±2.79 80.15±1.35 75.70±4.33
32 77.44±5.13 72.30±4.17 73.96±4.70 74.39±4.73 76.72±4.64 76.70±4.55 73.32±1.59 66.97±1.75 69.74±4.41 80.06±1.18 77.48±3.81
64 78.72±3.57 74.40±4.10 77.59±2.84 77.00±6.18 79.02±3.49 78.64±3.32 70.22±4.09 69.27±6.15 71.56±4.55 80.91±1.62 78.00±3.86

Heart

4 63.98±19.36 50.00±0.00 63.98±11.68 61.15±18.38 75.61±17.34 88.27±3.32 60.76±4.00 68.19±11.17 59.74±4.49 75.66±4.59 65.40±7.18
8 76.93±10.21 59.00±12.07 73.64±11.23 77.36±10.24 83.91±7.62 88.78±2.38 65.46±3.77 69.85±10.82 70.14±7.91 79.46±2.16 70.55±7.68

16 85.27±4.82 83.61±5.06 84.23±4.08 84.91±7.70 86.49±4.31 89.13±2.10 67.00±7.83 68.39±11.73 81.72±3.92 83.71±1.88 78.09±5.63
32 88.74±2.72 85.81±3.83 87.88±2.22 87.33±5.08 88.52±2.75 89.65±3.04 71.94±3.88 71.90±9.07 87.43±2.32 87.19±3.66 83.59±3.88
64 89.50±2.19 87.21±2.97 88.91±1.69 90.17±1.85 89.63±2.47 89.62±3.16 N/A N/A 89.78±2.59 88.08±4.11 88.17±2.24

Myocardial

4 54.88±8.06 50.00±0.00 53.28±5.65 53.87±9.22 N/A 52.77±2.01 N/A N/A N/A 52.87±3.44 63.25±4.16
8 56.36±6.18 52.65±5.67 55.92±6.44 55.25±7.53 N/A 55.40±4.41 N/A N/A N/A 56.22±1.64 63.62±4.12

16 54.77±5.87 52.75±7.37 54.49±6.75 55.21±6.93 N/A 61.22±3.45 N/A N/A N/A 55.32±9.15 64.03±4.04
32 63.03±6.53 58.78±8.04 58.88±5.03 57.21±7.91 N/A 60.76±1.58 N/A N/A N/A 60.02±4.02 65.44±4.38
64 64.49±5.90 63.03±7.84 60.04±3.67 58.81±8.67 N/A 59.79±0.56 N/A N/A N/A 61.47±3.91 65.75±4.34

NHANES

4 77.56±15.27 50.00±0.00 64.90±8.82 59.58±14.23 74.27±11.17 69.32±19.59 91.84±3.79 93.54±4.20 99.49±0.23 92.20±1.71 86.60±3.05
8 88.34±12.64 91.93±6.99 75.38±5.89 76.43±6.86 87.23±5.82 68.56±18.35 86.67±5.49 94.25±3.35 100.00±0.00 93.29±7.01 88.30±4.34

16 97.12±4.35 94.25±6.09 86.34±4.71 86.34±6.05 95.12±3.46 68.62±19.81 93.33±4.47 95.02±1.57 100.00±0.00 95.64±4.67 92.61±3.27
32 99.30±0.56 98.31±2.88 92.18±2.55 91.88±4.09 97.88±1.50 75.06±3.56 88.54±5.40 95.82±3.71 100.00±0.00 97.29±1.28 94.91±2.34
64 99.49±0.89 99.87±0.47 94.79±2.16 95.32±2.86 99.21±0.66 80.29±4.56 N/A N/A 100.00±0.00 98.32±0.65 96.91±1.40

Average AUC

4 60.21 50.00 57.36 54.81 N/A 61.41 N/A N/A N/A 71.07 73.48
8 66.14 59.65 62.87 63.34 N/A 66.49 N/A N/A N/A 73.01 74.63

16 70.48 67.87 68.24 68.34 N/A 69.12 N/A N/A N/A 74.41 76.26
32 76.31 72.90 72.56 72.78 N/A 71.78 N/A N/A N/A 76.76 78.21
64 79.71 76.80 75.41 78.01 N/A 74.48 N/A N/A N/A 78.11 79.79

Average Rank

4 5.85 10.00 7.55 8.80 6.00 6.70 5.33 5.00 4.56 2.40 2.10
8 5.80 9.00 8.20 8.10 5.44 5.50 6.33 6.78 4.44 2.50 2.40

16 5.55 7.65 7.75 7.35 5.56 5.20 7.33 7.44 4.78 3.30 2.80
32 3.30 6.80 6.90 7.00 5.56 6.05 8.43 9.21 4.56 3.50 3.00
64 3.30 6.00 7.00 5.00 4.56 5.90 9.67 10.67 4.67 4.80 3.20

Detailed main results in the zero-shot scenario. We compare ProtoLLM against P2T, DSPy, and
TabLLM in zero-shot scenarios. To ensure a fair comparison, all baselines leverage GPT-3.5 as
the underlying LLM. P2T utilizes additional unlabeled data to facilitate knowledge transfer, while
DSPy directly queries the LLM for probability estimates. For TabLLM, we adopt the Text Template
method, identified in its original paper as the most effective serialization approach.
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Table 10: AUC across 10 datasets in zero-shot scenarios.

DSPy P2T TabLLM ProtoLLM

Adult 54.84±4.24 87.49±1.62 87.24±0.66 85.93±0.64
Bank 53.14±5.12 73.08±9.20 69.54±1.79 80.20±2.22
Blood 50.33±3.45 68.64±5.62 61.51±4.74 75.63±4.15

Car 60.29±2.25 58.90±2.17 75.80±1.45 78.29±1.72
Credit-g 45.60±2.16 55.28±4.01 45.88±2.50 61.29±3.03

Heart 47.90±2.80 69.27±3.65 64.62±3.46 58.93±8.13
Diabetes 64.87±3.10 72.55±3.31 79.92±2.35 75.65±3.05
Cultivars 51.60±3.60 53.27±3.90 49.30±1.22 58.28±4.30

Myocardial N/A N/A N/A 62.52±4.48
NHANES 75.07±1.77 99.69±0.24 94.53±0.70 83.96±3.21

A.6 TOKEN CONSUMPTION

In Table 11, we compare the token consumption per query of our method with that of FeatLLM,
which utilizes large language models (LLMs) to extract rules (FeatLLM-rule) and functions
(FeatLLM-function). Thanks to its example-free prompt design, ProtoLLM achieves significantly
lower token usage compared to both FeatLLM variants, underscoring its superior efficiency.

Table 11: Average number of tokens per query.

Adult Bank Blood Car Credit-g Heart Diabetes Myocardial Cultivars NHANES
ProtoLLM 534.7 454.4 482.6 572.2 445.9 465.2 457.0 453.4 662.5 500.9

FeatLLM-rule 1254.7 903.1 765.9 610.7 869.4 888.6 784.0 1072.6 733.143 675.571
FeatLLM-function 3018.7 2637.6 1320.6 1476.6 2189.7 2347.7 2003.7 2605.7 2270.86 2282.86

A.7 FULL-SHOT RESULTS

We present the full-shot results in Table 12. As shown, ProtoLLM under the few-shot setting
achieves performance comparable to the full-shot case, with the average performance for the 64-
shot setting being marginally different from that of the full-shot case. Moreover, when using LLM-
generated feature values on certain datasets (Blood, Cultivars, Myocardial) in the few-shot scenario,
the performance even exceeds that of the full-shot case. This highlights the effectiveness of LLM-
generated feature values in boosting performance in few-shot scenarios.

Table 12: Performance comparison between full-shot and few-shot settings.

Dataset 0-shot 4-shot 8-shot 16-shot 32-shot 64-shot Full-Shot
Adult 85.93±0.64 86.01±0.78 86.12±0.92 86.28±0.77 86.26±0.71 86.32±0.85 87.68±0.32
Bank 80.20±2.22 80.85±2.58 81.41±2.58 83.26±1.40 84.88±1.71 85.84±1.28 86.86±0.33
Blood 75.63±4.15 75.98±4.99 76.35±4.61 75.46±4.12 75.84±4.39 76.08±4.51 75.26±4.68
Car 78.29±1.72 79.41±1.92 80.40±2.04 82.22±2.05 84.78±1.81 87.45±2.01 92.44±1.06

Credit-g 61.29±3.03 62.25±2.86 63.26±2.87 64.52±3.28 68.32±3.05 71.75±3.31 73.44±3.44
Cultivars 58.93±8.13 59.37±7.98 60.51±8.00 60.45±7.13 60.63±6.95 61.67±7.62 58.83±7.73
Diabetes 75.65±3.05 75.68±3.61 75.76±3.78 75.70±4.33 77.48±3.81 78.00±3.86 82.18±2.25

Heart 58.28±4.30 65.40±7.18 70.55±7.68 78.09±5.63 83.59±3.88 88.17±2.24 90.65±1.84
Myocardial 62.52±4.48 63.25±4.16 63.62±4.12 64.03±4.04 65.44±4.38 65.75±4.34 65.50±5.17
NHANES 83.96±3.21 86.60±3.05 88.30±4.34 92.61±3.27 94.91±2.34 96.91±1.40 98.27±0.46
Average 72.07 73.48 74.63 76.26 78.21 79.79 81.11

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 DETAILED RESULTS OF DIFFERENT GENERATION TYPES

Table 13: AUC across 9 datasets with different generation types.

Data w/ example generation-level
Shots

0 4 8 16

Adult
✓

sample-level - 83.99±3.13 83.73±2.31 85.24±1.97
featurel-level - 79.44±4.98 83.47±1.52 84.26±2.95

sample-level 83.59±2.15 84.46±1.76 84.88±1.54 85.19±1.73
featurel-level 85.93±0.64 86.01±0.78 86.12±0.92 86.28±0.77

Bank
✓

sample-level - 64.53±12.01 72.49±7.45 74.45±7.90
featurel-level - 70.28±6.72 71.01±5.62 76.85±3.82

sample-level 68.80±5.67 71.47±5.50 72.40±5.19 75.75±3.92
featurel-level 80.20±2.22 80.85±2.58 81.41±2.58 83.26±1.40

Blood
✓

sample-level - 62.84±12.01 68.25±9.42 66.89±11.10
featurel-level - 62.93±12.96 64.39±10.31 68.46±10.02

sample-level 71.60±5.49 71.48±5.32 71.65±5.02 71.33±4.50
featurel-level 75.63±4.15 75.98±4.99 76.35±4.61 75.46±4.12

Car
✓

sample-level - 72.71±4.12 74.74±2.91 77.51±2.76
featurel-level - 68.84±5.22 72.69±2.96 79.37±3.02

sample-level 67.52±4.11 69.39±4.34 70.81±4.28 74.45±4.72
featurel-level 78.29±1.72 79.41±1.92 80.40±2.04 82.22±2.05

Credit-g
✓

sample-level - 53.10±6.82 52.87±8.69 59.61±7.08
featurel-level - 58.11±4.92 60.71±3.42 60.57±6.10

sample-level 52.80±5.04 54.96±6.34 55.72±5.11 58.53±6.19
featurel-level 61.29±3.03 62.25±2.86 63.26±2.87 64.52±3.28

Cultivars
✓

sample-level - 46.47±7.92 49.29±9.74 48.84±8.76
featurel-level - 47.71±9.54 49.62±9.96 50.07±9.20

sample-level 52.31±9.47 48.94±8.68 50.73±8.19 50.37±6.31
featurel-level 58.93±8.13 59.37±7.98 60.51±8.00 60.45±7.13

Diabetes
✓

sample-level - 78.30±3.86 77.88±4.33 77.71±4.22
featurel-level - 71.57±6.28 71.55±8.03 74.48±5.05

sample-level 80.48±2.64 80.45±2.84 80.41±3.01 80.05±3.00
featurel-level 75.65±3.05 75.68±3.61 75.76±3.78 75.70±4.33

Heart
✓

sample-level - 76.30±10.52 84.05±5.94 87.90±2.66
featurel-level - 70.53±18.59 80.79±9.61 86.47±3.72

sample-level 66.32±8.67 75.68±8.74 79.70±7.15 85.72±3.54
featurel-level 58.28±4.30 65.40±7.18 70.55±7.68 78.09±5.63

NHANES
✓

sample-level - 85.86±6.82 90.06±4.83 94.18±2.10
featurel-level - 76.04±12.39 84.66±6.90 90.32±2.84

sample-level 85.91±4.01 88.08±5.39 89.95±4.79 93.88±2.07
featurel-level 83.96±3.21 86.60±3.05 88.30±4.34 92.61±3.27
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A.9 COMPARISON OF DIFFERENT DISTANCE METRICS

Table 14: AUC across 10 datasets with different distance metrics.

Data Shot
Shot

0 4 8 16 32 64

Adult
Euclidean 85.93 86.01 86.12 86.28 86.26 86.32
Manhattan 88.11 87.93 87.94 87.83 87.58 87.33

Cosine 85.85 85.88 85.91 85.97 85.83 85.88

Bank
Euclidean 80.2 80.85 81.41 83.26 84.88 85.84
Manhattan 74.03 76 77.07 78.97 81.07 82.11

Cosine 80.18 80.84 81.39 83.32 84.95 85.91

Blood
Euclidean 75.63 75.98 76.35 75.46 75.84 76.08
Manhattan 75.73 75.24 75.02 74.61 73.51 74.01

Cosine 75.25 76.17 75.92 76.48 76.69 76.47

Car
Euclidean 78.29 79.41 80.4 82.22 84.78 87.45
Manhattan 75.66 76.46 77.31 78.97 81.43 83.65

Cosine 79.29 80.27 81.13 82.7 85 87.59

Credit-g
Euclidean 61.29 62.25 63.26 64.52 68.32 71.75
Manhattan 60.98 61.8 62.83 63.99 67.45 70.37

Cosine 60.99 61.92 62.99 64.21 68.16 71.5

Cultivars
Euclidean 58.93 59.37 60.51 60.45 60.63 61.67
Manhattan 56.1 55.87 56.16 56.22 55.03 57.41

Cosine 58.92 59.22 60.67 60.26 61.17 62.12

Diabetes
Euclidean 75.65 75.68 75.76 75.7 77.48 78
Manhattan 76.3 76.71 77.08 76.65 78.01 78

Cosine 75.74 75.97 76.21 76.27 78.17 78.4

Heart
Euclidean 58.28 65.4 70.55 78.09 83.59 88.17
Manhattan 66.74 71.98 76.02 81.83 86.15 89.37

Cosine 58.42 65.28 70.14 77.44 83.3 88.24

Myocardial
Euclidean 62.52 63.25 63.62 64.03 65.44 65.75
Manhattan 63.52 64.09 64.07 64.56 65.66 65.91

Cosine 62.29 63.08 63.16 63.77 65.03 65.5

NHANES
Euclidean 83.96 86.6 88.3 92.61 94.91 96.91
Manhattan 86.62 88.39 89.35 92.91 94.76 96.48

Cosine 84.04 86.54 88.2 93.04 95.31 97.42

A.10 COMPARISON OF AUC SCORES WITH DIFFERENT LLMS

We extend our experiments to include open-source LLMs, specifically Llama-3B and Llama-8B, to
further validate our approach. Our results show that ProtoLLM continues to achieve comparable
performance with these open-source models, demonstrating the robustness of our method across
different base LLMs.

Table 15: Comparison of AUC scores with different LLMs.

dataset shot Llama3B Llama8B GPT-3.5 GPT-4o

Adult

0 80.85±0.35 84.78±0.34 85.93±0.64 85.74±0.51
4 81.87±1.47 84.87±0.48 86.01±0.78 85.82±0.59
8 82.76±1.39 85.05±0.60 86.12±0.92 85.91±0.64
16 83.59±1.18 85.10±0.79 86.28±0.77 85.94±0.60

Blood

0 73.34±3.22 77.91±4.42 75.63±4.15 77.83±4.53
4 75.16±4.96 77.15±4.30 75.98±4.99 77.17±4.67
8 76.03±4.89 76.99±4.58 76.35±4.61 76.99±4.72
16 76.69±4.16 76.01±4.25 75.46±4.12 76.21±4.39

Diabetes

0 79.84±1.77 72.67±2.87 75.65±3.05 73.17±3.57
4 80.02±1.81 73.06±3.34 75.68±3.61 73.85±3.76
8 79.95±2.02 73.67±3.46 75.76±3.78 74.16±3.82
16 79.91±2.26 73.60±3.98 75.70±4.33 74.08±4.48

Heart

0 63.30±4.40 64.33±4.22 58.28±4.30 74.37±4.09
4 70.79±7.48 73.03±8.20 65.40±7.18 79.30±5.99
8 75.51±7.63 77.95±7.94 70.55±7.68 82.09±5.68
16 82.04±5.04 84.13±4.75 78.09±5.63 85.36±3.96
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A.11 APPLYING DATA AUGMENTATION TO OTHER MODELS

Table 16: Applying Data Augmentation to LogReg,KNN, and MLP.

Data Model
Shot

0 4 8 16 32 64

Adult
LogReg 76.52±2.57 76.83±5.44 80.98±5.12 82.60±3.39 83.73±2.99 85.21±1.66

KNN 82.79±1.65 83.41±1.13 83.84±1.07 84.14±0.84 84.52±0.69 85.09±0.59
MLP 71.63±9.76 80.20±7.03 81.45±7.39 85.40±3.23 85.95±2.51 85.43±3.88

Bank
LogReg 67.83±9.80 76.07±5.90 78.20±4.46 81.51±2.87 81.01±4.21 84.32±3.52

KNN 75.81±2.18 76.87±2.40 77.17±2.41 78.34±1.91 80.35±2.16 82.44±1.81
MLP 65.60±10.36 72.18±12.70 73.63±8.60 78.22±2.51 80.92±2.12 82.67±2.59

Blood
LogReg 74.02±4.61 73.53±5.50 75.40±5.69 76.76±4.14 76.12±4.89 76.76±4.15

KNN 73.18±4.83 74.41±4.20 74.70±3.39 74.79±3.56 74.75±4.61 75.04±4.18
MLP 69.32±7.67 68.51±9.09 67.49±14.09 73.94±4.55 73.22±7.31 73.19±8.12

Car
LogReg 68.78±4.53 72.84±4.69 76.79±4.18 79.70±3.42 82.07±3.04 87.67±2.07

KNN 72.87±1.68 73.93±1.81 74.37±1.97 75.59±2.07 78.88±1.69 83.18±1.64
MLP 76.17±2.45 76.25±2.64 77.84±3.30 80.69±2.85 83.65±2.62 87.40±2.54

Credit-g
LogReg 53.91±4.38 57.92±6.76 62.64±4.82 64.48±5.36 68.82±3.98 71.27±4.06

KNN 59.23±5.60 58.48±5.61 58.92±4.41 61.87±4.59 65.96±5.28 68.51±4.35
MLP 56.17±8.63 60.21±6.95 63.10±5.82 62.51±5.51 66.96±4.99 69.34±4.70

Cultivars
LogReg 60.34±8.64 51.98±8.57 55.99±11.06 59.30±9.85 62.56±7.83 69.55±9.65

KNN 53.69±5.90 58.65±5.50 57.55±5.29 54.81±5.00 55.19±7.49 54.00±8.46
MLP 60.81±7.74 56.69±8.48 58.61±9.41 62.70±9.73 66.37±8.53 73.79±5.30

Diabetes
LogReg 75.53±5.73 76.69±5.34 75.14±5.56 76.01±4.23 77.39±4.96 79.78±3.67

KNN 71.74±3.53 71.70±3.34 72.23±3.62 73.13±3.31 75.50±3.36 76.22±3.37
MLP 69.17±5.89 72.71±6.56 66.80±8.89 73.76±3.70 76.11±3.38 75.43±5.96

Heart
LogReg 50.48±6.67 71.32±13.83 76.27±11.97 83.93±6.55 85.90±4.17 88.37±2.13

KNN 58.55±5.61 63.21±9.22 68.66±10.98 75.88±8.01 82.80±5.62 88.21±2.91
MLP 56.24±11.22 63.64±10.55 71.38±11.92 76.26±10.07 85.53±4.76 89.42±1.87

Myocardial
LogReg 60.15±5.29 62.57±5.12 62.38±5.23 63.50±4.97 65.34±5.08 68.76±4.31

KNN 50.00±0.00 54.44±5.30 57.61±6.37 58.36±6.58 59.13±5.86 60.46±5.10
MLP 54.25±8.44 61.99±5.16 62.67±4.97 62.98±3.73 65.17±3.94 65.00±4.49

NHANES
LogReg 98.80±1.39 98.78±1.48 97.17±3.17 98.90±0.89 99.58±0.47 99.86±0.14

KNN 79.17±3.45 80.62±2.51 83.01±3.24 87.77±4.07 92.34±3.58 95.98±2.04
MLP 74.25±9.67 80.09±5.96 84.91±5.55 93.21±4.01 95.01±3.44 98.84±1.06
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A.12 DETAIL OF WEIGHTED FEATURE GENERATION

In this section, we outline the prompt utilized to query feature weights for a dataset. For this querying
process, both the task and all relevant feature descriptions are provided to the LLMs to ensure a
comprehensive understanding of the context and specific characteristics of the data. Additionally,
detailed instructions and the required response format are included. Below is an example using the
Car dataset.

You are an expert in analyzing relationships between features and target variables.
I will provide you with the task description and feature descriptions of a dataset. Your goal is
to analyze the importance of each feature in predicting the target variable based on the relation-
ship between features and the target.

Task:How would you rate the decision to buy this car? Unacceptable, acceptable, good or very
good?

Feature:
buying: buying price
maint: price of the maintenance
doors: number of doors
persons: capacity in terms of persons to carry
lug boot: the size of luggage boot
safety: estimated safety of the car

The output should be a markdown code snippet formatted in the following schema, including
the leading and trailing "‘‘‘json" and "‘‘‘":

‘‘‘json
{
"buying": float
"maint": float
"doors": float
"persons": float
"lug boot": float
"safety": float
}
‘‘‘

Please provide the importance of each feature in predicting the target variable. The importance
of each feature should be a float value between 0 and 1.

Figure 10: Prompt for querying feature weights in the Car Dataset.
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The output is as follows: LLMs first analyze the relationships between features and the target class,
then provide a dictionary that delineates the associated feature weights. The generated feature
weights could enhance ProtoLLM greatly.

‘‘‘json
{
"buying": 0.4,
"maint": 0.3,
"doors": 0.1,
"persons": 0.15,
"lug boot": 0.05,
"safety": 0.6
}
‘‘‘

Based on the given feature descriptions, the importance of each feature in predicting the target
variable can be estimated as follows:

- "buying" (buying price): 0.4 - The buying price of a car can significantly influence the de-
cision to buy. Higher buying prices may indicate better quality or features, leading to a higher
rating.

- "maint" (maintenance price): 0.3 - The maintenance price of a car can also play a role in the
decision. Lower maintenance costs may indicate affordable upkeep, which can contribute to a
positive rating.

- "doors" (number of doors): 0.1 - The number of doors may be a minor factor in the decision
to buy. More doors can provide convenience and flexibility, but it may not have a significant
impact on the overall rating.

- "persons" (capacity in terms of persons to carry): 0.15 - The capacity to carry more individ-
uals can be an important consideration for families or individuals who frequently travel with a
larger group. It contributes to the overall rating but may not be as crucial as other factors.

- "lug boot"” (size of luggage boot): 0.05 - The size of the luggage boot may have a minimal
impact on the decision. While it can be a convenience factor, other features such as safety or
maintenance may hold more weight in determining the rating.

- "safety" (estimated safety of the car): 0.6 - The estimated safety of the car is likely to be a
significant factor in the decision to buy. Higher safety ratings can greatly influence the overall
rating, indicating a higher likelihood of a positive rating.

Figure 11: Generated Feature weights of Car dataset.
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Here we present a summary of AUC scores for various datasets using the ProtoLLM model with
and without feature weights across different shot configurations (0, 4, and 8). While some datasets
show a slight decline in performance with feature weights, many exhibit significant improvements,
particularly the NHANES dataset, highlighting the effectiveness of weighted features in enhancing
model performance.

Table 17: AUC scores for various datasets using the ProtoLLM model are presented, comparing
performance with and without feature weights across different shot configurations.

Data Shot ProtoLLM ProtoLLM+weight

Adult
0 85.93 84.37
4 86.01 84.42
8 86.12 84.56

Bank
0 80.20 81.08
4 80.85 81.06
8 81.41 81.05

Blood
0 75.63 74.66
4 75.98 76.26
8 76.35 76.35

Car
0 78.29 77.73
4 79.41 79.21
8 80.40 80.30

Credit-g
0 61.29 64.09
4 62.25 65.71
8 63.26 66.63

Cultivars
0 58.93 58.84
4 59.37 59.14
8 60.51 61.91

Diabetes
0 75.65 81.55
4 75.68 81.63
8 75.76 81.61

Heart
0 58.28 56.61
4 65.40 62.26
8 70.55 66.41

NHANES
0 83.96 97.52
4 86.60 98.18
8 88.30 98.44

Average AUC
0 73.13 75.16
4 74.62 76.43
8 75.85 77.47
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A.13 LIMITATIONS

Limitations. This work introduces an example-free and training-free ProtoLLM for zero and few-
shot tabular classification tasks. It prompts the LLM for feature value generation based solely on task
and feature description, making it difficult to apply to datasets without such describing information.
Besides, our ProtoLLM prompts the LLM without the training examples and designs the training-
free prototype for classification instead of training a classifier. Therefore, it is more suitable for the
zero and extreme few-shot regimes. With the increasing number of training samples, our approach
is gradually closer to or inferior to other methods that depends on training samples and a learnable
classifier, which is an interesting direction and can be considered in future work.
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