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Abstract— Robotic in-hand manipulation, involving fingers
making and breaking contacts, advances toward human-like
dexterity in real-world robotic interactions. While learning-
based approaches have recently shown promising performance,
they face bottlenecks due to high data requirements and lengthy
training times. Although model-based methods have the poten-
tial to overcome these limitations, they struggle with efficient on-
line planning and handling modeling errors, which limits their
real-world applications. This paper proposes a novel approach
for in-hand manipulation that addresses the limitations of both
learning-based and model-based methods. The key feature of
our approach is the integrated real-time motion-contact plan-
ning and tracking, achieved through a hierarchical structure.
At the high level, finger motion and contact force references are
jointly generated using contact-implicit model predictive control
(MPC). At the low level, these combined references are tracked
with tactile feedback. Extensive experiments demonstrate that
our approach outperforms existing methods in terms of ac-
curacy, robustness, and real-time performance. It successfully
completes all 6 challenging tasks in real-world environments,
even under significant external disturbances. The full paper and
video are available on https://director-of-g.github.
io/in_hand_manipulation_2/.

I. INTRODUCTION

In-hand manipulation refers to changing the position of
grasped objects using fingers, the palm, and external contacts
[1], [2],. This capability is essential for enabling versatile and
dexterous robotic interaction with the real world [3], [4]. In-
hand manipulation can be categorized into in-grasp manip-
ulation [5], where hand-object contacts are maintained, and
manipulation involving finger making and breaking contacts
(regrasping) [2], [6]. This paper focuses on the latter, which
is challenging due to two key aspects. First, modeling errors
are unavoidable due to the difficulty of accurately modeling
the nonlinear, contact-rich dynamics [7]–[9], compounded
by sensor noise and variability in object properties and
hand structures. Robust planning and control, incorporating
contact state monitoring with tactile feedback, as well as
visual and proprioceptive signals, are essential. Second, real-
time planning is challenging due to the high degrees of
freedom in multi-fingered hands and the need to coordinate
numerous contacts. External disturbances and stochastic con-
tact dynamics [10] require fast online re-planning to update
contact sequences and recover from perturbations, especially
in long-horizon tasks with regrasping.

To address these issues, considerable works have been
reported, divided into learning-based and model-based meth-
ods. Reinforcement learning (RL) achieves state-of-the-art
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Fig. 1. Overview of the proposed framework for generalizable in-hand
manipulation. The framework is model-based and organized as a hierarchical
structure. In the high level, a contact-implicit MPC generates real-time
motion-contact plans where the fingers make and break contacts. In the
low level, a tactile-feedback controller tracks the high-level plans while
compensating for the modeling errors by exerting desired contact force.

performance through parallel simulation and domain ran-
domization [11]–[14]. However, RL’s generalization requires
extensive data, posing significant challenges for further de-
ployment. In contrast, model-based methods offer training-
free generalization. These methods can be further categorized
into contact-explicit and contact-implicit methods. Contact-
explicit methods transform manipulation into a hybrid prob-
lem, solving discrete contact sequences and continuous con-
trol inputs [15]–[18]. However, to avoid the locality of solu-
tions, problems are often solved considering the complete
manipulation sequence, making online re-planning time-
consuming and susceptible to perturbations. Contact-implicit
methods instead directly plan through contacts without ex-
plicitly considering contact sequences [19]–[23]. To ensure
real-time performance, contact-implicit methods typically
adopt simplified and approximate models, avoiding the use
of accurate but difficult-to-solve complementary constraints,
which results in imperfect physical fidelity. Consequently,
Methods of this kind are susceptible to modeling errors.

This paper addresses the in-hand manipulation problem
with regrasping, emphasizing robust, long-horizon manipula-
tion in the presence of external disturbances and significant
object pose changes. It proposes a hierarchical framework
combining real-time integrated motion-contact planning and
tactile-feedback tracking control. At the high level, a contact-
implicit model predictive control (MPC) scheme computes
reference finger motions and contact forces using a dif-
ferential dynamic programming (DDP) algorithm and an
implicit contact model. At the low level, these references
are tracked with MPC-based hybrid force-motion control
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Fig. 2. Proposed integrated motion-contact planning and tracking framework. (A) The user inputs the desired object motion, hand grasp pose, and
corresponding models. (B) The high-level real-time motion-contact planner employs contact-implicit MPC to generate motion-contact references from
the initial state x0, state reference xref, and the previous iteration’s solution X∗,U∗. (C) The low-level tactile-feedback tracking controller uses tactile
feedback to track these references jointly. The core algorithm is an MPC-based HFMC. (D) Together, these modules ensure robust and precise in-hand
manipulation across multiple tasks.

(HFMC) incorporating tactile feedback. The high-level mod-
ule enables real-time planning, while the low-level module
ensures robust execution and addresses modeling errors like
the force-at-a-distance effect1 caused by modeling errors. We
conduct extensive simulations and real-world experiments to
validate the accuracy, robustness, and real-time performance
of the proposed framework, with the first two metrics out-
performing existing methods.

II. METHOD

This section provides an overview of the proposed frame-
work for dexterous in-hand manipulation, as illustrated in
Fig. 2. The framework takes as input the desired object
motion, the hand grasp pose, and the models of both the
object and hand. It eliminates the need for predefined contact
sequences or predetermined finger motions, thanks to real-
time planning with implicit contact models. The framework
has a hierarchical structure, including a high-level real-time
integrated motion-contact planner and a low-level tactile-
feedback tracking controller. The two modules run in parallel
and are related through the motion-contact references. Note
that different dynamics models are used at different levels.
At the high level, we are concerned about the full system
dynamics with combined motion-contact planning ability.
Thus, the smoothed CQDC model f [20] is used. At the

1Also refered to as the ”boundary layer” effect in [20]

low level, we are concerned about the computation efficiency
and local force-motion relationship of hand contacts. Thus,
a simpler model g is used, which focuses solely on the
hand’s dynamics without accounting for object movement.
In addition, the models are updated with proprioception and
object perception.

The high-level planner generates coarse finger motions
to establish specific contacts and drive the object to follow
the desired motion. Finger motions, contact locations, and
contact forces are jointly planned. However, due to modeling
errors, the force-at-a-distance effect can occur, leading to
insufficient contact force with pure motion tracking. The low-
level module addresses modeling errors, including the force-
at-a-distance effect, by jointly tracking planned motions
and contact forces using tactile feedback. Consequently, the
actual motion is adjusted to ensure that the actual contact
forces closely match the planned forces. The output of the
low-level module is then converted into position commands
and sent to the hardware. Please refer to Fig. 3 for a detailed
view of the function at different levels. Please refer to the
full paper for more details.

III. SIMULATIONS

We choose the Rotate Sphere task to compare different
methods. Two representative approaches from existing work
were chosen: 1) executing generated finger motions in an
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Fig. 3. Detailed view of the proposed framework. The top figures show
the high-level integrated motion-contact planning module, which generates
real-time finger motions and contact information (visualizing only the index
finger and forces). The top-right figure illustrates how modeling errors lead
to the force-at-a-distance effect, where non-zero planned forces appear even
when contact is inactive. Modeling errors can be mitigated through low-level
motion-contact tracking (shown in the bottom-right figure). The bottom-left
figure shows how contact tracking is achieved by deforming the command
fingertip trajectory. Best viewed in color.

open-loop manner (openloop); 2) predictive sampling (PS)
using Cross Entropy Methods (CEM) or gradient-based
methods (iLQG). We generate 100 random target orienta-
tions, of which the rotation from the initial orientation is no
more than 90 degrees. For each target orientation, we record
the sphere orientation and joint positions within the first 60s.
Please refer to the full paper for all results.

1) Results and Discussions: As shown in Tab. I, the
proposed method achieves the highest precision and success
rate with the smoothest finger motions. Compared with
the openloop baseline, our method has a lower task error
since the tactile-feedback controller tracks desired contact
forces and avoids missing contacts. The openloop baseline
demonstrates poorer performance compared to [20]. This
is attributed to the omission of the additional trajectory
optimization process, ensuring a fair comparison as the

experiments are conducted in real-time. Furthermore, we
employ the more accurate MuJoCo simulator instead of a
quasi-static simulator2. For the same reason, the openloop
baseline has the lowest task error S.D. Compared with MJPC
(CEM), our method has a lower task error, since sampling-
based methods have poorer performance especially near
convergence. However, MJPC quickly reduces task error,
resulting in the shortest task time. This is attributed to the
precise dynamics model utilized by MJPC. Besides, our
method has much lower task error S.D. and joint acceleration,
which show a potential advantage for hardware deployment.
MJPC (iLQG) has the worst performance, since the gra-
dients computed through finite difference often vanish for
contact-rich manipulation, which indicates the importance of
smoothing. Compared to manipulation tasks, MJPC (iLQG)
performs relatively better on locomotion tasks [24], [25], as
foot contacts are easily established due to gravity and the
gradients are typically non-zero.

Remark. We exclude direct comparisons with learning-
based methods due to their limited generalization capability
to novel task setups. In contrast, the proposed model-based
method seamlessly applies to modified task setups without
extensive training. However, we note that RL-based meth-
ods with large-scale training typically outperform in highly
dynamic tasks [26], [27], which are challenging for the
proposed method with simplified dynamics and relatively low
control frequency.

The other simulation results demonstrate that: 1) the pro-
posed framework is robust against sensor noises, owing to the
online planning and long-term predictive ability that reduce
sensitivity to noisy observations; 2) the proposed framework
achieves higher accuracy and lower variance under modeling
errors, compared to the predictive sampling baseline; 3) the
proposed low-level controller achieves precise tracking of
contact forces and exhibits robust generalization capabilities
across various object shapes in the static grasping experi-
ment; 4) the proposed low-level controller effectively tracks

2In [20], an additional trajectory optimization with a smaller time
step refines the planned trajectory to mitigate the ”boundary layer” effect.
Moreover, [20] employs a custom quasi-static simulator, which is less
accurate than alternatives.

TABLE I
COMPARISON BETWEEN DIFFERENT METHODS IN THE SPHERE ROTATION TASK IN MUJOCO SIMULATION.

Methods Success rate ↑ Average task error (rad) ↓ Average task error
of successful cases (rad) ↓

Average task error S.D.
of successful cases (×10−1rad) ↓

ours (planning)a 100 / 100 4.954×10−5 4.954×10−5 0.003
ours 100 / 100 0.024 0.024 0.034

openloop 14 / 100 0.644 0.069 0.004
MJPC (CEM) 83 / 100 0.099 0.050 4.505
MJPC (iLQG) 14 / 100 0.464 0.084 5.601

Methods Average task time
of successful cases (s) ↓

Average joint
acceleration (rad/s2) ↓

Average control frequency
high-level/low-level (Hz)

ours (planning)a 28.824 0.247 10.007 / N/A
ours 35.550 0.618 9.884 / 30.006

openloop 47.801 0.651 9.456 / N/A
MJPC (CEM) 21.926 174.578 99.996 / N/A
MJPC (iLQG) 24.999 198.478 99.998 / N/A
a ours (planning) refers to testing the high-level planning module without MuJoCo simulation.
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Fig. 4. Relative force tracking error and snapshots of the grasping experiment. The objects are: (a) banana, (b) mango, (c) onion, (d) pear, (e) pepper.

both finger motion and contact forces in the in-hand object
movement experiment.

IV. REAL-WORLD EXPERIMENTS

The real-world experiments demonstrate that: 1) the pro-
posed method executes all five tasks—grasping, opening
the door, rotating the card, sliding the board, and opening
the box—with remarkable precision and robustness; 2) the
proposed method converges more quickly and demonstrates
a lower orientation error compared to the baseline (without
contact tracking) in the task of opening the door. Please refer
to the full paper for all results.

A. Experiment Setup

We attach the LEAP Hand to the flange of a UR5 arm,
which serves as a movable base, and the wrist movements
are not utilized during in-hand manipulation. The original
fingertips of LEAP Hand are replaced with four vision-
based tactile sensors Tac3D [28], which estimate the contact
normals and forces at 30Hz.

B. Real-World Grasping Experiment

We test the low-level controller in a real-world grasping
experiment, and the results are shown in Fig. 4. We execute
grasping 3 times for each of the 5 objects. The relative
force tracking error is small and remains consistent between
multiple trials, which accords with the simulation. The results

demonstrate that the proposed tactile-feedback controller is
reliable to track desired contact forces.

C. Experiments of the Open Door Task

We customize a door model with cylindrical handle and a
hinge joint to accommodate of the LEAP Hand, as shown in
Fig. 5 (a)(b). The task first requires in-hand manipulation to
turn the door handle 180 degrees so that the notch is aligned
with the door latch, which requires high precision. The hand
then pulls open the door as shown in the last column of the
snapshots. The rotation of the door handle during four trials
is shown in Fig. 5 (c). We exert human interference in Trial
1 and 2, as shown in the peaks. The door handle is turned to
the target orientation even under disturbances. The planned
and real contact forces during Trial 4 are visualized in
Fig. 5 (d)(e). The boxes with solid borders and the shadows
filled in corresponds to time intervals where the planned and
real contact forces exceed the given threshold 0.1N (time
intervals that last less than 1 s are regarded as noises and
are neglected). If the planned forces are ideally tracked, the
shadows will fill up 100% of the boxes. However, there
is an obvious tracking delay especially when the planned
forces do not maintain for sometime (i.e., high-frequency
oscillation). The reasons for the imperfection include the low
sampling frequency and the servo characteristics which are
not accurately modeled.
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Fig. 5. Experiment results of the open door task with human disturbance. (a) Snapshots from two different views. (b) Door handle rotation of different
trials. (c) Planned and real contacts (Trial 4) represented as time intervals where the contact forces exceed a given threshold. (d)(e) The planned and real
contact forces.
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