Under review as a conference paper at ICLR 2022

TOWARDS GENERAL ROBUSTNESS TO BAD TRAINING
DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we focus on the problem of identifying bad training data when
the underlying cause is unknown in advance. Our key insight is that regardless
of how bad data are generated, they tend to contribute little to training a model
with good prediction performance or more generally, to some utility function of
the data analyst. We formulate the problem of good/bad data selection as utility
optimization. We propose a theoretical framework for evaluating the worst-case
performance of data selection heuristics. Remarkably, our results show that the
popular heuristic based on the Shapley value may choose the worst data subset in
certain practical scenarios, which sheds lights on its large performance variation
observed empirically in the past work. We then develop an algorithmic framework,
DATASIFTER, to detect a variety of and even unknown data issues—a step towards
general robustness to bad training data. DATASIFTER is guided by the theoretically
optimal solution to data selection and is made practical by the data utility learning
technique. Our evaluation shows that DATASIFTER achieves and most often
significantly improves the state-of-the-art performance over a wide range of tasks,
including backdoor, poison, noisy/mislabel data detection, data summarization,
and data debiasing.

1 INTRODUCTION

The quality of training data is a fundamental ingredient towards useful and reliable ML-based
applications. Unfortunately, there are unaccountably many possible data issue types. For example,
errors and bias occur frequently in data generation and collection processes. Bad data could also
be caused by adversarial attacks (e.g., data poisoning and backdoor attacks), as training data are
often collected from anonymous and unverified sources. On the other hand, most of the existing data
selection strategies only applicable to specific data issues. Due to the diversity of data issues, there is
an urgent need to achieve general robustness to bad data of various types and even unknown types.

Purging bad data is a long-standing problem, intensively studied by both the database and the ML,
community. Most of the existing approaches, however, can only achieve specialized robustness to bad
data of certain types. In the database community, the state-of-the-art data cleaning approaches such as
ActiveClean (Krishnan et al., 2016), BoostClean (Krishnan et al.,2017), AlphaClean (Krishnan and
'Wul 2019)), and CPClean (Karlas et al.,2020) are only applicable to certain classes of ML models and
data issues. In particular, they cannot detect adversarial attacks on training data. The endeavors of the
ML community have covered a wider range of data quality issues such as adversarial attacks (Wang
et al.,[2019} [Chen et al.l 2019), data debiasing (Zemel et al.| [2013; |Madras et al.,|2018)), and mislabel
detection (Zhao et al.|[2019). However, each aforementioned solution only focuses on addressing
a specific data issue effectively. The effectiveness of these approaches is based on the premise that
the data quality issues are known a priori, which usually does not hold in reality. Few recent works
have the potential to achieve general robustness to unknown data issues. One line of such works is
based on differentially private training (Du et al.,|2019; |Hong et al., [2020). These approaches do not
perform data selection; instead, they attempt to restrict the impact of each training data point on the
learning outcome in an undifferentiated manner. As a side effect, these approaches hinder learning
from good data, thereby leading to poor learning performance in practice (ITramer and Boneh, 2020).
Another line of works that has potential to achieve general robustness is based on data valuation.
These works first adopt a data importance metric, e.g., influence function (Koh and Liang}, 2017}
Koh et al., [2019; [Feldman and Zhang, [2020) or Shapley value (Ghorbani and Zou, 2019; Jia et al.}

Under review as a conference paper at ICLR 2022

2019a)), to quantify each training data point’s contribution to the training process. Then, which data
to retain or remove is decided based on the ranking of data value. However, past empirical studies
(Jia et al., 2019Db) and our experiments (Section [6) show that their performance varies considerably
across different data and learning algorithms. Overall, existing approaches to bad data filtering either
cannot identify unknown data issues by design or suffer from poor detection efficacy.

In this work, we take a step towards general robustness to bad training data. Our work is underpinned
by a key insight about what defines “bad training data”. Despite the diverse types of data issues,
the crucial commonality is that all bad data contribute little to achieving good model performance.
If a data point contributes positively to learning, it would be beneficial to just keep it as part of
the training set, thus not considered a “bad” point. Hence, a promising way to select data without
knowing data issue types in advance is to search for data subsets that results in the highest trained
model performance. More generally, the data analyst may have a utility function beyond model
performance, so we formulate data selection as a utility optimization problem (Section 3)).

Secondly, with the utility optimization objective in mind, we present a novel theoretical framework
(Section[) for rigorously analyzing the worst-case performance of data selection approaches. The
line of existing works closest to achieving general robustness is the aforementioned data value ranking
approaches. However, we show that these approaches have unsatisfying worst-case performance
guarantees due to failure to capture the interactions amongst selected data points (also empirically
shown in Appendix [F.5.2). In particular, the popular Shapley value-based approach could select the
worst data in some common scenarios.

We then design a general algorithmic framework guided by the theoretically optimal (but computa-
tionally infeasible) solution to utility optimization (Section[5). A significant technical challenge for
finding the subset that optimize the model utility is that, in order to evaluate the impact of different
subsets of data on model performance, we need to retrain model on every possible subset. To solve
the computational challenge, we introduce DATASIFTER, which directly learns a parametric function
to predict the performance of a model trained on a given subset and then performs data selection
via optimizing the function. Compared with prior data selection algorithms, DATASIFTER has the
following advantages: (1) being able to handle various data issues (general robustness), (2) applies to
any target ML model architectures (model-agnostic), and (3) instantiated by the goal of downstream
ML tasks (task-driven). Finally, we conduct a thorough empirical study on a range of data issues
(Section [6)), including backdoor and poisoning attack detection, noisy label/feature detection, data
summarization, and data debiasing. Our experiments demonstrate that DATASIFTER achieves and
most often significantly improves the state-of-the-art performance of data valuation-based approaches.

2 RELATED WORK

Data valuation-based approaches can potentially achieve general robustness against diverse data
issues by quantifying data importance or “data value”, and then picking data points with high value
for model training process. One simple idea to quantify data importance is to use the leave-one-out
error. Koh and Liang|(2017) provides an efficient algorithm to approximate leave-one-out error for
each training point. Recent works leverage credit allocation schemes originated from cooperative
game theory to quantify data importance. Particularly, Shapley value has been widely used (Ghorbani
and Zou, 2019; Jia et al.l | 2019alcfb; [Wang et al., 2020), as it uniquely satisfies a set of desirable
axiomatic properties. More recently, |Yan and Procaccial (2020) suggests that the Least core is also a
viable alternative to Shapley value for measuring data importance. However, computing the exact
Shapley and Least core values are generally NP-hard. Several approximation heuristics, such as
TMC-Shapley (Ghorbani and Zou, [2019), G-Shapley (Ghorbani and Zou, 2019), KNN-Shapley (Jia
et al.,|2019c¢), have been proposed for the Shapley value. Despite their computational advantage, they
are biased in nature. On the other hand, unbiased estimators such as Permutation Sampling (Maleki,
2015) and Group Testing (Jia et al., [2019a) still require retraining models many times for any decent
approximation accuracy. Tracln (Pruthi et al., 2020) estimates the importance by tracing the test loss
change caused by a training example during the training process. The representer point method (Yeh
et al.,[2018)) captures the importance of training point by decomposing the pre-activation prediction
of a neural network into a linear combination of activations of training points.

The typical paradigm of data valuation-based approaches for selecting high-quality data (or filtering
bad data) is straightforward: (1) each data point’s value (e.g., Shapley value) is computed. (2) data

Under review as a conference paper at ICLR 2022

points are sorted by value and data points with the highest value are selected. However, this paradigm
fails capture the interactions amongst selected data points (Section[dand Appendix[F5.2), i.e., the
existence of one data point often affect the importance of another.

Differentially private training (Du et al.|[2019; |[Hong et al., 2020) have the potential to achieve general
robustness to unknown data issues. However, fundamentally, these approaches diminish the influence
of each training data on the learned model in an undifferentiated manner. Hence, these approaches
hinder learning from good data, which lead to poor learning performance (Tramer and Boneh, 2020).

Data cleaning approaches from database community are not able to achieve general robustness.
The state-of-the-art data cleaning approaches leverage the information about downstream ML tasks
to guide the cleaning process; examples include ActiveClean (Krishnan et al., [2016), BoostClean
(Krishnan et al.| 2017)), AlphaClean (Krishnan and Wul |2019), and CPClean (Karlas et al.| [2020).
However, the state-of-the-art data cleaning methods are only applicable to certain architectures of
ML models (e.g., convex model, nearest neighbors), data format (e.g., tabular data), and data issues
(e.g., missing values, outliers). In particular, data cleaning approaches cannot be straightforwardly
extended to adversarial attacks such as data poisoning attacks and backdoor attacks.

3 FORMALISM

We propose to formulate the problem of achieving general robustness to bad data as finding a subset
of data points with the highest utility. We use the data utility function to characterize the mapping
from a set of data points to its utility.

More formally, let D = {(z;, ;) }?, denote the training set with data points of different quality. A
learning algorithm A is a function that takes a dataset S C D and outputs a classifier f. A metric
function u takes f as input and outputs its model utility. In the machine learning context, we often
use test accuracy as the metric, u(f,V) = ITlfl > (e.yyev LUf (z) = y] for a test set V. However, test

set V is usually not available during the training time. In practice, u(f , V) is typically approximated
by validation accuracy u(f, V') where V is a validation set separated from the training set.

With a potentially randomized learning algorithm .4 and a corresponding metric function u, we define
the data utility function as U4 ,,(S) = E4 [u(A(S),V)]. When the context is clear, we omit the
subscript and simply write U(S). The concept of data utility functions was originally discussed
in|Wang et al.|(2021a)), where it is used for active learning tasks. The critical difference between our
formulation and [Wang et al.|(2021a)) is that our formulation incorporates the label information as the
input to a data utility function. This is important as label information is required for identifying both
mislabeled and many types of adversarial attacks on training data.

With the modified notion of the data utility function, we abstract the objective of selecting high-quality
data as a utility optimization problem:

max U(S) ()
SCD:|S|=k

where 0 < k < n indicates the selection budget, which can be predetermined (e.g., based on the
prior knowledge about potential data defects or computational requirements). The fundamental
intuition behind this formulation is that despite the diversity of data issue types, all “bad data” have
the commonality that they all contribute little or negatively to model performance. Hence, optimizing
data utility function is a principled way to achieve general robustness. Besides, the interactions
between data points will significantly affect model performance. A “good data” can only be defined
relative to the rest of the data points in the dataset. Therefore, high-quality data selection needs to be
done in a batch-style instead of one-by-one. Overall, a promising way to deal with unknown data
issues is to search for a set of data points that results in the highest trained model performance on a
clean validation set.

4 WORST-CASE ANALYSIS FOR VALUATION-BASED APPROACHES

In this section, we introduce a theoretical framework to analyze the worst-case performance of data
selection algorithms for the utility optimization objective in (I)). We show that data valuation-based
approaches, such as leave-one-out (LOO), Shapley value, and Least core, achieve unsatisfying

Under review as a conference paper at ICLR 2022

worst-case guarantee. Note that here we assume exact data value can be computed for every data
point. In practice, however, data value notions such as Shapley value require model retraining on
every possible data subset. Typically, only approximations can be obtained, which may further impair
data selection results. We will defer all proofs to Appendix.

We start by formalizing data selection algorithms into a general paradigm. We call an algorithm M
such that M((D, U), k) returns S C D of size k a heuristic to a (size-k) data selection problem on
dataset D. The typical pattern of data valuation-based heuristics is that they first rank the data points
according to their corresponding data importance metric, and then select the data points with the
highest importance scores. We call the heuristics matching this selection pattern as linear heuristics.

Definition 1 (Linear heuristic). We say M is a linear heuristic for data selection problem if for every
instance T = (D,U) where D = {z1,. .., zn}, M works as follows:

1. Assign a score v = (v1,...,v,) for every data point z; € D. Sort D according to v in
non-ascending order and get (z(1y, . . ., 2(n)). Certain rules are applied to break tie.

2. For a query of selecting k high-quality data points, return the k data points in D with the
highest scores (2(1y, 2(2), - - - » 2(k))-

For example, for Shapely-based data selection approach, each v; = > SCD\{z} ﬁ [U (Su

IS]

{z:}) — U(S)] and M((D,U), k) returns k data points with the highest Shapley values.

Our theoretical framework for studying the worst-case performance of data selection heuristics is
inspired by the domination analysis framework initially proposed in|Glover and Punnen| (1997). Our
worst-case performance metric is domination ratio, which measures how many subsets achieve lower
utility than the selected set in the worst-case scenario.

Definition 2 (Domination ratio). The domination ratio of a heuristic M for the data selection
problem is the maximum ratio 0 < d(n, k) < 1 s.t., for every problem instance T = (D,U) on a
dataset D of size n and utility function U, M(Z, k) produces a size-k subset S C D which has utility
U(S) no worse than at least d(n, k) percentage of all size-k subsets.

For example, d(n,n) = 1 for any heuristic since there is only one choice of size-n set. d(n,n/2)
will be calculated by the least number of size-n/2 subsets S C D where M((D,U), k) has better
utility than across all datasets D and utility function U, divided by the total number of subsets (n%)
The domination ratio is well defined for every data selection heuristic. A heuristic with a higher
domination ratio may be a better choice than a heuristic with a smaller domination ratio due to the
better worst-case guarantee. The best heuristic for data selection has domination ratio d(n, k) = 1
for every k < n, which means that it will always pick the size-k data subset with the highest utility
(the exact solution for Objective (1)) for every possible data utility function. The worst possible
domination ratio is d(n, k) = 1/(}), as the returned subset has utility at least no worse than itself.

The following result shows that no linear heuristic is among the best heuristic whenever n > 3.
Theorem 1. For n > 3, there exists no linear heuristic M s.t. d(n, k) =1 forevery k € {1,...,n}.

Furthermore, we can tighten the upper bound of the domination ratio for data valuation-based
heuristics by noticing another common property: two data points will receive the same importance
score if they contribute equally to all possible subsets of the training data. This property is often
referred to as symmetry axiom in the literature (Jia et al.l 2019a};|Yan and Procaccial, [2020).

Definition 3 (Symmetry axiom). A linear heuristic M satisfies symmetry axiom if its scoring vector
v in the Step 1 of Def. [I]satisfies: [(VS € D\ {z;, z;)U(S U {z}) = U(SU{z})] = v; = vj.

The symmetry axiom may be desired for application scenarios requiring fairness, e.g., data importance
scores are used to assign monetary rewards for data sharing. However, for data selection, symmetry
axiom may be undesirable because simply gathering high-value data points may lead to a set of
redundant points. Based on this intuition, the following theorem further upper bounds the domination
ratio for non-trivial linear heuristics that with symmetry property.

Theorem 2. If a linear heuristic M assigns different scores to different data points and satisfies
symmetry axiom, then the domination ratio d(n, k) of M is upper bounded by |n/k] ((L"Z’CJ 1)/ ().

In particular, when ¢ = n/k for some constant integer ¢, d(n, k) < (k/n)* ' = (1/¢)0™.

Under review as a conference paper at ICLR 2022

The above theorem suggests that whenever k < n/2, the domination ratio will be exponentially small
for linear heuristics that satisfy symmetry axiom. The key insight is that symmetry axiom makes the
heuristics tend to select similar data points as similar data points will have similar value, while the
data utility does not simply add up. We experimentally demonstrate this in Appendix [F5.2}

Notably, we show that the Shapley value-based heuristic has no performance guarantee in the worst
case scenario, even if we restrict data utility functions to be submodular, a common assumption of
data utilities (Wang et al.,|[2021aib; [Han et al., |2020). The intuition is that Shapley value of training
data weights higher for its marginal contributions on small datasets. Thus, data points that make a
larger contribution on tiny datasets may be assigned with higher Shapley value, even if they make
little or negative contributions in every dataset of desired selection size k.

Theorem 3. For any n > 4 and k € {1,...,n}, the domination ratio of Shapley value-based
heuristics is d(n, k) = 1/(}), even if the data utility function U is submodular.

5 DATASIFTER

One straightforward way to optimize Objective (1) is to exhaustively evaluate U (.S) for all possible
size-k subsets S C D and choose the one that achieves the highest utility. Of course, this theoretically
optimal but unrealistic algorithm requires prohibitively large computational resources as the required
number of utility evaluations is (Z) , and worse yet, each evaluation of data utility function requires
retraining the model. Our approach to resolving the computation issues is inspired by a recent line of
work, which shows that data utility functions for many common ML algorithms exhibit “approximate”
submodularity. This property allows data utility functions to be learned (Balcan and Harvey| [2011}
Wang et al.,[2021c) and optimized (Minoux, |1978) efficiently. Hence, the idea of our approach is
to first learn a parametric model to approximate data utility functions. With such a model, one can
estimate the learning performance for any dataset by feeding the dataset at the input and query the
function’s output. Then, one can select the data subset by optimizing this model. If the model can
fully recover the utility function U, under the same unbounded computation assumption made for the
analysis of linear heuristics, the domination ratio is just 1 as our method can always numerate all
possible subsets and find the optimal one.

Specifically, the proposed data selection framework, termed DATASIFTER, proceeds in two phases:
learning and selection phase.

Learning Phase. Figure [I] depicts the learning phase of the DATASIFTER, which consists of a
utility sampling step and a utility model training step. Formally, suppose that we have training set
D = {(z4,y:)}, and a small validation set V' representative for potential test data. To learn the
data utility model, we train the classifier f for multiple times with different subsets S C D. The set
{(S,u(f,V))} could serve as a training set for learning U. When the learning algorithm is stochastic,
for the sake of efficiency we just train f once and calculate u(f, V) to approximate the utility U (.S).
If computational budget permits, one can choose to retrain f multiple times and compute the average
utility. We adopt a canonical model architecture for set function learning—DeepSets (Zaheer et al.|
2017)-as our model for U. A DeepSets model is a set function f(S) = p (3°,cg ¢(2)) where both p
and ¢ are neural networks, and in our context z = (x, y) the concatenation of data feature and label.
Its permutation-invariant property and universal expressive power making it suitable as the parametric
model for learning data utility function. With the utility samples {(S, u(f,V))} as the training data,
we can learn the data utility function through training the DeepSets model U with standard stochastic
gradient descent. In this work, the sampling distribution of .S is simple: we first uniformly pick a
set size, and then uniformly sample a subset of the given size without replacement. We stress that
more fine-grained subset sampling methods could potentially improve the resulting data selection
performance (see further discussion in Section[6.2.2] VI). We left exploring the relationship between
subset sampling distribution and data selection performance as future work.

Selection Phase. Given a trained utility model U, we could optimize it as a surrogate for objective
(I) efficiently and approximately using greedy algorithms, as most of the data utility functions are
empirically shown to be approximately submodular. We follow [Wang et al.|(2021a)) and choose
stochastic greedy algorithm (SG) from Mirzasoleiman et al.|(2015)) to find the subset that optimizes
utility model (i.e., the trained DeepSets model). The SG is a simple algorithm that, for each iteration,
randomly selects a subset of data {z;}/_; and then finds the best data point within that subset. In the
context of optimizing utility model, the “best data point” within each randomly selected subset refers

Under review as a conference paper at ICLR 2022

Sampling Step Training Step

1

Sampled
. Subsets

"7 " Training Data

Figure 1: Overview of the learning phase, which consists of utility sampling step and utility model
training. We randomly sample subsets from the training data during the sampling step, retrain the
model on the subset and obtain the utility score for each set by evaluating the ML model over a clean
validation set. Then, we train the utility model to predict the utility of a given dataset.

to the data point z with the highest marginal contribution U (S U {z}) — U(S), where S is the set of
data points selected in previous iterations. SG runs in linear time while provides decent optimization
guarantee for submodular functions. Although its approximation guarantee has been proved only
for monotone submodular objective functions, our experiments show that it achieves high empirical
performance on data utility models that are approximately submodular. A more detailed discussion
and pseudo-code for SG can be found in Appendix [D] We also note that the rigorous characterization
of the (approximate) submodularity for data utility functions is surprisingly difficult and it is still an
open question (Wang et al.| 2021azb)).

In our experiment (Section [6)), General Model- Task- Est.
o Method Type . . -
the number of utility samples Robustness Agnostic Driven Utility
. Data Cleaning X o o X
1S 4000 fOI' all the tasks we Perm-SV (Malekil[2015) v v v X
evaluated on (an empirically TMC-SV (Ghorbani and Zou) 2019) v v v X
: G-SV (Ghorbani and Zou, |2019) v X v X
tuned number for efficiency- KNN-SV (T ot all20190) 9 o 9 9
performance tradeoft). Model Least Core (Yan and Procaccia} 2020) v v v x
retraining could be computa- Leave-one-out (Koh and Liang}2017) v v v X
. 1 . f 1 Infl. Func. (Koh and Liang,2017) X X v X
tionally expensive for large TracIn (Pruthi et al.}[2020) x X v X
training datasets and models. DATASIFTER v v v v
However, retraining on differ-
ent subsets is common and of- Table 1: Summary of the differences between prior works and
ten unavoidable for data selec- DATASIFTER. o means only some of the techniques in the type
tions algorithms aiming at gen- satisfy the property. ‘SV’ means Shapley value.

eral robustness, e.g., permuta-

tion sampling for Shapley value requires O(n logn) times model retraining. For DATASIFTER, two
techniques could be used to improve scalability. The first technique is based on the observation that
4000 times of model retraining is still relatively efficient on small datasets. For example, training
4000 small CNN models on the subsets of 2000 CIFAR-10 images takes only about 15 hours with
NVIDIA Tesla K80 GPU. As long as different data subsets have observable differences in utilities
(e.g., 10% vs 30% test accuracy), the learned utility model can still be used to differentiate between
good and bad data points. Since the learned utility model can provide utility estimations for sets of
unseen data points by design, when the utility learning is on smaller subsets, greedy optimization
can still be performed on a larger dataset by selecting good data in a batch-mode style. This largely
improves the scalability of DATASIFTER (Appendix [F:5.9). The second technique is to use a smaller
proxy model for utility sampling, which is proposed in|Wang et al.|(2021a)), and the idea of using
proxy model for data selection was also explored in|Lewis and Catlett| (1994])); |(Coleman et al.|(2019).
This technique is based on the observation that the utilities of data for different learning algorithms
are usually positively correlated. In our experiment, we find that sampling utilities on small subsets
can already achieve good efficiency and performance (Appendix [F.3.9).

Compared with prior data selection algorithms mentioned in Section[2] DATASIFTER has the following
advantages: (1) achieves general robustness by design, (2) is model-agnostic as data utility function
can be defined for every learning algorithm, and (3) is task-driven as the optimization objective (the

Under review as a conference paper at ICLR 2022

utility function) is defined in terms of the downstream ML task (the learning algorithm and metric
function). In addition, with the learned data utility model, DATASIFTER can provide an estimate of
the utility for the selected dataset, which will be useful for data analysts to decide the number of data
points to select. The major differences between DATASIFTER and previous data selection algorithms
are summarized in Table[T]

6 EVALUATION

To test the general robustness of DATASIFTER, sk Datasets
we evaluate this algorithmic paradigm on a vari- — g‘;;;gei‘(‘) &PI’\II’I?;"X
. ackdoor Detection -

?ty of tasks with dl.fferent _data 1ssucs, as listed II. Poisoned Data Detection CIFAR-10 Dog vs. Cat

in Table[2l We consider various benchmark mod- TIL. Noisy Feature Detection | CIFAR-10 | MNIST

els and datasets used in past literature for each IV. Mislabeling Detection SPAM CIFAR-10

task. Since we observe similar results on different V. Dafa Summarization PubFig83 | COVID-CT
VI. Data Debiasing Adult COMPAS

datasets, we only describe the result on one repre-
sentative dataset for each task here and leave the
other dataset in the Appendix. We also evaluate
the scalability of DATASIFTER on larger datasets in Appendix [F.5.9]

Table 2: Summary of tasks and datasets.

6.1 IMPORTANT SETTINGS AND BASELINES

For fair comparison between DATASIFTER and baselines, we fix the number of utility sampling as
4000 for DATASIFTER as well as baseline algorithms that require utility sampling. For DATASIFTER,
subsets are sampled by first picking a set size uniformly, and then uniformly sample a subset of the
given size. The validation data in utility sampling are 500 clean data points sampled from the test
data of the corresponding datasets. We repeat model training ten times for each selected set of data
points to obtain the error bars. The metric function we use for Data Debiasing experiment is weighted
accuracy, and for all other experiments the metric function is validation accuracy. Both DATASIFTER
and baselines use the same metric function.

We focus on comparing data valuation-based approaches as they are closest to achieving general
robustness. Differentially private training methods are omitted from comparison as they significantly
impair model performance. Data cleaning methods are also omitted as their applicability is limited to
specific data types, error types, and model architectures. We consider the following eight state-of-art
data valuation-based approaches: (1) Shapley Permutation Sampling (Perm-SV) (Malekil 2015)), a
Monte Carlo-based algorithm for Shapley value estimation. (2) TMC-Shapley (TMC-SV) (Ghorbani
and Zou, 2019), a refined version of the Perm-SV, where the computation focuses on the subsets
whose utility changes significantly when an extra point is added. (3) G-Shapley (G-SV) (Ghorbani
and Zou, |2019), which approximates the Shapley value by anticipating the utility change caused by
an extra point with its gradient. (4) KNN-Shapley (KNN-SV) (Jia et al., 2019c), which approximates
the Shapley value by using K-Nearest-Neighbor as a proxy model. (5) Least Core (LC) (Yan and
Procaccia, [2020), another data value notion in cooperative game theory with Monte Carlo-based
approximation. (6) Leave-one-out (LOQ) (Ghorbani and Zou, 2019) evaluates the change of model
performance when a data point is removed. (7) Influence Function (INF) (Koh and Liang], |2017} |Koh
et al.}|2019), which approximates the LOO error with first-order extrapolation. (8) TracIn-Clean
(Pruthi et al.| [2020), which traces the loss on clean validation data change during the training process
whenever the training point of interest is sampled in batch SGD. (9) TracIn-Self (Pruthi et al.| 2020)
use the similar technique as TracIn-Clean but traces the self-influence, i.e., the reduction of a training
point on its own loss. This approach is used for detecting bad data. (10) Random is a setting where
we randomly select a subset from the target dataset.

6.2 RESULTS

6.2.1 FILTERING OUT HARMFUL DATA

Training data could be contaminated by various harmful examples, e.g., backdoor triggers, poison
information, noisy/mislabeled samples. Our goal here is to identify data points that are most likely to
be harmful. These points can either be discarded or presented with high priorities to human experts
for manual cleaning. To evaluate the performance of different data selection methods, we examine the
training instances filtered by each method and plot the change of the fraction of detected corrupted

Under review as a conference paper at ICLR 2022

—— DataSifter TMC-SV =— KNN-SV ~— LOO TracIn-Self —-— Random
Perm-SV — G-SV —— LC ~— INF Tracin-Clean
2 1.0 a 1.0 o — Py 1.0 7 - 1.0 7,-”
£os %08, / Fa | 208 /[[7 208 '_"T:;}‘:'Jf""
g e b i 2T f 5 F
T 06| Bo6l | 7 Toe |/ co6 [A
g E [?‘. .‘ g [)/ 2 e
3 0.4 g 040 i @04 g 04
2 Q| L& < Y g)
50.2 502t 3% o 502 41 002 pit
g g | / g | |4
< 0.0/ # ! L 2oo p— coo ==l | 00 !
0 500 1000 1500 2000 0 100 200 300 400 500 0 500 1000 15002000 0 100 200 300 400 500
L@) # |nspected Data IL@) ~ # |nspected Data @) # Inspected Data V) # Inspected Data
100 100 | 36]
2 _IN ""*'sig‘é..;‘ =2 s34 |
< 80 N (< 80 [y |
> N |2 o2 X / \‘
e N\ 1E 60 N (230 |
5 60 \ 5 5
g I+ g8 e 1B \ |
< 49 < 40 < 26 LSA N |
]]] \
9] o 24 |
g 5 & 20| <1 2
< < =22 TN =86 e 1
! [0 S— 1 i i 200 1 ggl |l
200 400 600 800 1000 50 100 150 200 250 200 400 600 800 1000 50 100 150 200 250
L(b) # Thrown Data L) # Thrown Data ML) * % Thrown Data IV.(b) " % Thrown Data

Figure 2: The experimental results and comparisons of the DATASIFTER under the case of filtering
out harmful data (application I-IV). The light blue region in each (a) graph represents the area that a
method is no better than a random selection. For I.(b) and II.(b), we depict the Attack Success Rate
(ASR), where a lower ASR indicates a more effective detection. For III.(b) and I'V.(b), we show the
model test accuracy, where a higher accuracy means a better selection.

data with the fraction of the checked training data. Additionally, for poisoned/backdoor data detection,
we plot the change of Attack Success Rate (ASR), and for noisy feature/label detection, we plot the
change of model accuracies after filtering out the low-quality data points selected by each technique.

I. Backdoor Detection. Backdoor attacks (Gu et al2017)) embed an exploit at training time that is
subsequently invoked by the presence of a “trigger” at test time. They are considered particularly
dangerous since they make victim models predict a target output on inputs with predefined triggers
while still retain high accuracy on clean data. Since data points with the backdoor triggers contribute
little or negatively to the learning of clean test data, they are expected not to be not included in the
subset that optimizes objective (I). This experiment studies the effectiveness of DATASIFTER for
removing backdoored examples. We evaluate Trojan attack (Liu et al.l 2017) here. We adopted a
three-layer CNN as the target model, a poison rate of 0.05, and a target label ‘Airplane’. Figure[2]I.(a)
and I.(b) elaborate the Trojan attack detection results for a 2,000-size randomly selected subset of
the CIFAR-10 dataset. As we can see, DATASIFTER significantly outperforms other approaches; for
instance, it achieves a detection rate of 90% with 46 % fewer inspected data points than the others.

II. Poisoned Data Detection. In data poisoning attacks, adversaries make slight modifications
to some training samples to cause misclassification on target test samples. We evaluate different
techniques on feature collision attack (Shafahi et al.,2018) and influence function-based attack (Koh
and Liang, 2017). They are clean-label attacks where the attacker does not need to control the labeling
of poisoned data. Figure 2]IL(a) and IL(b) show the results for feature collision attack (Shafahi et al|
2018) on a 500-size randomly selected CIFAR-10 subset, where 50 data points of class ‘cat’ are
perturbed with features extracted from a ‘frog’ sample in the test set. We see that DATASIFTER
significantly outperforms all other methods in the poisoned data detection task; for instance, it attains
a 90% detection rate with 66% fewer examined data points.

II1. Noisy Feature Detection. Noise in features originated from sampling or transmitting (e.g.,
Gaussian noise) may decrease classification accuracy. Following the settings in|Wang et al.| (2021a)),
we add white noise to clean samples, and we evaluate the performance of each technique on detecting
those samples. For the CIFAR-10 dataset, we corrupt 25% of the training data images by adding white
noise. Based on Figure 2]IIL.(a) and IIL.(b), we conclude that DATASIFTER significantly outperforms
all other methods on this task; for example, it achieves a 90% of detection rate by examining 67.25 %
fewer data points. Meanwhile, the KNN-SV approach exhibits a distinctive trend — it only starts
finding the noisy data points until filtering out a certain amount of clean data. This is mainly because
all noisy data points are out-of-distribution (OOD). A more detailed discussion is in the Appendix.

Under review as a conference paper at ICLR 2022

IV. Mislabeling Detection. Following |Ghorbani and Zou| (2019)), we perform experiments on two
datasets and present the results of SVM trained on Enronl SPAM dataset (Shams and Mercer, 2013)).
We adopt a bag-of-words representation for training. The noise flipping ratio is 15%. Under this
setting, influence-based techniques and G-SV are not applicable since they require the model trained
with gradient-based approaches. Figure 2]IV.(a) show that DATASIFTER does not attain the highest
detection rate. This is because for SPAM dataset, the margin between the two classes is large
so a small amount of mislabeled samples do not significantly affect model performance; hence,
those mislabeled samples could evade detection based on the validation performance. Such evasion
is acceptable as the model trained over the data points selected by DATASIFTER still achieves a
competitive accuracy (as shown in Figure |Z| IV.(b)). On the other hand, KNN-SV and LOO can
accomplish a good detection rate but end up with a lower model performance. This is because they
select very unbalanced samples, as both of them satisfy the symmetry axiom discussed in Section 4]

6.2.2 SELECTING HIGH-QUALITY DATA

V. Data Summarization. Data summa-

) -— DataSifter
rization aims to select a small, repre- g %90 | _gnugp |
sentative subset from a massive dataset, g £eo PSS S
which can retain a comparable utility to 2 g7 / U= e
that of the whole dataset. We use a o g / T
CNN trained on the PubFig83 dataset in g 5% B Tracin Clean
this experiment. Figure 3]V shows that ot - 3’50 e

DATASIFTER and KNN-SV significantly V. # Selected Data VL. " Selected Data

outperform all the other methods. . .
Figure 3: The experimental results for the case of

VI. Data Debiasing. We explore selecting high-quality data (application V and VI).
whether techniques can help select a sub- We depict the validation accuracy for both cases. A

set of training data that improves both fair- higher accuracy indicates a better performance.
ness and performance for the ML task. We

use logistic regression trained on the UCI Adult Census dataset as the task model. We measure the
fairness by weighted accuracy — the average of model classification accuracy over females and that
over males. G-SV, KNN-SV, and Influence-based techniques are not applicable for this application
since they are designed for computing data importance when the metric is test accuracy or loss.
Figure 3] VI shows that DATASIFTER achieves the top-tire performance along with the Perm-SV. We
note that for this particular task, one can potentially further improve DATASIFTER’s performance by
changing the subset sampling distribution with more variation in the ratio of sensitive attributes, e.g.,
gender in Adult dataset. Here, we stick with the uniform subset sampling as other tasks since we
intend to evaluate general robustness instead of targeting on one specific data issue type.

7 LIMITATIONS AND FUTURE WORK

We propose a principled objective for achieving general robustness in data selection tasks. Based on
the objective, we theoretically analyzed the worst-case performance of the existing data valuation-
based algorithms and show that these approaches suffer unsatisfying performance guarantees. We
present DATASIFTER, a new data selection paradigm guided by the theoretically optimal solution
to achieve general robustness against various data issue types, and we showed that DATASIFTER is
closer to achieve the goal of general robustness than data valuation-based approaches.

One limitation of our work is the scalability. While in Appendix [F.5.9] DATASIFTER is often more
efficient than other algorithms with similar design goals of general robustness on large datasets, it
could still be ineffective for very high dimensional data. Improving the scalability of DATASIFTER
through some efficient approximation of data utility functions would be interesting future works.

Another future direction is to explore other possible architecture or algorithm for utility learning.
While DeepSet-based utility models have shown promising results in our experiment, we can further
exploit the approximate submodularity of common data utility functions and use more fine-grained
architectures/algorithms for utility learning, e.g., set transformer (Lee et al.| 2019) or submodular
regularizations (Alieva et al.).

Under review as a conference paper at ICLR 2022

8 REPRODUCIBILITY STATEMENT

The anonymized sample implementation for data utility learning and optimization is provided in
https://tinyurl.com/dulwithlabel|. The details of baseline implementations (as well
as their source code link, if applicable) are provided in Appendix The data preprocessing steps
are described in Appendix [F.2]and detailed in Appendix [F:3] The experimented data selection tasks
are detailed in Appendix [F.3| The details of DeepSets implementations and data utility learning are
described in Appendix

REFERENCES

Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Goldberg. Activeclean:
Interactive data cleaning for statistical modeling. Proceedings of the VLDB Endowment, 9(12):
948-959, 2016.

Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. Boostclean: Automated error
detection and repair for machine learning. arXiv preprint arXiv:1711.01299, 2017.

Sanjay Krishnan and Eugene Wu. Alphaclean: Automatic generation of data cleaning pipelines.
arXiv preprint arXiv:1904.11827, 2019.

Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Giirel, Xu Chu, Wentao Wu, and Ce Zhang. Nearest
neighbor classifiers over incomplete information: From certain answers to certain predictions.
arXiv preprint arXiv:2005.05117, 2020.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2079
IEEE Symposium on Security and Privacy (SP), pages 707-723. IEEE, 2019.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, pages 4658-4664, 2019.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In International conference on machine learning, pages 325-333. PMLR, 2013.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning, pages 3384-3393.
PMLR, 2018.

Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar, and
Lydia Y Chen. Rad: On-line anomaly detection for highly unreliable data. arXiv preprint
arXiv:1911.04383, 2019.

Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection via
differential privacy. arXiv preprint arXiv:1911.07116, 2019.

Sanghyun Hong, Varun Chandrasekaran, Yigitcan Kaya, Tudor Dumitras, and Nicolas Papernot.
On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint
arXiv:2002.11497, 2020.

Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much more
data). arXiv preprint arXiv:2011.11660, 2020.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pages 1885-1894. PMLR, 2017.

Pang Wei Koh, Kai-Siang Ang, Hubert HK Teo, and Percy Liang. On the accuracy of influence
functions for measuring group effects. arXiv preprint arXiv:1905.13289, 2019.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. arXiv preprint arXiv:2008.03703, 2020.

10

https://tinyurl.com/dulwithlabel

Under review as a conference paper at ICLR 2022

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, pages 2242-2251. PMLR, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Giirel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pages

1167-1176. PMLR, 2019a.

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? arXiv preprint arXiv:1911.07128, 2019b.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. arXiv preprint arXiv:1908.08619, 2019c.

Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach to
data valuation for federated learning. In Federated Learning, pages 153—167. Springer, 2020.

Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core, 2020.

Sasan Maleki. Addressing the computational issues of the Shapley value with applications in the
smart grid. PhD thesis, University of Southampton, 2015.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33,
2020.

Chih-Kuan Yeh, Joon Sik Kim, Ian EH Yen, and Pradeep Ravikumar. Representer point selection for
explaining deep neural networks. arXiv preprint arXiv:1811.09720, 2018.

Tianhao Wang, Si Chen, and Ruoxi Jia. One-round active learning. arXiv preprint arXiv:2104.11843,
2021a.

Fred Glover and Abraham P Punnen. The travelling salesman problem: new solvable cases and
linkages with the development of approximation algorithms. Journal of the Operational Research
Society, 48(5):502-510, 1997.

Tianhao Wang, Yu Yang, and Ruoxi Jia. Learnability of learning performance and its application to
data valuation. arXiv preprint arXiv:2107.06336, 2021b.

Dongge Han, Michael Wooldridge, Alex Rogers, Shruti Tople, Olga Ohrimenko, and Sebastian
Tschiatschek. Replication-robust payoff-allocation for machine learning data markets. arXiv
preprint arXiv:2006.14583, 2020.

Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions. In Proceedings of
the forty-third annual ACM symposium on Theory of computing, pages 793-802, 2011.

Tianhao Wang, Zana Buginca, and Zilin Ma. Learning interpretable fair representations. 2021c.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization techniques, pages 234-243. Springer, 1978.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114,2017.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrédk, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Machine learning proceedings 1994, pages 148—156. Elsevier, 1994.

11

Under review as a conference paper at ICLR 2022

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. arXiv
preprint arXiv:1804.00792, 2018.

Rushdi Shams and Robert E Mercer. Classifying spam emails using text and readability features. In
2013 IEEE 13th international conference on data mining, pages 657-666. IEEE, 2013.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pages 3744-3753. PMLR, 2019.

Ayya Alieva, Aiden Aceves, Jialin Song, Stephen Mayo, Yisong Yue, and Yuxin Chen. Learning to
make decisions via submodular regularization.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In International Conference on Machine Learning, pages 1954—-1963. PMLR, 2015.

Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. A sharp concentration inequality with
applications. Random Structures & Algorithms, 16(3):277-292, 2000.

Vitaly Feldman and Jan Vondrak. Optimal bounds on approximation of submodular and xos functions
by juntas. SIAM Journal on Computing, 45(3):1129-1170, 2016.

Vitaly Feldman, Pravesh Kothari, and Jan Vondrdk. Tight bounds on 11 approximation and learning
of self-bounding functions. Theoretical Computer Science, 808:86-98, 2020.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for
black-box predictions. In International Conference on Machine Learning, pages 715-724. PMLR,
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
Kaggle. Dog vs cat. https://www.kaggle.com/c/dogs—vs—cats/overview.

Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research. In
European Conference on Machine Learning, pages 217-226. Springer, 2004.

Nicolas Pinto, Zak Stone, Todd Zickler, and David Cox. Scaling up biologically-inspired computer
vision: A case study in unconstrained face recognition on facebook. In CVPR 2011 WORKSHOPS,
pages 35-42. IEEE, 2011.

Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: a ct scan dataset about
covid-19. arXiv preprint arXiv:2003.13865, 2020.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive)
ics.uci.edu/ml.

Hongjun Yoon. A machine learning evaluation of the compas dataset. In 2018 IEEE International
Conference on Big Data (Big Data), pages 5474-5474. IEEE, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825-2830, 2011.

12

https://www.kaggle.com/c/dogs-vs-cats/overview
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2022

A PROOF OF THEOREMI]
Theorem 1. For n > 3, there exists no linear heuristic M s.t. d(n, k) =1 forevery k € {1,...,n}.

Proof. Suppose, for contradiction, that there exists a linear heuristic M s.t. d(n, k) = 1 for all k. For
a dataset D = {1,2,...,n} and utility function U, WLOG assume that the ranks (in non-ascending
order) output by M in the Step 2 of Deﬁnitionis (1,...,n). Then it means

U({1}) > U(S) forall Ss.t. |S] =1,

U({1,2}) > U(S) forall Ss.t. |S| =2,

U{1,...,n—1})>U(S) forall Ss.t. |S| =n—1.
We construct a simple counter example of U to demonstrate such a M does not exist: let n = 3, we
define U as follows:

u) =

(
U({l}) 7, U({2}) =U({3}) =5,
U({1,2}) =9,U({1,3}) = 9,U({2,3}) = 10,
U({1,2,3}) = 10.

To make d(3,1) = 3, M must choose 1 for k = 1. However, for size-2 subsets, M can only choose
between {1, 2} and {1,3}, whose utilities are both 9 < U ({2, 3}). Therefore, d(3,2) = 2 < (}) =
3.

B PROOF OF THEOREM [2]

To formally state and prove Theorem 2] we introduce the formal definition of data type here.
Definition 4. Given a dataset D and utility function U, if for all subset S C D\ {4, j}, we have

U(Su{i}) =U(SU{j}),

we say two data points i and j are of the same type.

In other words, two data points are of the same type if they will be scored equally by every linear
heuristic that satisfies Symmetry Axiom. Theorem 2] essentially says that for all linear heuristic that
will assign different scores to different types of data points, their domination ratio can be further
upper bounded. We stress that this is a very mild assumption, especially when the space of the scores
are continuous, which are the case for most of the existing data value notions.

To simplify the notations for set operations, we use & x {z} to denote a dataset that contains k
replicates of data point z, and we denote the union of two data sets S; U So = S7 4+ S3. The proof
idea of Theorem [2]is to construct a balanced dataset that contains same amount of data points from
different types. If a linear heuristic M satisfies symmetry axiom, then M will select data points
of the same type when the target selection number is small, as all data points of the same type will
receive the same scores. However, a dataset contains only one type of data points will have nearly no
utility.

Theorem 2 (Restated). If a linear heuristic M satisfies symmetry axiom and will always assign
different scores for different types of data points, then the domination ratio d(n, k) of M is upper

bounded by |n/k]| ([L“Z’*‘J])/(Z) In particular, when ¢ = n/k for some constant integer ¢, d(n, k) <
k—1
(5)! = 1/

n

Proof. Suppose there are c types of data points: z1,...,2.. Letr = n mod c. We construct the
dataset D that contains |n/c| data points for each of type z1, ..., 2,_,, and contains [n/c] data

points for each of type z,—r41,...,2n, 1.6, D= 1" [n/c] x {zz} + ey /] x {2}
We construct utility function U as follows

U(d) =0;
U(il x{zl}...—i-icx{zc}):l,

13

Under review as a conference paper at ICLR 2022

for every tuple of non-negative integers (i1,...,4.) s.t. 1 < Z;Zl i; < n, except that
Ukx{zn})=...=Ukx{z:})=0

forall £ < L%J . This construction reflects the rationale that a dataset that only contains one type of
data points (e.g., all of the same label) provide little information for training ML models.

Since M satisfies symmetry axiom, we know that all data points of the same type will receive the
same scores. Besides, data points of different types will receive different scores by assumption.
Therefore, when the target selection size k < L%J , M will return k& x {z]} which has the worst
utilities for subset at size k and there are (¢ —) (L"Ié CJ) + r(“”,ﬁ C]) such subsets that only contains
single types of data points. For each k, by taking the largest possible ¢ such that k < L%J , we obtain

the desired bound. When ¢ = n/k an integer, we have

i B\ Pl
ank) < W< (B) = et = a0
(v) n
where the second inequality is due to () > (%) O
Remark 4. The upper bound indicates that when k < n/2, the domination ratio is exponentially
small for linear heuristics with symmetry property. We also note the assumption that M always

assigns different scores for different data types can be further relaxed as long as there exists such a
balanced dataset described in the proof that M assigns different scores for different data types.

C PROOF OF THEOREM[3|

Given a dataset D = {1,...,n} and a submodular utility function U, the Shapley value is computed
as

vanli) = = 3 == [U(SU{i}) — U(S)] @
n SCD\{i} ([S])

Theorem 3 (Restated). The domination ratio d(n, k) of Shapley value-based heuristics is 1/ (}) for
everyn > 4 and any k € {1,...,n}, even if we restrict the data utility function U to be submodular.

Proof. We first consider the case when k£ > 3.

We construct an instance of a dataset D = {1,...,n} and a submodular utility function U as follows:
U(®) =0;
U{1})=U({2})=...=U({k}) =7,U{i}) =5fori > k+1;

(
U(S)=2|S|+5forall Ss.t. 2<|S| <k —1;

U{1,...,k}) =2k +4, U(S)=2k+ 5 forall other S s.t. |S| = k;
U(S) =2k +5forall Ss.t. |S| >k+ 1.

We can compute Shapley value according to its definition in (2)):

1 2(k —1) +4(n —k) 2077 -1
’Ushap(l):...:vshap(k):— |:7+ +2(k73)+T
" n-1 (i1
1 [2k+3+4n—2k—2_ 1]
" n—1 (kq)
1 2%k +4(n —k — 1) 1
Vshap(k +1) = ... = Vsnap(n) = — |5+ +2(k = 3) + ——]
" n-1 (i1
1 dn—2k—4 1
L gp gy dn2k—d "_1]
" n—1 (r-1)

14

Under review as a conference paper at ICLR 2022

Since
1 2 1 1 2
Usha, (1) — Usha (k + 1) =— |2+ 7o — n— > > Oa
’ ’ nlon-1 GT) ()] D)
we know that M will always output {1, ..., k}, which achieves the lowest utility among all data

subsets of size k. Therefore, Shapley value’s domination ratio d(n, k) = 1/(}}) forall 3 <k <n—1.

We then consider the case when k& = 2. The submodular data utility functions for the case of k > 3
can be easily adapted as follows:

U(®) = 0;

U{1}) =U({2}) =7.U({i}) =5fori > 3;

U({1,2}) =8, U(S) =9 for all other S s.t. |S| =2;

U(S) =9forall Ss.t. |S|>3.

The Shapley value is computed as follows:

1 1+4(n—2)
(1) = (D) = 1 |4
1
e
n n—1
1 4+4(n—3) 2
Ushap(?)) = ...szhap(n) = E 5+ — (n—l)(an)
1 4 2
= — 9 —
n{ n—1+(n—1)(n—2)}
Since
1 2 1 1 2
vshap(l) - ’Ushap(g) =—|2 + T Tn—1\ Jn—1 ‘| 2 > 07
nlon=1 0 G) ()] ne—1)
we know that M will always output {1, ..., 2}, which achieves the lowest utility among all data

subsets of size 2. Therefore, for Shapley value, d(n,2) = 1/(3).

Finally, we consider the case when k& = 1. Similarly, we construct a submodular utility function as
follows:

() =0;

({1}) =6,U({i}) =7 fori > 2;

({1,i}) =11 fori > 2,U({i,j}) = 9 fori,j > 2;

(S)=11forall Ss.t. |S] > 3.

S TS g

The Shapley value is computed as follows:

1 12
vshap(1) = —[6+4+2] = —

. 1 542(n—2) 2(n—2)(n-23)
s =— |7
Ushap(7) n { + n—1 (n—1)(n—2)
[
=— |11 -
n n—1
1
— = Ushap(l)-
< n Vshap(1)
Therefore, Shapley value’s domination ratio d(n, 1) = 1/(7), which concludes the theorem. O

15

N -

w

N S s

Under review as a conference paper at ICLR 2022

D STOCHASTIC GREEDY ALGORITHM

For completeness, we briefly introduce the stochastic greedy algorithm (SG) for submodular
optimization from [Mirzasoleiman et al.| (2015) here. The stochastic greedy algorithm is a simple
approach that, for each iteration, randomly selects a subset of data and then finds the best data point
within that subset. In the context of optimizing utility model (i.e., the trained DeepSets model), the
“best data point” within each randomly selected subset refers to the data point z with the highest

marginal contribution U(S U {z}) — U(S), where S is the set of data points selected in previous
iterations. The pseudo-code is outlined in Algorithm [T} The distinction between this approach
and the vanilla greedy algorithm is that the candidate data points to be selected in each iteration
of stochastic greedy algorithm is a smaller, randomly selected subset instead of all unselected data
points. Thus, this approach is more efficient than vanilla greedy optimization and the runtime is
linear in the number of dataset size to achieve 1 — 1/e — € optimization guarantee for monotone
submodular functions (e is the precision parameter used in Algorithm|[T). Although its approximation
guarantee has been proved only for monotone submodular objective functions, previous work
as well as our experiments show that it also achieve high empirical performance on data
utility functions that are approximately submodular, therefore we use this algorithm for optimizing
data utility models. Exploring different approaches for optimizing data utility models are interesting
future directions.

ALGORITHM 1: Stochastic Greedy Optimization for Utility Model

input :dataset D, trained utility model U:20 - R, target selection size k, precision parameter
for stochastic greedy algorithm e.
output:A set S C Ds.t. |S| = k.
S <« 0.
fort=1,....kdo
Sample R C D\ S of size ‘—7;' log(1/€)
Find z = argmax, ., U(S U {z})

S+ Su{z}
end
return S

E CHARACTERIZATION AND LEARNABILITY OF DATA UTILITY FUNCTIONS

Approximate Submodularity and Data Utility Functions. It has been empirically observed in
prior works (Wang et al, 202Tal)) that the data utility functions of many commonly used learning
algorithms exhibits approximate submodularity property. Submodular functions are almost always
being characterized by the “diminishing return” property. Formally, a set function f : 2V — R
returning a real value for any subset S C V' is submodular if f({j} US) — f(S) > f{j}UT) —
f(I),vSCT,jeV\T. FigureElshows some examples of the marginal contributions of a fixed
data point versus the sizes of a sequence of data subsets. We can see a clear “diminishing returns”
phenomenon from the figure. That is, an extra training data point contributes less to model accuracy
as the base training set size increases.

However, submodularity is an overly stringent condition to characterize data utility functions, es-
pecially when the learning algorithm is stochastic. [Wang et al] (2021b)) propose a relaxation of
submodularity condition for modeling common data utility functions as follows:

Definition 5 (3-relaxed submodularity (Wang et al.} 2021b)). We say that a set function f satisfies
B-relaxed submodularity if for every S C T C N, and every j € N\ T,

FT UGy = F(T) < F(SU{G)) — f(S)+prUTIEIED 3)

It’s been empirically observed that the above condition is satisfied by the data utility functions of
commonly used learning algorithms for reasonable values of 3. In particular, when 8 < 1, the
bias term 37~ (TI=ISD) attempts to model the phenomenon that when the datasets are small, the

16

Under review as a conference paper at ICLR 2022

C

o —— Logistic
5 0.061

5 SVM
2 0.04] — MLP
)

5 002]

S o

E 0.00 1 o

o

5 —0.02

=

0 100 200 300 400 500
Size

Figure 4: Figure 1 from|Wang et al.| (2021a): An illustration of “diminishing return” property of data
utility functions for widely used learning algorithm (trained on USPS dataset).

contributions of an additional data point to the datasets have larger variance. Hence, when two data
sets get more different in sizes, the contributions to two sets might deviate more from the exact
submodularity property. When 3 = 0, this condition reduces to exact submodularity definition.
However, this relaxation is mainly developed based on empirical experiments as well as mathematical
convenience. There are no theoretical analysis for the correctness of the above characterization.
Although the (approximate) submodularity seems very plausible and intuitive for commonly used
data utility functions, the rigorous theoretical analysis is surprisingly hard. Submodularity has thus
far been proved for only two simple classes of classifiers—Naive Bayes and Nearest Neighbors
[2015). The rigorous proof of the approximate submodularity of more widely used models such
as logistic regression and deep nets seem to be important future works.

Characterization of Data Utility Functions for Specific Learning Algorithms. In Section[d] our
only assumption of data utility functions is submodularity. Of course, analyzing more restrictive
function classes can give tighter results. In fact, a tight analysis of data utility function is possible for
simple models (e.g., see the derivation for KNN and Naive Bayes in[Wei et al|(2015)). Such analysis
seems to be intractable for more complicated models such as deep neural networks. Hence, in Section
[l we tried to find the most restrictive function classes for describing data utility functions without
losing generalizability to commonly used ML models. Given the current literature, (approximate)
submodularity appears to be the most restrictive function class that can well describe the data utility
functions for commonly used ML models. Hence, we devote our analysis in Section[d]to submodular
utility functions.

Theoretical Analysis of the Learnability of Data Utility Functions. [Wang et al| (2021D) also
shows that any set functions with range [0, 1] and satisfy the relaxed submodularity condition in
Equation 3] belongs to a larger function class called self-bounding functions (Boucheron et al} 2000).
This class of functions is known for the dimension-free concentration bound and has been proven to
be efficiently learnable (Fel[dman and Vondrakl, 2016} [Feldman et all 2020) under mild conditions.
This could serve as an insight into why data utility functions can be efficiently learned.

F EXPERIMENT DETAILS AND ADDITIONAL RESULTS

F.1 BASELINE IMPLEMENTATION

The settings of baselines are summarized in Table[3] For fair comparisons between DATASIFTER
and baselines, we fix the total number of utility sampling as 4000 for DATASIFTER and all baseline
algorithms that require utility sampling, including Perm-SV, TMC-SV, G-SV, and LC. For each
sampled subset S, we only train model on it once to approximate U(.S). Following the settings in
|Ghorbani and Zou (2019), we set the performance tolerance in TMC-Shapley as 10~3. Following the

17

Under review as a conference paper at ICLR 2022

Baseline Settings and Hyperparameters
Perm-SV
TMC-SV Tol =103
G-SV hyper-parameter search for specific learning algorithm
KNN-SV K =5, use exact calculation formula
LC Break tie by least core vector that has the smallest /5 norm
LOO

Rank according to influence on the model loss over the clean validation
INF data (the higher, the better); for neural networks, we use stochastic estimation
where recursion depth is 5000 and the number of iterations as 10 or larger
Rank according to influence on the model loss over the clean validation
data (the higher, the better); use exact TracIn described in |Pruthi et al. (2020}.
Rank according to influence on the model loss
over themselves (the lower, the better)

TracIn-Clean

TracIn-Self

Table 3: Summary of Baseline Settings.

settings in (2019¢), we set K = 5 for KNN-Shapley. We use CVXOPTIH library to solve
the constrained minimization problem in the least core calculation. For influence function technique,

we rank training data points according to their influences on the model loss over the validation data.
The code is adapted from the PyTorch implementation of influence function on GitHulﬂ For TracIn
technique, we use all the parameters in model. We use the exact Tracln instead of the more efficient
TracInCP described in |Pruthi et al.|(2020). That is, we trace the influence of data point z on the loss
of 2’ by sum over all iterations (not checkpoints) in which z is chosen in the batch. TracIn-Self is
only used for bad data selection tasks. The intuition is that bad examples are likely to be OOD and
have strong influence for themselves. Therefore, when using TracIn-Self to detect bad data, we sort
training examples by decreasing self-influence. On the contrary, when using TracIn-Clean, we sort
training examples by increasing influence on clean validation data.

For the second-order influence function method from (2020)), since the group selection
method proposed in the paper is extremely expensive (in addition to the expensive nature of influence
function), we do not compare with their method.

F.2 DETAILS OF DATASETS USED IN SECTION

CIFAR-10 (Krizhevsky et al.},2009). CIFAR-10 consists of 60,000 3-channel images in 10 classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). Each image is of size 32 x 32.

MNIST (LeCun, [1998). MNIST consists of 70,000 handwritten digits. The images are 28 x 28
grayscale pixels.

Dog vs. Cat (Kaggle). Dog vs. Cat dataset consists of 2000 images (1000 for ‘dog’ and 1000 for
‘cat’) extracted from CIFAR-10 dataset. Each image is of size 32 x 32.

Enron SPAM (Shams and Mercer, 2013). Enron SPAM dataset consists of 2000 emails extracted
from Enron corpus (Klimt and Yang},[2004). The bag-of-words representation has 10714 dimensions,
and we perform a x* test to the dataset to retrieve only 10% best features (so the feature dimension
becomes 1071).

PubFig83 (Pinto et al. 2011). PubFig83 is a real-life dataset of 13,837 facial images for 83
celebrities, where the images are of varying quality, e.g., some images contain two human faces. We
resize each image to 32 x 32.

Covid-CT (Zhao et al),[2020). The COVID-CT-Dataset has 746 CT images in total, containing
349 images from 216 COVID-19 patients and the rest of them are from healthy people. The dataset is
separated into 543 training images and 203 test images. We resized each image to 32 x 32.

"https://cvxopt.org/
https://github.com/nimarb/pytorch_influence_functions

18

https://cvxopt.org/
https://github.com/nimarb/pytorch_influence_functions

Under review as a conference paper at ICLR 2022

Data Quality Issue Dataset Size | Bad Data Rate Relevant Hyperparameters
Backdoor - Trojan Attack CIFAR-10 | 2000 0.05 Square trigger on bottom-right corner
Backdoor - BadNets MNIST 1000 0.25 Pattern Backdoor on bottom-right corner
Poisoning - Feature Collision | CIFAR-10 500 0.1 B = 0.25, learning rate 500 x 255, 120 iterations
Poisoning - Influence-based | Dog vs Cat | 2000 0.025 o = 0.02, 100 iterations
Noisy Feature CIFAR-10 | 2000 0.25 coordinate-wise Gaussian noise with o = 1
Noisy Feature MNIST 1000 0.25 coordinate-wise Gaussian noise with o = 1
Mislabeling SPAM 500 0.15 Flip label uniformly at random
Mislabeling CIFAR-10 | 500 0.25 Flip label uniformly at random

Table 4: Summary of Hyperparameters in Bad Data Detection tasks. For Feature collision data
poisoning attack, we followed public source code https://github.com/Trusted-AI/
adversarial-robustness-toolbox/blob/main/art/attacks/poisoning/
feature_collision_attack.py|to apply the poison frogs attack (feature collision attack).
The implementation does not hardcode the dynamical calculation of the dimension of the feature
layer, thus requiring a larger learning rate to obtain similar coefficients. We fine-tuned the model
with a learning rate (\) of 500%255.0 and obtained the successful attack.

UCI Adult Census (Dua and Graff, 2017). The Adult dataset contains 48,842 records from
the 1994 Census database. Each record has 14 attributes, including the sensitive gender and race
information. The task is to predict whether one’s income exceeds $50K/yr based on census data. The
categorical attributes in the dataset are one-hot encoded.

COMPAS (Yoon, 2018). We use a subset of the COMPAS dataset that contains 6172 data records
used by the COMPAS algorithm in scoring defendants, along with their outcomes within two years
of the decision, for criminal defendants in Broward County, Florida. Each data record has features
including the number of priors, age, race, etc. The categorical attributes in the dataset are one-hot
encoded.

F.3 EXPERIMENTS IMPLEMENTATION

The attack success rate of backdoor attacks is measured by a separate test backdoored dataset. For the
experiment on backdoor detection, data poisoning detection, noisy detection, and mislabel detection
on the CIFAR-10 dataset, the CNN model we use has two convolutional layers. A max-pooling layer
follows each with the ReL.U as the activation function, and followed by three fully-connected layers.
For the experiment on Backdoor detection and noisy feature detection on the MNIST dataset, we
use LeNet adapted from [LeCun et al.|(1998), which has two convolutional layers, two max-pooling
layers, and one fully-connected layer. For the experiment on data summarization on PubFig83, we
use a simplified VGG architectureﬂ For the experiment on poisoning detection over the Dog vs.
Cat dataset as well as the data summarization over the COVID-CT dataset, we use a small CNN
model adapted from PyTorch tutoriaﬂ We use Adam optimizer with learning rate 10~3, mini-batch
size 32 to train all of the models mentioned above for 30 epochs, except that we train LeNet for 5
epochs on MNIST. For the experiment on data biasing on the Adult dataset, we implement logistic
regression in scikit-learn (Pedregosa et al.,[2011)) and use the LibLinear solver. For the experiment on
mislabeling detection on SPAM and data debiasing on COMPAS, we adopt SVM implementation
from scikit-learn library (Pedregosa et al., 2011) with RBF kernel. The 2 test used for pre-processing
Enron SPAM dataset is implement by scikit-learn library for univariate feature selection.

F.4 DATA UTILITY LEARNING CONFIGURATION

A DeepSets model is a set function f(S) = p (3, g @(x)) where both p and ¢ are neural networks.
Since summation does not depend on the permutation of elements in S, the architecture is permutation-
invariant and thus a set function. In our experiment, both ¢ and p networks have three fully-connected
layers. We note that ¢ network can also be convolutional for image datasets. However, we find that
for image datasets CIFAR-10, Dog vs Cat, PubFig83 and Covid-CT, it is better to use the data features
extracted by the convolutional layers of the target model (trained on the full training set) as the input
for DeepSets models. All labels are one-hot encoded, and each label vector y; is concatenated with

3https://github.com/YiZeng623/frequencyfbackdoor
*nttps://pytorch.org/tutorials/beginner/blitz/cifarl0_tutorial.html

19

https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/poisoning/feature_collision_attack.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/poisoning/feature_collision_attack.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/poisoning/feature_collision_attack.py
https://github.com/YiZeng623/frequency-backdoor
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Under review as a conference paper at ICLR 2022

Synthetic Dataset CIFAR-10 Dataset

= 0.9 = 301 .
(] v

o o

5 0.8 35 25

[o

< 0.7 ¢

e e 20

G 06 S 15

o o

205 g

o a 10

0.5 0.6 0.7 0.8 0.9 10 15 20 25 30
True Accuracy True Accuracy

Figure 5: Predicted vs. True Utility for unseen subsets of (a) logistic regression classifier trained on a
synthetic dataset, and (b) CNN model trained on a subset of CIFAR-10 dataset.

the corresponding data feature vector x;, and then feed (x;, y;) into the DeepSets model as the input.
We tune the DeepSets model architecture for different datasets. For the COMPAS dataset, we set
the number of neurons in every hidden layer and the dimension of set features (i.e., the output of ¢
network) to be 64. For all other datasets, we set the number of neurons and set dimension to be 128.
We use the Adam optimizer with learning rate 10~*, mini-batch size of 32, 8; = 0.9, and 35 = 0.999
to train all of the DeepSets utility models, for up to 20 epochs. The number of utility samples we use
is 4000 for all experiments, as mentioned in Section[5] To sample a subset, we first uniformly pick a
set size, and then uniformly sample a subset of the given size without replacement. We left exploring
the relationship between subset sampling distribution and data selection performance as our future
work. The validation data in utility sampling are 500 clean data points sampled from the test data of
the corresponding datasets.

F.5 ADDITIONAL RESULTS
F.5.1 GENERALIZATION OF DATA UTILITY LEARNING

In Figure 5] we show examples of correlation plot between predicted and actual data subset utility.
For Figure [3] (a), the data utility function is the validation accuracy of logistic regression model
trained on a synthetic dataset. For the synthetic data generation, we sample 200 data points from
a 50-dimensional Gaussian distribution, where the covariance matrix is identity matrix and the 50
mean parameters are sampled uniformly from [—1, 1]. Each data point is labeled by the sign of the
sum of the data point vector. Since logistic regression problem is convex and has unique global
minimum, the data utility has smaller variance due to the randomness in learning algorithm and thus
utility prediction is relatively accurate. For Figure 5] (b), the data utility function is the validation
accuracy of a CNN model trained on a subset of CIFAR-10 dataset of size 2000. Since learning
neural networks is a non-convex problem, the variance in data utility from the optimization process
is relatively large, the utility prediction error is also relatively large. However, we can still need a
strongly positive correlation between the predicted and true data utility, which means that the data
utility model is still able to differentiate between subsets with large utility gaps.

F.5.2 EFFECT OF SYMMETRY AXIOM

To better illustrate the issue raised by symmetry axiom (Section), we evaluate data selection
performance of LOO, Shapley, and least core heuristic on a synthetic dataset with 15 training data
points (so that we can compute the exact Shapley and least core values, as well as obtain the optimal
subset). The tiny synthetic dataset is generated by sample data points from a 2-dimensional standard
Gaussian distribution, where the mean vector of the Gaussian distribution is (0.1, —0.1). Each data
point is labeled by the sign of its vector’s sum. We first sample 9 data points with positive label and
2 data points with negative label. We then replicate each of the two negatively labeled data points
for two times. To simulate natural noise, we add Gaussian noise to the copied data vector with scale
10~°. By sampling and copying, we obtained 15 data points with natural redundancy. The utility

20

Under review as a conference paper at ICLR 2022

—e— Optimal Shapley
—e— LOO —<&— Least core

e o o ~
N o oW o

Validation Accuracy
o
[o)]

o
5

2 4 6 8 10 12 14
Selected Data

Figure 6: Results of data selection with different heuristics on a tiny dataset with natural redundancy.
Dataset and implementation are detailed in the Appendix.

metric is the test accuracy of a Support Vector Machine (SVM) classifier trained on the dataset. Since
there are only 6 data points with negative label, they tend to be assigned with larger (and similar)
importance scores by linear heuristics like Shapley value. Both Shapley and Least core thus rank
negative points with higher importance. This means that when the target selection size is less than 6,
the selected dataset contains only data of negative label and no information about the positive label
class at all. As shown in Figure[6] both Shapley and Least core achieves trivial utility for the first 6
selected data points. With small selection budgets, the subsets selected by all the heuristics have low
utility as the heuristics fail to promote diversity during selection due to symmetry axiom, and thus
suffer poor data selection performance.

F.5.3 BACKDOOR ATTACK

We consider the two most popular types of backdoor attacks, namely the BadNets
and the Trojan square trigger 2017). Those two attacks’ major difference is the trigger
itself, where BadNets adopts a white block trigger at the right corner, and Trojan attack adopts a
square trigger.

Here, we show the results of DATASIFTER and baseline techniques over detecting BadNets triggers
on MNIST dataset. The poisoning rate is 0.25, and the target label is ‘0’. The performance of different
techniques is illustrated in Figure|Z|I.(a) and I.(b). We can see that DATASIFTER outperforms all other
methods in the detection rate and significantly reduces the attack accuracy after filtering out bad data
points. Besides, we can see that TracIn-Clean and influence function exhibits similar trends, which
only starts finding the adversarially perturbed data points until filtering out a certain amount of clean
data (same thing happen for data poisoning detection). We conjecture that this is because adversarially
perturbed data points are designed to change the model prediction of particular target examples;
each individual perturbed data point, however, does not have a significant impact on the loss of
clean validation data. Besides, adversarially perturbed data points are similar and their influence
on validation data is also similar in nature, thus they tend to be ranked together by influence-based
methods.

F.5.4 DATA POISONING ATTACK

We discuss two popular types of clean-label data poisoning attacks. Feature collision attack
crafts poison images that collide with a target image in feature space, thus making it
difficult for a model to discriminate between the two. Influence function-based poisoning attack
identifies the most influential training data points for the target image and generates
the adversarial training perturbation that causes the most increase in the loss on the target image. The
Attack Success Rate is measured by the model’s confidence on the prediction of poisoned data (with
respect to the target label).

Figure[7]11.(a) (b) show the results for influence function-based attack on Dog vs. Cat dataset, where
50 data points of class ‘cat’ are perturbed to increase the model loss on a ‘dog’ sample in the test

21

Under review as a conference paper at ICLR 2022

—— DataSifter TMC-SV —=— KNN-SV —— LOO Tracln
Perm-SV —— G-SV — LC —— INF —-— Random
1.0 1.0 : 1.0/ 010
B
0.8 808 208 508
E: E: : 7
T 0.6 ~ 0.6/ T 06 Sos6
=] o k] o
et - At
§D.4‘ §0.4' §0.4‘ $0.4'
[[T [—
0 0.2 00.2 00.2 © 0.2
-
O
e ——— XL 0.0 <00
0 200 400 600 8001000 0 500 1000 1500 2000 00 0 100 200 300 400 500
L@ # Inspected Data IL@) % |nspected Data V. # Inspected Data
100 — 80 27,5 T
% 80 £ g £250
o« 2'60 g3
a 60 s ©20.0
& 2 3
o !
g 40 240 9175
@ ¥ 5 15.0/
o he)
E 20 g 20 2125
< 0 0. S — 10.0/| L 7
100 200 300 400 500 200 400 600 800 1000 100 200 300 400 500 50 100 150 200 250
L(b) # Thrown Data L) # Thrown Data HL(b) # Thrown Data IV.b) % Thrown Data

Figure 7: The experimental results and comparisons of the DATASIFTER under the case of filtering
out harmful data (application I-IV). The light blue region in each (a) graph represents the area that a
method is no better than a random selection. For I.(b) and IL.(b), we depict the Attack Success Rate
(ASR), where a lower ASR indicates a more effective detection. For III.(b) and IV.(b), we show the
model test accuracy, where a higher accuracy means a better selection.

set. As we can see, DATASIFTER is a more effective approach to detect poisoned data points than all
other baselines.

F.5.5 NoIsY FEATURE

We follow the same evaluation method for noisy data detection as in Section [6] with another setting:
LeNet model trained on noise polluted MNIST. We randomly select 1000 data points and corrupt 25%
of them with white noise. As shown in Figure[7]IIL.(a) (b), we can see that although KNN-Shapley
can achieve slightly better performance in detecting noisy data points, DATASIFTER still retains a
higher performance for model accuracy. Besides, similar to the case for CIFAR10, we find that the
KNN-SV approach only starts finding the noisy data points until filtering out a certain amount of
clean data. This is mainly because all noisy data points are out-of-distribution (OOD), as shown in
Figure 8] (b). The mechanism of KNN-SV, however, tends to assign 0 values to OOD data points
while assign negative values to clean data points that are in-distribution but have different labels from
their neighbors. Figure [8](c) gives a visualization of the distribution of KNN-Shapley values.

F.5.6 MISLABELED DATA

We conduct another experiment on noisy label detection: a small CNN model trained on 500 data
points from the CIFAR-10 dataset. The noise flipping ratio is 25%. The performance of mislabel
detection is shown in Figure [7]IV.(a). As we can see, no techniques are particularly effective in
detecting mislabeled data for this task. Only KNN-SV and TracIn-Self achieves a slightly better
performance than other approaches. We conjecture that the difficulty of mislabel detection on CIFAR-
10 dataset is due to the following reason: since an oracle for detecting mislabeled data points can
also be used to implement a classifier, the difficulty of mislabeling detection is at least as difficult as
classification. A classifier directly trained on the 500 clean data points in this experiment, however,
can only attain around 28% test classification accuracy. Nevertheless, Figure [7]IV.(b) shows that
DATASIFTER only achieves slightly worse model accuracy than KNN-SV after filtering out selected
bad data points. Besides, we can see that although TracIn-Self is able to filter out more mislabeled
data points than others, it does not lead to higher accuracy for the selected data as TracIn-Self ignores
data interaction and end up selecting similar data points.

22

Under review as a conference paper at ICLR 2022

KNN SV

0 500 10_00 1500 2000
data index

(@ (b) (©

Figure 8: (a) a normal image from CIFAR-10, (b) an example of noisy data image, (c) a sample of
KNN-Shapley values, where data points with index < 500 are noisy. A data point with a higher
KNN-Shapley value is considered more important.

F.5.7 DATA SUMMARIZATION

As another setting for the |+ Datasifter

< .

o - 75
data summarization appli- Perm-SV
cation we consider, we use 70 > TMC-SV

. . | GSV
the patient CT images from 0 KNN-SV

COVID-CT dataset for a
binary classification task,

Accuracy (%)
(=]
w
hd

Weighted Accuracy (%)
[« = . | ; Qo o W

60 INF
which aims to determine 5 Tracin-Clean
whether an individual is 55 0l —= Random
diagnosed with COVID-19 or 50 100 150 200 250 v 50 100 150 200 250

not. The CNN model trained V. # Selected Data L # Selected Data
on the dataset achieves
around 72% classification
accuracy. Figure 9] V. shows
the results for selecting up to
400 data points with different
techniques. As we can see, DATASIFTER achieves the best model accuracies on the selected data
points along with KNN-SV.

Figure 9: The experimental results and comparison of the
DATASIFTER under the case of selecting high-quality data (ap-
plication V and VI). We depict the validation accuracy for both
cases. A higher accuracy indicates a better performance.

F.5.8 DATA DEBIASING

We introduce another data debiasing experiment on the criminal recidivism prediction (COMPAS)
task, where races are considered as the sensitive attribute. The utility metric we adopted here is the
average accuracy across different race groups. The learning algorithm we use is SVM with RBF
kernel. Baselines including G-SV, KNN-SV, and Influence-based techniques are not applicable for
this application due to the utility metric and learning algorithm we use. Figure[J] VL. shows the results
for DATASIFTER and the remaining five baselines. We can see that DATASIFTER again achieves the
top-tire performance.

F.5.9 UTILITY OPTIMIZATION ON LARGER DATASETS

We compare the scalability between DATASIFTER and other baselines on large datasets. We show
the results for backdoor detection on a 10,000-size Trojan square poisoned CIFAR-10 dataset
here. For DATASIFTER, we only sample data subset utilities from 1000 data points (10% of the
whole dataset), while the learned utility model (the DeepSets model) is optimized over the entire
10,000 data points. The intuition of this approach is that the learned utility model can provide
utility estimations for sets of seen data points as well as unseen data points. Therefore, the greedy
optimization can be performed on a larger dataset even if the utility learning is on smaller subsets.
Since the learned utility model may not generalize well on dataset of sizes greater than 1000, we start
over the optimization process once the selected data points exceed 1000, and then select another 1000

23

o«

Under review as a conference paper at ICLR 2022

1.0 = 100
g
308 S 80
©
o
nc: 0.6 o 60 «— DataSifter
© ‘53 Tracin-Self
) J 2 o - KNN-SV
304 7 S 40 — INF
[- n Tracin-Clean
Q0.2 y | E 20 —.— Random
00| it == |3 ||
0 2500 5000 750010000 1250 2500 3750 5000
(@) # Inspected Data (b). # Thrown Data

Figure 10: The experimental results and comparison of the DATASIFTER and baseline algorithms for
detecting backdoored data on larger datasets.

data points until we reach the target selection budget. The pseudo-code is summarized in Algorithm[2]

ALGORITHM 2: Utility Optimization on Large Datasets

input : dataset D, trained utility model U, target selection size k, the maximium size of sets
where U has seen during utility training B (usually much smaller than D), precision
parameter for stochastic greedy algorithm e.

output:A set S C Ds.t. |S| = k.

S <+ 0,8y« 0.

s fort=1,...,kdo

10

11
12
13
14
15
16
17
18
19

Sample R C D\ S of sjze ‘—Ikpl log(1/e).
Find z = argmax, ., U(S U {z}).
So — SO U {Z}
if |So| = B then
S =5US.
So «— 0.
end
S =5US.

end
return S

When executed on NVIDIA Tesla K80 GPU, the clock time for the utility sampling step is within 15
hours for 4000 utility samples with a small CNN model, as the data size is fairly small. The LOO,
the Least core, and all the Shapley value-based approaches except KNN-SV did not terminate in
24 hours, so we remove them from comparison. As we can see from Figure[T0] DATASIFTER once
again outperforms all the remaining approaches. The results show that the learned utility model can
provide utility estimations for sets of unseen data points, which largely improves the scalability of
DATASIFTER. On the contrary, the existing valuation-based approaches cannot predict the importance
of unseen data points. Thus their utility sampling has to be conducted over the entire dataset.

Follow the same method in Algorithm 2] we perform noisy data detection on a 20,000-size CIFAR-10
dataset. The corruption ratio is 25%. Again, for DATASIFTER, we train the utility model on utility
samples collected from retraining on subsets of 1000 data points (5% of 20,000). We remove the
LOO, the Least core, and all the Shapley value-based approaches except KNN-SV from comparison,
as they did not terminate in 24 hours for 4000 utility sampling on the 20,000-size set. As we can
see from Figure[IT](a) and (b), DATASIFTER significantly outperforms all other baseline techniques
except TracIn-Clean. However, TracIn-Clean only starts finding bad data after filtering out certain
clean data points. The results demonstrate that although the utility sampling step could be expensive,
the scalability of DATASIFTER can be boosted by the predictive power of the learned utility model.

24

Under review as a conference paper at ICLR 2022

=
o

$£75.0|
v 0.8 8725
5 & 70.0 _
- ataSifter
g 0.6 § 67.5 Tracln-Self
o= ‘ C 65.0 +— KNN-SV
g 04 El —— INF
‘G_J‘ n 62.5 Tracin-Clean
0o0.2 % 60.0 ~:= Random
]
0.0 E 57.5j , | ' .
0 10000 20000 2500 5000 7500 10000
(). # Inspected Data (b). # Thrown Data

Figure 11: The experimental results and comparison of the DATASIFTER and baseline algorithms for
detecting noisy data on larger datasets.

25

	Introduction
	Related Work
	Formalism
	Worst-Case Analysis for Valuation-based Approaches
	DataSifter
	Evaluation
	Important Settings and Baselines
	Results
	Filtering out Harmful Data
	Selecting High-quality Data

	Limitations and Future Work
	Reproducibility Statement
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Stochastic Greedy Algorithm
	Characterization and Learnability of Data Utility Functions
	Experiment Details and Additional Results
	Baseline Implementation
	Details of Datasets Used in Section 6
	Experiments Implementation
	Data Utility Learning Configuration
	Additional Results
	Generalization of Data Utility Learning
	Effect of Symmetry Axiom
	Backdoor Attack
	Data Poisoning Attack
	Noisy Feature
	Mislabeled Data
	Data Summarization
	Data Debiasing
	Utility Optimization on Larger Datasets

