
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A STATISTICAL METHOD FOR ATTACK-AGNOSTIC
ADVERSARIAL ATTACK DETECTION WITH COMPRES-
SIVE SENSING COMPARISON

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial attacks present a significant threat to modern machine learning sys-
tems. Yet, existing detection methods often lack the ability to detect unseen at-
tacks or detect different attack types with a high level of accuracy. In this work, we
propose a statistical approach that establishes a detection baseline before a neu-
ral network’s deployment, enabling effective real-time adversarial detection. We
generate a metric of adversarial presence by comparing the behavior of a com-
pressed/uncompressed neural network pair. Our method has been tested against
state-of-the-art techniques, and it achieves near-perfect detection across a wide
range of attack types. Moreover, it significantly reduces false positives, making it
both reliable and practical for real-world applications.

1 INTRODUCTION

Neural networks (NNs) are being used in numerous use cases across many disciplines. They have
almost become an integral part of our lives. One variation of them that we use very commonly is
the Convolutional Neural Network (CNN). They are widely used in image recognition, and they are
considerably reliable in this application, and they keep getting better virtually every day. A challenge
in using CNNs in sensitive applications is the existence of adversarial attacks (Goodfellow et al.,
2015).

Adversarial attacks inject a small, ideally human-imperceptible perturbation in the input image be-
fore being fed into a CNN classifier. This perturbation usually takes the form of random noise and
is applied at a practically imperceptible level. Although this modification looks harmless or even
completely invisible to the human eye, it wreaks havoc inside the workings of the CNN classifier.
It ultimately pushes the detection to an invalid class. This can lead to many unseemly outcomes,
ranging from loss of accuracy to failure of safety-critical systems.

Several methods exist to detect and suppress adversarial attacks. However, these methods suffer
from inherent flaws, such as the requirement of apriori knowledge of the attack type, the high number
of false positives, low overall accuracy, and scaling issues with different network architectures.

In this paper, we present a simple attack-agnostic detection method that does not require prior knowl-
edge of attack models. It requires a simple training process before the deployment to generate a set
of class identities and, during runtime, uses those identities to match every incoming sample.

Compression suppresses adversarial noise to an extent, as shown in Aydemir et al. (2018) among
others. While this effect is less than ideal for reliably suppressing all adversarial perturbations, we
can observe a difference when we take the same input and run it through a pair of slightly different
networks. The pair of networks will be almost identical, except that to the second network, we
feed a compressed version of the image, and the network itself is pre-trained on compressed images
after regular training. We leverage a secondary denoising network that operates on compressed
images and check how far the matching of the distributions skew between the two networks. We
propose a metric that can be calculated at runtime for each sample that measures this disparity and a
threshold T that can be empirically determined pre-deployment. We use the threshold on the metric
to determine the presence of adversarial perturbations and filter out the adversarial samples.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The metric calculation uses the feature maps generated in both networks’ last feature layer (the layer
before the winner-takes-all/softmax layer) and represents how much they disagree. This disagree-
ment is more pronounced in adversarial images, thus allowing the discrimination between them and
clean images. Our method consistently gives accurate detections for every adversarial attack tested,
while existing work performs well in some attacks and poorly in others.

We developed this method without considering any of the attack models and their behavior since
compressive networks suppress almost any adversarial signal presence. This led us to believe this
method should perform well on any attack universally. We claim that our method is an attack-
agnostic adversarial attack detector.

Several mathematical/statistical operations are used in this work. One of the notable operators is
the KL divergence, which is defined for two vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) as
follows, where ln stands for the natural logarithmic operator.

KL(a,b) =
n∑

i=1

ai.ln(
ai
bi
) (1)

One important point to note here is that the KL operator is not commutative, and therefore, KL(a, b)
and KL(b, a) are not necessarily equal.

We utilize the L2 norm to measure the difference between two vectors. The L2 norm between two
vectors a and b are defined as,

L2 norm(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (2)

Also, we used the Mann-Whitney U test to compare two smaller distributions and decide whether
the data belongs to a common distribution. This method is outlined in Mann & Whitney (1947)

In the rest of the paper, section 2 briefly outlines related work. Section 3 presents the details of the
technique and how it works. Our experimental results are showcased in section 4, and we compare
our approach with existing methods. Finally, section 5 concludes the paper.

2 RELATED WORK

We use several adversarial attack models to verify our theory of attack agnostic detection. They are
contained within the Adversarial Robustness Toolbox (ART) by Nicolae et al. (2018) Python pack-
age. The attack models that are used here are the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015), the Projected Gradient Descent (PGD) (Madry et al., 2017) approach, the Square At-
tack (Andriushchenko et al., 2020) method, the DeepFool (Moosavi-Dezfooli et al., 2015) method
and the Carlini-Wagner(CW) (Carlini & Wagner, 2016) attack. These methods use an approximately
similar CNN model (black box attack) or the exact CNN model used in detection (white box attack)
to generate an attack. The exact way they create the attack varies by the attack method. Still, they
usually use gradient-based methods, where the adversary calculates the gradient of the model’s loss
function with respect to the input and adjusts the input accordingly to maximize the loss, as opposed
to minimizing the loss when the goal is to predict the image content accurately. A noise vector is
calculated using these gradients that skew the prediction in a way that increases the chance of mis-
classification. This noise vector is then added to the image, making it fool the detector. The idea of
our work is to identify images that have been tampered with with such a malicious noise vector.

Current methods of detecting the presence of adversarial attacks include attack agnostic methods
such as the Least Significant Component Feature (LCSF) (Cheng et al., 2022) method, the Energy
Distance/Maximum mean discrepancy (Saha et al., 2019) method, the Mahalanobis distance-based
classifier (Lee et al., 2018) method. Also, there exist attack specific methods such as the Feature
Squeezing (Xu et al., 2018) method, using Latent Neighborhood Graphs (Abusnaina et al., 2021),
using Influence Functions/Nearest Neighbors (Cohen et al., 2020), using Bayesian Neural Networks
(Deng et al., 2021), by random input responses (Huang et al., 2019) and by Random Subspace

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Analysis (Drenkow et al., 2021). These methods have their shortcomings, such as poor performance
in some attack models, requiring extra training data, high false positive rates, and limited flexibility.

One major part of our method is the secondary denoising network. In theory, this can be accom-
plished in numerous methods, but we have chosen compressive sensing using JPEG2000 compres-
sion, as demonstrated by Aydemir et al. (2018). JPEG compression is typically used to reduce the
file size of images by reducing unnecessary and imperceptible information contained in an image.
However, this provides a benefit when attempting to suppress adversarial attacks since the JPEG
compression algorithm treats the adversarial noise signals as imperceptible information and disre-
gards them, restoring the original image to an extent. The downside of this in practice is that the
accuracy improvement is not perfect and, in most cases, only restores about 20-30% of the accuracy.
So, this alone is not a comprehensive defense strategy against adversarial attacks. However, since
we know that a compressed network treats adversarial noise differently, we can take advantage of
that to implement a more sophisticated detection method.

In order to properly build class identities and match new samples, we need a proper comparison
system. This is accomplished using the method proposed by Pentsos & Tragoudas (2023). The
idea is to partition the pre-provided train-test sets and use the feature vectors of those partitions to
build an identity. Then, the new samples are augmented using benign noise vectors to form a rich
representation of the sample, which is compared against the pre-built class identities. We use this
underlying concept to check how the new samples match our known class baselines.

3 METHODOLOGY

Here, we describe a method to detect adversarial attacks in an attack-agnostic way, using a pre-built
class identity and the deviation from it on a new sample. The sample is run through the regular net-
work and a redundant network, which uses a denoising method such as JPEG compression Aydemir
et al. (2018). Before the deployment, we run the system through a known dataset and build each
class’s identities on both networks. Then, in the field, we match each example to the class identity
on both networks and extract a measure of how much the two networks disagree on the image. If
they disagree beyond a certain threshold, the sample is marked adversarial. This effect is evident in
the sample images shown in Figure 1

(a) Raw Clean (b) JPEG Clean (c) Raw FGSM
(ϵ = 0.08)

(d) JPEG FGSM
(ϵ = 0.08)

Figure 1: Sample image of the class ’Cat’ from CIFAR-10 at the various stages of the method

Our method is derived from the technique from Pentsos & Tragoudas (2023) to build and match
class identities for a classification problem. This allows us to have an apriori knowledge of the data,
how each class behaves, and a way to identify when they misbehave, i.e., an adversarial attack. We
used the Mann-Whittney U test and the KL divergence to generate and match distributions with each
other. For the identity creation phase, we run Algorithm 1 to create the class identity for each class.
This takes the form of a histogram, one for each class. The second phase generates a distribution
from the input image using Algorithm 2, matching them with each class distribution, getting the
distance to the closest distribution, comparing how the redundant network agrees with this measure,
and making the decision.

We preserve the name convention used in Pentsos & Tragoudas (2023) for better clarity. The algo-
rithm 1 is used to calculate the distribution identity of each class and store it for later use. It takes

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input : Class c, test set of class c, training set of c, I parameter
Output: Distribution identity MW id(c) of class c
for i← 1 to I do

Randomly sample N images from the test set of c to create sample ST ;
Partition ST into subsets Si, each containing k images;
Randomly sample N images from the train set of c to create sample SR;
Perform a forward pass of SR through the CNN;
for each subset Si of ST do

Perform a forward pass of Si through the CNN;
Extract the average feature vectors f̂Si

n and f̂nSR of the examined samples using the
output of the penultimate layer n of the CNN;

Normalize the two extracted average feature vectors;
Calculate the KL divergence D

(I)
TR between f̂Si

n and f̂nSR

end
Partition SR into subsets Si, each containing k images;
Perform a forward pass of ST through the CNN;
for each subset Si of SR do

Perform a forward pass of Si through the CNN;
Extract the average feature vectors f̂Si

n and f̂nST of the examined samples using the
output of the penultimate layer n of the CNN;

Normalize the two extracted average feature vectors;
Calculate the KL divergence D

(I)
RT between f̂Si

n and f̂nST

end
Calculate the p-value of the Mann-Whitney U test between D

(i)
TR and D

(i)
RT ;

Store the p-metric as the i-th element of the distribution identity of class c;
end
Algorithm 1: Calculating the distribution identity MW id of a class using the KL divergence

the train set and test set for each class as input, along with the parameter I , and outputs a dictionary
of class maps for each class. The parameter I is empirically determined by experimentation.

3.1 BUILDING THE DISTRIBUTION IDENTITY

When building the distribution identity for a class, we first take the test set ST for that class and
partition it into subsets of size k each, which we will call Si. Then, we select N random images
from the train set to create the sample batch SR. These image sets SR and each Si are passed
through the neural network in question, as well as the feature vector of the layer before the softmax
layer is extracted. We calculate the average vector of each of these sets, which we call f̂SR and
f̂Si respectively. The average feature vector here is the element-wise average of each vector from
the neural network output. These vectors are then normalized, and their KL divergence DSiSR

is
calculated as shown below.

DSiSR
=

KL(f̂Si , f̂SR) +KL(f̂SR , f̂Si)

2
(3)

We repeat this process for each subset Si of ST , and then we are left with a series of ’divergence
points’, namely DTR. We need to calculate DRT , which involves the same procedure but with SR

and ST interchanged. We then take these two populations and perform a Mann-Whitney U test
(Mann & Whitney, 1947) between them. The resulting p-value is stored as the ith value of the
class distribution identity. This process is repeated over I iterations to build the complete distri-
bution identity. The samples generated during the algorithm’s execution are saved as a dictionary,
class distributions. This step is executed before the actual deployment of the neural network, and
we need to make sure that the train and test sets are strictly free of perturbations, adversarial or
random. This process is also performed separately on the redundant network.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 DETECTING ADVERSARIAL SAMPLES

After the neural network is deployed, we use the second procedure, as outlined in algorithm 2, to
determine whether the given image is adversarial. The algorithm takes in the unknown image q, the
sample dictionary class distributions, and the class identity dictionary MW id. It will return the
distance metric, which we can use to compare with a predetermined threshold, where if it is higher,
the image will be tagged as adversarial and as clean otherwise. We take the input image and generate
a sequence of N images. To do this, we add various random noise signals to the image, save it as a
new image, and generate N − 1 images, which gives us N images when combined with the original
image. We call this batch of N images as Sq , and it is a rich representation of the image itself.

Then, to match this new representation with the classes, we pick N images from the class distribution
for a given class c. These images will form our ST for this execution. We run this ST and Sq through
the same partitioning, p-value calculation, and KL divergence calculation we performed in algorithm
1. The resulting KL divergence value for each class is stored as a vector with respect to the class.
Two such vectors are extracted, one from the standard network and the other from the redundant
network.

Input : Input image q, dictionary class distributions, list of class distribution identities
MW id

Output: Adversarial Possibility Metric PA

Run Instance(q,N), which creates N − 1 uncorrelated instances of q and form sample Sq

with these N images;
Partition Sq into subsets of size k;
for each class label c do do

Randomly select m samples from the distribution class distributions[c];
Forward pass images in m through the deployed network and extract their average feature

vector, denoted by f̂m
c ;

for each subset S of Sq do do
Forward pass images in S through the deployed network and extract their average

feature vector, denoted by f̂sq
n ;

Append p value between f̂m
c and f̂sq

n to the class-sample signature Dc

end
Compute the KL divergence between Dc and MW id(c) and append it to distance vector
V ;

end
Get V for the raw network VR and for the compressed network VC ;
Return L2 Norm(VR, VC) as PA;

Algorithm 2: Calculating the adversarial possibility metric

The two networks are used here because the denoising network will try to push back against the
adversarial features and diminish them while pushing the image toward its original class and its
resultant features. This will cause a disparity between the distribution distances between the class
identities. The distance vector will match very closely on clean images but will take a significant
value on the adversarial, giving a clean separation between the two.

We decide the detection threshold T empirically. It is chosen so that all the clean samples score
below this threshold and still give good results on the adversarial data. Once this universal threshold
is established, it does not need to vary by the type of attack. Anything below is classified as clean,
and anything above is classified as an adversarial sample. In this way, we can achieve true attack-
agnostic detection.

4 EXPERIMENTAL RESULTS

We performed experiments using the proposed method on three datasets across five attacks. The cho-
sen datasets are CIFAR-10, CIFAR-100, and a truncated version of Imagenet, which contains only
50 classes. FGSM, PGD, Square Attack, DeepFool, and Carlini-Wagner attacks were performed on
them. Most of the evaluation was conducted on a workstation running Ubuntu 22.04 LTS, an Intel

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Effect of Compression on Adversarial Images

Dataset Raw Clean Compressed Clean Raw FGSM Compressed FGSM

CIFAR-10 85.63 83.65 62.72 81.59
CIFAR-100 82.34 79.86 53.92 71.82
ImageNet 78.98 73.47 51.65 67.44

Table 2: Performance Comparison of Various Defenses

Attack Dataset Dist. Matching
(ours)

1 Cheng1 Saha1 Mahalanobis Feat.
Squeezing

Abus-
naina Cohen LiBre Huang

FGSM CIFAR-10 100.002 99.90 75.90 99.94 20.80 99.88 87.75 -3 77.20
CIFAR-100 100.00 100.00 - 99.86 - - 87.23 - -
ImageNet 100.00 - - - 99.60 99.53 - 100.00 -

PGD CIFAR-10 100.00 100.00 - - - 91.39 99.34 - 96.40
CIFAR-100 100.00 99.90 - - - - 81.87 - -
ImageNet 98.804 - - - - 99.35 - 99.40 -

Square Attack CIFAR-10 98.00 - - - - 98.82 - - -
CIFAR-100 100.00 - - - - - - - -
ImageNet 99.50 - - - - 82.20 - - -

DeepFool CIFAR-10 100.00 84.60 - 83.41 77.40 - 97.98 - 99.80
CIFAR-100 97.50 73.30 - 77.57 - - 78.82 - -
ImageNet 99.50 - - - 78.60 - - - -

Elastic Net CIFAR-10 98.90 - - - - - 86.95 - 95.10
CIFAR-100 97.30 - - - - - 70.49 - -
ImageNet 97.80 - - - - - - - -

CW CIFAR-10 97.80 94.30 100.00 87.31 98.10 91.51 98.98 - 98.70
CIFAR-100 99.50 81.60 - 91.77 - - 93.16 - -
ImageNet 97.10 - - - 97.90 86.05 - 98.50 -

JSMA CIFAR-10 98.60 - - - 83.70 - 98.95 - 98.40
CIFAR-100 98.10 - - - - - 80.76 - -
ImageNet 97.00 - - - - - - - -

-

Xeon E5 CPU, and triple Nvidia GTX980 GPUs. Some time-intensive tasks were offloaded to a
high-performance cluster containing multiple GPU nodes.

CIFAR-10 was used as the primary benchmark to evaluate the method. The ResNet18 (He et al.,
2015) network was used and trained to achieve an accuracy of 91.39% on unmodified raw images of
the test set, which is a set of 10, 000 images, 1000 images from each class. JPEG2000 compression
with a quality factor of 80% was used to duplicate the train and test sets, and the network was re-
trained on the JPEG-compressed images. When evaluated on the compressed test set, an accuracy of
90.27% was obtained. The same test set was then run through the ART adversarial attack generation
tool to create an FGSM attack with a perturbation strength (ϵ) of 0.02, which was run through raw
and JPEG networks, which resulted in accuracies of 62.72% and 81.59% respectively, indicating
adversarial suppression. A complete summary of the effect of JPEG compression on FGSM attack
across multiple datasets can be seen in Table 1.

The pre-deployment information was calculated using 10, 000 images randomly selected from the
train set, and algorithm 1 was used to extract 10 class signatures from them. The I parameter was
set to 50 through experimentation. The evaluation was then performed on the 10, 000 image test set.
These images were taken from the test set of each data set and were run as clean samples through
the method. The threshold of 5 was selected such that 100% of the clean images were marked as
clean by the technique, with a margin added to it for the CIFAR-10 dataset. Then, each image was
used to create one adversarial attack of each type, resulting in 10, 000 test images per attack. The
scores given in the result summary are the percentages of images in that set marked adversarial by
the method, i.e., had a PA higher than the threshold T .

1The method names in boldface are attack agnostic
2The values in boldface are the best overall result for the given dataset-attack combination
3The dash (-) indicates that this result has not been reported
4The values in italics are the best attack agnostic method result for the given dataset-attack combination,

but there is a better attack-specific result

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The Experiment was repeated for CIFAR-100 and a subset of TinyImageNet that consists of only 50
classes to facilitate the attack generation, which is very time/memory intensive for complex attacks
such as JSMA and Elastic Net. Separate thresholds were calculated for each dataset (8.3 for CIFAR-
100 and 8.7 for ImageNet). Compared with other methods, the complete result set can be seen in
Table 2.

5 CONCLUSION

To conclude this work, we have presented a method that can detect adversarial attacks without
the requirement for attack-specific training and maintain a high detection accuracy across multiple
attack models without compromising the false positive rate. The results show that our method is
reliable across multiple datasets and attack models, maintaining almost perfect accuracy. These
characteristics make our method ideal for sensitive applications needing reliable defense against
potential adversarial threats.

REFERENCES

Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen Wang, Fei Wang, Hao Yang, and David
Mohaisen. Adversarial Example Detection Using Latent Neighborhood Graph. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7667–7676, Montreal, QC,
Canada, October 2021. IEEE. ISBN 9781665428125. doi: 10.1109/ICCV48922.2021.00759.
URL https://ieeexplore.ieee.org/document/9710861/.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
Attack: a query-efficient black-box adversarial attack via random search, July 2020. URL
http://arxiv.org/abs/1912.00049. arXiv:1912.00049 [cs, stat] version: 3.

Ayse Elvan Aydemir, Alptekin Temizel, and Tugba Taskaya Temizel. The Effects of JPEG
and JPEG2000 Compression on Attacks using Adversarial Examples, 2018. URL https:
//arxiv.org/abs/1803.10418.

Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks, 2016.
URL https://arxiv.org/abs/1608.04644.

Jiaxin Cheng, Mohamed Hussein, Jay Billa, and Wael AbdAlmageed. Attack-Agnostic Adversarial
Detection, 2022. URL https://arxiv.org/abs/2206.00489.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting Adversarial Samples Using Influ-
ence Functions and Nearest Neighbors. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14441–14450, Seattle, WA, USA, June 2020. IEEE. ISBN
9781728171685. doi: 10.1109/CVPR42600.2020.01446. URL https://ieeexplore.
ieee.org/document/9157555/.

Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. LiBRe: A Practical Bayesian Approach
to Adversarial Detection, 2021. URL https://arxiv.org/abs/2103.14835.

Nathan Drenkow, Neil Fendley, and Philippe Burlina. Attack Agnostic Detection of Adversarial
Examples via Random Subspace Analysis, November 2021. URL http://arxiv.org/abs/
2012.06405. arXiv:2012.06405 [cs] version: 2.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples, March 2015. URL http://arxiv.org/abs/1412.6572. arXiv:1412.6572
[cs, stat] version: 3.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Bo Huang, Yi Wang, and Wei Wang. Model-Agnostic Adversarial Detection by Random Pertur-
bations. pp. 4689–4696, 2019. URL https://www.ijcai.org/proceedings/2019/
651.

7

https://ieeexplore.ieee.org/document/9710861/
http://arxiv.org/abs/1912.00049
https://arxiv.org/abs/1803.10418
https://arxiv.org/abs/1803.10418
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/2206.00489
https://ieeexplore.ieee.org/document/9157555/
https://ieeexplore.ieee.org/document/9157555/
https://arxiv.org/abs/2103.14835
http://arxiv.org/abs/2012.06405
http://arxiv.org/abs/2012.06405
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1512.03385
https://www.ijcai.org/proceedings/2019/651
https://www.ijcai.org/proceedings/2019/651


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Framework for Detecting
Out-of-Distribution Samples and Adversarial Attacks, October 2018. URL http://arxiv.
org/abs/1807.03888. arXiv:1807.03888 [cs, stat] version: 2.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks, June 2017. URL https:
//arxiv.org/abs/1706.06083v4.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. Annals of Mathematical Statistics, 18:50–60, 1947. doi: 10.1214/aoms/
1177730491.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a simple
and accurate method to fool deep neural networks, 2015. URL https://arxiv.org/abs/
1511.04599.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wis-
tuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian M. Molloy,
and Ben Edwards. Adversarial Robustness Toolbox v1.0.0, 2018. URL https://arxiv.
org/abs/1807.01069.

Vasileios Pentsos and Spyros Tragoudas. A statistical approach to improve CNN classification accu-
racy. In 2023 IEEE 24th International Conference on High Performance Switching and Routing
(HPSR), pp. 1–5, Albuquerque, NM, USA, June 2023. IEEE. ISBN 9781665476409. doi: 10.
1109/HPSR57248.2023.10148033. URL https://ieeexplore.ieee.org/document/
10148033/.

Sambuddha Saha, Aashish Kumar, Pratyush Sahay, George Jose, Srinivas Kruthiventi, and Harikr-
ishna Muralidhara. Attack Agnostic Statistical Method for Adversarial Detection. In 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 798–802,
Seoul, Korea (South), October 2019. IEEE. ISBN 9781728150239. doi: 10.1109/ICCVW.2019.
00107. URL https://ieeexplore.ieee.org/document/9022279/.

Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting Adversarial Examples in
Deep Neural Networks. In Proceedings 2018 Network and Distributed System Security Sympo-
sium, San Diego, CA, 2018. Internet Society. ISBN 9781891562495. doi: 10.14722/ndss.2018.
23198. URL https://www.ndss-symposium.org/wp-content/uploads/2018/
02/ndss2018_03A-4_Xu_paper.pdf.

8

http://arxiv.org/abs/1807.03888
http://arxiv.org/abs/1807.03888
https://arxiv.org/abs/1706.06083v4
https://arxiv.org/abs/1706.06083v4
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1807.01069
https://ieeexplore.ieee.org/document/10148033/
https://ieeexplore.ieee.org/document/10148033/
https://ieeexplore.ieee.org/document/9022279/
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-4_Xu_paper.pdf

	Introduction
	Related Work
	Methodology
	Building The Distribution Identity
	Detecting Adversarial Samples

	Experimental Results
	Conclusion

